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Abstract. The Finite-Difference Time-Domain method has been applied to microwaves with successfully 
results. This method has not frequently been applied in optical engineering due to the disadvantages due 
to optical wavelengths. In this work, FDTD method has been used for simulating elemental optical 
systems. Interference and diffraction of light is an elementary topic in optics. The aim of this work is to 
develop an accurate simulation software of optical systems avoiding the problems in laboratories and the 
expensive price of optical instrumentation. 
In this work, four elementary systems have been implemented: one thin slit, two thin slit known as the 
Young's experiment, an array of seven thin slits and finally a circular aperture. In real laboratory, a 
coherent light source would illuminate these systems and diffraction pattern of bright and dark bands 
could be analyzed on a screen. 
The FDTD method solves the differential Maxwell equations, substituting the time and spatial derivates 
with central-difference approximation. In order to achieve successfully results with FDTD method, 
absorbing boundary conditions (ABC), total and scattered field (TF-SF) formulation and near-to-far field 
propagation have been implemented. These techniques have permitted to calculate the wave field outside 
the simulation grid (in a screen far away slits), reducing the simulation area to the slits plane. The 
numerical results calculated with FDTD method are contrasted with analytical results obtaining quite 
similar curves. 
The use of this software in practical laboratory seasons in optical degrees can provide to student the 
possibility of simulating many optical systems based on thin slits. Irradiance distribution can be evaluated 
with successfully results in different planes far away of grid simulation without performance detriment. 
 
1 INTRODUCTION. In education, visual experiments are important for improving student 
knowledge. In optic’s area, laboratory sessions have an important role. Frequently, in this type 
of sessions, students have to use different instruments such as laser, analyzers, detectors, etc…. 
All these instruments usually are very expensive and in many cases are no correctly handled. In 
this work a software has been developed in order to simulate many optical experiments such as 
Young’s double slit experiment, diffraction gratings and circular slit. These experiments are 
focused on demonstrating interference and the wave nature of light. The light diffracts from 
these slits and illuminates a viewing screen at a large distance compared to the slits separation. 
The software based in Finite-difference Time-Domain Method (FDTD) is a direct solution 
method for Maxwell’s time-dependent curl equations. With this method, the electromagnetic 
fields can be calculated as a function of time and space, providing the students the possibility to 
analyze how the light diffracts from the slits or other type of experiments related to 
electromagnetic wave propagation. Using the software in the first years of optical or physics 
degrees may give the students the opportunity of evaluating many experiments related to optical 
systems with an easy and accurate software, and without using expensive instrumentation. This 
software is structured in an API based on MATLAB that modifies C++ libraries. These source 
files are compiled in UNIX based operative systems. Plots of the result and values are shown by 
a MATLAB interface taking the values from the results files obtained via C++ processing. The 
helpful interface and the accurate results make this software an attractive and useful 
complement for students education. 



2 THEORY. In this section, The theory under the FDTD method is explained. This method is 
based on volumetric sampling of the unknown near-field distribution ( E  and ) within and 
surrounding the structure of interest, and over a period of time. The sampling in space is at sub 

H

0λ  resolution set by the user to properly sample, in the Nyquist sense, the highest near-field 
spatial frequencies thought to be important in the physics of the problem. Typically, 10 to 20 
samples per wavelength are needed. The sampling in time is selected to ensure numerical 
stability of the algorithm as could be seen in (12). Due to the fact that optical wavelengths are in 
the range of nanometers, wide nets must be processed to obtain wave fields in a screen far away 
from the optical source. In order to simulate the experiments with low time cost processing, 
different formulation have been added to the FDTD method that solves many problems related 
with this type of formalism. 
 
1.1 FDTD basic formulation. Yee [3] introduced the notation for space points and functions of 
space and time in a rectangular lattice as 

   .     (1) ( , , ) ( , , )i j k i x j y k z= Δ Δ Δ
Here, xΔ ,  and yΔ zΔ  are respectively, the lattice space increments in the x ,  and  
coordinate directions, and i , 

y z
j  and  are integers. Further, we denote any function  of space 

and time evaluated at a discrete point in the grid and at a discrete point in time as 
k u
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Where  is the time increment, assumed uniform over the observation interval, and n  is an 
integer. 

tΔ

Yee used centered finite-difference (central-difference) expressions for the space and time 
derivates. The first partial derivate of u  in the x -direction, evaluated at the fixed time 

, and the time partial derivate of , evaluated at the fixed space  can be 
expressed as follows 
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The  notation is used to interleave 1/ 2n + E  and H  components in time at intervals 1/ 2 tΔ  
for purposes of implementing a leapfrog algorithm. The time-dependent Maxwell’s curl 
equations in free space are 

    
0 0

1D H
t ε μ

∂
= ∇×

∂
,     (5) 

     rD Eε= ,     (6) 

