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Abstract
Keystream sequences should look as random as possible, i.e. should present no logical pattern to be exploited in cryptographic
attacks. The generalized self-shrinking generator, a sequence generator based on irregular decimation, produces a family of
sequences with good cryptographic properties. In this work, we display a detailed analysis on the randomness of the sequences
resulting from the concatenation of elements of this family. We apply the most important batteries of statistical and graphical
tests providing powerful results and a new method to construct sequences with good cryptographic properties.
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1 Introduction

A random number sequence generator (RNG) produces a sequence of numbers that cannot be
reasonably predicted better than by a random chance. There exist two types of RNGs: hardware
random number generators (HRNGs), which generate genuinely random numbers, or pseudo-
random number generators (PRNGs), whose output must be unpredictable in the absence of
knowledge of the inputs. We focus our attention on the latter generators. Both types produce streams
of bits that may be divided into sub-streams or blocks of random numbers. The cryptographic quality
of pseudo-random sequences is determined by different factors: unpredictability, long periods, large
key space, etc.

Irregular decimation is a very habitual technique to produce pseudo-random sequences with
cryptographic applications [4, 6, 9, 15, 16, 23]. In practice, the underlying idea of these generators
is the irregular decimation of a PN-sequence produced by an LFSR [13]. In this paper, we work with
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994 Concatenation of Generalized Sequences

the most representative generator in this family of irregular decimation-based sequence generators,
that is the generalized self-shrinking generator [15].

The generalized self-shrinking generator [15] consists of one LFSR [13] whose output PN-
sequence is self-decimated coming up with a family of new sequences (GSS-sequences) with good
cryptographic properties. This generator is fast, easy to implement and produces a set of sequences
with good cryptographic properties. In [5], the authors presented a statistical and graphical study of
the randomness of the GSS-sequences whose results imply the suitability of this family of sequences
for cryptographic applications. As a consequence, this generator seems adequate for its use in light-
weight cryptography and low-cost applications.

A huge number of attacks to PRNGs achieve success due to their lack of randomness [18, 19],
this means that the quality of the randomness of the pseudo-random generators is very important
for the security of many cryptographic schemes. Nowadays, there exists a huge number of statistical
tests to determine if a sequence can be considered sufficiently random and secure in cryptographic
terms [14]. However, it is difficult to choose a certain number of these tests to determine if the
randomness analysis of the sequences generated is satisfactory.

In this work, we use different tools, both statistical and graphic, in the study of the randomness of
the concatenation of GSS-sequences, with the purpose of providing long pseudo-random sequences
with a low computational cost and good cryptographic properties.

The paper is organized as follows: in Section 2, we present some necessary concepts to understand
the rest of the paper. In Section 3, we present some graphic and statistical tests in order to analyse
the randomness of the concatenation of GSS-sequences. Finally, the paper concludes with Section 4,
where we present some conclusions and future work.

2 Preliminaries

Consider F2 the Galois field of two elements and {ai}i≥0 = {a0, a1, a2 . . .} a binary sequence with
ai ∈ F2, for i = 0, 1, 2, . . .. We say that a sequence {ai}i≥0 is periodic if there exists an integer T ,
called period, such that ai+T = ai, for all i ≥ 0. From now on, all the sequences considered will be
binary sequences and the symbol + will denote the Exclusive-OR (XOR) logic operation.

Let r be a positive integer, and let d1, d2, d3, . . . , dr be constant coefficients with dj ∈ F2. A binary
sequence {ai}i≥0 satisfying the relation

ai+r = drai + dr−1ai+1 + · · · + d3ai+r−3 + d2ai+r−2 + d1ai+r−1, i ≥ 0,

is called a (r-th order) linear recurring sequence in F2. The terms {a0, a1, . . . , ar−1} are referred
to as the initial terms and define the construction of the sequence uniquely. Furthermore, the monic
polynomial: p(x) = dr + dr−1x + · · · + d3xr−3 + d2xr−2 + d1xr−1 + xr ∈ F2[x] is called the
characteristic polynomial of the linear recurring sequence and {ai}i≥0 is said to be generated by
p(x).

We can generate linear recurring sequences by means of Linear Feedback Shift Registers
(LFSRs) [13]. An LFSR is defined as an electronic device with r memory cells (stages) with binary
content. At every clock pulse, the element of each stage is shifted to the adjacent stage and a new
element is computed through the linear feedback to fill the empty stage (see Figure 1). We say that
the LFSR has maximal-length if its characteristic polynomial is primitive. Its output sequence is
called PN-sequence (Pseudo-Noise sequence) and has period T = 2r − 1 [13].

Let {ai}i≥0 be a PN-sequence produced by a maximal-length LFSR with L stages. Let G =
[g0, g1, g2, ..., gL−1] ∈ F

L
2 be an L-dimensional binary vector and {vi}i≥0 a sequence defined as:
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Concatenation of Generalized Sequences 995

FIGURE 1. LFSR of length r.

vi = g0ai +g1ai−1 +g2ai−2 +· · ·+gL−1ai−L+1. For i ≥ 0, we define the decimation rule as follows:{
If ai = 1 then sj = vi,

If ai = 0 then vi is discarded.

