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Given two arbitrary almost periodic functions with Fourier exponents which are 
linearly independent over the rational numbers, we prove that the existence of 
a common open vertical strip V , where both functions assume the same set of 
values on every open vertical substrip included in V , is a necessary and sufficient 
condition for both functions to have the same region of almost periodicity and to 
be ∗-equivalent or Bohr-equivalent. This result represents the converse of Bohr’s 
equivalence theorem for this particular case.
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1. Introduction

The theory of almost periodic functions with complex values, created by H. Bohr during the 1920’s, 
opened a way to study a wide class of trigonometric series of the general type and even exponential series. 
This subject, widely treated in several monographs, has been developed by many authors and has had 
noteworthy applications [1,3–7,9].

The space of almost periodic functions in a vertical strip U = {s ∈ C : α < Re s < β}, −∞ ≤ α < β ≤ ∞, 
which will be denoted in this paper as AP (U, C), is defined as the set of analytic functions f : U �→ C

that are equipped with a relatively dense set of almost periods (as Bohr called them) in the following sense: 
for any ε > 0 and every reduced strip U1 = {s ∈ C : σ1 ≤ Re s ≤ σ2} ⊂ U (with σ1, σ2 ∈ R such that 
α < σ1 ≤ σ2 < β) there exists a number l = l(ε) > 0 such that every interval of R of length l contains a 
number τ satisfying the inequality |f(s + iτ) − f(s)| ≤ ε for all s in U1. In an equivalent way, the space 
AP (U, C) coincides with the completion of the space of all finite exponential sums of the form

a1e
λ1s + a2e

λ2s + . . . + ane
λns,
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with complex coefficients aj and real exponents λj , equipped with the norm of uniform convergence on 
every reduced strip of U [3, p. 148].

Taking as starting point the mean value theorem, the theory of Fourier expansions of periodic functions 
can be extended to almost periodic functions. Indeed, every function in AP (U, C) can be associated with 
a certain exponential series of the form 

∑
n≥1 ane

λns, with complex coefficients an and real exponents λn

(the Fourier exponents), which is called the Dirichlet series of the given almost periodic function (see [3, 
p. 147], [6, p. 77] or [7, p. 312]), and the restriction of this series to vertical lines provides the Fourier series 
of this function.

In this context, we recall that the class of general Dirichlet series consists of series that take the form ∑
n≥1 ane

−λns, an ∈ C, where {λn} is a strictly increasing sequence of positive numbers tending to 
infinity. Regarding these series, H. Bohr introduced an equivalence relation (which we will refer to as Bohr-
equivalence, see the definition below) among them that led to exceptional results such as Bohr’s equivalence 
theorem: Bohr-equivalent general Dirichlet series take the same values in certain vertical lines or strips in 
the complex plane (see for example [2]). This equivalence relation was used by Righetti in 2017 to obtain a 
partial converse theorem for the case of general Dirichlet series in their half-plane of absolute convergence [8].

Regarding the so-called Dirichlet series associated with an almost periodic function f(s) in AP (U, C), it is 
worth mentioning that f(s) coincides with its associated Dirichlet series in the case of uniform convergence 
on its strip of almost periodicity U (hence in particular if the convergence is absolute). However, if this 
condition is not satisfied, we only can state that f(s) is associated with its Dirichlet series on the region 
U . In fact, these Dirichlet series may not converge in U with the ordinary summation, but there exists 
another way of summation, called the Bochner-Fejér procedure, which gives rise to a sequence of finite 
exponential sums, connected with the Dirichlet series, that converges uniformly to f in every reduced strip 
in U , and converges formally to the Dirichlet series on U [3, p. 148]. In this sense, we will call region of almost 
periodicity of f(s) the largest open vertical strip where the Bochner-Fejér procedure can be applied (in fact, 
it is the largest strip U satisfying that f(s) is bounded on every reduced strip in U , see [3, p. 143, Remark 
1]). Unless otherwise indicated, throughout this paper we will assume that the notation f ∈ AP (U, C) yields 
that U is the region of almost periodicity of f .

More generally, concerning exponential sums of type

a1e
λ1s + a2e

λ2s + . . . + aje
λjs + . . . , (1)

with aj ∈ C and {λ1, λ2, . . . , λj , . . .} an arbitrary countable set of distinct real numbers (not necessarily 
unbounded), Sepulcre and Vidal established in 2018 a new equivalence relation on them (that we will call 
∗-equivalence or SV-equivalence, see Definitions 2 and 3), and they also extended it to the context of the 
complex functions which can be represented by a Dirichlet-like series (1) (in particular those almost periodic 
functions in AP (U, C)) in order to obtain a refined characterization of almost periodicity (see [9, Theorem 
5]). This development also led them to an extension of Bohr’s equivalence theorem to the case of functions 
in AP (U, C), which is valid in every open half-plane or open vertical strip included in their region of almost 
periodicity (under the assumption of existence of an integral basis, which is defined below, [11, Theorem 1]
and in the general case [13, Theorem 1]). It is convenient to remark that this new ∗-equivalence relation, 
which can be formally applied to every Dirichlet-like series, coincides with Bohr-equivalence [2] (and hence 
that used in [8]) for the particular case of general Dirichlet series whose sets of exponents have an integral 
basis.

