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Abstract: Binary PN-sequences generated by LFSRs exhibit good statistical properties; however,
due to their intrinsic linearity, they are not suitable for cryptographic applications. In order to break
such a linearity, several approaches can be implemented. For example, one can interleave several
PN-sequences to increase the linear complexity. In this work, we present a deep randomness study
of the resultant sequences of interleaving binary PN-sequences coming from different characteristic
polynomials with the same degree. We analyze the period and the linear complexity, as well as many
other important cryptographic properties of such sequences.

Keywords: PN-sequence; interleaved sequence; linear complexity; randomness

1. Introduction

The rapid development and evolution of the internet have made possible the connec-
tivity among many devices of daily use and, consequently, the irruption of the so-called
Internet of Things (IoT). Moreover, many critical services as e-banking, e-govern, e-health
or e-commerce are based on IoT infrastructures. As nowadays, the presence of such services
grows exponentially, so do all risks associated with their security [1]. On the one hand,
the IoT devices are currently characterized by their constrains in what processing power,
size, memory and energy consumption are concerned [2]. On the other hand, they are
also characterized by their minimum or non-existent security [3], since the vast majority of
IoT devices have been designed without safety in mind. Combining the inherent lack of
security of IoT infrastructures with their network dependability, the final effect is that IoT
devices are a suitable target to compromise the whole network. This is the reason why 5G
communications [4] or specific calls such as that of NIST for cryptography primitives [5]
are addressing this essential topic. In this context, lightweight cryptography in general and
stream ciphers in particular are the key stones on which certain communication protocols
are being designed to guarantee security.

Stream ciphers are related with the idea of pseudo-randomness. In fact, the purpose
of Pseudo-Random Numbers Generators (PRNGs) is to produce sequences of numbers that
seem to behave as if they were generated randomly from a specified probability distribu-
tion. These numbers are sometimes called pseudo-random numbers to underline the fact
that they are not truly random. The PRNGs must be fast and easy to be implemented in
a computer, displaying small memory requirements and good statistical properties. The
bit-wise Exclusive-OR logic operation between the original message and a pseudo-random
bit sequence (key-stream sequence) preserves the confidentiality of the message in the
traditional procedure of stream cipher. Other important security features, such as the
integrity or authentication of the message, require additional mechanisms such as an MAC
(Message Authentication Code) function to guarantee that the message is authentic and
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consequently its integrity checked. In brief, they are two different algorithms (confiden-
tiality and authentication–integrity) that sometimes can be unified in the same scheme;
see the requirements of the NIST call [5] for lightweight primitives. For this reason, the
application of pseudo-random number generators for IoT is increasingly being studied [6,7].
In this work, we focus exclusively on the key-stream sequence and, consequently, on the
confidentiality of the message.

Traditionally, the pseudo-random bit sequences with application in cryptography are
generated by means of maximal-length Linear Feedback Shift Registers (LFSR) [8]. Their
output sequences are the PN-sequences that exhibit good statistical properties. However,
their linearity, i.e., their predictability, makes them vulnerable against cryptanalytic attacks.
One common way to break this linearity is through irregular decimation, which has given
rise to a wide family of decimation-based sequence generators. A representative element
of this family is the shrinking generator, which decimates one PN-sequence according to
the positions of the ones in another PN-sequence [9]. In [10], the authors proved that the
output sequence of this generator, the so-called shrunken sequence, is made up of inter-
leaving shifted versions of a single PN-sequence. Moreover, the shifts of the corresponding
interleaved sequences can be easily deduced from the characteristic polynomials of the
LFSRs, and this fact can be advantageously used to implement cryptanalytic attacks [11].

In [12], the authors proposed the interleaving of shifted versions of one single PN-
sequence considering these shifts (different from the ones used in the shrunken sequence)
as part of the key. This idea makes even more difficult the cryptanalysis of such sequences.
However, depending on the initial state of the LFSR, some of the resultant sequences
showed a high predictability, i.e., a low linear complexity.

A natural way to deal with the vulnerabilities of interleaving shifted versions of the
same PN-sequence is to interleave different PN-sequences coming from different LFSRs. In
this work, we propose a similar analysis to the one developed in [12] but considering the
interleaving of different PN-sequences instead. The sequences here analyzed present the
same pseudo-randomness properties as those of [12]; however, their linear complexity is
quite higher. Furthermore, given several maximal-length LFSRs with the same length, the
linear complexity of the resultant interleaved PN-sequences is fixed regardless of the initial
states considered. We also perform a randomness analysis on the resultant sequences that
shows that our sequences are better than the sequences obtained interleaving PN-sequences
from the same LFSR, that is, interleaving shifted versions of the same PN-sequence.

This paper is organized as follows. In Section 2, we recall some basic concepts related
to binary sequences, which are needed to understand the rest of the paper. In Section 3, we
study the linear complexity and the characteristic polynomial of the sequences obtained
interleaving PN-sequences from different LFSRs. Furthermore, in Section 4, we compare our
sequences with the ones obtained from other sequence generators with similar parameters.
In Section 5, we perform a deep randomness analysis of the obtained sequences. Finally,
the paper ends in Section 6 with some conclusions and future work.

2. Preliminaries

Let F2 = {0, 1} be the Galois field of two elements, i.e., the binary field. Let {ui}i≥0 =
{u0, u1, u2, . . .} be a binary sequence, that is, each term satisfies that ui ∈ F2, for all i ≥ 0.
The sequence {ui}i≥0 (or simply {ui}) is said to be periodic if there exists a positive integer
T such that ui+T = ui, for all i ≥ 0. This number T is known as the period of the sequence.

Let L be a positive integer and a0, a1, . . . , aL−1 elements of F2. The sequence {ui} is a
binary L-th order linear recurring sequence if it satisfies

ui+L = aL−1ui+L−1 + aL−2ui+L−2 + · · ·+ a1ui+1 + a0ui, i ≥ 0 (1)

The expression in Equation (1) is known as an L-th order linear recurrence relationship.
The polynomial of degree L given by

p(x) = a0 + a1x + a2x2 + · · ·+ aL−1xL−1 + xL ∈ F2[x],
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is called the characteristic polynomial of the linear recurrence relationship as well as the
characteristic polynomial of {ui}.

The generation of these linear recurrence sequences can be implemented by Linear
Feedback Shift Registers (LFSRs) [8]. An LFSR of length L is a generator of binary sequence
with L cell or stages interconnected. The terms {a0, a1, a2, . . . , aL−1} are binary coefficients
assigned to the corresponding stages. The initial state (stage contents at round zero) is
the seed, and since the register operates in a deterministic form, the resultant sequence is
completely determined by the initial state. At each clock pulse, the binary content of each
stage shifts one position to the left, and one bit is output from the register. The input of each
round is a bit resultant from applying a linear transformation function to a previous state
(see Figure 1). If the characteristic polynomial p(x) is primitive, then the LFSR is said to be
a maximal-length LFSR, and the resultant sequence, called a PN-sequence (or m-sequence),
has period T = 2L − 1 (with 2L−1 ones and 2L−1 − 1 zeros) [8].
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The linear complexity of a sequence, denoted by LC, is defined as the length of the
shortest LFSR that generates such a sequence, i.e., the degree of its characteristic polynomial.
In cryptography, LC must be as large as possible. The expected value is approximately half
the period LC ' T/2 (see [13]). Nowadays, values of T in the range T ≥ 2128, i.e., LC ' 264,
seem to be enough for cryptographic purposes (see specifications of the candidates in the
call of NIST for lightweight cryptography primitives [5]). Notice that all examples included
in this work are merely illustrative, since they do not achieve the required values for
cryptographic applications. PN-sequences produced by maximal-length LFSRs have a large
period, but their LC is very low. This is due to the inherent linearity of these sequences;
thus, we need to do something to break it. One possible approach is implementing irregular
decimation on the PN-sequences.

