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Abstract
In this note we revisit the paper by Fonseca et al. (Series 11: 83-103, 2020) who find
that education has a positive effect on health. They use several compulsory schooling
reforms as instruments for education. Our objective is to replicate this causal find-
ing, so we start by thoroughly discussing their identification strategy. In particular,
we emphasize the importance of carefully defining birth cohort groups and using
country-specific time trends. Once we take these issues into account, we show that the
instrument they use is too weak.

Keywords Health · Education · Instrumental variables · Compulsory schooling laws
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1 Introduction

There are many works in the literature that find a strong correlation between educa-
tion and health outcomes. However, there is still no consensus on whether education
improves health. Several recent studies asClark andRoyer (2013),Meghir et al. (2018),
Albarrán et al. (2020) and Avendano et al. (2020) do not find any causal effect of edu-
cation on health. Xue et al. (2021) perform a meta-analysis including 99 published
papers on this topic. They find a slight publication bias that favors papers that report
a positive effect of education on health. Once they correct for this bias, they find that
education no longer has a causal effect on health.

In a recent paper in this journal, Fonseca et al. (2020, in the sequel FMZ20) combine
data on education and health from three sources, SHARE (continental Europe), ELSA
(England) and HRS (USA). They find that education has a positive effect on health,
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both with self-reported measures and with various objective measures. The technique
they use to prove causality is instrumental variables, exploiting the exogenous vari-
ation in education generated by compulsory schooling laws (CSLs) that increase the
minimum school leaving age (SLA) as an instrument for education. The intuition is
that individuals in year-of-birth cohorts affected by CSLs are forced to stay in school
longer than earlier cohorts. Comparing cohorts that are a few years apart, CSLs induce
an exogenous change that only affects people’s health through increased education.

Given this apparent contradiction between what FMZ20 obtain and what seems to
be a growing consensus in this literature—the absence of a causal effect—we have
tried to replicate their work.

The main conclusion we reach, using the same data sets and the same countries,
is that we cannot prove a causal effect of education on any of the different health
outcomes. The reason for this result is not that education has no effect on health,
but rather that the instrument (CSL) is too weak to generate an exogenous variation
in people’s education for these datasets. We want to stress that we cannot exclude
the possibility of a causal effect, but simply that this methodology does not work in
this specific case. In particular, we do not claim that CSLs are an invalid instrument.
There are several papers in this literature that also rely on CSLs and have a convincing
identification strategy. Some recent examples are Brunello et al. (2013), Crespo et al.
(2014), Brunello at el. (2016), Albarrán et al. (2020), andHofmarcher (2021). Asmuch
as an instrument has proven to be valid before, this does not mean that it will work
in all situations. The validity of an instrument (or more generally of an identification
strategy) is, to some extent, an empirical matter determined by the specific context,
institutional setting and sample. Then, in each new application one must carefully
show that it is plausible that it works.

This note is structured as follows. First, we discuss data problems andmodel specifi-
cation issues often found when using CSLs as an instrument in a multi-country setting.
Next, we present our replication results, without accounting for concerns previously
discussed and once we account for them. Finally, we conclude with a simulation
exercise focused on the importance of using country-specific trends to avoid getting
misleading conclusions about the validity of the instrument.

2 Data andmodel specification

We construct a database with the same fourteen countries as FMZ20. Since credible
causal results rely on the validity of the identification strategy, we focus on potential
problems in the first stage. We claim that the problems in FMZ20 lie on this part.
However, we have managed to reproduce closely their Summary Statistics and the
results of the effect of years of education on health outcomes (OLS), that is, Tables 1
and 5 in FMZ20 (see the Appendix).

To account for the potential endogeneity of education, we use the exogenous vari-
ation in education provided by the CSLs and therefore we estimate the following
first-stage model (like Eq. 3 in FMZ20):

Edicb = β0 + β1YCcb + β2Wi + Tcb + Cc + uicb (1)
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Table 1 Impact of education reforms on years of education

Variables Model 1 Model 2 Model 3 Model 4 Model 5

YC 0.2736*** 0.2744*** 0.3507*** 0.0525 0.2750***

(0.0705) (0.0691) (0.1250) (0.0698) (0.0714)

Female − 0.5697*** − 0.5657*** − 0.5702*** − 0.5683*** − 0.5550***

(0.0385) (0.0383) (0.0382) (0.0381) (0.0381)