Given two arbitrary almost periodic functions with associated Fourier exponents which are linearly inde-
pendent over the rational numbers, the main result in this paper states that they are ∗-equivalent (or also 
Bohr-equivalent) if and only if there exists an open vertical strip V , included in a common strip of almost 
periodicity of both functions, where such functions assume the same set of values on every open vertical 
substrip included in V (see Theorems 10 and 12). Also, we extend this result to the possibility that one of 
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the Fourier exponents is equal to 0 (see Theorem 14). In fact, we prove that the existence of such an open 
vertical strip is a necessary and sufficient condition for both functions to have the same region of almost 
periodicity and to be ∗-equivalent.

Despite the fact that the converse of Bohr’s equivalence theorem is, in general, false (see e.g. [8]), our 
main result shows that it is true under these conditions on the Fourier exponents (also for the converse of 
[13, Theorem 1]). In fact, our main theorem is stronger than a converse of Bohr’s equivalence theorem for 
this case because it is not necessary to have the same set of exponents (i.e. the sets of Fourier exponents of 
the underlying almost periodic functions are not necessarily the same).

2. Preliminaries

We first consider the following equivalence relation which constitutes our starting point.

Definition 1 (Bohr-equivalence). Let Λ be an arbitrary countable set of distinct real numbers. Let V be the 
Q-vector space generated by Λ (V ⊂ R), and let F be the C-vector space of arbitrary complex functions 
defined on Λ. If a, b ∈ F , we will write a ∼ b if there exists a Q-linear map ψ : V → R such that

b(λ) = a(λ)eiψ(λ), with λ ∈ Λ.

The reader may check that this equivalence relation, defined on the space F , is based on that of Bohr 
for general Dirichlet series (see e.g. [2, p. 173]).

Now, let Λ = {λ1, λ2, . . . , λj , . . .} be an arbitrary countable set of distinct real numbers. We will handle 
formal exponential sums of the type

∑
j≥1

aje
λjs, aj ∈ C, λj ∈ Λ, (2)

where s = σ + it ∈ C. In this context, we will say that Λ is a set of exponents and a1, a2, . . . , aj , . . . are the 
coefficients of this exponential sum.

In this way, based on Definition 1, we consider the following equivalence relation on the classes of expo-
nential sums of type (2). We will denote as 	Λ the cardinal of the numerable set Λ.

Definition 2 (∗-equivalence for exponential sums). Given an arbitrary countable set of distinct real numbers 
Λ = {λ1, λ2, . . . , λj , . . .}, consider A1(s) and A2(s) two exponential sums of the type 

∑
j≥1 aje

λjs and ∑
j≥1 bje

λjs, respectively. We will say that A1 is ∗-equivalent to A2 (in that case, we will write A1
∗∼ A2) 

if for each integer value n ≥ 1, with n ≤ 	Λ, there exists a Q-linear map ψn : Vn → R, where Vn is the 
Q-vector space generated by {λ1, λ2, . . . , λn}, such that

bj = aje
iψn(λj), j = 1, . . . , n.

We note that SV-equivalence, which was already introduced in [9, Corrigendum], is also used in papers 
[10–14]. As it was shown in [10, Proposition 1], it can be characterized in terms of a basis of the Q-vector 
space generated by a set Λ = {λ1, λ2, . . .} of exponents. If GΛ = {g1, g2, . . .} is such a basis, then each λj in 
Λ is expressible as a finite linear combination of terms of GΛ, say

λj =
ij∑

k=1

rj,kgk, for some rj,k ∈ Q, ij ∈ N,

and it is said that GΛ is an integral basis for Λ if rj,k ∈ Z for each j, k.
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Although ∗-equivalence (Definition 2) and Bohr-equivalence (Definition 1 adapted to the case of expo-
nential sums) are not equivalent in the general case, it is worth noting that they are equivalent when it is 
feasible to obtain an integral basis for the set of exponents Λ (see [13, Proposition 1]). For example, this 
equivalence happens particularly when all the exponents are linearly independent over the rational numbers.

Now we extend Definition 2 to the case of the almost periodic functions in the classes AP (U, C).

Definition 3 (∗-equivalence for almost periodic functions). Given Λ = {λ1, λ2, . . . , λj , . . .} ⊂ R a set of 
exponents, let f1 and f2 denote two functions in AP (U, C), where U = {s = σ + it ∈ C : α < σ < β} is 
assumed to be their common region of almost periodicity. Suppose that the Dirichlet series of f1 and f2 are 
respectively given by

A1(s) =
∑
j≥1

aje
λjs and A2(s) =

∑
j≥1

bje
λjs, aj , bj ∈ C, λj ∈ Λ.

We will say that f1 is ∗-equivalent to f2 if A1
∗∼A2, where ∗∼ is as in Definition 2. In this case we also write 

f1
∗∼ f2.