The generator defined previously is the generalized self-shrinking generator and the output
sequence {sj}j≥0, denoted by s(G), is called the generalized self-shrunken sequence (GSS-
sequence) associated with G. When G ranges over FL

2, then the resulting {vi} sequences correspond
to the 2L − 1 possible shifts versions of {ai} (see [7, Theorem 2]). Besides, we obtain the family
of generalized self-shrunken sequences based on the PN-sequence {ai}i≥0 denoted by S(a) =
{s(G) | G ∈ F

L
2}.

The GSS-concatenated sequence of the family S(a), denoted by C(S(a)), is the resulting
sequence of concatenating all the sequences in the family except for the trivial ones ({0 0 0 0 . . .},
{1 1 1 1 . . .}, {0 1 0 1 . . .}, and {1 0 1 0 . . .}).

EXAMPLE 2.1
Consider the primitive polynomial p(x) = x3 + x + 1 and the corresponding PN-sequence {ai}i≥0 =
{1 1 1 0 0 1 0}. We can construct the GSS-sequences shown in Table 1. The underlined bits in the
different sequences {vi}i≥0 are the digits of the corresponding {s(G)} sequences. The PN-sequence
{ai}i≥0 is written at the bottom. The corresponding GSS-concatenated sequence of this family is
C(S(a)) = {0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1}.

3 Statistical randomness analysis

Statistical randomness tests are designed to analyse the quality of random number generators and
considered as an important part of evaluating security of cryptographic algorithms.

In [5], the authors give an exhaustive analysis of randomness of all family of GSS-sequences
generated from PN-sequences associated to characteristic polynomials of degree up to 27, obtaining
powerful results. Following the previous work, one might wonder if the concatenation of the
sequences obtained into a family of GSS-sequences have the same good properties of randomness
than individual sequences. With the concatenation of this family of good crytographic sequences, we
can obtain pseudo-random sequences longer and which would require less computational cost.

With this aim, we present a statistical randomness analysis from two points of view. On the one
hand, we provide different graphical tools based on chaotic cryptographic (see [10, 24]). On the
other hand, we use the most powerful batteries of statistical tests as the Diehard battery of tests,
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996 Concatenation of Generalized Sequences

TABLE 1. Family S(a) of GSS-sequences generated by p(x) = x3 + x + 1.

G {vi} {s(G)}
0 [0, 0, 0] {0 0 0 0 0 0 0} {0 0 0 0}
1 [0, 0, 1] {1 0 1 1 1 0 0} {1 0 1 0}
2 [0, 1, 0] {0 1 1 1 0 0 1} {0 1 1 0}
3 [0, 1, 1] {1 1 0 0 1 0 1} {1 1 0 0}
4 [1, 0, 0] {1 1 1 0 0 1 0} {1 1 1 1}
5 [1, 0, 1] {0 1 0 1 1 1 0} {0 1 0 1}
6 [1, 1, 0] {1 0 0 1 0 1 1} {1 0 0 1}
7 [1, 1, 1] {0 0 1 0 1 1 1} {0 0 1 1}
{ai} {1 1 1 0 0 1 0}

the Lempel–Ziv Compression Test and the packet FIPS 140-2, provided by the National Institute of
Standards and Technology (NIST), among others. All the tests are applicable for a wide range of
binary string size and thus exhibit considerable f lexibility.

For this study, we generate, from MATLAB R2020b, families of GSS-sequences from PN-
sequences coming from maximal-length LFSRs with characteristic polynomials of degree less
than or equal to 16. The results presented are based on GSS-concatenated sequences with the
characteristic polynomial p(x) = x16 + x14 + x12 + x + 1 and whose initial state is the identically
1 vector of length 16. The tests were performed with 229 bit sequences. Most of the tests work
associating every eight bits in an octet, obtaining sequences of 226 samples of 8 bits; with the
exception of the Linear complexity test that works with just one bit and the Chaos game that works
associating the bits two by two.

3.1 Graphic tests

Next, we show some of the main graphic techniques used for visualizing randomness of sequences.
These graphic tools are usually used in chaotic dynamic system analysis, and its applicability in the
cryptographic study of pseudo-random sequences has been proven in [1, 10, 24]. Specifically, we
apply the return map, the chaos game and the linear complexity or the Lyapunov exponent among
others.

Return map
The return application, introduced in [10], is a tool that allows to detect the existence of some

useful information about the parameters of the system used to generate the sequence.
It consists of drawing a two-dimensional graph of the points of the sequence xt as a function of

xt−1 and, can help to reconstruct the value of the parameters of a pseudo-random sequence. The
resulting graph must be a cloud of points where we cannot guess no trend, no figure, no line, no
symmetry, no pattern.

