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A B S T R A C T

We consider a Hamiltonian system associated with the two-well umbilical catastrophe potential 𝐷5, while the
corresponding potential contains only one free parameter. We determine how this free parameter affects the
equilibrium dynamics of the system by computing their coordinates on the configuration plane, along with
their linear stability and type. Additionally, we discuss the influence of the same free parameter on the orbital
dynamics of the system by performing a systematic and thorough orbit classification that allows us to reveal
the bounded or escaping motion of the test particle.
Introduction

The study of particle’s motion in an open Hamiltonian system is
a thriving field of research, as confirmed by the number of works
carried out on the subject during the last decades (e.g., [1–28]). This
importance is due to the fact that the escapes describe a lot of problems
in science as, to cite a pair of examples, the decay of metastable states
in many fields of physics such as nuclear reactions and or atomic
ionization. In this type of system, there exists a value of the energy, 𝐸0,
such that if the particle has a value larger than 𝐸0, there is a possibility
that it will end leaving the potential well of the system [16]. The
previous studies on the escape from a dynamical system have focused
primarily on the analysis of the properties of the escape from one-well
potentials, with one or more openings through which the particles may
escape.

Thus, for instance, Navarro [24] analyzed the dependence of the
limiting curves of the basins of escape on the energy in a galactic
type Hamiltonian with axial symmetry, which is composed of perturbed
harmonic oscillators. The curves of zero velocity of this system present
only one exit channel. The escape dynamics of this particular galactic
system has been studied previously by Zotos [26] and Navarro [22,23].
Moreover, the escape from multichannel systems have been studied
extensively (see e.g., [14,16–21,25,27,28]).

However, far fewer studies have addressed multiwell systems. Multi-
well potentials have a highly inhomogeneous phase space. Their main
characteristic is that the local minima of the potential are associated
with different values of the energy, which leads to mixed states dy-
namics, that is, a particle with a particular value of the energy shows
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a different regime of motion depending on if the particle moves in the
vicinity of one local minimum or the other.

In a recent paper, [27] (hereafter Paper I), carried out a classi-
fication of the types of motion in a Hamiltonian system associated
with the two-well umbilical catastrophe potential 𝐷5. In his study, the
author performed a numerical exploration of the system to determine
the bounded (ordered and chaotic) or escaping nature of the orbits,
while also revealing the basins of escape through the different openings
of the potential, and also calculating the percentage of escaping orbits
and its dependence on the energy of the system.

In this paper, we analyze the same multiwell potential of the lower
umbilical catastrophe 𝐷5, in terms of the parameter 𝛼 ∈ [−1,+1]. In
Section ‘‘Details of the mathematical model’’ we give some details about
the Hamiltonian and the equations of motion. Section ‘‘Equilibrium
dynamics’’ is devoted to the analysis of the equilibria of the system
and their local stability. In Section ‘‘Orbital dynamics’’, we investigate
the orbital dynamics of the potential. Finally, Section ‘‘Concluding
remarks’’ contains the most important conclusions of this work.

Details of the mathematical model

The potential which corresponds to the lower umbilical catastrophe
𝐷5 is given by

𝑉 (𝑥, 𝑦) = 1
4
𝑥4 − 𝑥2 + 𝑥𝑦2 + 2𝛼𝑦2, (1)

where 𝛼 is a free parameter. In our study, we shall consider cases where
the numerical value of this parameter lies in the interval 𝛼 ∈ [−1,+1].
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Fig. 1. The geometry of the isoline contours 𝑉𝑥 = 0 (green) and 𝑉𝑦 = 0 (red), for characteristic values of the parameter 𝛼. The positions of the equilibria are indicated by red dots.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Parametric evolution of the coordinates on the configuration plane (𝑥, 𝑦) of the
2

extra libration points 𝐿4 and 𝐿5, when 𝛼 ∈ [−1,+1]. The red dots indicate the fixed
libration points 𝐿1, 𝐿2, and 𝐿3.
Fig. 3. The zones of non-linear stability around the linearly stable points 𝐿2 and 𝐿3,
when 𝛼 = 1.
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Fig. 4. Basin diagrams revealing the orbit classification on the (𝑥, 𝑦) plane, for characteristic values of 𝛼, when 𝐸0 = −0.3. The correspondence between the character of the
trajectories and colors is as follows: chaotic (yellow), sticky (purple), regular (blue), escaping through channel 1 (red), escaping through channel 2 (green). Black dots pinpoint
the positions of the system’s equilibria. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The set of equations that governs the planar motion of a test particle
reads