As one can see, the ∗-equivalence of formal exponential sums (Definition 2) is the same as the above one 
for Dirichlet series of almost periodic functions in AP (U, C); this is why it makes sense to use the same 
notation. More generally, ∗-equivalence can be adapted to the case of the functions (or classes of functions) 
which are identifiable by their also called Dirichlet series (see [12, Definition 5] or [10, Definition 5] referred 
to Besicovitch spaces).

We also emphasize the fact that if two almost periodic functions are equal in a certain open vertical 
strip, then the regions of almost periodicity of both functions are necessarily the same (by virtue of the 
uniqueness of the Dirichlet series [3, p. 148]) and hence Definition 3 could be applied to this situation.

If f1 and f2 are two ∗-equivalent almost periodic functions in AP (U, C), with U = {σ + it ∈ C : α <

σ < β}, and E is an open subset of (α, β), we recall that, in the same terms as Bohr’s equivalence theorem, 
the result [13, Theorem 1] assures that the functions f1 and f2 have the same set of values on the region 
{s = σ + it ∈ C : σ ∈ E}. We will deal with the converse of this result for a particular class of functions in 
AP (U, C).

3. The closure of the set of values of almost periodic functions

Given a complex function f(s) and σ0 ∈ R, take the notation

Img (f(σ0 + it)) = {s ∈ C : ∃t1 ∈ R such that s = f(σ0 + it1)}.

Let f1, f2 ∈ AP (U, C) be two ∗-equivalent almost periodic functions in a common vertical strip U =
{σ + it ∈ C : α < σ < β}. If α < σ0 < β, we know by [13, Proposition 4, i)] that

Img (f1(σ0 + it)) = Img (f2(σ0 + it)).

In this section, we will study the validity of this equality for every σ0 ∈ (α, β) in terms of the set of values 
which take f1 and f2 on every region of the form {s = σ + it ∈ C : σ ∈ E}, with E an open set of real 
numbers included in (α, β).

Lemma 4. Let f ∈ AP (U, C) with U = {σ + it ∈ C : α < σ < β}, and take σ0 such that α < σ0 < β. Then 
a complex number w is in Img (f(σ0 + it)) if and only if there exists ε0 > 0 satisfying
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w ∈
⋃

σ∈Eσ0,ε

Img (f(σ + it)) for every 0 < ε < ε0,

where Eσ0,ε = (σ0 − ε, σ0 + ε) ⊂ (α, β).

Proof. Let w0 ∈ Img (f(σ0 + it)), which yields the existence of a sequence {tn} of real numbers such that

w0 = lim
n→∞

f(σ0 + itn).

Given n ∈ N, take the function hn(s) := f(s + itn), s ∈ U . By [9, Proposition 4], there exists a subsequence 
{hnk

}k ⊂ {hn}n which converges uniformly on reduced strips of U to a function h(s), with h ∗∼ f . Suppose 
that h is not constant (otherwise, f is also constant and the result is trivial). Note that

lim
k→∞

hnk
(σ0) = h(σ0) = w0.

Therefore, by Hurwitz’s theorem, there is a positive integer k0 such that for k > k0 the functions h∗
nk

(s) :=
hnk

(s) − w0 have at least one zero in {s ∈ C : |s − σ0| < ε} for every ε > 0 sufficiently small. This means 
that for k > k0 the functions hnk

(s) = f(s + itnk
), and hence the function f(s), take the value w0 on the 

region {s = σ + it ∈ C : σ0 − ε < σ < σ0 + ε} for every ε > 0 sufficiently small. Consequently, there exists 
ε0 > 0 such that w0 ∈

⋃
σ∈Eσ0,ε

Img (f(σ + it)), where Eσ0,ε = (σ0 − ε, σ0 + ε) with 0 < ε < ε0 (ε > 0 is 
chosen so that Eσ0,ε ⊂ (α, β)).
Conversely, suppose that w0 ∈

⋃
σ∈(σ0−ε,σ0+ε) Img (f(σ + it)) for every 0 < ε < ε0 (with α < σ0 − ε0 <

σ0 + ε0 < β). In this way, for each integer value of n ≥ n0 with n0 sufficiently large, we have w0 = f(sn) for 
some sn = σn + itn, with σ0 − 1

n < σn < σ0 + 1
n . Now, let M be an upper bound for |f ′(s)| in the region 

{σ + it ∈ C : σ0 − ε0 < σ < σ0 + ε0} (note that f ′(s) is also almost periodic and hence it is bounded on 
this region [3, pp. 142-144]). Therefore, if n ≥ n0, we have that

|w0 − f(σ0 + itn)| = |f(σn + itn) − f(σ0 + itn)| =

∣∣∣∣∣∣
σn∫

σ0

f ′(σ + itn)dσ

∣∣∣∣∣∣ ≤ M |σn − σ0| ≤
M

n
.

