
Citation: Villacampa, Y.;

Navarro-González, F.J. An Algorithm

for Numerical Integration of ODE

with Sampled Unknown Functional

Factors. Mathematics 2022, 10, 1516.

https://doi.org/10.3390/

math10091516

Academic Editor: Zhisheng Shuai

Received: 31 March 2022

Accepted: 26 April 2022

Published: 2 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Algorithm for Numerical Integration of ODE with Sampled
Unknown Functional Factors
Y. Villacampa and F. J. Navarro-González *

Department of Applied Mathematics, University of Alicante, 03690 San Vicente del Raspeig, Spain;
villacampa@ua.es
* Correspondence: francisco.navarro@ua.es

Abstract: The problem of having ordinary differential equations (ODE) whose coefficients are un-
known functions is frequent in several fields. Sometimes, it is possible to obtain samples of the values
of these functions in different instants or spatial points. The present paper presents a methodology
for the numeric solving of these ODE. There are approximations to the problem for specific cases of
equations, especially in the case where the parameters correspond to constants. Other studies focus
on the case in which the functions under consideration are linear or meet a certain condition. There
are two main advantages of the proposed algorithm. First, it does not impose any condition over
the data or the subsequent function from where these sample data are derived. Additionally, the
methodology used in the functions modeling can control the possibility of overfitting in the function
modeling. This is a crucial point in order to limit the influence of model biases in the numerical
solution of the ordinary differential equation under study.

Keywords: ordinary differential equations; unknown functional coefficients; equation coefficient sampling

MSC: 34F05

1. Introduction

In the study and modeling of systems, differential equations can be obtained with
parameters that depend on observations. That is, they are parameters that can vary through-
out the domain of definition and for which experimental data are known. Differential
equations can be either ordinary differential equations or partial differential equations.
Problems modeled by this type of differential equations are, for example, (see [1–5]):
(a) the heat equation with unknown specific heat and heat sources; (b) the diffusion equa-
tion of products with non-constant and unknown innovation and imitation coefficients;
(c) the study of hydraulic transients; and (d) water flows such as groundwater seepage
in anisotropic media. In this sense, it is important to obtain hybrid-modeling methodolo-
gies that allow combining parameter estimation methods with algorithms of numerical
resolution of differential equations.

When the dynamics of the processes underlying the system under study are known,
differential equations can model their behavior, especially in the case of complex dynamic
processes. In many cases, these differential equations contain constant parameters or
functional dependencies with the independent variable that determine the characteristics
of the corresponding solutions. The exact knowledge of its parameters is crucial for
predicting the behavior of the solutions. Some concrete examples of the study of the
problem considered in specific fields could be, for example, in biology and ecology [6–8],
chemistry [9,10], electronics [11] and engineering [12,13].

The problem of determining the constant coefficients present in a differential equation
from the study of the solutions of the system has been the subject of different studies,
presenting a variety of methods of resolution. First approaches were based on least squares
techniques. However, due to the absence of an analytical solution, the need to solve the
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ODEs numerically makes this approach computationally expensive. An alternative is
the generalized profiling estimation method, where the solution is approximated using a
linear combination of basis functions and adjusting the coefficients of the corresponding
expansion equation by comparing them with the differential equation (see [14,15]). This
method is applied even in the case in which the model is stochastic [16]. A study on the
properties of this type of algorithm can be found in [17]. Other investigations are based on
the use of non-deterministic methods (for example genetic algorithms [18], particle swarm
optimization [10]) or Machine Learning (ML) techniques. Some studies focus on methods
applicable to specific types of equations. For example [19], where the problem corresponds
to a differential equation associated with the time evolution of a system, and is solved by
making a large number of observations of the evolution of the system over short intervals.

However, the application of the techniques discussed in real problems presents a
series of difficulties due to the characteristics of the numerical data available in such cases,
as discussed in [20]. In addition, the presence of outliers makes it necessary to design
and use robust algorithms, see, for example, [21]. There are also some considerations that
complicate the efficient use of some of the methods. For example, in stiff problems, the
presence of nonlinearity in the solution space [10] or high dimensionality of the parameters
space, in partial differential equations (PDE) [12].

The approach taken in the present investigation is in a certain way the inverse of that
of the cases previously considered. It is proposed to obtain a solution of the differential
equations by previously determining the values of the parameters that best fit the observa-
tions made. However, the approach used in [10] has a certain similarity in its first stages to
the one presented in this paper.

When the function to model corresponds to a spatial-distributed variable, kriging is
usually used as the best linear estimator of the function from a set of random measurements.
This can be found in the work of [22,23] for the calculation of unknown coefficients in linear
PDE [24,25].