Number of cohort blocks 8 10 8 10 –

Country-specific trend No No Yes Yes No

Linear/quadratic trend – – – – Linear

Observations 52,960 52,960 52,960 52,960 52,960

R-squared 0.2648 0.2649 0.2814 0.2822 0.2639

IVF-stat 15.055 15.775 7.870 0.565 14.837

IVp-value 0.000 0.000 0.005 0.453 0.000

CommonTrend_F-stat 20.154 23.563

CommonTrend_p-value 0.000 0.000

Model 6 Model 7 Model 8 Model 9 Model 10

YC 0.2431*** 0.0763 0.0889 - 0.0650 - 0.0357

(0.0671) (0.0603) (0.0566) (0.0680) (0.0640)

Female − 0.5694*** − 0.5620*** − 0.5707*** − 0.5727*** − 0.5702***

(0.0384) (0.0380) (0.0383) (0.0382) (0.0383)

Number of cohort blocks – – 40 – 40

Country-specific trend No Yes Yes Yes Yes

Linear/quadratic trend Quadratic Linear Linear Quadratic Quadratic

Observations 52,960 52,960 52,960 52,960 52,960

R-squared 0.2651 0.2785 0.2802 0.2804 0.2816

IVF-stat 13.116 1.602 2.465 0.914 0.312

IVp-value 0.000 0.206 0.117 0.339 0.577

Common Trend_F-stat 65.439 70.459 41.309 42.820

Common Trend_p-value 0.000 0.000 0.000 0.000

YC is years of compulsory education; IVF-stat is the first-stage F-statistic and IVp-value its corresponding p-value;
common trend F-stat is the F-statistic of the test in which the null is that time trends are not country-specific. Standard
errors are clustered at the country-cohort level. * p < 0.10, ** p < 0.05, *** p < 0.01

Here, Edicb denotes years of education of an individual i from a country c born in the
cohort year b1; YCcb is the number of years she was required to attend school;Wi is a
dummy equal to 1 for women; Tcb denotes the “year of birth time trends” (below we
discuss in detail how to define them), and Cc is a country fixed effect, captured using

1 In general, we can potentially observe the outcome for two individuals born in the same cohort b at two
different ages. We omit this additional dimension for the ease of exposition at this point.
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country dummies for each country:

Cc =
M∑

m=1

μmDcm (2)

where Dcm is a dummy that takes value 1 if observation c comes from country m, and
0 otherwise.2

It is worth noting that a person’s years of compulsory schooling only varies, in
principle, with their country and year of birth (that is, it depends on whether they are
affected by a CSL in their country). Table 4 in FMZ20 shows that only eight of the
fourteen countries implement a CSL reform.3 For the remaining six countries there is
no variation in the instrument across year-of-birth cohorts: YCcb is YCc, so its effect on
education is already captured by the country dummies. In other words, including these
six countries does not contribute anything to the identification of the parameter β1.
However, since we want to focus on the role of time trends for proper identification,
we include the fourteen countries of FMZ20 to keep our analysis as close as possible
to the original one.

In these types of models, by construction, treated individuals are younger than
controls, so we must include time trends to account for secular tendencies. This is par-
ticularly relevant when we talk about education or health. Younger cohorts typically
have a higher educational level and also better health. Adding time trends to the spec-
ification allows us to identify the effect of the reform on those people who, even with
the positive trend, would not have acquired more education without the reform. When
we do not include these trends, we may end up incorrectly attributing improvements
in education to school reforms, when in fact those improvements are simply the result
of secular trends.

FMZ20 include forty cohorts of individuals in their analysis, including those born
between 1917 and 1956. The age of their sample ranges from 50 to 89. The inclusion
of a temporal trend, as the authors do, can partially control for the positive trend in
education and health in the countries considered. However, there are several potential
issues to be aware when specifying time trends.