This means that limn→∞ f(σ0 + itn) = w0 and, consequently, w0 ∈ Img (f(σ0 + it)). �
Theorem 5 (Equality of the closures of the set of values of almost periodic functions). Let f1 ∈ AP (U1, C)
and f2 ∈ AP (U2, C), with U1 = {σ + it ∈ C : α1 < σ < β1} and U2 = {σ + it ∈ C : α2 < σ < β2} such 
that U1 ∩ U2 �= ∅. Consider an interval (α, β) ⊂ (α1, β1) ∩ (α2, β2). Then the functions f1 and f2 take the 
same set of values on every region {s = σ + it ∈ C : σ ∈ E}, with E an open set of real numbers included 
in (α, β), if and only if

Img (f1(σ + it)) = Img (f2(σ + it)) for every σ ∈ (α, β).

Proof. Suppose that Img (f1(σ + it)) = Img (f2(σ + it)) for every σ such that α < σ < β. Take an open 
set E ⊂ (α, β) and w0 ∈

⋃
σ∈E Img (f1(σ + it)), then w0 ∈ Img (f1(σ0 + it)) for some σ0 ∈ E and hence 

w0 = f1(σ0 + it0) for some t0 ∈ R. Now, by hypothesis, we have w0 ∈ Img (f2(σ0 + it)), which yields by 
Lemma 4 that the function f2(s) takes the value w0 on the region {s = σ + it ∈ C : σ0 − ε < σ < σ0 + ε}
for every ε > 0 sufficiently small (recall that E is an open set). Consequently, w0 ∈

⋃
σ∈E Img (f2(σ + it)). 

By symmetry, we analogously prove that 
⋃

σ∈E Img (f2(σ + it)) ⊂
⋃

σ∈E Img (f1(σ + it)).
Conversely, suppose that the functions f1 and f2 take the same set of values on every region {s = σ + it ∈
C : σ ∈ E}, where E is an open set in (α, β). By reductio ad absurdum, suppose the existence of σ0 ∈ (α, β)
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such that Img (f1(σ0 + it)) �= Img (f2(σ0 + it)). Thus, without loss of generality, there exists w1 ∈ C such 
that w1 ∈ Img (f1(σ0 + it)) and w1 /∈ Img (f2(σ0 + it)). In view of Lemma 4, this yields the existence of 
ε0 > 0 such that

w1 ∈
⋃

σ∈Eσ0,ε

Img (f1(σ + it)) for every 0 < ε < ε0,

where Eσ0,ε = (σ0 − ε, σ0 + ε). Furthermore, since w1 /∈ Img (f2(σ0 + it)), we deduce from the converse 
of Lemma 4 the existence of ε1 > 0 such that w1 /∈

⋃
σ∈Eσ0,ε1

Img (f2(σ + it)). Consequently, by taking 
ε2 = min{ε0, ε1}, we conclude that

⋃
σ∈E1

Img (f1(σ + it)) �=
⋃

σ∈E1

Img (f2(σ + it)) ,

where E1 = (σ0 − ε, σ0 + ε) and 0 < ε < ε2. This represents a contradiction and the result follows. �
Corollary 6. Let f1 ∈ AP (U1, C) and f2 ∈ AP (U2, C), with U1 = {σ + it ∈ C : α1 < σ < β1} and 
U2 = {σ + it ∈ C : α2 < σ < β2} such that U1 ∩ U2 �= ∅. Consider an interval (α, β) ⊂ (α1, β1) ∩ (α2, β2), 
and w ∈ C with Rew ∈ (α, β). If Img (f1(σ + it)) = Img (f2(σ + it)) for every σ ∈ (α, β), then there exist 
{wm}m≥1 ⊂ U1 ∩ U2, with {wm} → w, and {tm}m≥1 ⊂ R such that f1(wm + itm) = f2(w) for each m ≥ 1.

Proof. Given w ∈ C with Rew ∈ (α, β) and m ∈ N, consider the set

Em = (Rew − 1/m,Rew + 1/m) ∩ (α, β).

Since Img (f1(σ + it)) = Img (f2(σ + it)) for every σ ∈ (α, β), Theorem 5 assures that
⋃
σ∈E

Img (f1(σ + it)) =
⋃
σ∈E

Img (f2(σ + it))

for every open subset E in (α, β), and in particular for Em with m ∈ N. This yields the existence of at least 
one point zm ∈ {s ∈ C : Re s ∈ Em} such that f2(w) = f1(zm). Now, if we take wm := Re zm + i Imw and 
tm := Im zm − Imw, then we have

|w − wm| = |Rew − Re zm| < 1/m,

so {wm} → w, and f2(w) = f1(wm + itm). �
4. On the converse of Bohr’s equivalence theorem

In this section, we will prove a converse of Bohr’s equivalence theorem for the case that the Fourier 
exponents are Q-linearly independent (subsection 4.1) and for the case that 0 is a Fourier exponent and the 
remaining exponents are Q-linearly independent (subsection 4.2).

Recall that 	Λ denotes the cardinal of the numerable set Λ.

4.1. Sets of exponents linearly independent over the rational numbers

Given Λ = {λ1, λ2, . . . , λj , . . .} a set of real numbers which are linearly independent over the rational 
numbers, consider an open vertical strip of the type U = {s ∈ C : α < Re s < β}, with −∞ ≤ α < β ≤ ∞, 
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and f(s) an almost periodic function in AP (U, C) whose Dirichlet series is of the form

∑
j≥1

aje
λjs, aj ∈ C, λj ∈ Λ. (3)

Then f can be associated with an auxiliary function Ff of countably many real variables as follows (see [11, 
Definition 5] and [13, Definition 6] for a more general definition, without Q-linear independence).