�̈� = − 𝜕𝑉
𝜕𝑥

= −𝑉𝑥(𝑥, 𝑦) = −𝑥3 + 2𝑥 − 𝑦2, (2)

�̈� = − 𝜕𝑉
𝜕𝑦

= −𝑉𝑦(𝑥, 𝑦) = −2𝑦 (𝑥 + 2𝛼) . (3)

The potential’s 𝑉 (𝑥, 𝑦) derivatives of second order which are needed
for the variational equations as well as for the calculation of the
stability of the equilibria, are the following

𝑉𝑥𝑥(𝑥, 𝑦) =
𝜕2𝑉
𝜕𝑥2

= 3𝑥2 − 2, (4)

𝑉𝑥𝑦(𝑥, 𝑦) =
𝜕2𝑉
𝜕𝑥𝜕𝑦

= 2𝑦, (5)

𝑉𝑦𝑥(𝑥, 𝑦) =
𝜕2𝑉
𝜕𝑦𝜕𝑥

= 2𝑦, (6)

𝑉𝑦𝑦(𝑥, 𝑦) =
𝜕2𝑉
𝜕𝑦2

= 2 (𝑥 + 2𝛼) . (7)

The Hamiltonian of the dynamical system is

𝐻 = 𝑉 (𝑥, 𝑦) + 1 (

�̇�2 + �̇�2
)

= 𝐸, (8)
3

2

where 𝐸 is the test particle’s total orbital energy, while it moves inside
the regions of the phase space where 𝑉 (𝑥, 𝑦) ≤ 𝐸.

Equilibrium dynamics

The coordinates (𝑥, 𝑦) of the equilibrium points of the system on the
configuration (𝑥, 𝑦) plane are derived by solving the system 𝑉𝑥(𝑥, 𝑦) =
𝑉𝑦(𝑥, 𝑦) = 0. Taking into account the simplicity of these equations, we
are able to obtain analytical solutions for the positions of the libration
points. In particular, our analysis suggests that the system has always
(regardless the value of the parameter 𝛼) three collinear equilibrium
points located at (0, 0) and (±

√

2, 0). There exist two more equilibria
at (−2𝛼,±

√

2𝛼3 − 𝛼) which are real only when −
√

2∕2 < 𝛼 < 0 or
𝛼 >

√

2∕2. In fact, the values 𝛼𝑐1 = −
√

2∕2 and 𝛼𝑐2 =
√

2∕2 are critical
values of the parameter 𝛼.

In order to understand the parametric evolution of the positions of
the equilibrium points we show in Fig. 1(a–d) the isoline contours of
the curves 𝑉𝑥 = 0 (green) and 𝑉𝑦 = 0 (red). The intersections of these
curves pinpoint the positions of the libration points (red dots). It is
seen that the geometry of the isoline contours 𝑉𝑥 = 0 is always the
same, regardless of the value of 𝛼. Specifically, 𝑉𝑥 = 0 corresponds to
a closed elliptical curve between the equilibrium points 𝐿 and 𝐿 and
1 2
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Fig. 5. Distribution of the escape time of the trajectories for the corresponding cases shown in Fig. 4. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
a hyperbola where 𝐿3 acts as a vertex. On the other hand, the isoline
contours of 𝑉𝑦 = 0 consist of the horizontal 𝑥 axis, along with a vertical
straight line. This vertical straight line is the only segment that changes
position when 𝛼 varies in [−1,+1]. Initially, when 𝛼 < 𝛼𝑐1 the vertical
line intersects only the horizontal 𝑥 axis and the system has only three
collinear equilibrium points with fixed positions. However, when 𝛼𝑐1 <
𝛼 < 0, the vertical line intersects the closed elliptical isoline contour
𝑉𝑥 = 0 and thus two more libration points exist. Then, when 0 < 𝛼 < 𝛼𝑐2,
the vertical line moves between 𝐿1 and 𝐿3 without intersecting any
of the 𝑉𝑥 = 0 segments and therefore we have again the three fixed
points of equilibrium. Finally, when 𝛼 > 𝛼𝑐2, the moving vertical line
intersects the hyperbola 𝑉𝑥 = 0 which leads to the appearance of two
more libration points. In Fig. 2 we present the evolution of the extra
equilibria on the plane (𝑥, 𝑦), when 𝛼 ∈ [−1,+1]. We see, that when
𝛼 = 𝛼𝑐1, the extra libration points 𝐿4 and 𝐿5 emerge from 𝐿2. As the
value of the parameter 𝛼 increases they move away from 𝐿2 and start
approaching 𝐿1. Then, when 𝛼 = 0 they collide with 𝐿1 and they are
mutually annihilated. The set of extra libration points appears again
when 𝛼 = 𝛼𝑐2, where they emerge from 𝐿3. For 𝛼 > 𝛼𝑐2 the equilibrium
points 𝐿4 and 𝐿5 move away from 𝐿3 and theoretically they tend to
infinity as 𝛼 → +∞. Comparing the diagrams of Figs. 1 and 2, we see
that the evolutionary paths of the extra libration points of the system
coincide with the fixed isoline contours of 𝑉𝑥 = 0.