First, it is very unusual to impose a common time trend for all countries. This
has shown too restrictive to capture the great heterogeneity in the temporal evolution
of health and education. From Stephens and Yang (2014) we know that it is crucial
that these time trends are country-specific, Tcb, rather than a single time trend for
all countries, Tb. Suppose that different countries exhibit different time trends in
education, butwe impose a common time trend (as FMZ20 do). Thismodelwould have
an omitted variable, the country-specific time evolution, which is correlated with the
instrument, YCcb, since this has also country-specific time variation. The differential

2 This specification includes one dummy for each group in the sample (in this case, M countries), so
implicitly we set β0 = 0 in (1). We use this type of specification throughout this note instead of the
equivalent specification where the model has a constant and a set of dummies for each group but one (the
reference group).
3 The countries that implement a CSL reform areAustria, England, Sweden, TheNetherlands, Italy, France,
Greece, and the Czech Republic. Countries without a reform are Poland, Switzerland, Belgium, Germany,
Spain, and the USA.
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country-specific trend would be attributed to the (country-specific) reform, YCcb.As a
result, its estimated coefficient would be biased and could lead us to wrongly conclude
that the instrument is valid. To avoid any potential bias, we use a more general and
flexible specification, Tcb. Moreover, this allows us to test whether the restrictions
implied by the common trend are true, thus giving an empirical answer to the question
of which is the correct specification.4

Second, a specific formula must be used for time trends. A relatively flexible
approach is to group multiple birth cohorts into one group and use a dummy vari-
able for each of these groups:

Tb =
J∑

j=1

δ j Dbj (3)

whereDbj is a dummy that takes value 1 when the birth cohort b belongs to the cohort
group j (and 0 otherwise). In the case of country-specific trends if we haveM countries
and J groups of cohorts:

Tcb =
J∑

j=1

M∑

m=1

δ jm Dbj Dcm (4)

where Dcm is a dummy variable that takes value 1 for country m, and 0 otherwise. As
discussed above, testing that δ jm = δ j for all m and for each j implies testing whether
a common trend specification is preferred over one with country-specific trends.

This approach requires choosing the number of groups, J , and which cohorts are
included in each of them. In the most extreme case, the groups could include a single
cohort. In this case, this would involve defining a dummy variable for each of the
40years of birth. In any case, it is very important to do a robustness analysis considering
various alternatives. We guess that FMZ20 use eight groups in their main specification
(see Table 1 in FMZ20, Summary Statistics). Each of them corresponds to a set of
five birth cohorts. This is very unfortunate, due to the timing of the reforms shown in
Table 4. To illustrate this problem, we represent in the figure below all the years of
birth included in this analysis, the eight time dummies and the control and treatment
groups in each country.

The problem with this specification of time trends is that there are two countries
(Italy andGreece) inwhich the treated cohorts correspond exactly to the years included
in the last time dummy. For these two countries, the effect of being a treated cohort
cannot be identified separately from the country-specific time effect in these last five
years. This is another potential source of bias that can lead to the erroneous conclusion
that the instrument is valid. One way to verify this problem is to slightly change the
way we define the birth cohort dummies to avoid that the treated cohorts correspond
to a single time dummy. For example, suppose we group birth years into ten blocks

4 Recent papers that use CSL as instruments and include country-specific time trends are Brunello et al.
(2013), Crespo et al. (2014), Mazzona (2014), Gathmann, Jürges, and Reinhold (2015), Brunello et al.
(2016), Albarrán et al. (2020), and Hofmarcher (2021).
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of four cohorts each instead of eight blocks of five cohorts each.5 Intuitively, things
should not change much.

Analternativeway todefine time trends is byusing age trends. FMZ20 replicate their
analysis with polynomial specifications for age (in particular, age and age squared),
rather than birth cohort dummies. For the same reason discussed above, these age
trends should be country-specific:

Tbc =
M∑

m=1

γ0mDcm + ab

M∑

m=1

γ1mDcm + a2b

M∑

m=1

γ2mDcm (5)

where ab is the age of the individuals of cohort b at the time t of the survey. Again,
we can test whether a common trend specification is preferred over one with country-
specific trends by using a joint test for all the country-specific coefficients being the
same across countries, that is, γ0m = γ0, γ1m = γ1, γ2m = γ2 for all m.

Third, using the forty cohorts of individuals in the sample is an unusual choice in
the literature. In the ideal experiment, one would like to use only individuals born on
1st January in the year of the first cohort affected by the reform as the treatment group
and those born on 31st December of the previous year as the control group to ensure
that they are as similar as possible and that the only source of (exogenous) variation
comes from being affected or not by the reform. Of course, this is typically impractical
because the sample would be too small. In practice, the literature uses a small number
of cohorts around the first affected cohort. Typical window sizes are five or seven
cohorts, so no more than a total of fourteen cohorts are included in the analysis. It is
a very unrealistic assumption to consider that cohorts born more than 30 years apart
are good counterfactuals for each other, even if extremely flexible time trends were
used. It is very likely that at least part of the effect captured by the instrument is due
to uncontrolled differences between the treatment and control groups.