Definition 7. Given Λ = {λ1, λ2, . . . , λj , . . .} ⊂ R a set of exponents which are Q-linearly independent, let 
f(s) be an almost periodic function in AP (U, C), with U = {s ∈ C : α < Re s < β}, whose Dirichlet series 
is of the form (3). We define the auxiliary function Ff : (α, β) × [0, 2π)�Λ → C associated with f as

Ff (σ,x) :=
∑
j≥1

aje
λjσexji, (4)

where σ ∈ (α, β), x = (x1, x2, . . .) ∈ [0, 2π)�Λ and the series in (4) is summed by the Bochner-Fejér 
procedure, applied at t = 0 to the sum 

∑
j≥1 aje

xjieλjs, where s = σ + it.

Note that the Dirichlet series 
∑

j≥1 aje
λj(σ+it) associated with f(s) arises from its auxiliary function 

Ff (σ, xt) by the special choice of xt = t(λ1, λ2, . . . , λj , . . .) + 2π(pt,1, pt,2, . . . , pt,j , . . .) for pt,j ∈ Z such 
that tλj + 2πpt,j ∈ [0, 2π) for each j. In fact, every arbitrary choice of a vector y ∈ R�Λ leads to a 
Dirichlet series which is ∗-equivalent to that of f (in the sense that, fixed y ∈ R�Λ, a vector of the form 
zt = xt + y ∈ [0, 2π)�Λ, with xt as above, satisfies that Ff (σ, zt) =

∑
j≥1 aje

iyjeλj(σ+it)). Moreover, it is 
worth noting that the condition of Q-linear independence of the Fourier exponents yields by [3, p. 154] that 
its Dirichlet series is absolutely convergent.

In connection with the auxiliary function Ff , we next introduce the following notation.

Definition 8. Given Λ = {λ1, λ2, . . . , λj , . . .} ⊂ R a set of exponents which are Q-linearly independent, let 
f(s) be an almost periodic function in AP (U, C) whose Dirichlet series is of the form (3), and σ0 = Re s0

with s0 ∈ U . We define Img (Ff (σ0,x)) to be the set of values in the complex plane taken on by the auxiliary 
function Ff (σ, x) when σ = σ0; that is

Img (Ff (σ0,x)) = {s ∈ C : ∃x1 ∈ [0, 2π)�Λ such that s = Ff (σ0,x1)}.

Take f ∈ AP (U, C), f1
∗∼ f and σ0 = Re s0 with s0 ∈ U . With the notation above, it was proved in [11, 

Lemma 9 and Propositions 12-13] (or, more generally, in [13, Proposition 4]) that Img (Ff (σ0,x)) is a closed 
set and

Img (Ff (σ0,x)) =
⋃

fk
∗∼f

Img (fk(σ0 + it)) = Img (f1(σ0 + it)). (5)

In fact, Img (Ff (σ0,x)) is a compact set and, if the Dirichlet series of f is of the form (3), we have

|Ff (σ0,x)| ≤
∑
j≥1

|aj |eλjσ0 for every x ∈ [0, 2π)�Λ. (6)

It is clear that this maximum value for the modulus of the points in the set Img (Ff (σ0,x)) is attained when 
all the summands of (4) are aligned. In fact, we can prove the following result.
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Lemma 9. Given Λ = {λ1, λ2, . . . , λj , . . .} ⊂ R a set of exponents which are Q-linearly independent, let f(s)
be an almost periodic function in AP (U, C) whose Dirichlet series is of the form (3), and σ0 = Re s0 with 
s0 ∈ U . Then the set

{s ∈ Img (Ff (σ0,x)) : |s| = max{|Ff (σ0,x)| : x ∈ [0, 2π)�Λ}}

coincides with the circumference {s ∈ C : |s| =
∑

j≥1 |aj |eλjσ0}.

Proof. Fixed σ0 = Re s0 with s0 ∈ U , we first note that the choice x0 = (x1, x2, . . . , xj , . . .) with xj =
2π − arg aj , j = 1, 2, . . . (where arg aj ∈ (0, 2π]) leads to

Ff (σ0,x0) =
∑
j≥1

aje
λjσ0exji =

∑
j≥1

|aj |ei arg ajeλjσ0e−i arg aj =
∑
j≥1

|aj |eλjσ0 .

In fact, given θ ∈ [0, 2π), by taking the vector yθ = x0+θ1 −2πpθ, with 1 = (1, 1, 1, . . . ) and the components 
of pθ in {0, 1} such that yθ ∈ [0, 2π)�Λ, we have

Ff (σ0,yθ) =
∑
j≥1

aje
λjσ0e− arg ajieθi = eiθ

∑
j≥1

|aj |eλjσ0 ,

which yields that eiθ
∑

j≥1 |aj |eλjσ0 ∈ Img (Ff (σ0,x)) for every θ ∈ [0, 2π). This shows, jointly with (6), 
that

{s ∈ Img (Ff (σ0,x)) : |s| = max{|Ff (σ0,x)| : x ∈ [0, 2π)�Λ}}

= {s ∈ Img (Ff (σ0,x)) : |s| =
∑
j≥1

|aj |eλjσ0}

= {s ∈ C : |s| =
∑
j≥1

|aj |eλjσ0}.