The proposal presented in this research work performs a modeling of the parameters of
the differential equation in the case of functional dependence, by means of a local regression
method based on the finite element method. Therefore, a brief introduction to the modeling
methods will be given below.

The number of techniques available to model a relationship between variables is
large. Selecting one or another depends on a variety of factors, from the data itself to
the knowledge of the underlying equation involving the variables. The toolbox goes
from classical statistical methods as linear or multilinear regression to machine-learning
oriented methods as neural networks and related techniques, random trees, support vector
regression and others.

The problem under consideration consists of obtaining a model of the relationship
between a set of variables that is assumed to be determined by a function f : Ω ⊂ Rd → R

y = f (x1, . . . , xd). (1)

All the considered methods start from an experimental dataset Y of P tuples sampled
from the relation (1):

Y =
{(

x1
[k], x2

[k], x3
[k], . . . .., xd

[k], y[k]
)}

k=1,2,....,P
, (2)

where, for every k = 1, 2, . . . ., P is verified
(

x1
[k], x2

[k], x3
[k], . . . .., xd

[k], y[k]
)
∈ Ω×R.

The literature developing the different methods can be easily accessed and they are
widely applied to a variety of problems. From these data, each methodology allows us to
obtain estimates of the values of f (x1, . . . , xd) at each point of Ω using an algorithm:

F : Ω ⊂ Rd ×RJ → R
(x1, . . . , xd; θ1, . . . , θ J) 7−→ F(x1, . . . , xd; θ1, . . . , θ J)

, (3)
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where (θ1, . . . , θ J) represents a set of parameters specific to each methodology and which
determines the output value of the model. These estimated values will be denoted by:

ŷ = F(x1, . . . , xd; θ1, . . . , θ J). (4)

The methods for numeric model estimation are usually stated as a minimization
problem over some kind of global error E obtained as a function H : RP → R of individual
errors ε [k] defined over the sampled and estimated values:

E = H(ε [1], ε [2], . . . ., ε [P]) (5)

with ε [k] = y[k] − ŷ[k] = y[k] − F(x1
[k], . . . .., xd

[k]; θ1, . . . , θ J).
Thus considered, the function H allows the approach of an optimization problem (see

Equation (6)). Then, the optimal values (θ1
∗, . . . , θ J

∗) that minimize the value of H for the
available dataset are sought.

H
(

y[1] − F(x1
[1], . . . , xd

[1]; θ1, . . . , θ J), . . . , y[P] − F(x1
[P], . . . , xd

[P]; θ1, . . . , θ J)
)

. (6)

These optimum parameters define the final model F∗ as:

F∗(x1, . . . , xd; θ1
∗, . . . , θ J

∗). (7)

The present work follows the previous line of research developed by the authors with
methodologies based on the finite elements method (FEM), a method for finding numerical
solutions to differential equations with boundary conditions, developed initially to be
applied in civil and aeronautical engineering [26–31].

In the following, in order to simplify notation, the criterion of writing the d-dimension
points as a single variable will be used. Let us consider a given differential equation defined
by a differential operator D, acting on a domain Ω ⊂ Rd:

D( f ) = v, (8)

where f , v ∈ V(Ω), V being a function space defined over Ω.
The finite element method replaces the domain Ω of V by a collection of Ne closed sets

{Ω1, . . . , ΩNe} called elements, that verify:

UNe
j=1Ωj = Ω

Ωj1 ∩Ωj2 = ∂Γj1 ∩ ∂Γj2

, (9)

where ∂Γj is the frontier of the closed Ωj.
This process is called meshing and it is usually done using sets of specific geometries,

for example, in two dimensional triangles or rectangles. The generated mesh has an
associated number that is related to the size of the elements. This parameter is usually
denoted by h and relates to the order of the error in the interpolations that will be defined
in the next paragraph:

h = min
ρεR

{
B
(

xj, ρ
)
⊃ Ωj

∣∣ xj ∈ Ωj , j = 1, . . . , Ne
}

, (10)

where B
(

xj, ρ
)

is the open ball centred in xj with radius ρ.
Meshing on a domain also defines a set of Q points called nodes

(
ζ1, ζ2, . . . . . . , ζQ

)
that are used as support for the interpolation of any function defined on Ω through a
related set of functions called shape functions

(
ϕ1(x), ϕ2(x), . . . . . . , ϕQ(x)

)
verifying the

following conditions at the nodes:
ϕi
(
ζ j
)
= δij, (11)
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for every i, j = 1, . . . , Q.
The linear span defined from the set of functions

(
ϕ1(x), ϕ2(x), . . . . . . , ϕQ(x)

)
forms

a finite dimensional subspace which is composed by continuous piecewise polynomial
functions of degree K (Sobolev space). This vector space is associated with a given division
of the domain where the problem is set in and it will be denoted by Vh. That is:

Vh = span
(

ϕ1(x), ϕ2(x), . . . . . . , ϕQ(x)
)
. (12)

On the space Vh, a derivative operator Dh that generalizes the usual derivative to the
functions of Vh that are not derivable at all points of Ω can be defined.