Another reason for limiting the number of cohorts in the control and treatment
groups is that several countries changed the length of compulsory schooling several
times during the period considered (Horfmarcher 2021). However, as we said above,
since we want to focus on the issue of temporal trends, we are going to include all 40
cohorts in our analysis.

3 Results and discussion

We present our main results in Table 1. We use the fourteen countries and the forty
cohorts in FMZ20 to estimate the first stage of ten alternative models. We consider
a number of different first-stage specifications to cover all the relevant dimensions

5 FMZ20 mention in the first paragraph of Sect. 4 (Empirical Strategy) that they control for “birth cohort
dummies for nine age groups” (bold text is ours). However, their Table 1 shows only eight values for the
categorical variable “Cohort”. Given this inconsistency and the lack of replication code, it is unclear the
final specification used by FMZ20 among the following three: (i) eight cohort groups, (ii) nine cohort groups
(but then notice it is not obvious how to evenly split 40 birth years into 9 groups and no comment is made),
or (iii) ten cohorts groups (and they meant nine as that would be the number of cohort dummies in a model
specification with a constant).
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discussed in the literature that uses CSLs as an instrument. In Model 1 we replicate
the specification in FMZ20 (Table 6) that has a common time trend and no control for
age. To estimate the common time trend, we group birth cohorts into eight blocks of
five cohorts each. The model estimates the corresponding dummies for each block.
Model 2 is similar toModel 1, with the only change that we group the cohort dummies
into ten blocks of four cohorts each. Models 3 and 4 add a country-specific trend to
the specifications of models 1 and 2, respectively. To do this, we interact the cohort
dummies with the country dummies.

In the rest of the models, we consider polynomial specifications for age to account
for time trends. Model 5, instead of including cohort dummies, adds individual age
as a linear regressor. The effect of age is assumed to be common across all countries.
Model 6 is like model 5, but adding age squared as a regressor. Models 7 to 10 all
include interactions of age with the country dummies. In model 7, age enters only
linearly. Model 8 is like 7, also adding forty cohort dummies. Models 9 and 10 are like
models 7 and 8, respectively, but adding a quadratic term in age. That is, both of them
use a quadratic specification for the time trend (interactions of age and its square with
the country dummies) rather than a linear one. The only difference is that Model 10
additionally includes the forty cohort dummies. Our preferred specifications are those
in models 9 and 10. They correspond to those used by Crespo et al. (2014), Brunello
et al. (2016), and Hofmarcher (2021).

Notice that FMZ20 do not provide results on standard errors, nor on the F-statistic or
the number of observations (see Table 6 in FMZ20). We can only compare our results
in Model 1 with their reported first-stage estimated coefficient, and its magnitude
is different (0.5623 vs. 0.2736). This is surprising since we closely reproduce their
Tables 1 and 5 (see the Appendix). In any case, the main finding is qualitatively the
same: the estimated effect is positive and significant, so the instrument is valid.6 This
conclusion is maintained in models 2, 3 (although the F-statistic is now clearly lower),
5, and 6. Except for Model 3, every time we include country-specific trends, the effect
of the instrument completely disappears. The instrument is too weak and/or its effect
cannot be separately identified from the country-specific secular trend. In all these
cases the F-statistics here are always below the “safe” value of 10 (see Staiger and
Stock, 1997). Furthermore, we find strong evidence against a common time trend in
all cases. In summary, a proper specification of time trends, combining both a flexible
and careful definition of the birth cohorts blocks and country-specific trends, implies
a first stage that does not validate the identification of the causal effect of education
on health.

Following the work by Stephens and Yang (2014), which shows that it is crucial
to account for country-specific time trends, most (if not all) recent papers in the
related literature include country-specific trends. In this case, we have empirically
rejected that the time trend is common to all countries. So, they are relevant variables
that must be included in the model. Moreover, the country-specific time trends are

6 Note that the estimated coefficient of YC in FMZ20 (0.5623) is much larger than the one obtained by
Crespo et al. (2014) who also use SHARE data (0.145, s.e. 0.125). Other recent works have also obtained
much lower estimates. Brunello et al. (2016) obtain estimates in the range 0.251–0.344, depending on
the specification. Albarrán et al. (2020) and Hofmarcher (2021) estimate coefficients of 0.168 and 0.161,
respectively.