2.1. Shrinking Generator

First, we need to recall the concept of decimation. The decimation of the sequence {si}
by (distance) δ is the new sequence {ui} = {sδ·i}, which is obtained by taking every δ-th
term of such a sequence [14].

The binary sequence generator known as the Shrinking Generator (SG) [9] is made up
of two maximal-length LFSRs, R1 and R2, with lengths L1 and L2, respectively, satisfying
gcd(L1, L2) = 1. Denote by pk ∈ F2[x], with degree Lk, the characteristic polynomial of
Rk, and Tk = 2Lk − 1, the period of the corresponding PN-sequence, for k = 1, 2. The
PN-sequence {ai} generated by R1 decimates the PN-sequence {bi} produced by the other
register R2. The decimation rule satisfies the following: given ai and bi, i = 0, 1, 2, . . ., the
output sequence {sj} is obtained as

{
If ai = 1 then sj = bi.
If ai = 0 then bi is discarded.

The sequence {sj} is known as the shrunken sequence whose period is T = (2L2 − 1)2L1−1.
Its linear complexity [10] satisfies the inequality L22L1−2 < LC ≤ L22L1−1, and its charac-
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teristic polynomial has the form p(x)m, where 2L1−2 < m ≤ 2L1−1 and p(x) is a primitive
polynomial of degree L2 [15]. Notice that here, p(x)m denotes the power of the polynomial
p(x) with coefficients modulo 2.

The shrunken sequence is almost balanced with 2L1+L2−2 ones in its first period. This
binary generator is suitable for applications in stream ciphers, since it is easy to implement
and has nice cryptographic properties. Notice that the shrunken sequence is obtained by
the irregular decimation of a PN-sequence according to the ones of another PN-sequence.

Example 1. Consider R1 and R2, LFSRs with characteristic polynomials p1(x) = 1 + x + x2 and
p2(x) = 1 + x2 + x3, and initial states {11} and {111}, respectively. The shrunken sequence can
be computed as

R1 : 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
R2 : 1 1 �A1 0 1 �A0 0 1 �A1 1 0 �A1 0 0 �A1 1 1 �A0 1 0 �A0
{sj} : 111 111 000 111 000 111 111 000 000 000 111 111 111 000

The generated sequence has period 14, and it is easy to check that its characteristic polynomial is
p(x)2 = (1 + x + x3)2, i.e., the linear complexity is LC = 6.

Let F2L2 denote the extension field of F2, where α root of p2(x), is a primitive ele-
ment [16]. The next results state that the shrunken sequence can be obtained interleaving
shifted versions of one single PN-sequence.

Theorem 1 ([10], Theorem 3.1). The sequences obtained decimating by 2L1−1, the shrunken
sequence, are PN-sequences with period T2. We call these sequences the interleaved PN-sequences
of the shrunken sequence.

Theorem 2 ([10], Theorem 3.3). The primitive polynomial p(x) that generates the interleaved
PN-sequences of the shrunken sequence can be computed as

p(x) = (x + αT1)(x + α2T1)(x + α4T1) · · · (x + α2L2−1T1),

where α ∈ F2L2 is a root of p2(x).

Corollary 1 ([10], Corollary 1). If L2 = L1 + 1, then the polynomial p(x) is the reciprocal
polynomial of p2(x).

In order to illustrate the previous results, we consider now another example with
larger parameters.

Example 2. Let R1 and R2 be two LFSRs with characteristic polynomials p1(x) = 1 + x2 + x3

and p2(x) = 1 + x3 + x4, with L1 = 3 and L2 = 4, and initial states {111} and {1111},
respectively. The corresponding PN-sequences have periods T1 = 7 and T2 = 15, respectively. The
shrunken sequence is given by

{sj} = {111011010111011000111010000101011001101101001100001011111000}.

It has period T = (2L2 − 1)2L1−1 = 60 and characteristic polynomial p(x)16 = (1 + x + x4)4,
i.e., the linear complexity is LC = 16. If we decimate the shrunken sequence by δ = 4, then we
obtain the following four PN-sequences:

{s4·j} : {110001001101011}
{s4·j+1} : {111100010011010}
{s4·j+2} : {101111000100110}
{s4·j+3} : {011010111100010}
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The characteristic polynomial of these four interleaving PN-sequences is

p(x) =
(

x + α7
)(

x + α14
)(

x + α28
)(

x + α56
)
= 1 + x + x4

where α ∈ F2L2 is a root of p2(x) and p(x) is the reciprocal polynomial of p2(x). Notice that the
four PN-sequences are shifted versions of the same PN-sequence.

The polynomial p(x) depends on L1 (the degree of p1(x)) and p2(x). Thus, every prim-
itive polynomial with degree L1 produces the same polynomial p(x), once the polynomial
p2(x) is fixed.

Notice that if p(x) generates the interleaved PN-sequences of the shrunken sequence,
then p(x)2L1−1

generates such a sequence. Nonetheless, although p(x)2L1−1
always generates

the shrunken sequence, it might not be the characteristic polynomial. Sometimes, the
characteristic polynomial has the form p(x)m, with 2L1−2 < m < 2L1−1.

2.2. Shifted Versions of the Same PN-Sequence

In Section 2.1, we saw that the shrunken sequence can be generated interleaving
shifted versions of the same PN-sequence, and the characteristic polynomial of these PN-
sequences is obtained from the input polynomials of the shrinking generator. The shifts of
the shifted versions can be also obtained via the input LFSRs (see [10,11]), and this fact is
used to attack the SG [11]. One way to deal with this liability is to consider random shifts.

In this section, we briefly comment on the results obtained in [12]. First, we need to
introduce the concept of t-interleaved sequence. We say that the sequence {sj} is obtained

interleaving the sequences {u(1)
i }, {u

(2)
i }, . . ., {u(t)

i }, all of them with period T, if it has the
following form

{sj} =
{

u(1)
0 , u(2)

0 , . . . , u(t)
0 , u(1)

1 , u(2)
1 , . . . , u(t)

1 , . . . , u(1)
T−1, u(2)

T−1, . . . , u(t)
T−1

}
.

We call this sequence a t-interleaved sequence.
In [12], the authors consider that these t sequences {u(j)

i } for j = 1, 2, . . . , t, are PN-
sequences obtained from the same primitive polynomial, that is, shifted versions of the
same PN-sequence. If the corresponding LFSR has length L, then the resultant t-interleaved
sequence is almost balanced, and its number of 1s is t · 2(L−1).

The linear complexity for this sequence satisfies LC ≤ t · L and its period T ≤ t ·
(2L − 1). For a fixed value of t, almost 90% of the t-interleaved sequences (running over
all possible shifted versions) achieve the maximal LC and period. In [12], the authors
study more deeply the cases where t = 2l , and they perform a preliminary analysis on
the randomness of these sequences. They also provide some tools to identify the cases
where the LC is low and the sequences are not suitable for cryptographic purposes. More
information about these sequences and some comparison with the sequences constructed
in this work can be found in Section 4.