The original problem can now be posed by searching the function fh ε Vh:

fh(x) = ∑Q
i=1 ui·ϕi(x) (13)

that best approximates the equation:

Dh( fh) = vh, (14)

where vh ε Vh is the function of Vh that corresponds with the interpolation of v(x) defined
in Equation (8).

The application of the FEM to the modelling of systems developed by the authors is
based on the principle of projection through interpolation of any function f ∈ V(Ω) in
the space Vh as:

f (x) = ∑Q
i=1 αi·ϕi(x)

F : Ω ⊂ Rd ×RJ → R
(x1, . . . , xd; θ1, . . . , θ J) 7−→ F(x1, . . . , xd; θ1, . . . , θ J)

, (15)

where αi = f (ζi).
The numerical regression model for the relation Equation (1) will consist of the deter-

mination of the values
{

α1, . . . , αQ
}

that minimize an error function defined in a similar
way to that in Equation (5).

The authors have been developing regression techniques based on Equation (15) as a
method of approximation [32–35]. The last proposal is given by the octahedric regression
methodology that will be presented in the next section.

The rest of the paper is organized as follows: Section 2 presents the basics of the
modelling technique used in the proposed methodology, the octahedric regression and a
study on the overfitting control and the computational algorithm. Section 3 presents four
application examples. The first three correspond to the static heat equation and the last
one to the Bass equation. Finally, Section 4 presents an analysis of the results obtained
and a description of the computational characteristics of the methodology, together with a
reflection on future lines of research.

2. Materials and Methods

The problem under consideration can be divided into two different phases: first, a
model for the coefficients of the equation is determined. After this model has been obtained,
it can be used to solve the differential equation using a typical numerical method, as those
based on Runge–Kutta or multistep approaches.

In this section, we will proceed to the explanation of the modeling method to be used
to estimate the coefficient functions at the nodes where the approximate numerical function
is calculated. The following section presents the proposed solution to deal with the problem
of overfitting, which is common to the techniques of modeling from experimental data.
The last subsection develops the algorithm in the form of pseudocode, commenting on its
main features.
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2.1. Octahedric Regression

The problem of obtaining a model for the functional coefficients will be solved using
the technique developed by the authors, called octahedric regression, and is presented in the
research paper [36]. This algorithm presents good properties with respect to the following
points: easy detection and control of the overfitting problem, efficient parallelization based
on its embarrassing parallelism and fast numerical estimation for out of sample points.

Octahedral regression is an evolution of the previous numerical methodologies devel-
oped by the authors and corresponds to the fastest and most efficient of them. The next
paragraphs provide a brief presentation of the basis of this methodology.

The basis is the use of parameterized radial functions, defined in the following point.

Definition 1. A radial function is a function Φ : R+xR+ → R+ that accomplishes the conditions

∀ω 6= 0 lim
r→∞

Φ(r, ω) = 0

∀r 6= 0 lim
ω→0

Φ(r, ω) = 0

}
. (16)

The next definition introduces the averaged value estimator for a function at any point.
In the following points, it is assumed that a radial function Φ(r, ω) is selected and that the
conditions on the functions for the existence of the corresponding integrals are satisfied.

Definition 2. Given a function f : Ω ⊂ Rd → R , the weighted average regression c∗(xo) of f at
xo ∈ Ω is defined using the implicit definition:

c∗(xo)·W0(xo)−
∫

Ω
f (x)·Φ(‖x− xo‖, ω) dx = 0

∀ω 6= 0 lim
r→∞

Φ(r, ω) = 0

∀r 6= 0 lim
ω→0

Φ(r, ω) = 0

}
, (17)

where W0(xo) =
∫

Ω Φ(‖x− xo‖, ω) dx and Φ(‖x− xo‖, ω) are a function as presented in
Definition 1.

In order to reduce the bias that may exist when calculating the previous weighted
average, a set of points is introduced that will be used in the final estimation of the model.

Definition 3. Given a point xoε Ω and a parameter h (in the model is called pseudocomplexity),
the octahedric support of size h around xo is the set of 2·d points:{

xo +
h
2
·e1, xo +

h
2
·e2, . . . .., xo +

h
2
·ed, xo −

h
2
·e1, xo −

h
2
·e2, . . . .., xo −

h
2
·ed

}
, (18)

where
{

ej
}d

j=1 are the vectors of the canonical basis of Rd.