Knowing the analytical expressions of the coordinates of all the li-
bration points of the system, we can also compute their linear stability.
This can be done by linearizing the equations of motion (2) and (3)
at any equilibrium point with coordinates (𝑥, 𝑦), using the coefficient
matrix

𝐂 =

⎛

⎜

⎜

⎜

⎜

0 0 1 0
0 0 0 1

−𝑉𝑥𝑥 −𝑉𝑥𝑦 0 0

⎞

⎟

⎟

⎟

⎟

. (9)
4

⎝

−𝑉𝑦𝑥 −𝑉𝑦𝑦 0 0
⎠

Then, the linear stability of the equilibria is determined through the
roots of the equation 𝑃 (𝜆) = 0, where

𝑃 (𝜆) = 𝜆4 +
(

𝑉𝑥𝑥 + 𝑉𝑦𝑦
)

𝜆2 + 𝑉𝑥𝑥𝑉𝑦𝑦 − 𝑉 2
𝑥𝑦, (10)

is the characteristic polynomial. In particular, if all four roots of the
equation 𝑃 (𝜆) = 0 (evaluated at the libration point (𝑥, 𝑦)) are pure
imaginary numbers then the corresponding equilibrium point is linearly
stable, while in any other scenario the libration point is unstable.

Our computations indicate, that the equilibrium points 𝐿1, 𝐿4, and
𝐿5 are always unstable. On the other hand, the libration point 𝐿2 is
unstable when 𝛼 < 𝛼𝑐1 and linearly stable when 𝛼 > 𝛼𝑐1, while the
equilibrium point 𝐿3 is stable only when 𝛼 > 𝛼𝑐2.

It is known [29] that around linearly stable points there exist the
so-called zones (or regions) of non-linear stability, where a test particle
with zero initial velocity remains trapped in the near vicinity of the
respective linearly stable equilibrium point, throughout the entire time
of the numerical integration. In Fig. 3 we depict the shape of the
zones of non-linear stability around the equilibria 𝐿2 and 𝐿3. For the
computations we chose the value 𝛼 = 1, where both 𝐿2 and 𝐿3 are
linearly stable points. However, additional computations indicated that
the shape of these regions remains almost unperturbed for all values of
the parameter 𝛼, as long as these values correspond to linear libration
points.

Finally, we would like to discuss the dynamical nature of the
equilibria of the system. The type of a libration point is determined
through the number of negative eigenvalues of the matrix

𝐌 =
(

𝑉𝑥𝑥 𝑉𝑥𝑦
𝑉𝑦𝑥 𝑉𝑦𝑦

)

. (11)

For a system of two degrees of freedom, we have the four cases:

• If there are no eigenvalues with negative real parts, then the
corresponding libration point is a minimum of the potential.
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Fig. 6. Basin diagrams revealing the orbit classification on the (𝑥, 𝑦) plane, for characteristic values of the parameter 𝛼, when 𝐸0 = 1. The correspondence between the character of
the trajectories and colors is as follows: chaotic (yellow), sticky (purple), regular (blue), escaping through channel 1 (red), escaping through channel 2 (green). Black dots pinpoint
the positions of the system’s equilibria. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
• If there is only one eigenvalue with a negative real part, then the
corresponding libration point is an index-1 saddle.

• If there are two eigenvalues with negative real parts, then the
corresponding libration point is an index-2 saddle.

• If one or two of the eigenvalues are zero, then we have the case
of a degenerate equilibrium point.