In this work, we consider t-interleaved sequences obtained interleaving PN-sequences
from different primitive polynomials with the same degree. Note that these t-interleaved
sequences can be seen as the output sequences of a keystream generator where, at each
clock pulse, we obtain at the same time the output of t different LFSRs. That is, at each
instant ti, the output bits are {u(1)

ti
, u(2)

ti
, . . . , u(t)

ti
}. Therefore, the interleaving method, in

this case, could be considered as the concatenation of the output of t LFSRs at each instant
of time. On the other hand, this interleaving method is very similar to the generation
method of a DLFSR. A DLFSR (Dynamic Linear Feedback Shift Register) is a type of LFSR
in which the characteristic polynomial changes at certain clock pulse [17,18]. In Figure 2,
we represent a DLFSR that consists of a main LFSR and an additional control module. This
module manages the characteristic polynomial used at each instant of time. The sequences
generated by a DLFSR can be considered as the concatenation of segments of different PN-



Cryptography 2022, 6, 21 6 of 22

sequences. The purpose of a DLFSR is to generate sequences with larger periods and higher
linear complexity than the ones produced by a single LFSR [19,20]. To carry out this task,
the control module modifies different feedback parameters to generate a different sequence.
Our interleaving method can be seen as a DLFSR where the characteristic polynomial
changes depending on the counter module, i.e., at each clock pulse, we consider a different
primitive polynomial. In Figure 3, we can check the generation of a four-interleaved
sequence. At each clock pulse, one bit is generated from the corresponding LFSR in that
instant, and then, we jump from the actual polynomial to the next one. Thus, we obtain our
interleaved sequence concatenating the individual outputs of each one of the LFSRs at each
instant of time.
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3. Interleaving PN-Sequences with Different Characteristic Polynomials

In this section, we analyze the interleaving of PN-sequences obtained from different
polynomials with the same degree.

Consider t maximal-length LFSRs, notated R1, R2,. . ., Rt, with primitive characteristic
polynomials p1(x), p2(x), . . . , pt(x), respectively, and all of them with degree L. Given the



Cryptography 2022, 6, 21 7 of 22

PN-sequence {a(k)i }, generated by Rk, for k = 1, 2, . . . , t, the corresponding t-interleaved
sequence {sj} is obtained as follows

{sj} = {a(1)0 , a(2)0 , . . . , a(t)0 , a(1)1 , a(2)1 , . . . , a(t)1 , . . . , a(1)L−1, a(2)L−1, . . . , a(t)L−1, . . .}.

From now on, we only consider t-interleaved sequences obtained with different
polynomials of the same degree.

The following result provides the value of the LC for the t-interleaved sequences.
Moreover, it allows us to obtain their characteristic polynomials.

Theorem 3 ([21], Theorem 1). The linear complexity of the sequence generated interleaving t PN-
sequences produced by different primitive polynomials p1(x), . . . , pt(x) of degree L is LC = t2L.
Furthermore, the characteristic polynomial is

p(x) =
t

∏
i=1

pi(xt).

It is worth noticing that the LC and period are not affected by the initial states.

Example 3. Consider 3 registers with primitive polynomials p1(x) = 1 + x2 + x5, p2(x) =
1 + x + x2 + x4 + x5 and p3(x) = 1 + x + x2 + x3 + x5. We take the initial states {11101},
{10001} and {10101}, respectively. The corresponding PN-sequences are

{a(1)i } : {1110101000010010110011111000110}
{a(2)i } : {1000100101011000011100110111110}
{a(3)i } : {1010100011101111100100110000101}.

If we interleave these three PN-sequences, we obtain a sequence with period T = 93 and
LC = 45:

{111100101000111000100010001011001110011001101
001101110010011100100111111100010010010111110001}

Using the Berlekamp–Massey algorithm [22], it is possible to check that the characteristic
polynomial of this sequence is

p(x) = 1 + x9 + x24 + x27 + x39 + x42 + x45

= p1(x3) · p2(x3) · p3(x3)

with

p1(x3) = 1 + x6 + x15 = (x5 + x4 + x3 + x + 1)(x10 + x9 + x7 + x5 + x2 + x + 1)

p2(x3) = 1 + x3 + x6 + x12 + x15 = (x5 + x4 + x3 + x2 + 1)(x10 + x9 + x7 + x2 + 1)

p3(x3) = 1 + x3 + x6 + x9 + x15 = (x5 + x3 + 1)(x10 + x8 + x6 + x5 + 1)

where all three polynomials of degree 5 are primitive and those of degree 10 are irreducible.

The next result is a particular case of Theorem 3 for the case in which t is a power of 2.

Corollary 2. Let t be a power of two. Then, the characteristic polynomial of a t-interleaved sequence
produced by t different primitive polynomials p1(x), . . . , pt(x) of degree L is

p(x) = [p1(x) · p2(x) · · · pt−1(x) · pt(x)]t.

Proof. Let t = 2r for r be a positive integer. The result is an immediate consequence of the
fact that pi(x2r

) = pi(x)2r
in F2.
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Next, we show different examples of the generation of t-interleaved sequences. We
analyze their LC and their characteristic polynomials depending on the choice of the initial
primitive polynomials.

In the following example, we obtain a f our-interleaved sequence corresponding to
two primitive polynomials and their corresponding reciprocal polynomials.

Example 4. Consider f our registers with primitive polynomials p1(x) = 1 + x2 + x5, p2(x) =
1 + x3 + x5, p3(x) = 1 + x2 + x3 + x4 + x5 and p4(x) = 1 + x + x2 + x3 + x5. We observe
that p2(x) and p4(x) are the reciprocal polynomials of p1(x) and p3(x), respectively. We take
the initial states {01101}, {10001}, {10001}, and {00110}, respectively. The corresponding
PN-sequences are

{a(1)i } : {0110111010100001001011001111100}
{a(2)i } : {1000111110011010010000101011101}
{a(3)i } : {1000101011010000110010011111011}
{a(4)i } : {0011000010110101000111011111001}.

If we interleave these four PN-sequences, we obtain a sequence with period T = 124 and
LC = 80:

{01101000100100011110110011100100111100101001011101000001010010
01001001101000000110111001010000111111101111111111110000100111}

Using the Berlekamp–Massey algorithm [22], it is easy to check that the characteristic polyno-
mial of this sequence is

p(x) = [p1(x) · p2(x) · p3(x) · p4(x)]4

= (1 + x2 + x5)4(1 + x3 + x5)4(1 + x2 + x3 + x4 + x5)4(1 + x + x2 + x3 + x5)4

= 1 + x4 + x8 + x12 + x20 + x32 + x36 + x40 + x44 + x48 + x60 + x68 + x72 + x76 + x80.

In this example, the LC does not depend on the initial states; its value is always 80. Moreover,
if we consider different primitive polynomials of degree 5, the value of LC remains the same.

The next example shows a case where there are no reciprocal polynomials.