Definition 4. The octahedric regression model of f (x) at xo is defined as the average of the weighted
average regressions c∗

(
xo ± h

2 · ej

)
calculated at the points of the octahedric support introduced in

Definition 3. This estimated value will be denoted by f̂ (xo) and is given by:

f̂ (xo) =
1

2d
·∑d

j=1

[
c∗
(

xo +
h
2
·ej

)
+ c∗

(
xo −

h
2
·ej

)]
. (19)

The following proposition shows the nature of the proposed estimator.

Proposition 1. The octahedric estimation f̂ (xo) of f (x) at xo is a correction of order two with
respect to the weighted average regression c∗(xo) at the same point.
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Demonstration. Developing the c∗
(

xo ± h
2 ·ej

)
functions in Equation (19) and

Φ
(
‖x− xo ± h

2 ·ej‖, ω
)

through the implicit definition given in Equation (17) in powers of
h, the first order term cancels and the following expression holds:

f̂ (xo) = c∗(xo) + O(h2). (20)

Equation (20) shows that octahedric regression is a correction of order h2 to the
weigthed average for central objective points. Consequently, when h→ 0 , both values tend
to coincide f̂ (xo)→ c∗(xo) , causing overfitting on the points of the sample with respect
to the points nearest to xo. The way to study the existence and importance of this effect is
through a second estimation called restricted model, where in the calculation of the model
at a point, the corresponding values are removed from the sample in the case of being part
of it. The results will be discussed in the next subsection.

When the problem is modelling a function from a discrete sample of size P (see
Equation (2)) of points and values of f (x), the integrals must be calculated using finite
sums, so:

W0(xo) =
∫

Ω
Φ(‖x− xo‖, ω) dx ∼=

1
P
·∑P

k=1 Φ(‖xk − xo‖, ω) (21)∫
Ω

f (x)·Φ(‖x− xo‖, ω) dx ∼=
1
P
·∑P

k=1 yk·Φ(‖xk − xo‖, ω). (22)

Then, the discrete version of Equation (17) is:

∑P
k=1[c

∗(xo)− xk]·Φ(‖xk − xo‖, ω) = 0. (23)

2.2. Control of Model Overfitting

From the result of Proposition 1, the trend to overfitting has been discussed. In this
point, the question will be considered further.

Let us study the problem of estimating the value of an objective function f (x) at the
first point of the sample x1 ∈ Y, and suppose that the rest of the points on the sample
are ordered depending on the distance to x1. Taking Equation (21) at the support points
x1 ± h

2 ·ej,

W0
(

x1 ±
h
2
·ej

)
≈ Φ

(
h
2

, ω

)
·

1 +
Φ
(
‖x2 − x1 ∓ h

2 ·ej‖, ω
)

Φ
(

h
2 , ω

) + .. +
Φ
(
‖xP − x1 ∓ h

2 ·ej‖, ω
)

Φ
(

h
2 , ω

)
 (24)

The term on brackets represents the relative weight of each sample point in the
weighted average. Summing up the contributions on each support point, the result can be
written as:

1 + Ψ(x2 − x1, ω) + .. + Ψ(xP − x1, ω), (25)

where

Ψ(xk − xl , ω) =
∑d

j=1

{
Φ
(
‖xk − xl − h

2 ·ej‖, ω
)
+ Φ

(
‖xk − xl +

h
2 ·ej‖, ω

)}
2·d·Φ

(
h
2 , ω

) . (26)

The value of

Π(xr) = 1 +
P

∑
k 6=r

Ψ(xk − xr, ω) (27)
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represents the weight of all the points in the estimation of the model calculated at xr. At
zero order in h, Equation (27) is approximately:

Π(xr) ∼= 1 +
∑P

k 6=r Φ(‖xk − xr‖, ω)

Φ
(

h
2 , ω

) . (28)

By Equation (16), the fractions converge very fast to zero as the distance to xr grows,
and the only contribution depends on the points that are at a distance similar to the nearest
point, that is, when Φ(‖xk − xr‖, ω) ≈ Φ

(
h
2 , ω

)
. The number q(ω) of points involved is

determined by the value of the parameter ω, and c∗(xr) is a weighted mean of the q-nearest
points. Therefore, the octahedric regression presented in the present paper corresponds to
a mean of a simpler estimator calculated on the support of size h defined around xr. These
simple estimators correspond to the weighted average of the q(xr, ω)-nearest neighbors. In
the limit ω → 0 , c∗

(
xr ± h·ej

)
are obtained from the nearest point. In the case of considering

all the experimental points, the model is called full. In that case, when h� 1, the nearest to
the support points will very frequently be xr, and then: c∗

(
xr ± h·ej

)
→ yr , and according

to Equation (20), f̂ (xr)→ yr , confirming the trend to overfitting.
The overfitting is caused by the incorporation of noise to the model. If the point that is

being calculated is not included in the estimation, the points that are used to obtain the
values of c∗i

(
xr ± h·ej

)
have a greater probability of presenting independent noise influence,

diminishing the overfitting in that form. The new model calculated in this form is called
restricted and corresponds to having a cross-validation for each experimental point where
the test set is formed by itself.