Then the result holds. �
Under the conditions above, we next prove that two almost periodic functions are ∗-equivalent if and only 

if they assume the same set of values on every region {s = σ+ it ∈ C : σ ∈ E}, where E is an arbitrary open 
subset of the real projections of an open vertical strip included in a common strip of almost periodicity of 
both functions. This also shows that the converse of [13, Theorem 1] is true under the condition of Q-linear 
independence of the sets of Fourier exponents (even when these sets are not equal to each other).

Theorem 10 (Main result). Consider U1 = {σ+ it ∈ C : α1 < σ < β1} and U2 = {σ+ it ∈ C : α2 < σ < β2}
with U1 ∩ U2 �= ∅. Given Λ1 = {λ1, λ2, . . . , λj , . . .} ⊂ R and Λ2 = {μ1, μ2, . . . , μj , . . .} ⊂ R two sets of 
exponents which are Q-linearly independent, let f1 ∈ AP (U1, C) and f2 ∈ AP (U2, C) be two almost periodic 
functions whose Fourier exponents are Λ1 and Λ2, respectively. Then f1

∗∼ f2 if and only if
⋃
σ∈E

Img (f1(σ + it)) =
⋃
σ∈E

Img (f2(σ + it))

for every open set E of real numbers included in a certain interval (α, β) ⊂ (α1, β1) ∩ (α2, β2).

Proof. Suppose that f1 ∈ AP (U1, C) and f2 ∈ AP (U2, C) are two almost periodic functions whose Dirichlet 
series are of the form 

∑
j≥1 aje

λjs and 
∑

j≥1 bje
μjs, respectively. We first note that if f1 and f2 are ∗-

equivalent (see Definition 3), then U1 = U2 and their sets of Fourier exponents are the same. Hence, by [13, 
Theorem 1] we get
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⋃
σ∈E

Img (f1(σ + it)) =
⋃
σ∈E

Img (f2(σ + it))

for every open set E of real numbers included in (α1, β1) = (α2, β2).
Conversely, suppose that f1 and f2 take the same set of values on every region {s = σ + it ∈ C : σ ∈ E} for 
every open set E of real numbers included in a certain interval (α, β) ⊂ (α1, β1) ∩ (α2, β2). By Theorem 5, 
we get

Img (f1(σ + it)) = Img (f2(σ + it)) for every σ ∈ (α, β).

By (5), this means that

Img (Ff1(σ,x)) = Img (Ff2(σ,x)) for every σ ∈ (α, β).

In particular, for every σ ∈ (α, β), we have

max{|Ff1(σ,x)| : x ∈ [0, 2π)�Λ} = max{|Ff2(σ,x)| : x ∈ [0, 2π)�Λ},

or, equivalently (by Lemma 9),
∑
j≥1

|aj |eλjσ =
∑
j≥1

|bj |eμjσ for every σ ∈ (α, β). (7)

Now, recall that every arbitrary choice of a vector x ∈ R�Λ in Ffj (σ, x) leads to a Dirichlet series which 
is ∗-equivalent to that of fj , for j = 1, 2 (see the arguments after Definition 7 and also the proof of 
Lemma 9). Hence [9, Lemma 3] assures the existence of two almost periodic functions f̂1(s) ∈ AP (U1, C)
and f̂2(s) ∈ AP (U2, C) whose respective Dirichlet series are 

∑
j≥1 |aj |eλjs and 

∑
j≥1 |bj |eμjs, and f̂1

∗∼ f1

and f̂2
∗∼ f2. Since these Dirichlet series are absolutely convergent (see [3, pp. 51-52] or [3, p. 154]), they are 

also uniformly convergent and the functions f̂1(s) and f̂2(s) coincide with their respective Dirichlet series 
[3, p. 144]. Consequently, since they are holomorphic in their respective domains, the equality (7) and the 
identity principle yield

∑
j≥1

|aj |eλjs =
∑
j≥1

|bj |eμjs for every s ∈ C with Re s ∈ (α, β).

In fact, by the uniqueness theorem [3, p. 148], the functions f̂1 and f̂2 are identical, and the sets Λ1 and Λ2
of Fourier exponents are equal (and U1 = U2). Consequently, f1 and f2 are ∗-equivalent. �

Now, we can immediately deduce from our main theorem the following particular result for general 
Dirichlet series (compare with [8, Theorem C’]).

Corollary 11. Given Λ ⊂ R a set of exponents which is Q-linearly independent, let f1(s) and f2(s) be two 
general Dirichlet series with the same set of Fourier exponents Λ and uniformly convergent on the half-plane 
{s = σ + it ∈ C : σ > α} for some real number α. Suppose that f1(s) and f2(s) take the same set of values 
on every vertical strip {s = σ + it ∈ C : α < σ0 < σ < σ1}, with σ0 < σ1 ≤ ∞. Then f1(s) is ∗-equivalent 
to f2(s).