For our potential we found that:

• When 𝛼 < 𝛼𝑐1, 𝐿1 is in index-2 saddle point, while 𝐿2 and 𝐿3 are
index-1 saddles.

• When 𝛼𝑐1 < 𝛼 < 0, 𝐿1 is an index-2 saddle point, 𝐿2 a minimum
of the potential, while 𝐿3, 𝐿4, and 𝐿5 are index-1 saddles.

• When 0 < 𝛼 < 𝛼𝑐2, 𝐿1 and 𝐿3 are index-1 saddle points, while 𝐿2
is a minimum.

• When 𝛼 > 𝛼𝑐2, 𝐿1, 𝐿4, and 𝐿5 are index-1 saddles, while 𝐿2 and
𝐿3 are minima of the effective potential.

Orbital dynamics

In this Section, we investigate the orbital dynamics of the multiwell
potential (1). All initial conditions of the orbits are numerically inte-
grated for a total time of 104 dimensionless time units. As in Paper I,
5

we apply the geometrical criterion according to which any trajectory
is considered to escape if 𝑅 =

√

𝑥2 + 𝑦2 > 10. Apart from escaping
orbits, we have also the case of bounded orbits (those for which 𝑅 < 10,
throughout the entire time interval of the numerical integration). In
this case, we employ the SALI method [30] for distinguishing between
chaotic, sticky, and regular bounded motion.

We begin with the configuration plane (𝑥, 𝑦), where all trajectories
have initial velocities

�̇�0 = −
𝑦0
𝑟0

√

2𝑓0, (12)

𝑦0 =
𝑥0
𝑟0

√

2𝑓0, (13)

where 𝑟0 =
√

𝑥20 + 𝑦20 and 𝑓0 = 2
(

𝐸0 − 𝑉 (𝑥0, 𝑦0)
)

.
In Fig. 4(a–d), we present the basin diagrams containing the orbit

classification, for 𝐸0 = −0.3 and for four characteristic values of the
parameter 𝛼. In these diagrams, each pixel represents an individual
initial condition and it is colored according to the classification of the
corresponding trajectory, thus following the graphical approach used
in [31,32]. For 𝛼 = −1 (see panel (a)), we see that all the starting
conditions lead to escape, through the open zero-velocity curves. In
fact, we have two escape channels, the upper one (channel 1) and the
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Fig. 7. Distribution of the escape time of the trajectories for the corresponding cases shown in Fig. 6.
lower one (channel 2). It is interesting to note that the basin boundaries
are very clear and smooth, without any indication of fractal regions. In
panel (b) of Fig. 4, where 𝛼 = −0.5, the overall basin structure remains
the same as in panel (a). The only difference is that near the boundaries
of the energetically forbidden region around 𝐿1 we see the presence of
a complicated structure of escape zones. With a close look, one can
observe that at the center of the complicated escape zones lies a tiny
island of regular bounded orbits. When 𝛼 = 0.5 (see panel (c)), the
zero-velocity curves break and we have two disjoint parts. The part
at the left-hand side of the diagram, containing the equilibrium point
𝐿3, is composed entirely of basins of escape. On the other hand, for
the second part, at the right-hand side of the diagram (around the
libration point 𝐿2), the zero velocity curve is closed, thus containing
only bounded regular orbits. When 𝛼 = 1 (see panel (d)), the zero-
velocity curves break even further and we have four disjoint parts in
total. The two outer parts contain entirely initial conditions of escaping
trajectories, while the two parts around the equilibrium points 𝐿2 and
𝐿3 are composed of bounded initial conditions. Interestingly enough,
the closed region around 𝐿2 contains entirely regular orbits, while the
other closed region around the libration point 𝐿3 contains a mixture of
stability islands, as well a unified sea of initial conditions corresponding
to sticky and chaotic trajectories.

The color-coded diagrams in Fig. 5(a–d) shows the escape time’s
𝑡esc distributions of the orbits for the four cases presented in Fig. 4(a–
d). As expected, the highest values of the escape time correspond to
the boundaries of the basins of escape. In particular, in panel (b) of
Fig. 5, we see that the escape time of the trajectories with starting
conditions inside the region with the complicated basin structure is
considerably higher with respect to the escape time of the orbits with
starting conditions outside this region.