It has been commented previously that the methodology trends to overfitting when the
size of the parameter h is small. Now, a real case of the application of octahedric regression
will be shown in order to illustrate how this problem can be treated. Different statistical
coefficients can be used to quantify the goodness of fit of a model. For example, the mean
absolute error or REC curves. The example is a resume of the results presented in [36]. The
first step is to calculate the so-called full and restricted models for different values of the
parameter h.

As Figure 1a shows, the mixed model, calculated as the average of the errors of the
restricted and full models, presents a minimum that can be used to fix the best value of the
parameter h in the estimation process.

Figure 1. Effect of overfitting and determination of optimum level for parameter h: (a) Typical
behavior of MAE (Mean Absolute Error) for the full, restricted and mixed models in terms of h;
(b) Typical REC curve for the null, full and restricted models.

2.3. Computational Algorithm

The second step of the global algorithm corresponds with the numeric integration
of the ordinary differential equation. As is well known, there is a variety of general
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algorithms and methods and, depending on the concrete ODE under study, some specific
methodologies can be considered.

In the present research, the numerical method of integration used in the calculations
corresponds to the predictor-corrector method based on the fourth-order multi-step Adams–
Bashforth and Adams–Moulton algorithms. In these methods, it is necessary to calculate the
unknown functional parameters at the nodes, so the regression model is used to estimate
these values.

The exact form for the algorithm depends on the ODE under study. Algorithm 1
corresponds to the differential equation solved presented in Section 3.1:

d
dx

(
α(x)·du

dx

)
= f (x). (29)

Following Equations (21)–(23), the algorithm can be condensed in the next schema
(Algorithm 1), where Euler’s method has been used in the numerical solution of the equation:

Algorithm 1. Sampled factors ODE numerical integrator

Input:
N: Number of intervals,
a: Left interval extreme,
b: Right interval extreme,
w: Parameter of radial function,
x(s)1 , .., x(s)P : Sample of independent variable,

α
(s)
1 , .., α

(s)
P : Sample of alpha function,

f (s)1 , .., f (s)P : Sample of f function,
Output:

x0, .., xN : Coordinates of nodes,
u(0)

0 , .., u(0)
N : Estimated numerical function,

u(1)
0 , .., u(1)

N : Estimated numerical derivative
Procedure IntegratingODE

h← (b− a)/N
/* Modeling unknown functions at nodes*/
for i← 0, N do

xi ← xi + i·h
W0 ← 0 See Equation (21)
Sα ← 0 See Equation (22)
S f ← 0 See Equation (22)
for k← 0, P do

ρ← Φ
(

xi, x(s)k , w
)

W0 ←W0 + ρ

Sα ← Sα + ρ·α(s)k
S f ← S f + ρ· f (s)k

α̂i ← Sα/W0 See Equation (23)
f̂i ← S f /W0 See Equation (23)

/* Initial conditions */

u(1)
0 ← y′0·α̂0

u(0)
0 ← y0

/* Calculating numerical solution (Euler’s method)*/
for i← 0, N − 1 do

u(1)
i+1 ← u(1)

i + f̂i·h
u(0)

i+1 ← u(0)
i + u(1)

i ·h/α̂i

return {x0, . . . , xN},
{

u(0)
0 , . . . , u(0)

N

}
,
{

u(1)
0 , . . . , u(1)

N

}
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3. Results

To test the behavior of the proposed methodology, several examples are solved. First,
two cases of the one-dimensional static inhomogeneous heat equation will be studied.
Later, the Bass equation is analyzed to consider a different example.

Let us denote the solution to the differential equations on an interval I = [a, b] by u(x).
For a given selection of standard deviation (σ) and sample size (P), the functional

parameters are sampled and generate the corresponding numerical solutions for the equa-
tions. Denoting the set of samples by S(P, σ) and each individual sample by s ∈ S(P, σ),
the solution can be represented as us(x). In the examples, 200 iterations with different
samples of the characteristic functions of the equation are run. From this set of solutions,
the following statistical indexes are considered:

U(x, P, σ) = max
s∈S(P,σ)

us(x) (30)

U(x, P, σ) = min
s∈S(P,σ)

us(x) (31)

〈U(P, σ)〉 = u(b)− 〈us(b)〉s∈S(P,σ) (32)