    
0 0

1H E
t ε μ

∂
= − ∇×

∂
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Where D  is the electric flux density, 0μ  is the magnetic permeability in henrys per meter and 

0ε  is the electric permittivity in farads per meter. The ideas showed above (3,4) can be applied 
to obtain a numerical approximation of Maxwell’s curl equations in three dimensions. We will 
use only the -component of z D  and the x -component H  field as examples. From (5) and (7) 
we can obtain the following expressions: 
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The first step is to take the finite difference approximations to (8) and (9): 
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Note that the  and  fields are assumed interleaved around a cell whose origin is at the 
location . A cubic cell is assumed 

E H
( , , )i j k ( )x y zΔ = Δ = Δ . Every E  field is located ½ cell 

width from the origin in the direction of its orientation; every H  field is offset ½ cell in each 
direction except that of its orientation. 
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Figure 1. The Yee cell. 

 
Since the stability analysis is discussed with rigor in [1], we can determine the time step easily 
taking into account that a wave propagating in free space cannot go faster than speed of light. 
To propagate a distance of one cell requires a minimum time of 0/t x cΔ = Δ . In two-
dimensional simulation, we have to allow for the propagation in the diagonal direction, which 
brings the time requirement to 0/ 2t x cΔ = Δ . Obviously, three-dimensional simulation 

requires 0/ 3t x cΔ = Δ . This is summarized by the well-known “Courant Condition”: 
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,
·
xt
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Δ
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where p is the dimension of simulation. Unless otherwise specified, we will determine  for 
simplicity by 

tΔ
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1.2 Boundary conditions. Clearly, no computer can store an unlimited amount of data, and 
therefore, the field computation domain must be limited in size. Suppose we are simulating a 
wave generated from a point source propagating in free space. As the wave propagates 
outwards, it will eventually come to the edges of the allowable space, which is dictated by how 
the matrices have been dimensioned in the program. If nothing is done to address this, 
unpredictable reflections would be generated in the boundaries and would go back inward. This 
phenomenon is produced because wave fields outside our simulation region are unknown and 
their values are arbitrary assumed as null. Boundary condition permits all outward-propagating 
numerical wave to exit from our finite grid almost as if the simulation were performed on a 
computational domain of infinite extent. In the process, the boundary condition must suppress 



spurious reflections of the outgoing numerical waves to an acceptable level. There have been 
many approaches to this problem and depending upon their theoretical basis, outer grid 
boundary conditions of this type have been called either radiation boundary conditions (RBCs) 
or absorbing boundary conditions (ABCs). One of the most flexible and efficient ABCs is the 
perfectly matched layer (PML) developed by Berenger [4]. 
This method is based in the addition of layers conforming a new medium that is lossy and with 
null reflection. The amount of reflection is dicated by the intrinsic impedances of two media  
with /η μ ε= . A media with ε  and μ  complex can model lossy properties, because the 
imaginary part represents the part that causes decay. 
In this work, we will work in TM mode, but all analysis could be made for TE mode and both 
cases simultaneously. To implement the PML, ficticious dielectric constants and permeabilites 

zFε
∗ ,

xFμ
∗  and 

yFμ
∗  are added in (5-7) 
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The value 
zFε
∗  is associated with the flux density D , and are completely fictitious, these 

constants implement the PML and have nothing to do with the real rε
∗  which specifies the 

medium. Due to the fact that the reflection coefficient must be unity, we will assume 
that each of these is a complex constant of the form 
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Figure 2 shows the  field emanating from a point for different time slots. Notice that 
absorption in boundaries is achieved without reflections. 
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Figure 2: Radiation from a point source in an FDTD program with several-point PML. a) 

40t t= Δ , b) , c) 80t t= Δ 150t t= Δ  and d) 200t t= Δ  
 
1.3 Total-Field and Scattered-Field formulation. The simulation of plane waves is often of 
interest in computational electromagnetics. This formulation is the result of continued attempts 



to create a compact wave source for use in simulations of sinusoidal steady-state illumination 
[2],[5] and [6]. This approach is based firmly on the linearity of Maxwell’s equations and the 
decomposition of the electric and magnetic fields as 
    tot tot scatE E E= + ,    (19) 
    .    (20) tot tot scatH H H= +
Here incE  and  are the values of the incident wave fields, which are assumed to be known 
at all space points of the FDTD grid at all time steps. These are field values that would exist in 
vacuum, that is, if there were no materials of any sort in the modelling space. 