Example 5. Consider now four registers with primitive polynomials p1(x) = 1+ x+ x7, p2(x) =
1 + x3 + x7, p3(x) = 1 + x + x2 + x3 + x7 and p4(x) = 1 + x2 + x3 + x4 + x7, with initial
states {1010001}, {0111011}, {1101001}, and{1100101}, respectively. If we interleave the four
PN-sequences generated by the previous polynomials, we obtain a sequence with period 508 (the
same as that of the SG with polynomials of degree 3 and 7) and LC = 112, which is four times
higher than that of the SG:

{10110111110001100001010011111110110010100001010010000110010100111010011010
101000011100111001101110100011100101111011001100101111101010111101110000011
000001101000010010111111110100101010000011011010001011111100011001110001001
001111011110000110000110110110000110100111101011100101101100111000010011010
111001100010110000110011010000101101010011001000111001010111000100100101111
010110011111100100100001101010001011011000110010111011100111110111000101010
11001100000100100000101010001010110110111010101001100100010}.

The characteristic polynomial of the sequence is given by
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p(x) = [p1(x) · p2(x) · p3(x) · p4(x)]4

= [(1 + x + x7)(1 + x3 + x7)(1 + x + x2 + x3 + x7)(1 + x2 + x3 + x4 + x7)]4

= (1 + x2 + x5 + x7 + x8 + x9 + x11 + x12 + x15 + x16 + x17 + x18 + x24 + x25 + x28)4.

The next example shows that the polynomials must be all different to achieve the
maximal complexity.

Example 6. Consider the primitive polynomials p1(x) = p2(x) = 1 + x2 + x5, p3(x) = 1 +
x + x2 + x3 + x5 and p4(x) = 1 + x2 + x3 + x4 + x5 and consider the initial states {10111},
{11010}, {00011}, and {10110}, respectively. The corresponding f our-interleaved sequence has
the following form:

{11010100100111111010011110000010101000100111001100001100001101
00110000111011110101010101110011111001101110100100011000011110}

This sequence has period T = 124 and LC = 60, which is not the maximal vale (80) for this
parameter. The characteristic polynomial is given by:

p(x) = [p1(x)p3(x)p4(x)]4 = 1 + x4 + x8 + x16 + x20 + x24 + x36 + x56 + x60

Notice that in this case, the primitive polynomial is not the product of all four polynomials;
this is due to the fact that p1(x) = p2(x).

In Table 1, we can check the values of the LC of t-interleaved sequences using PN-
sequences from different polynomials of degree L. It is worth recalling that there are only
six primitive polynomials of degree 5 and six of degree 6. It means that when we construct
seven-interleaved sequences or eight-interleaved sequences, we have to consider at least
one repeated polynomial. Therefore, the values in red in Table 1 are just upper bounds,
since, as we saw in Example 6, when the polynomials are not different, we risk having a
sequence without maximal LC.

Table 1. LC of the interleaving sequences of t primitive polynomials of degree L.
XXXXXXXXXt

L 5 6 7 8 9

4 80 96 112 128 144

5 125 150 175 200 225

6 180 216 252 288 324

7 245 294 343 392 441

8 320 384 448 512 576

4. Comparison with Other Sequence Generators

In this section, we analyze briefly the advantages of our t-interleaved sequences
compared with the sequences obtained from generators with similar parameters.

1. Shrinking generator
Given two primitive polynomials of degree L1 and L2, the linear complexity of the
shrunken sequence satisfies: 2L1−2 < LC ≤ L2 · 2L1−1 and T = (2L2 − 1)2L1−1. In
this case, the sequence is obtained interleaving 2L1−1 shifted versions of the same
PN-sequence.
If we interleave 2L1−1 PN-sequences generated by different primitive polynomials of
degree L2, the linear complexity of the resultant sequence is LC = L2 · 22(L1−1), which
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is much higher than that of the SG. Notice that the period and the number of ones
remain the same.
In the following example, we compare the shrunken sequence and the corresponding
t-interleaved with similar parameters. We see that the LC of the t-interleaved sequence
is greater.

Example 7. Consider the SG composed of two registers of length L1 = 3 and L2 = 5. In
this case, the shrunken sequence is made up by interleaving four shifted versions of the same
PN-sequence generated by a primitive polynomial of degree 5. The period of the shrunken
sequences in this case is T = 124 and LC ≤ 20.
If we consider again Example 4, we interleave four PN-sequences produced by primitive
polynomials of degree 5. The resultant sequence has period 124 (the same as that of the SG
with polynomials of degree 3 and 5) and LC = 80, which is four times higher than that of
the SG.

2. t-interleaved sequences with the same polynomial
In [12], the authors analyze the t-interleaved sequences obtained interleaving shifted
versions of the same PN-sequence produced by a primitive polynomial p(x) of degree
L. They determine the period and the linear complexity of the t-interleaved sequences
for some particular cases of t. They also study an upper bound for the LC and the
period of t-interleaved PN-sequences. In [21], the authors study different cases of
interleaving sequences, analyzing the LC and the characteristic polynomials of the
resultant sequences. The next theorem is a consequence of Theorem 2 in [21] and the
results obtained in [12].

Theorem 4. [12,21] Consider a primitive polynomial p(x) of degree L. If we interleave t-
shifted versions of the same PN-sequence of period T = 2L− 1, then the resultant t-interleaved
sequence has an LC ≤ t · L and period T ≤ t ·

(
2L − 1

)
.

In the following example, we compare a t-interleaved sequence obtained using one
primitive polynomial p(x) of degree L with a corresponding t-interleaved sequence,
with similar parameters, obtained using t different primitive polynomials pi(x) of
degree L, i = 1, . . . , t. We see that the LC of the t-interleaved sequence with different
polynomials is greater.

Example 8. Consider any f our-interleaved sequence obtained with a primitive polynomial of
degree 5 and f our shifted versions of the corresponding PN-sequence. In this case, the period
of the sequences is T ≤ 124 and LC ≤ 20.
Consider the primitive polynomials of degree 5 given in Example 4 and interleave f our
different PN-sequences produced by these polynomials. The resultant sequences have period
124 and LC = 80. If we compare both types of f our-interleaved sequence, we have that using
different polynomials for the construction provides higher values for the LC, in this case, four
times larger.

In Table 2, we have a comparison between the values of LC and T for our t-interleaved
sequences and the values for the sequences obtained in [12] (using shifted versions of the
same PN-sequence, that is, with the same characteristic polynomial). First of all, notice that
the values for the same polynomial are upper bounds (it depends on the initial state), while
the values for our sequences are exact (regardless the initial state). Note that values of LC
are higher in our sequences.

In order to complete this comparison, in the next section, we perform a statistical
study on the randomness of our t-interleaved sequences, and we compare these results
with the ones obtained for t-interleaved sequences obtained with shifted versions of the
same PN-sequence (which includes the shrunken sequence), that is, using always the same
characteristic polynomial.



Cryptography 2022, 6, 21 11 of 22

Table 2. Values for the LC and the period T of t-interleaved sequences obtained from one single
primitive polynomial of degree L compared with the values taking different polynomials.

t Different Polynomials 1 Polynomial

(t, L) LC T LC T

(8,16) 1024 524,280 128 524,280

(8,17) 1088 1,048,568 136 1,048,568

(8,18) 1152 2,097,144 144 2,097,144

(8,19) 1216 4,194,296 152 4,194,296

(8,20) 1280 8,388,600 160 8,388,600

5. Statistical Analysis of T-Interleaved Sequences

RNGs should be designed and selected based on a solid theoretical analysis of their
mathematical structure. In our algorithm, we interleave PN-sequences to hide and delete
their linearity. Once our generator is designed and implemented, the next step is to submit
it to empirical statistical tests in order to detect statistical deficiencies. In the study of RNGs,
different quality criteria can be used. However, three basic properties of a random bit
sequence {si} should be achieved:

1. Unpredictability: Having k consecutive elements of {si} should not give any informa-
tion about the next element k + 1 of the sequence.