UM(P, σ) = u(b)−median
s∈S(P,σ)

us(b). (33)

U(x, P, σ) and U(x, P, σ) represent the extreme values of the solutions at each point
x for a given sample size n and standard deviation σ. The amplitude of the difference
δ(P, σ) = max

x∈[a,b]

{
U(x, P, σ)−U(x, P, σ)

}
, shows the size of variations in the solutions

related to a given value of P and σ.
These indexes can be greatly influenced by low frequent extreme values, so additional

parameters must be considered. For example, in the case that the exact solution is known,
something frequent when studying the behavior of the algorithm, the average (Equation
(32)) and median (Equation (33)) of the error calculated over the samples s ∈ S(P, σ) can
be a more convenient approach when studying the behavior of the solutions and their
dependence on the magnitude of the perturbation.

The testing process followed these steps:

1. Selection of the different standard deviation values
{

σ[j]

}Nσ

j=1
for the perturbation (see

next point) with which the study is to be carried out. The following steps should be

performed once for each value of σ ∈
{

σ[j]

}Nσ

j=1
in the above set and as many times as

indicated by the number of iterations (see Tables 1–4);
2. Generation of function samples from the uniform distribution X ∼ U (a, b) for the

points coordinates and a random normal distribution for the perturbation ε ∼ N(0, σ)
as follows:

Y(i) = f (i)(X) + ε, (34)

where f (i)(x) represents the i-th functional parameter of the ODE under study and
Y(i) is the corresponding sample. The size of each sample is specified in Tables 1–4;

3. Once the number of intervals N has been selected, the model is obtained at the N+1
nodes obtained by dividing the interval I = [a, b] into N sub-intervals;

4. Numerical resolution of the equation using the values of the functional parameters
at the nodes obtained in the previous step, by means of an ordinary ODE resolution
method, in the present case predictor-corrector;

5. Calculation of statistical values U(x, P, σ), U(x, P, σ), U(P, σ) and UM(P, σ) from the
results obtained in each iteration and their use (in the form of tables or graphs).
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3.1. Static Heat Equation for Inhomogeneous Media

The application is based on the one-dimensional case of the second order heat equation,
given by:

c·ρ·∂u
∂t
− ∂

∂x

(
α(x)·∂u

∂x

)
= f (x). (35)

In steady state, the dependence with time vanishes, obtaining the static heat equation
in the form:

d
dx

(
α(x)·du

dx

)
= f (x). (36)

3.1.1. Example 1

The first example corresponds to the equation:

d
dx

(
cos(x)·du

dx

)
= cos(2x), (37)

with u(x) defined over the interval x ∈
[
0, π

4
]

and constrained by the initial conditions
u(0) = 1 and u′(0) = 0.

The functions α(x) and f (x) are perturbed using a random variable following a normal
distribution with average zero and standard deviation σ ranging from zero to 0.5. Different
samples of these perturbed functions are considered with sizes between 5 and 100.

The equation is solved numerically using a predictor–corrector method (fourth order
Adams–Bashforth and Adams–Moulton) in the interval

[
0, π

4
]

using a step size of h = π
400 .

The analytical solution for the Equation (37) is u(x) = 2 − cos(x), and is used to
compare with the numerical solution us(x).

First, we can study the influence of the standard deviation parameter of the per-
turbation with respect to the differences between the extreme values δ(100, σ). It is also
interesting to compare the evolution of UM(100, σ) with respect to the standard deviation.
Those results can be seen in Figure 2a,b:

Figure 2. Effect on the solution of different standard deviations for 200 samples of the normal
perturbation term: (a) Range of the differences δ(100, σ); (b) Median of the difference between the
numerical solutions and the exact solutions at right extreme of the interval UM(100, σ).
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Figure 3 shows the exact u(x) and the maximum U(x, n, σ) and minimum U(x, n, σ)
of the numerical solutions at each point on for the iterations corresponding to different
values of the standard deviation on the normal perturbation term:

Mathematics 2022, 10, 1516 12 of 25 
 

 

 

 

(a) 
 

(b) 

 

(c) (d) 

 

(e) 

 

(f) 

Figure 3. Cont.



Mathematics 2022, 10, 1516 12 of 23

Mathematics 2022, 10, 1516 13 of 25 
 

 

 

(g) 
 

(h) 

Figure 3. 𝑢(𝑥) (blue line), 𝑈(𝑥, 100, 𝜎) (upper red line) and 𝑈(𝑥, 100, 𝜎) (lower red line) after 200 
iterations for different values of the standard deviation: (a) 𝜎 = 0; (b) 𝜎 = 0.1010; (c) 𝜎 = 0.2525; 
(d) 𝜎 = 0.2980; (e) 𝜎 = 0.3485; (f) 𝜎 = 0.3990; (g) 𝜎 = 0.4495; (h) 𝜎 = 0.500. 