123



SERIEs

Note: Country-cohorts in the control group are indicated with a zero. Country-cohorts in the treatment group 
are indicated with a one and highlighted in red.

Year of birth 1917 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
Austria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
England 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sweden 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Netherlands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Italy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
France 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Greece 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
Czech R. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 1 Time dummies, control, and treatment groups in each country

obviously correlated with the secular trends in education: younger cohorts are often
more educated, butwith different patterns across countries. If omitted, the “instrument”
exploits a source of variation that is not exogenous, since it does not come from the
reform alone but also from the country-specific trend.

We find extremely important the differences between models 3 and 4. As we have
said above, both models include country-specific time trends, and the only difference
between them is that in model 3 we group the cohorts into eight groups of five,
while in model 4 we group them into ten groups of four. A priori, the results should
be very similar. The fact that they are not indicates that there is a problem with this
specification. As we discuss above, we argue that the reason for this discrepancy is that
in Model 3, all the time effect of the last five years in Italy and Greece is erroneously
attributed to the instrument.

The fact that the instrument has no bite is also apparent in Fig. 1 of FMZ20, in
which there is no clear jump in education around the cut-off. To further illustrate this,
we have built a similar graph for each one of the eight reform countries:

In Fig. 2 we see three countries where there is a clear jump up around the threshold
(England, the Netherlands, Sweden). However, in Austria, France, Greece, and Italy
there is a downward leap around the threshold. Finally, in the Czech Republic, there
is no noticeable change.7

As an additional check, we present estimates corresponding to the reduced form
of the ten models in Table 1. The reduced form estimates the direct effect of the
instrument on the outcome variables. We report in Table 2 the results corresponding to
the case in which the dependent variable is a dummy variable that takes value 1 when
the subject reports to have poor health. Again, we highlight in bold type models with
country-specific time trends (Fig. 3).

Again, we see that, except for Model 3, every time we include country-specific
trends, the effect of years of compulsory education on the endogenous variable van-
ishes. This confirms our evidence from the first-stage analysis. In words of Angrist and

7 Despite of the publication bias (it is less likely to find published papers where the instrument does
not work), some papers do report weak instruments problems when using CSL as an instrument. For
instance, Crespo, López-Noval, and Mira (2014), who also work with SHARE data. More generally, there
are good reasons to consider that not every compulsory schooling reform is truly increasing the educational
attainment. On the one hand, some reforms make legal what is already unofficially implemented (most
kids already leave school after the new compulsory age). On the other hand, the type of students typically
affected are largely people who end up leaving school as soon as they can.
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Fig. 2 Control and treatment, by country

Pischke, “If you can’t see it in the reduced form, it ain’t there” (Angrist and Pischke,
2015).

4 Simulations

To further illustrate the problem of time trends, we are going to construct an artificial
example inwhich, by definition, the instrument has no effect on education.We simulate
60,000 observations for five countries. Each observation represents an individual. To
keep things simple, there is no gender. We number the years from 0 to 39, and we
define age as 89 minus the year, so the age of individuals ranges from 50 to 89 years.
In each of the five countries, there is a reform that increases the number of years of
compulsory schooling. However, these reforms have no effect on education. The years
of schooling of the population follow a linear time trend for the entire period, and we
assume that the error term u follows a normal distribution with mean 0 and standard
deviation of 2. We summarize the example in Table 3.

As can be seen, the first simulated cohort affected in each of the five countries
reproduces the real ones for AT, NL, IT, FR and GR, respectively (see Table 4 in
FMZ20).Moreover, the simulated trends in years of schooling are such that the average
years of schooling for these same countries and provided in Table 4 coincidewith those
obtained in the simulation exercise for countries 1 to 5.

The model we estimate is an OLS regression in which the dependent variable is
education and the main regressor is the number of years of compulsory education. We
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Table 2 Reduced form (poor health)

Variables Model 1 Model 2 Model 3 Model 4 Model 5

YC − 0.0247*** − 0.0246*** − 0.0866*** − 0.0102 − 0.0227***

(0.0057) (0.0055) (0.0165) (0.0077) (0.0053)

Female 0.0305*** 0.0302*** 0.0299*** 0.0291*** 0.0309***

(0.0045) (0.0045) (0.0045) (0.0044) (0.0045)