2. Uniformity: Given any subsequence of {si}, there should be nearly equal number of
1’s and 0’s.

3. Independence: Each element of {si} is independent from other elements.

There is no mathematical proof that ensures the randomness of a bit sequence; however,
there exists a huge number of empirical tests to determine if a sequence is random enough
and secure to be used in cryptography [23]. If the sequences produced by a particular
generator pass the statistical tests, then this could be accepted as a generator of random
sequences. Otherwise, if any of the tests fail, then it means the generator is not good and
must be rejected.

• Golomb’s Randomness Postulates

Golomb’s postulates constitute a base for randomness tests, since they were one of
the first attempts to establish some necessary conditions for a periodic pseudo-random
sequence to look random. Sequences satisfying the three properties are called PN-sequences.
The sequences produced by LFSRs are PN-sequences in these terms. At present, these
conditions are far from being sufficient for such sequences to be considered random.
However, there are diverse ways and tools that allow us to analyze the randomness of
the sequences.

>From now on, we consider {si} a binary sequence of period T. A run of {si} is
defined as a maximal subsequence of consecutive bits of either all ones or all zeros. A
run of zeroes is called a gap, and a run of ones is called a block. Golomb’s postulates are
defined as follows:

(R1) In a period of {si}, the number of ones should differ from the number of zeros by at
most 1. In other words, the sequence should be balanced.

(R2) In a period of {si}, at least 1
2 of the all runs of zeroes or ones should have length one,

at least 1
4 should have length 2, at least 1

8 should have length 3, and so on. Moreover,
for each one of these lengths, there should be (almost) equally many gaps and blocks.

(R3) The autocorrelation function C(τ) should be two valued. That is, for some integer k
and for all τ = 0, 1, 2, . . . , T − 1

C(τ) =
1
T

T−1

∑
i=0

(−1)(si+si+τ) =

{
1 if τ = 0,
k
T if 1 ≤ τ ≤ T − 1.

(2)
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Any of Golomb’s randomness postulates are analyzed through the statistical tests
package FIPS 140-2 [24], as we study in Section 5.2.

In this section, we include diverse ways to analyze the randomness of our sequences.
On the one hand, in Section 5.1, we present some visual results where, through different
graphs, we could understand the behavior of the generated sequences. On the other hand,
in Section 5.2, we evaluate various batteries of statistical tests, which help us to determine
if our generator could be considered random. The generator and the battery of tests were
implemented with Matlab R2020b in a Windows 10 environment in a 64 bits PC with CPU
Intel Core i7, at 3 GHz. We check a great quantity of t-interleaved sequences, with 3 ≤ t ≤ 8
and with polynomials of degree up to 27.

5.1. Simple Visual Analysis

In this subsection, we examine our random number generator creating a visualization
of the sequences it produces. We study the autocorrelation, the return map, the chaos
game, and the Lyapunov exponent. This type of approach should not be considered as an
exhaustive or formal analysis. However, it is an interesting and easy way to get a rough
impression of the performance of the generator.

• Autocorrelation

The autocorrelation function, defined in expression (2), measures the amount of
similarity between the sequence {si} and its shifted version by τ positions. If {si} is a
random periodic sequence of period T, then |T · C(τ)| can be expected to be quite small for
all values of τ with 0 < τ < T.

This function is a mathematical tool very useful for finding repeated patterns. It
analyzes different sections of a message and compares them to find similarities. Moreover,
it allows measuring the linear relationship between random variables of processes sepa-
rated a certain distance. The first autocorrelation coefficient is always equal to 1, and the
other coefficients must have the smallest amplitude possible, so that the sequence can be
considered random.

In Figure 4, we compare the autocorrelation values for two 8-interleaved sequences.
In Figure 4a, we show the results for an eight-interleaved sequence with eight different
primitive polynomials of degree L = 16. We observe that the values are almost zero except
for the first value which is 1, as would be expected for a random sequence. Obtaining these
results provides an indication about the randomness of the sequence but not the certainty.
That is, this does not guarantee that it was indeed produced by a random bit generator,
but it means that we can continue checking it. However, in Figure 4b, we represent the
results for a eight-interleaved sequence with the same polynomial of degree L = 16. We
can observe in the graph how the values increase for some shifts of the sequence with itself.
This allows us to deduce the existence of certain autocorrelation in this sequence.

• Chaos Game

Chaos game [25–27] is a method that converts a one-dimensional sequence into a se-
quence in two dimensions providing a very provocative visual representation, which reveals
some of the statistical properties of the sequence under study. >From this graphical tool, we
can visually look for patterns in the sequences generated by a random number generator.

Figure 5 shows the Chaos maps of two eight-interleaved sequences with polynomials
of degree 16. In Figure 5b, we have the Chaos map of an eight-interleaved sequence
generated with one single polynomial. We can observe the lack of randomness in this
sequence, since it presents a clear pattern. However, in Figure 5a, we have the Chaos
map of an eight-interleaved sequence using different polynomials where we observe a
disordered cloud, without patterns. It means that there is an indication of a Chaos map
but not certainty. That is, it does not assure the randomness of our sequence, but we can
continue with the analysis of this generator.

A practical method of determining whether a system is chaotic or not is the calculation
of the Lyapunov exponent, which we study in the next section.
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Figure 4. Autocorrelation for eight-interleaved sequences with polynomials of degree 16. (a) Eight-
interleaved sequence with different polynomials; (b) Eight-interleaved sequence with the same
polynomial.
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Figure 5. Chaos map for eight-interleaved sequences with polynomials of degree 16. (a) Eight-
interleaved sequence with different polynomials; (b) Eight-interleaved sequence with the same
polynomial.

• Lyapunov exponent

Lyapunov exponent is an essential tool and a useful analytical metric to characterize
the chaos. An important property of chaos is its very sensitive dependence on initial
condition. Lyapunov exponent is used as a quantitative measure for this dependence.

Lyapunov exponent of a dynamical system is a quantity that characterizes the rate of
separation of infinitesimally close trajectories Z(t) and Z0(t) in phase space

|Z(t)− Z0(t)| ≈ |Z(0)− Z0(0)|eλt.

The exponent λ measured for a long period of time (ideally t→ ∞) is the Lyapunov ex-
ponent.

Next, we consider the definition of Lyapunov exponent given for sequences in [28].
Let d0 be the measure of the initial distance between two sequences and dt be the distance
between the same sequences but after t iterations. We define Lyapunov exponent (LE) as:

LE =
1
t

ln
(∣∣∣∣

dt

d0

∣∣∣∣
)

.
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It is desirable that two very close initial conditions provide very different trajectories
(sequences). If LE is greater than zero, the distance between two close initial conditions
rapidly increases in the time, which means there exists an exponential divergence of the
trajectories of a chaotic system. This value gives an idea of how different the sequences are
generated by similar seeds, which is a very important feature to avoid attacks on the key of
the generator. However, if LE = 0, the sequences decrease their distance, and they tend to
join and be confused in one. The system converges, and it is not at all random.