The dependence of the numerical solutions on the sample size can also be considered 
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been presented in Figure 2b for different sample sizes, from 5 to 100. 
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Figure 3. u(x) (blue line), U(x, 100, σ) (upper red line) and U(x, 100, σ) (lower red line) after 200 it-
erations for different values of the standard deviation: (a) σ = 0; (b) σ = 0.1010; (c) σ = 0.2525;
(d) σ = 0.2980; (e) σ = 0.3485; (f) σ = 0.3990; (g) σ = 0.4495; (h) σ = 0.500.

The dependence of the numerical solutions on the sample size can also be considered
in order to study the algorithm efficiency. Figure 4 shows the same information that has
been presented in Figure 2b for different sample sizes, from 5 to 100.

Figure 4. Cont.
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Figure 4. Effect on the parameter UM(P, σ) of different sample sizes for normal perturbation terms
with standard deviations from 0 to 0.5: (a) P = 5; (b) P = 10; (c) P = 20; (d) P = 50; (e) P = 70; (f) P = 100.

Table 1. Model parameters for the Example 1.

Sample Size Std. Dev. Iterations

100 0–0.5 200
5–100 1 0–0.5 200

1 Results in Figure 4.

In general, the behavior is as expected, obtaining better accuracies as the number of
points in the sample increases. However, it can be seen in Figure 4 how, for very small
values of P, the result does not present a completely determinate behavior.

3.1.2. Example 2a

Another case of Equation (36) is:

d
dx

(
Jn(x)·du

dx

)
= Jm(x), (38)

where:
Jm(x) = xm·ex. (39)

The exact solution of this ODE can be obtained as:

u(x) =
∫ Im(x)

Jn(x)
dx = xm−n −m·

∫ Im−1(x)
Jn(x)

dx, (40)

where:
Im(x) =

∫
Jm(x) dx. (41)

The next two examples will allow comparing the results corresponding to the solutions
of the different members of the family of parametric functions Jn(x).

The first case corresponds with the values of the parameters given by m = 2 and n = 4.
Let us study the solution u(x) on the interval [1, 2] for the initial conditions u(1) = −2/3
and u′(1) = 1. The exact solution for the last equation is u(x) = − 1

x + 1
x2 − 2

3 ·
1
x3 .

Table 2. Model parameters for the Example 2a.

Sample Size Std. Dev. Iterations

100 0–0.5 200

Figure 5 shows the result for the equation given by m = 2 and n = 4.
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Figure 5. Effect on the solution of different standard deviation for 200 samples of the normal
perturbation term: (a) Range of the differences δ(100, σ); (b) Median of the difference between the
numerical solutions and the exact solutions at right extreme of the interval UM(100, σ).

In Figure 6 (x), U(x, 100, σ) and U(x, 100, σ) are shown.

Figure 6. Cont.
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Figure 6. u(x) (blue line), U(x, 100, σ) (upper red line) and U(x, 100, σ) (lower red line) after 200 it-
erations for different values of the standard deviation: (a) σ = 0; (b) σ = 0.1010; (c) σ = 0.2525;
(d) σ = 0.2980; (e) σ = 0.3485; (f) σ = 0.3990; (g) σ = 0.4495; (h) σ = 0.500.
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3.1.3. Example 2b

Example 2b corresponds to m = 3 and n = 6 on the interval [1, 2], with initial
conditions u(1) = 1/5 and u′(1) = −2. In this case, the exact solution is given by the
function u(x) = − 1

2x2 + 1
x3 − 3

2x4 + 6
5x5 . Figure 7 shows the difference δ(100, σ) and the

median UM(100, σ).

Figure 7. Effect on the solution of different standard deviation for 200 samples of the normal
perturbation term: (a) Range of the differences δ(100, σ); (b) Median of the difference between the
numerical solutions and the exact solutions at right extreme of the interval UM(100, σ).

Figure 8 shows the exact and the maximum and minimum numerical solutions for
the iterations corresponding to different values of the standard deviation on the normal
perturbation term.

Figure 8. Cont.
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Figure 8. u(x) (blue line), U(x, 100, σ) (upper red line) and U(x, 100, σ) (lower red line) after 200 it-
erations for different values of the standard deviation: (a) σ = 0; (b) σ = 0.1010; (c) σ = 0.2525;
(d) σ = 0.2980; (e) σ = 0.3485; (f) σ = 0.3990; (g) σ = 0.4495; (h) σ = 0.500.
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Figure 9 presents the effect of sample size on the solution error for sample sizes
between 5 and 100 points.