The basin diagrams for a positive value of the total orbital energy
(𝐸0 = 1) are given in Fig. 6(a–d). When the value of the parameter 𝛼
is negative (𝛼 = −1 in panel (a) and 𝛼 = −0.5 in panel (b)) the entire
region of energetically allowed motion of the test particle is covered
6

by initial conditions corresponding to escaping trajectories. Once more,
as in the case with a negative value of 𝐸0, the basin boundaries are
very smooth and clear. This behavior completely changes when the
parameter 𝛼 has positive values, as can be seen in the diagrams of
panels (c) and (d), where 𝛼 = 0.5 and 𝛼 = 1, respectively. In both cases,
regular bounded motion is possible through a stability island inside the
right lobe of the zero velocity curves, around the equilibrium point 𝐿2.
Moreover, we can observe the presence of complicated escape basins
structures that seem to spiral out from the central libration point 𝐿1
at (0, 0). Our analysis suggests, that the basin structure becomes more
complicated as 𝛼 increases. This will be discussed later by computing
the fractal dimension of the phase space, as a function of 𝛼.

The corresponding escape time’s distributions of the orbits for 𝐸0 =
1 are illustrated in the diagrams of Fig. 7(a–d). It becomes evident, that
the orbits with starting conditions well inside the basins of escape need
no more than 2 time units to cross the escape radius (with velocity
pointing outward). On the other hand, trajectories with starting con-
ditions near the boundaries of the escape and regular basins, require
more than 5 time units of numerical integration in order to escape.
Specifically, in panel (d) of Fig. 7, which corresponds to the case with
𝛼 = 1, we see that for all the starting conditions inside the complicated
basin structures the corresponding escape time is of the order of 10
time units, or even higher.

So far, we have presented results on the configuration plane (𝑥, 𝑦),
for specific values of the total orbital energy 𝐸0. In the diagrams of
Fig. 8(a–d) we provide basin diagrams on the (𝑥,𝐸) plane, where for all
initial conditions we take 𝑦0 = �̇�0 = 0. In panel (a), which corresponds
to the case with 𝛼 = −1, we see that all the starting conditions lead
to escape and in particular, those with 𝑥0 < 0 escape through channel
2, while those with 𝑥0 > 0 escape through the opposite channel. When
the value of the free parameter is 𝛼 = −0.5 (see panel (b)) again the
vast majority of the trajectories escape. However, for relatively low
values of the total orbital energy and near the right bottom of the
potential well there exist a small region of regular bounded orbits.
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Fig. 8. Basin diagrams revealing the orbit classification on the (𝑥,𝐸) plane, for characteristic values of the parameter 𝛼. The correspondence between the character of the trajectories
and colors is as follows: chaotic (yellow), sticky (purple), regular (blue), escaping through channel 1 (red), escaping through channel 2 (green). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Our calculations suggest that this region of bounded regular motion
grows with increasing value of 𝛼. Indeed, in panels (c) and (d) of
the same figure which correspond to the cases with 𝛼 = 0.5 and
𝛼 = 1, respectively, we see that the size of the stability region grows
inside the right-hand side of the potential well. At the same time, the
basin structures, especially on the right-hand side of the basin diagram,
become more complicated and interwoven. Furthermore, when 𝛼 > 𝛼𝑐2
bounded motion appear also near the left bottom of the potential well.
It should be emphasized that the bounded motion that appears on the
right-hand side of the potential well corresponds entirely to regular
motion, while on the other hand, the bounded motion of the left-hand
side of the diagram contains a mixture of all possible types of bounded
orbits (mainly regular and chaotic).

In Fig. 9(a–d) we provide the corresponding distributions of the
escape time of the orbits with initial conditions on the (𝑥,𝐸) plane.
Undoubtedly, the most interesting results are shown in panel (a) of
this figure. In panel (a) of Fig. 8, we have seen that all the initial
conditions lead to escape, while there is a very clear and smooth
transition between the two basins of escape. Moreover, the two basins
of escape, corresponding to the two escape channels, are symmetrical
with respect to the vertical line 𝑥 = 0. However, in panel (a) of Fig. 9,
we see that the distribution of the corresponding 𝑡 of the orbits does
7

esc
not follow the basin structures of Fig. 8. In particular, the distribution
is not symmetrical to the 𝑥 = 0 line, while the highest values of 𝑡esc are
measured near the right bottom of the potential well. Additionally, for
all tested values of 𝐸, the escape times of the orbits with 𝑥0 > 0 are
higher with respect to those with 𝑥0 < 0. We interpret this behavior
as an early indication that bounded motion will emerge at the right-
hand side of the basin diagrams for higher values of 𝛼. This should be
true, taking into account that in panel (b) of Fig. 9 we also observe
that around the boundaries of the stability island, located at the right
bottom of the potential well, there exist the trajectories with the highest
escape times.