incH

scatE  and  
are the values of the scattered wave fields, which are initially unknown. These are the fields that 
result from the interaction of the incident wave with any materials in the grid. In order to 
simulate a plane wave in a 3D FDTD program, the problem space will be divided up into two 
regions, the total field and the scattered field region. One benefit applying this formulation is 
that the propagating wave should not interact with the absorbing boundary conditions. Figure 4 
illustrates how this is accomplished. In the three-dimensional field every point in the problem 
space is either in the total field region or it is not. Therefore, if a point is in the total field but it 
uses points outside to calculate the spatial derivates when updating its value, it must be 
modified. The incident array contains the needed values to make these modifications. The 
connecting conditions are a set of equations that are applied in the interface between total field 
and scattered field and confines incident plane waves into total field. These equations are 
defined in the six planes showed in figure 3.There are several places that must be modified 
(table 1). 
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Figure 3: a)Total field/Scattered field of the two-dimensional problem space. b) Total 
field/Scatterd field in 3D. 
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Table 1: Connecting conditions for 3D simulation. 
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Figure 4: Simulation of a plane wave pulse propagating in free space. The incident pulse is 
generate at one end and subtracted out the other end. 
 
1.4 Time-domain near-to-far-field transformation. The method involves setting up time-
dimensioned arrays for the far-field vector potentials. Each array element is determined by a 
conducting a recursive (running) sum of contributions from the time-domain electric and 
magnetic current sources just computed via FDTD on S ′ . These contributions are delayed in 
time according to the propagation delay between a source element on S ′  and the far-field 
observation point. In our problem, this formulation give us the possibility of minimize the 
simulation cell to the illumination area, calculating the diffraction pattern on the screen via 
NF/FF transformation. 
We begin with the vector potential [1]-[2]: 

1( ) ( )
4

j k R

S
S

eA r J r
Rπ

−

′

dS′ ′= ∫∫ , (21) 

where , | |R r r′= − ( )SJ r′  is the current source and /j k Re− R  is the Green’s function. 
Developing this expression and carrying out different mathematical operations [2], we can 
obtain the following expression, which is introduced in the algorithm FDTD: 

2 1 2 2

, , , , , ,
, ,

1
2

x xn R n R n R
z z zn i j k i j k i j kx

z i j k
i j x x

E E ErE
R tπ

Δ Δ− − − −

′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ Δ Δ

x

R

Δ⎡ ⎤−
⎢ ⎥= +

Δ⎢ ⎥⎣ ⎦
∑∑  (22) 

where the distance xRΔ  is defined as an integer, /xR R xΔ ≅ Δ . 

The accuracy of the method is verified by using an FDTD program that calculates the  field at 
three external points via eq. (22). A rectangular aperture is simulated and different points inside 
grid simulation are selected. Field values obtained directly via FDTD method and via NF/FF 
transformation are compared in figure. Clearly, the agreement is quite good. 
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Figure 5: a) Diagram of the problem, the time domain fields at points 1, 2 and 3 are calculated 

via eq. (22). The accuracy is verified by comparison with the time domain data calculated 
directly by the FDTD progam in points 1 a), 2 b) and 3, d). 

 
3 RESULTS. Optical simple systems have been chosen for the study of the diffraction in 
Fraunhofer's region. These systems are shown in Figure 6. The variable parameters such as 
wavelength and spatial period are fixed as 633λ =  nm and /10x λΔ = . The plane on which 
we calculate the diffraction pattern must be placed at a distance from the slits that must satisfy 
Fraunhofer’s far field condition . Where a  is the width of the slit and  is the 
distance between far field observation point (screen) and the plane slits. Distance  has been 
established for all the simulations as 4000

2 /F a Lλ= 1 L
L

xΔ . The distant observation points have been 
obtained by means of the near-field to far-field transformation along x -coordinate at 

. The irradiance patterns are shown in figure 7. The results of simulations are 
compared with analytical values. These expressions are well known and resumed in table 2. 
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Table 2: Analytical irradiance expresions for the unique slit, two slits, N slits and circular 
aperture [7]. 
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Figure 6: Diagram of different experiments simulated. a) unique slit. b) Double slit (Young’s 

experiment). c) N slits (with N=7). d) Circular aperture. 
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Figure 7: Comparative between numerical results and analytical values. a) unique slit with 

. Simulation of 100x100x80 cells. b) Double slit (Young’s experiment) with 
 and . Simulation of 120x100x80 cells c) N slits (with N=7) with 
 and . Simulation of 650x100x80 cells. d) Circular aperture with 
. Simulation of 120x120x80 cells. 
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 5 CONCLUSIONS 
 
In this work, software for optical simulation systems has been developed. More precisely, it has 
been applied to study diffraction and interference of light waves in Fraunhofer’s region. The 
software is based on the FDTD method, which has been detailed in this work. Different 
formulations related with this method have been included to permit simulate correctly this type 
of applications. Software is focused on helping students in laboratory sessions related with 
optical or physics degrees in which expensive and difficult experiments can be introduced in a 
proper manner with this software. 
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