Figure 9. Effect on the parameter UM(P, σ) of different sample sizes for normal perturbation terms
with standard deviations from 0 to 0.5: (a) P = 5; (b) P = 10; (c) P = 20; (d) P = 50; (e) P = 70; (f) P = 100.
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Table 3. Model parameters for theExample 2b.

Sample Size Std. Dev. Iterations

100 0–0.5 200
5–100 1 0–0.5 200

1 Results in Figure 9.

3.2. Bass Equation. Example 3

The third example is a variation of a normalized Bass equation [37] with non-constant
coefficients of innovation and imitation:

y′(t)
1− y(t)

= p(t) + q(t)·y(t), (42)

defined over an interval [0, 5] with the initial condition given by y(0) = 0. Typical values
for the constants in Equation (42), are p ∼ 0.2± 0.1 and q ∼ 0.4± 0.1 [38]. In the studied
example, two expressions are proposed. For the innovation coefficient:

p(t) = 0.2·e−
t
2 , (43)

and for the imitation coefficient:

q(t) = 0.5·
[

t−
(

t
2

)2
]

. (44)

Table 4. Model parameters for the Example 3.

Sample Size Std. Dev. Iterations

100 0–0.5 200

Figure 10 represents the parameters δ(100, σ) calculated with 200 different samples of
the normal perturbation depending on the values of σ.

Figure 10. Effect on the solution of different standard deviation for 200 samples of the normal
perturbation term for the parameters δ(100, σ).

Figure 11 shows the difference between the exact and the maximum and minimum
numerical solutions for the iterations corresponding to different values of the standard
deviation on the normal perturbation term.
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viation: (a) 𝜎 = 0; (b) 𝜎 = 0.1010; (c) 𝜎 = 0.2525; (d) 𝜎 = 0.2980; (e) 𝜎 = 0.3485; (f) 𝜎 = 0.3990; 
(g) 𝜎 = 0.4495; (h) 𝜎 = 0.500. 
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dashed); 𝜎 = 0.375 (light green points) and 𝜎 = 0.5 (red solid). 
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In this research, the authors present a methodology for the modeling of differential 

equations and their resolution in systems where the functional expression of the func-
tional parameters present in these equations is unknown and only an experimental sam-
ple of data is available. In the scientific literature, there are references to the determination 
of parameters of the differential equations governing a system by means of nonlinear re-
gression on experimental data of the solution of the equation under study. Likewise, the 
field of study of differential equations for which the parameters follow a given distribu-
tion constitutes a fertile field of research. 

Figure 11. U(x, 100, σ) and U(x, 100, σ) after 200 iterations for different values of the standard
deviation: (a) σ = 0; (b) σ = 0.1010; (c) σ = 0.2525; (d) σ = 0.2980; (e) σ = 0.3485; (f) σ = 0.3990;
(g) σ = 0.4495; (h) σ = 0.500.

In order to facilitate the comparison between the different results, Figure 12 shows
together some of the curves represented in Figure 11 for a different execution and func-
tion samples.

Figure 12. Comparative of U(x, 100, σ) and U(x, 100, σ) after 200 iterations for different values of
the standard deviation: σ = 0.0 (black solid), σ = 0.125 (blue discontinued); σ = 0.25 (dark green
dashed); σ = 0.375 (light green points) and σ = 0.5 (red solid).

4. Discussion

In this research, the authors present a methodology for the modeling of differential
equations and their resolution in systems where the functional expression of the functional
parameters present in these equations is unknown and only an experimental sample of
data is available. In the scientific literature, there are references to the determination
of parameters of the differential equations governing a system by means of nonlinear
regression on experimental data of the solution of the equation under study. Likewise, the
field of study of differential equations for which the parameters follow a given distribution
constitutes a fertile field of research.

The proposal developed focuses on considering equations whose parameters are
unknown functions and whose values are deterministically determined, although affected
by some type of error or perturbation. The algorithm allows obtaining numerical solutions
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for these equations by performing a previous numerical model of the functions involved
from the experimental data.

Three different examples have been considered, two of them with known analytical
solutions and another one considering only the numerical solution. From the study of
the results obtained, it can be verified that the result of the algorithm shows behavior in
accordance with what is expected with respect to the magnitude of the perturbation and
the size of the experimental sample used to perform the modeling. On the other hand, the
results show how the proposed methodology obtains solutions with a stable response to
the corresponding perturbations.

From the present work, the main lines of future research would be two. On the one
hand, the modification of the algorithm for the treatment of partial differential equations
(PDE). On the other hand, it is worth investigating how to modify the design of the
resolution algorithm to make it more computationally efficient. The way to do this would be
to study how to combine the modeling algorithm with the resolution algorithm, minimizing
the number of operations and the need for storage of the total program.
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