We can use the Hamming distance (which indicates the number of bit positions in
which both sequences differ) instead of the logarithm of the Euclidean distance in the
Lyapunov exponent, and it is called the Lyapunov Hamming Exponent (LHE). If two
numbers are identical, then its LHE value will be 0. Nevertheless, if all the bits of both
numbers are different, then its LHE will be LHE = log2 m = log2 2n = n, where n is the
number of bits with which the numbers are encoded.

Obtaining the Lyapunov Hamming exponent for the chosen sequence is done by
calculating the average of the LHE between every two consecutive numbers of the sequence.
The best value will be n/2.

For this case, we take n = 8, so the best value is 4. Next, we show the value obtained
for a eight-interleaved sequence with polynomials of degree L = 20

Lyapunov Hamming exponent, ideal = 4
Lyapunov Hamming exponent, real = 4.0001
Absolute desviation from ideal = 2.2889 × 10−5

Hence, the proposed generator passes this test.
All the t-interleaved sequences with different polynomials analyzed have passed

this test.

• Return map

In Information Theory, the entropy of a sequence is a measure of the amount of
information of a process in bits; or it is a measure of the diversity of the elements in
the sequence. It is computed from the frequencies of each element of the alphabet in
the sequence.

The return map is useful to visually measure the entropy of the sequence above
defined; that is, it allows us to detect the existence of some useful information about the
parameters used in the design of pseudo-random generators [29].

The return application consists of drawing a two-dimensional graph of the points
of the sequence {si} as a function of {si−1}. The result should be a distribution of points
where you can guess no trend, no shape, no line, no symmetry, and no pattern, as happens
in the Chaos map.

In Figure 6, we represent the return maps of two eight-interleaved sequences with
polynomials of degree 16. In Figure 6a, we have the return map of an eight-interleaved
sequence using different polynomials. We observe a disordered cloud, without patterns,
which, in principle, does not provide any useful information for the cryptanalysis of the
sequence. It does not mean that our sequence is random, simply that it is not rejected
in the randomness analysis. However, in Figure 6b, we represent the return application
of an eight-interleaved sequence generated with one single polynomial. We can check
that this graph presents a pattern of defined curves, which are repeated. It indicates
non-randomness in the sequence.
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Figure 6. Return map for eight-interleaved sequences with polynomials of degree 16. (a) Eight-
interleaved sequence with different polynomials; (b) Eight-interleaved sequence with the same
polynomial.

5.2. Battery of Statistical Tests

Next, we present two of the most important batteries of statistical tests used to evaluate
the randomness of the sequences generated by pseudo-random number generators, Diehard
and NIST.

• NIST
The Statistical Test Suite developed by NIST [30] is an excellent and exhaustive docu-
ment looking at various aspects of randomness in a long sequence of bits. The NIST
has documented 15 statistical tests, where FIPS 140-2 package, Maurer’s Universal
Test [31] and Lempel–Ziv Compression Test are among them.
The Frequency Test, Maurer’s Universal Test and Lempel-Ziv Compression have the
standard normal as reference distribution. The rest of the tests have the chi-square χ2

as reference distribution. The chi-square and the normal variation is converted into
a p-value. If the computed p-value is <0.01, then we conclude that the sequence is
non-random. Otherwise, we conclude that the sequence is random.

• FIPS 140-2
FIPS 140-2 is an U.S. government computer security standard used to approve crypto-
graphic modules issued by the National Institute of Standards and Technology (NIST).
It consists of four statistical random number generator tests: the Monobit Test, The
Poker Test, The Runs Test and The Long Runs Test. Moreover, we add the Frequency
Test within a block, which can be categorized as a frequency test. If a sequence passes
all five tests, there is no guarantee that it was indeed produced by a random bit gen-
erator. However, if one of the algorithms fails any of these tests, then the other tests
are not even applied, and we can not consider our sequence sufficiently random; and,
therefore, our generator is not secure in cryptographic terms.
Each test needs a binary sequence of 106 bits. All our sequences have the required
length for this analysis.

1. FREQUENCY (MONOBIT) TEST: The focus of the test is the proportion of zeros
and ones along the whole sequence. The purpose of this test is to determine
whether the number of ones and zeros in a sequence are approximately the
same as would be expected for a truly random sequence. The test assesses the
closeness of the fraction of ones to 1

2 ; that is, the number of ones and zeros in a
sequence should be about the same. All subsequent tests depend on the approval
of this test.
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2. POKER (SERIAL) TEST: Let m be an integer number such that b T
m c ≥ 5 · 2m and

let k = b T
m c. The sequence {si} is divided into k non-overlapping parts each one

of length m, and let mi be the number of occurrences of the i-th type of sequence
of length m, for 1 ≤ i ≤ 2m. The Poker Test determines if each stream of length m
appears approximately the same number of times in {si}, as would be expected
for a random sequence. Note that for m = 1, the Poker Test is equivalent to the
Frequency Test.

3. RUNS TEST: The incidences of runs (for both consecutive zeros and consecutive
ones) of all lengths (≥1) in the sample stream should be counted and stored.
The purpose of the Runs Test is to determine if the number of runs of different
lengths in the sequence {si} is as expected for a random sequence. In particular,
this test determines whether the oscillation between zeros and ones is too fast or
too slow.

4. LONG RUNS TEST: A long run is defined to be a run of length 26 or more (of
either zeros or ones). The focus of this test is the longest run of ones within
M-bit blocks. Its purpose is to determine whether the length of the longest run
of ones within the sequence is consistent with the length of the longest run of
ones that would be expected in a random sequence. Note that one irregularity
in the expected length of the longest run of ones implies that there is also an
irregularity in the expected length of the longest run of zeros. Therefore, only a
test for ones is necessary.

5. FREQUENCY TEST WITHIN A BLOCK: The focus of this test is the proportion
of ones within M-bit blocks. The purpose is to determine whether the frequency
of ones in an M-bit block is approximately M

2 , as would be expected under an
assumption of randomness. For the block size M = 1, this test degenerates to
the Frequency (Monobit) test.

Frequency Test is defined to check the first postulate of Golomb. The second postulate
of Golomb, about the number of runs in sequences, is analyzed in the Runs Tests.
Finally, the third postulate gives information about similarities between the sequence
and shifted versions of it. If {si} is a random sequence, the autocorrelation should
be constant.

• Maurer’s Universal Test
The focus of this test is the number of bits between matching patterns (a measure
that is related to the length of a compressed sequence). The purpose of the test is to
detect whether or not the sequence can be significantly compressed without loss of
information. A significantly compressible sequence is considered to be non-random.