Number of cohort blocks 8 10 8 10 –

Country-specific trend No No Yes Yes No

Linear/quadratic trend – – – – Linear

Observations 53,603 53,603 53,603 53,603 53,603

R-squared 0.0745 0.0750 0.0836 0.0843 0.0754

IVF-stat 18.664 19.780 27.454 1.734 18.462

IVp-value 0.000 0.000 0.000 0.188 0.000

CommonTrend_F-stat 11.256 12.523

CommonTrend_p-value 0.000 0.000

Model 6 Model 7 Model 8 Model 9 Model 10

YC − 0.0243*** − 0.0029 − 0.0018 − 0.0111* − 0.0069

(0.0054) (0.0057) (0.0053) (0.0065) (0.0066)

Female 0.0302*** 0.0308*** 0.0295*** 0.0293*** 0.0293***

(0.0045) (0.0045) (0.0045) (0.0045) (0.0045)

Number of cohort blocks – – 40 – 40

Country-specific trend No Yes Yes Yes Yes

Linear/quadratic trend Quadratic Linear Linear Quadratic Quadratic

Observations 53,603 53,603 53,603 53,603 53,603

R-squared 0.0756 0.0817 0.0831 0.0831 0.0839

IVF-stat 19.916 0.269 0.112 2.868 1.082

IVp-value 0.000 0.604 0.738 0.091 0.299

Common Trend_F-stat 29.091 35.224 22.462 18.312

Common Trend_p-value 0.000 0.000 0.000 0.000

also include country fixed effects and a time trend.We propose the same ten alternative
ways to model time trends as in Tables 1 and 2. We simulate 100 repetitions of our
model. We estimate each regression and plot the estimated coefficient of years of
compulsory education in each replication.

The only models that correctly detect that the coefficient of years of compulsory
education is zero are models 7–10 (see Fig. 3). Not surprisingly, these are the specifi-
cations used by Crespo et al. (2014), Brunello et al. (2016), and Albarrán et al. (2020),
among other.
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Table 3 Data used in the simulations

Countries First cohort affected Change in years of
compulsory schooling

Trend in education

1 32 From 8 to 9 8 + 0.03*year + u

2 21 From 6 to 8 8.5 + 0.13*year + u

3 35 From 5 to 8 5 + 0.15*year + u

4 6 From 7 to 8 8.5 + 0.4*year + u

5 35 From 6 to 9 3.8 + 0.18*year + u
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as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Appendix

See Tables 4 and 5.

Table 4 Summary Statistics (Table 1 in FMZ20)

Variable Obs Mean Std.Dev Min Max

Health variables

Poor health 53,334 0.334 0.472 0 1

1 + chronic illness 53,522 0.766 0.423 0 1

1 + ADLS 53,539 0.136 0.343 0 1

1 + IADLS 53,539 0.147 0.354 0 1

Cancer 53,506 0.0725 0.259 0 1

Diabetes 53,505 0.128 0.334 0 1

Heart disease 53,507 0.177 0.382 0 1

Hypertension 53,495 0.422 0.494 0 1

Arthritis 53,509 0.346 0.476 0 1

Lung disease 53,504 0.0689 0.253 0 1

Stroke 53,510 0.0470 0.212 0 1

Psychiatric illness 53,341 0.158 0.365 0 1

SES variables

Years of education 52,696 11.04 3.742 0 25

Age 53,635 65.75 9.894 50 89

Cohort 53,635 5.207 1.991 1 8

Female 53,635 0.557 0.497 0 1
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Table 5 OLS models years of education on health outcomes (Table 5 in FMZ20)

Poor health 1 + Chronic 1 + ADLs 1 + IADLs

Years of education − 0.0245*** − 0.0058*** − 0.0095*** − 0.0134***

(0.0010) (0.0007) (0.0006) (0.0006)

Observations 52,463 52,635 52,647 52,647

Cancer Diabetes Heart Disease Hypertension

Years of education 0.0022*** − 0.0077*** − 0.0037*** − 0.0082***

(0.0004) (0.0006) (0.0005) (0.0007)

Observations 52,620 52,618 52,620 52,608

Arthritis Lung disease Stroke Psychiatric illness

Years of education − 0.0081*** − 0.0048*** − 0.0019*** − 0.0039***

(0.0007) (0.0004) (0.0003) (0.0006)

Observations 52,622 52,617 52,623 52,473

Standard errors are clustered at the country-cohort level. * p < 0.10, ** p < 0.05, *** p < 0.01
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