The classification of the trajectories on the (𝑥,𝐸) plane indicated
that bounded motion is not possible for all values of the parameter 𝛼.
Additional computations revealed that when 𝛼 < 𝛼𝑐1 the entire phase
space is completely covered by escaping orbits. Bounded motion, and in
particular regular bounded motion, appears at the right-hand side of the
potential well, only when 𝛼 > 𝛼𝑐1. For positive values of the parameter
𝛼, there is no segment of the closed zero velocity curve around 𝐿2.
However, regular bounded motion is present, even with open limiting
curves.

While presenting the nature of motion on the (𝑥, 𝑦) and (𝑥,𝐸)
planes we qualitatively discussed the complexity of the phase space.
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Fig. 9. Distribution of the escape time of the trajectories for the corresponding cases shown in Fig. 8.
Fig. 10. Parametric evolution of the (a-left): fractal dimension and (b-right): basin entropy of the (𝑥,𝐸) plane, as a function of the parameter 𝛼. The vertical, dashed, red line
corresponds to the value 𝛼 = 𝛼𝑐1.
Nevertheless, a more accurate assessment is required. For this purpose,
we computed both the fractal dimension 𝐷0 [33] and the basin entropy
𝑆𝑏 [34,35] of the (𝑥,𝐸) plane, as a function of the free parameter 𝛼. Our
results are shown in Fig. 10(a–b), where we see that the results from
two different indicators, regarding the degree of fractality, coincide. In
particular, when 𝛼 < 𝛼𝑐1 the values of both 𝐷0 and 𝑆𝑏 are equal to zero,
thus indicating zero fractality. For 𝛼 > 𝛼𝑐1 the degree of fractality of
the phase space gradually increases which justifies the complex basin
structures we observed in the basin diagrams of Figs. 4, 6, and 8. In
general terms, we may argue that for negative values of 𝛼 the basin
geometry is relatively simple, while on the other hand for 𝛼 > 0
8

the basin structures become more complicated, especially due to the
addition of the bounded basins to the escape basins of the system.

Concluding remarks

In this article, we worked on the Hamiltonian system associated
with the two-well umbilical catastrophe potential 𝐷5. The correspond-
ing two-dimensional potential has only one free parameter which al-
lowed us to fully reveal its properties. Specifically, we explained how
the free parameter of the system affects the dynamics of the equilib-
ria by computing their coordinates on the configuration (𝑥, 𝑦) plane,
along with their linear stability and type (e.g., minimum, index-1
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saddle, etc.). Furthermore, we determined the influence of the same
free parameter on the orbital dynamics of the system by performing a
systematic and thorough orbit classification that allowed us to reveal
the test particle’s bounded (chaotic, sticky, or regular) and escaping
(through channel 1 or 2) motion.

The most important results of our analysis are the following:

1. The dynamical system has either 3 or 5 points of equilibrium,
depending on the particular value of the parameter 𝛼.

2. Three of the equilibrium points (𝐿1, 𝐿2, and 𝐿3) are collinear
points, on the horizontal 𝑥 axis, with fixed coordinates.

3. The libration points 𝐿1, 𝐿4, and 𝐿5 are always unstable, while
the fixed collinear points 𝐿2 and 𝐿3 can be either linearly stable
or unstable, according to the value of the free parameter.

4. Escaping motion is the most dominant type of motion, while the
amount of bounded initial conditions grows as the value of 𝛼
tends to 1.

5. The bounded motion inside the right well of the potential
(around 𝐿2) corresponds entirely to regular bounded trajecto-
ries. On the other hand, inside the left well of the potential
(around 𝐿3) trapped chaotic motion is also possible, especially
for energy levels close to 𝐸 = 0.

For the numerical integration of both the equations of motion and
the variational equations, we used a double-precision Bulirsch–Stoer
routine in FORTRAN 77 [36]. Using an integration time step of the
order of 10−4 we managed to maintain the conservation of the energy
integral (8) with an acceptable numerical error at the order of 10−14.
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