• Lempel–Ziv Compression Test
The focus of this test is the number of cumulatively distinct patterns (words) in the
sequence. The purpose is to determine how far the tested sequence can be compressed;
it is considered to be non-random if it can be significantly compressed. A random
sequence will have a characteristic number of distinct patterns.
This test works by reading a sequence of symbols, grouping the symbols into strings,
and converting the strings into codes. We get compression because the codes take up
less space than the strings they replace. No data are lost when compressing.
In Table 3, we present a small sample of the results obtained in the NIST tests here
presented. All these values are the average of the results obtained for any sample of
t-interleaved sequences studied.
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Table 3. p-values of some statistical tests of NIST for t-interleaved sequences with different character-
istic polynomials of degree 20.
hhhhhhhhhhhhhhTests

t-Interleaved 3 4 5 6 7 8

Monobit 0.4952 0.4740 0.0493 0.6213 0.5592 0.9745

Poker 0.9083 0.2742 0.5086 0.0488 0.9960 0.4902

Runs 0.5402 0.5160 0.4629 0.5946 0.6000 0.9840

Long Runs 0.5715 0.5823 0.6785 0.8791 0.1204 0.9719

Frequency block 0.4068 0.2167 0.3672 0.7633 0.3473 0.5089

Maurer’s 0.6623 0.4129 0.2069 0.8374 0.5539 0.4262

Lempel-Ziv 0.0931 0.9159 0.0531 0.2314 0.9069 0.9719

• Diehard

Diehard battery of tests [32] is a reliable standard for evaluating the randomness of
sequences of pseudo-random number generators. This tool is a powerful instrument
for the practical evaluation process of cryptographic primitives. It cannot guarantee
if your generator can be considered perfectly random, but if it does not pass the test
suite, then it is not suitable for cryptographic applications.
Diehard battery [32] consists of 15 different independent statistical tests, some of them
repeated but with different parameters:

1. BIRTHDAY SPACINGS TEST: Choose random points on a large interval. The
spacings between the points should be asymptotically exponentially distributed.

2. OPERM5 TEST: Analyze sequences of five consecutive random numbers. The
120 possible orderings should occur with statistically equal probability.

3. BINARY RANK TEST FOR 31× 31 MATRICES: The leftmost 31 bits of 31 random
integers from the test sequence are used to form a 31× 31 binary matrix over the
field {0, 1}. The rank is determined. That rank can be from 0 to 31, but ranks less
than 28 are rare, and their counts are pooled with those for rank 28. Ranks are
found for 40,000 of such random matrices, and a chi-square test is performed on
counts for ranks 31, 30, 29 and ≤28.

4. BINARY RANK TEST FOR 32× 32 MATRICES: The rank of a random 32× 32
matrix is identified. Ranks less than 29 are rare. Chi-square tests are performed
on the ranks 32, 31, 30 and less than or equal to 29. This is repeated 40,000 times.

5. BINARY RANK TEST FOR 6× 8 MATRICES: The rank of a random 6× 8 matrix
is identified. Ranks less than 4 are rare. Chi-square tests are performed on the
ranks 6, 5 and less than or equal to 4. This is repeated 100,000 times.

6. BITSTREAM TEST: Consider each bit as a single letter (0 or 1). In a rolling group
of 20 bits, count the number of 20-bit permutations out of 221 20-bit groups. As
there are 220 possible 20-bit permutations, count how many are missing, which
should be normally distributed. This test is repeated 20 times.

7. OPSO, OQSO and DNA TESTS:

(a) OPSO TEST: This is the overlapping-pairs-sparse-occupancy test. Each set
of 5 bits is considered a ’letter’; thus, there are 1024 letters in the ’alphabet’.
Two-letter words are taken from each 32-bit integer and are counted. As
there are 221 possible two-letter words, the missing words are identified
and should be normally distributed.

(b) OQSO TEST: A variant that uses four-letter words.
(c) DNA TEST: A variant where there are only four letters in the alphabet,

and each letter is two bits.

8. COUNT-THE-1s TEST: A specific byte from each integer is chosen to represent
a letter. There are five possible letters, each chosen by counting the number of
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1’s in the byte: 0, 1, 2 = A; 3 = B; 4 = C; 5 = D; 6, 7, 8 = E. The five probabilities
are therefore 37, 56, 70, 56 and 37 over 256, respectively. Five integer sequences
are selected on a rolling basis, and counts are made on word frequencies. A
covariance matrix is formed.

9. PARKING LOT TEST: Randomly place unit circles in a 100× 100 square. A circle
is successfully parked if it does not overlap an existing successfully parked one.
After 12,000 tries, the number of successfully parked circles should follow a
certain normal distribution.

10. MINIMUM DISTANCE TEST: In a square of size 10,000 × 10,000, randomly
select 8000 points. Find the minimum distance between the pairs. The square
of this distance should be exponentially distributed with a mean close to 0.995.
This is repeated for 100 random selections of 8000 points.

11. RANDOM SPHERES TEST: Randomly choose 4000 points in a cube of edge 1000.
Center a sphere on each point, whose radius is the minimum distance to another
point. The smallest sphere’s volume should be exponentially distributed with a
certain mean.

12. SQUEEZE TEST: Multiply 231 by random floats on (0, 1) until you reach 1. Repeat
this 100,000 times. The number of floats needed to reach 1 should follow a chi-
square distribution.

13. OVERLAPPING SUMS TEST: Generate a long sequence of random floats on
(0, 1). Add sequences of 100 consecutive floats. The sums should be normally
distributed with characteristic mean and variance.

14. RUNS TEST: Generate a long sequence of random floats on a [0, 1) distribution.
Ascending and descending runs should follow a certain covariance matrix. This
is repeated 10 times for sequences of length 10,000.

15. CRAPS TEST: Play 200,000 games of craps, counting the wins and the number of
throws per game. Each count should follow a chi-square distribution.

Note that The Count-The-1s and the OPSO tests are both sometimes known as the
Monkey Test. These statistical tests are designed to test the null hypothesis H0, which
states that the input sequence is randomly generated. If the hypothesis is not rejected
in all the tests, then it is implied that the input sequences are random. Most of the tests
in DIEHARD return a p-value or the KS p-value (given by the Kolmogorov–Smirnov
test), which should be uniform on [0, 1) if the input file contains truly independent
random bits. It is considered that a bit stream really fails when it obtains p-values of 0
or 1 to six or more places.
Testing Diehard battery of tests for a hundred eight-interleaved sequences with dif-
ferent polynomials of degree 24, we say that Diehard does not show any weakness.
>From the results of Table 4 of a particular sequence, we can check that all the values
are in the appropriate range.

Table 4. Diehard battery of tests results for an eight-interleaved sequence with different characteristic
polynomials of degree 24.

Test Name p-Value Result Test Name p-Value Result

Birthday spacing

0.770936

Pass OQSO

0.8197

Pass

0.747460 0.1329

0.989202 0.5293

0.774785 0.6284

0.576802 0.7687

0.176450 0.0969

0.874796 0.7288



Cryptography 2022, 6, 21 19 of 22

Table 4. Cont.

Test Name p-Value Result Test Name p-Value Result

0.139735 0.9149

0.514557 0.9812

Overlapping 0.974948 Pass 0.7603

permutations 0.759794 0.6207

Binary ranks
31× 31 0.752307 Pass 0.8554

Binary ranks
32× 32 0.934338 Pass 0.3293

Binary ranks 6× 8 0.445734 Pass 0.0179

0.76389 OQSO 0.7859 Pass

0.13337 0.4336

0.67455 0.1403

0.49876 0.7540

0.88496 0.3442

0.96748 0.1236

0.07041 0.1888

0.08609 0.8394

0.67958 0.6233

Bit stream 0.61726 Pass 0.1351

(Monkey tests) 0.78081 0.4005

0.61369 0.4097

0.80996 0.4941

0.88405 0.8206

0.35224

DNA

0.5756

Pass

0.62968 0.7611

0.53228 0.5149

0.17966 0.8418

0.02605 0.9799

0.16593 0.2000

OPSO

0.8834

Pass

0.6843

0.7423 0.8916

0.2625 0.2560

0.5394 0.2569

0.5394 0.0096

0.6175 0.2598

0.2614 0.1103

0.6739 0.2117

0.7986 0.5963

0.6588 0.3547
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Table 4. Cont.