If the Fourier exponents are Q-linearly independent, it is clear that they form an integral basis (see 
the Preliminaries section). In this case, Bohr-equivalence and ∗-equivalence coincide and our main result 
(Theorem 10) can be also formulated in terms of Bohr-equivalent almost periodic functions.
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Theorem 12 (Bohr equivalence theorem and its converse for Q-linearly independent exponents). Consider 
U1 = {σ + it ∈ C : α1 < σ < β1} and U2 = {σ + it ∈ C : α2 < σ < β2} with U1 ∩ U2 �= ∅. Given 
Λ1 = {λ1, λ2, . . . , λj , . . .} ⊂ R and Λ2 = {μ1, μ2, . . . , μj , . . .} ⊂ R two sets of exponents which are Q-linearly 
independent, let f1 ∈ AP (U1, C) and f2 ∈ AP (U2, C) be two almost periodic functions whose Fourier 
exponents are Λ1 and Λ2, respectively. Then f1 and f2 are Bohr-equivalent if and only if

⋃
σ∈E

Img (f1(σ + it)) =
⋃
σ∈E

Img (f2(σ + it))

for every open set E of real numbers included in a certain interval (α, β) ⊂ (α1, β1) ∩ (α2, β2).

4.2. Set of exponents of the form {0} ∪ Λ, with Λ linearly independent over the rational numbers

We next consider the case that 0 is a Fourier exponent and the remaining exponents are Q-linearly 
independent. In this way, given an open vertical strip of the type U = {s ∈ C : α < Re s < β}, with 
−∞ ≤ α < β ≤ ∞, let f(s) be an almost periodic function in AP (U, C) whose Dirichlet series is of the form

a0 +
∑
j≥1

aje
λjs, aj ∈ C \ {0} for each j = 0, 1, 2, . . . , (8)

where the exponents {λ1, λ2, . . . , λj , . . .} are Q-linearly independent. Then its associated auxiliary function 
(analogous to that of Definition 7) is defined as follows (for a more general case, see [13, Definition 6]).

Definition 13. Given {λ1, λ2, . . . , λj , . . .} ⊂ R a set of exponents which are Q-linearly independent, let f(s)
be an almost periodic function in AP (U, C), with U = {s ∈ C : α < Re s < β}, whose Dirichlet series is of 
the form (8). We define the auxiliary function Ff : (α, β) × [0, 2π)�Λ → C associated with f as

Ff (σ,x) := a0 +
∑
j≥1

aje
λjσexji, (9)

where σ ∈ (α, β), x = (x1, x2, . . .) ∈ [0, 2π)�Λ and the series in (9) is summed by the Bochner-Fejér 
procedure, applied at t = 0 to the sum 

∑
j≥1 aje

xjieλjs, where s = σ + it.

As in the previous case, every arbitrary choice of the vector x ∈ [0, 2π)�Λ leads to a Dirichlet series which 
is ∗-equivalent to that of f . Moreover, the set of values in the complex plane taken on by the auxiliary 
function Ff (σ, x) when σ = σ0 ∈ (α, β) is defined in the same manner as

Img (Ff (σ0,x)) = {s ∈ C : ∃x1 ∈ [0, 2π)�Λ such that s = Ff (σ0,x1)}.

If we take Gf (σ, x) :=
∑

j≥1 aje
λjσexji, where σ ∈ (α, β) and x = (x1, x2, . . .) ∈ [0, 2π)�Λ, then

Img (Ff (σ0,x)) = {a0} + Img (Gf (σ0,x)) , (10)

where Img (Gf (σ0,x)) = {s ∈ C : ∃x1 ∈ [0, 2π)�Λ such that s = Gf (σ0, x1)}. That is, the geometric object 
Img (Ff (σ0,x)) is a translation of Img (Gf (σ0,x)) with translation vector given by a0.

Also, if f ∈ AP (U, C), f1
∗∼ f and σ0 = Re s0 with s0 ∈ U , it was proved in [13, Proposition 4] that 

Img (Ff (σ0,x)) is a closed set and

Img (Ff (σ0,x)) =
⋃

∗

Img (fk(σ0 + it)) = Img (f1(σ0 + it)). (11)

fk∼f
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In fact, if the Dirichlet series of f is of the form (8), it is accomplished that

|Ff (σ0,x)| ≤ |a0| +
∑
j≥1

|aj |eλjσ0 for every x ∈ [0, 2π)�Λ.

This maximum value for the modulus of the points in the set Img (Ff (σ0,x)) is attained when all the 
summands of (9) are aligned.

Now, we can prove the following theorem for the case that 0 is a Fourier exponent and the remaining 
exponents are Q-linearly independent.