Test Name p-Value Result Test Name p-Value Result

0.7102 0.4503

0.4069 0.5184

0.8906 0.9202

OPSO

0.4968

Pass

DNA

0.0457

Pass

0.1266 0.8440

0.1259 0.9479

0.8229 0.6468

0.4243 0.3536

0.3429 0.6446

0.6911 0.0831

0.1838 0.7538

0.2961 0.7575

0.2145 0.9951

Count-the-1’s 0.476036 Pass 0.5849

(stream of bytes) 0.572657 0.2852

0. Parking lot 0.407931 Pass

0.453489 Minimum distance 0.752286 Pass

0.531694 3D Spheres 0.947691 Pass

0.476337 Squeeze 0.990622 Pass

0.115181 Overlapping sums 0.276467 Pass

0.238283 0.276783

0.248038
Runs

0.893007
Pass

0.170200 0.908305

0.595302 0.913183

0.167417 Craps 0.995956 Pass
0.574701 105,661

Count-the-1’s 0.384873 Pass

(specific bytes) 0.944743

0.955924

0.210026

0.142320

0.717744

0.191102

0.728247

0.297792

0.971290

0.323464

0.408101

0.013264

0.859849
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6. Conclusions

Interleaving sequences is a way to increase the linear complexity of such sequences
and to break the linearity just in case of working with PN-sequences. In this paper, we
analyze the randomness of the sequences obtained by interleaving PN-sequences generated
by different characteristic polynomials with the same degree. According to the obtained
results, these sequences achieve the maximal possible linear complexity and, in terms of
randomness, they are better than the sequences obtained interleaving PN-sequences with
the same polynomial. Therefore, they seem to be suitable for applications in cryptography.
As future work, we would like to apply more batteries of tests to our sequences and study
what happens if we interleave PN-sequences with different periods. In this last case, we are
not sure how the different periods can affect the resultant sequence. We need to perform a
deep study in order to achieve some conclusions.

Author Contributions: All authors contributed equally. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the Spanish State Research Agency (AEI) of the
Ministry of Science and Innovation (MICINN), project P2QProMeTe (PID2020-112586RB-I00/AEI/
10.13039/501100011033). It was also supported by Comunidad de Madrid (Spain) under project
CYNAMON (P2018/TCS-4566), co-funded by FSE and European Union FEDER funds. The work
of the second author was partially supported by Spanish grant VIGROB-287 of the University
of Alicante.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Fausto Montoya and Amalia B. Orúe for kindly
sharing some of their visual programs, which were applied in the frame of this work to check the
randomness of the sequences generated. They would also like to thank Miguel Beltrá for the help
provided during the computational calculations.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
PRNG Pseudo-Random Number Generator
LFSR Linear Feedback Shift Register
LC Linear Complexity
PN-sequence Pseudo Noise-sequence
SG Shrinking Generator
MAC Message Authentication Code

References
1. Gallegos-Segovia, P.; Bravo-Torres, J.; Argudo-Parra, J. Internet of things as an attack vector to critical infrastructures of cities. In

Proceedings of the 2017 International Caribbean Conference on Devices, Circuits and Systems (ICCDCS), Cozumel, Mexico, 5–7
June 2017, pp. 117–120.

2. Biryukov, A.; Perrin, L. State of the Art in Lightweight Symmetric Cryptography. Cryptology ePrint Archive, Report 2017/511,
2017. Available online: https://ia.cr/2017/511 (accessed on 3 April 2022 ).

3. Chin, W.; Li, W.; Chen, H. Energy big data security threats in IoT-based smart grid communications. IEEE Commun. Mag. 2017,
55, 70–75. [CrossRef]

4. Mavromoustakis, C.; Mastorakis, G.; Batalla, J. Internet of Things (IoT) in 5G Mobile Technologies; Springer: Berlin/Heidelberg,
Germany, 2016.

https://ia.cr/2017/511
http://doi.org/10.1109/MCOM.2017.1700154


Cryptography 2022, 6, 21 22 of 22

5. National Institute of Standards and Technology (NIST). NIST Lightweight Cryptography Project. Technology Administration.
2022. Available online: https://csrc.nist.gov/Projects/Lightweight-Cryptography (accessed on 3 April 2022 ).

6. Zia, U.; McCartney, M.; Scotney, B.; Martinez, J.; Sajjad, A. A novel pseudo-random number generator for IoT based on a coupled
map lattice system using the generalised symmetric map. SN Appl. Sci. 2022, 4, 48. [CrossRef]

7. Kietzmann, P.; Schmidt, T.C.; Wählisch, M. A Guideline on Pseudorandom Number Generation (PRNG) in the IoT. ACM Comput.
Surv. 2021, 54, 1–38 . [CrossRef]

8. Golomb, S.W. Shift Register-Sequences; Aegean Park Press: Laguna Hill, CA, USA, 1982.
9. Coppersmith, D.; Krawczyk, H.; Mansour, Y. The shrinking generator. In Advances in Cryptology—CRYPTO’93; Stinson, D., Ed.;

Springer: Berlin/Heidelberg, Germany, 1994; Volume 773, pp. 22–39. [CrossRef]
10. Cardell, S.D.; Fúster-Sabater, A. Modelling the shrinking generator in terms of linear CA. Adv. Math. Commun. 2016, 10, 797–809.

[CrossRef]
11. Cardell, S.D.; Climent, J.J.; Fúster-Sabater, A.; Requena, V. Representations of Generalized Self-Shrunken Sequences. Mathematics

2020, 8, 1006. [CrossRef]
12. Cardell, S.D.; Fúster-Sabater, A.; Requena, V. Interleaving Shifted Versions of a PN-Sequence. Mathematics 2021, 9, 687. [CrossRef]
13. Pichler, F. (Ed.) Linear Complexity and Random Sequences. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,

Germany, 1986; Volume 219.
14. Duvall, P.F.; Mortick, J.C. Decimation of Periodic Sequences. SIAM J. Appl. Math. 1971, 21, 367–372. [CrossRef]
15. Fúster-Sabater, A.; Caballero-Gil, P. Linear solutions for cryptographic nonlinear sequence generators. Phys. Lett. A 2007,

369, 432–437. [CrossRef]
16. Lidl, R.; Niederreiter, H. Introduction to Finite Fields and Their Applications; Cambridge University Press: New York, NY, USA, 1986.
17. Mita, R.; Palumbo, G.; Pennisi, S.; Poli, M. Pseudorandom bit generator based on dynamic linear feedback topology. Electron.

Lett. 2002, 28, 1097–1098. [CrossRef]
18. Ali Eljadi, F.M.; Taha Al Shaikhli, I.F. Dynamic linear feedback shift registers: A review. In Proceedings of the 5th International

Conference on Information and Communication Technology for The Muslim World (ICT4M), Kuching, Malaysia, 17–18 November
2014; pp. 1–5. [CrossRef]

19. Peinado, A.; Munilla, J.; Fúster-Sabater, A. Improving the Period and Linear Span of the Sequences Generated by DLFSRs. In
Proceedings of the International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, Advances in Intelligent Systems and Computing,
Bilbao, Spain, 25–27 June 2014; de la Puerta, J.G., Ferreira, I.G., Bringas, P.G., Klett, F., Abraham, A., de Carvalho, A.C., Herrero,
Á., Baruque, B., Quintián, H., Corchado, E., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 299,
pp. 397–406. [CrossRef]
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