Theorem 14. Consider U1 = {σ + it ∈ C : α1 < σ < β1} and U2 = {σ + it ∈ C : α2 < σ < β2} with 
U1 ∩ U2 �= ∅. Given Λ1 = {λ1, λ2, . . . , λj , . . .} ⊂ R and Λ2 = {μ1, μ2, . . . , μj , . . .} ⊂ R two sets of exponents 
which are Q-linearly independent, let f1 ∈ AP (U1, C) and f2 ∈ AP (U2, C) be two almost periodic functions 
whose respective Fourier exponents are Λ1 ∪ {0} and Λ2 ∪ {0}. Then f1

∗∼ f2 if and only if
⋃
σ∈E

Img (f1(σ + it)) =
⋃
σ∈E

Img (f2(σ + it))

for every open set E of real numbers included in a certain interval (α, β) ⊂ (α1, β1) ∩ (α2, β2).

Proof. Suppose that f1 ∈ AP (U1, C) and f2 ∈ AP (U2, C) are two almost periodic functions whose respective 
Dirichlet series are of the form a0 +

∑
j≥1 aje

λjs and b0 +
∑

j≥1 bje
μjs, where {λ1, λ2, . . .} and {μ1, μ2, . . .}

are both Q-linearly independent and aj, bj ∈ C \{0} for each j = 0, 1, 2, . . . . As in the proof of Theorem 10, 
we first note that if f1 and f2 are ∗-equivalent, then U1 = U2, their sets of Fourier exponents coincide and, 
by [13, Theorem 1], we get the equality under consideration.
Conversely, suppose that the equality 

⋃
σ∈E Img (f1(σ + it)) =

⋃
σ∈E Img (f2(σ + it)) is satisfied for every 

open set E of real numbers included in a certain interval (α, β) ⊂ (α1, β1) ∩ (α2, β2). By Theorem 5, we 
know that

Img (f1(σ + it)) = Img (f2(σ + it)) for every σ ∈ (α, β).

By (11), this means that Img (Ff1(σ,x)) = Img (Ff2(σ,x)) for every σ ∈ (α, β). In fact, under the notation 
Gf1(σ, x) =

∑
j≥1 aje

λjσexji and Gf2(σ, x) =
∑

j≥1 bje
μjσexji, with σ ∈ (α, β) and x = (x1, x2, . . .) ∈

[0, 2π)�Λ, we deduce from (10) that

{a0} + Img (Gf1(σ,x)) = {b0} + Img (Gf2(σ,x)) for every σ ∈ (α, β).

By Lemma 9, recall that the circumferences with center at origin and radii 
∑

j≥1 |aj |eλjσ and 
∑

j≥1 |bj |eμjσ

are respectively included in Img (Gf1(σ,x)) and Img (Gf2(σ,x)), and these radii represent the respective 
maximum values of the modulus of the points in the sets Img (Gf1(σ,x)) and Img (Gf2(σ,x)). Particularly, 
this means that the outer boundary of the region {a0} + Img (Gf1(σ,x)) (which is the circumference with 
center {a0} and radius 

∑
j≥1 |aj |eλjσ) coincides with the outer boundary of the region {b0} +Img (Gf2(σ,x))

(which is the circumference with center {b0} and radius 
∑

j≥1 |bj |eμjσ). Consequently, the two translated 
sets (and the two translation vectors) must be equal, which means that a0 = b0 and

Img (Gf1(σ,x)) = Img (Gf2(σ,x)) for every σ ∈ (α, β). (12)

If we take g1(s) := f1(s) − a0 ∈ AP (U1, C) and g2(s) := f2(s) − b0 = f2(s) − a0 ∈ AP (U2, C) (where all 
their Fourier exponents are Q-linearly independent), equality (12) is equivalent to
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Img (Fg1(σ,x)) = Img (Fg2(σ,x)) for every σ ∈ (α, β),

where Fg1(σ, x) and Fg2(σ, x) are the auxiliary functions associated with g1 and g2, respectively. Now, by 
(5), we have

Img (g1(σ + it)) = Img (g2(σ + it)) for every σ ∈ (α, β)

and, by Theorem 5,
⋃
σ∈E

Img (g1(σ + it)) =
⋃
σ∈E

Img (g2(σ + it))

for every open set E of real numbers included in (α, β). Therefore, we deduce from Theorem 10 that g1 and 
g2 are ∗-equivalent. Hence f1 and f2 are also ∗-equivalent and the result holds. �

As a conjecture, we think that Theorem 10 is also true without the condition of Q-linear independence 
of the Fourier exponents.

Conjecture 15. Consider U1 = {σ + it ∈ C : α1 < σ < β1} and U2 = {σ + it ∈ C : α2 < σ < β2} with 
U1 ∩U2 �= ∅. Given Λ1 = {λ1, λ2, . . . , λj , . . .} ⊂ R and Λ2 = {μ1, μ2, . . . , μj , . . .} ⊂ R two sets of exponents, 
let f1 ∈ AP (U1, C) and f2 ∈ AP (U2, C) be two almost periodic functions whose Fourier exponents are Λ1
and Λ2, respectively. Then f1

∗∼ f2 if and only if
⋃
σ∈E

Img (f1(σ + it)) =
⋃
σ∈E

Img (f2(σ + it))

for every open set E of real numbers included in a certain interval (α, β) ⊂ (α1, β1) ∩ (α2, β2).
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