Figure 2 shows return map of a GSS-concatenated sequence as a disordered cloud which does not
provide any useful information for its cryptanalysis.

Linear Complexity
The linear complexity (LC) of a sequence is defined as the length of the shortest LFSR that

generates it. If the characteristic polynomial of the linear recurring sequence is primitive [13], then
the LFSR is a maximal-length LFSR and its output sequence has period T = 2L − 1, where L is the
degree of the characteristic polynomial.
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FIGURE 2. Return map of GSS-concatenated sequence of 229 bits.
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FIGURE 3. Linear complexity of GSS-concatenated sequence of 229 bits.

LC is used as a measure of the unpredictability of a pseudo-random sequence and a much used
metric of the security of a keystream sequence [25]; it must be as large as possible, that is, its value
has to be very close to half the period [27], LC � T/2. We use the Berlekamp–Massey algorithm
[22] to compute this parameter. From Figure 3, we have that the value of the linear complexity of the
first 40000 bits of the sequence is just half the length, 20000.
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FIGURE 4. Fast Fourier transform of GSS-concatenated sequence.

Fast Fourier transform
The goal of fast Fourier transform test consists of detecting repetitive patterns in the sequence

analysed, which would indicate a deviation from the assumption of randomness.
If all the maximum harmonics of fast Fourier transform have approximately the same horizontal

level without up or down trend, then the sequence can be considered random.
In Figure 4, we obtain that all values are included in the same range, which means that the test is

passed.
Distribution of identical samples
One important property of random sequence is the distance of occurrence between samples of

equal value. The most probable distance between two identical samples of a perfect sequence is
zero. If this distance increases, then the probability of coincidence between them decreases.

In Figure 5 we observe that the distribution of samples of a GSS-concatenated sequence is close
to the ideal.

Lyapunov exponent
Lyapunov exponent provides a quantitative measurement of divergence or convergence of nearby

trajectories.
In [20, 24], they present a definition of Lyapunov Hamming exponent in bits as follows:

LHE = lim
N→∞

1

N

N−1∑
n=0

d1H

with N the number of iterations and d1H is the Hamming distance.
In cryptology, this value indicates the number of bits that changes in a word. If two numbers are

identical, then its LHE value will be 0. Nevertheless, if all the bits of both numbers are different,
then its LHE will be LHE = log2 m = log2 2n = n, where n is the number of bits with which the
numbers are encoded. The best value will be n/2.
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FIGURE 5. Distribution of samples of a GSS-concatenated.

All Lyapunov exponent estimates were close to the maximum value 4. We show the average of the
values obtained of the sequences analysed:

Lyapunov Hamming exponent, ideal = 4

Lyapunov Hamming exponent, real = 3.999

Absolute desviation from ideal = −0.00025106

hence, the proposed generator passes perfectly this test.
Samples in increasing order
The samples of 8 bits are ordered by increasing value and are represented by a graph.
This representation means that all the numbers are generated (if it is a continuous straight line

(red)) and that the density is uniform (if its inclination is 45 degrees). In Figure 6(a), we observe that
the samples are perfectly represented by a continuous straight line with the perfect inclination of 45
degrees.

From Figure 6(b), the deviation between the increasing samples is analysed and the values −1, 0
or 1 are obtained.
Chaos game

Chaos game can be described mathematically by an iterated functions system (IFS) [2, 10, 26]
and through which the transition to chaos associated with fractals can be studied. The result of chaos
game is called attractor, and not always is a fractal, it may be any compact set. If the output is a
graph with fractals or patterns, then it means that the sequence cannot been considered random. In
Figure 7, we cannot observe any pattern or fractal, it is an unordered cloud of points which implies
good randomness.
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FIGURE 6. Samples ordered by increasing value.
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FIGURE 7. GSS-concatenated sequence Chaos game.

3.2 Statistical batteries of tests

Diehard Battery of Tests
Diehard battery of tests [21] is a reliable standard for evaluating randomness of sequences of

PRNGs. If the sequences analysed do not pass this battery of statistical tests, then we can consider
that they are not suitable for cryptographic applications.

Diehard battery consists of 15 different independent statistical tests, some of them repeated but
with different parameters. These statistical tests are designed to test the null hypothesis H0 which
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TABLE 2. Diehard battery of tests results for a GSS-concatenated sequence of degree 16.

Test name p-value or KS p-value[1] Result

Birthday spacing 0.039711 PASS
Binary ranks (31 × 31) 0.320880 PASS
Binary ranks (32 × 32) 0.979186 PASS
Binary ranks (6 × 8) 0.407298 PASS
Parking lot 0.985256 PASS
Overlapping 0.115366 PASS

permutations 0.982348
Minimum distance 0.985489 PASS
3D spheres 0.815294 PASS
Squeeze 0.793474 PASS
Overlapping sums 0.989556 PASS

0.080534

Runs 0.208853

0.589281 PASS

0.970691
Craps 0.623129 PASS

0.392400
Bit stream (Monkey tests) [1] PASS
OPSO [1] PASS
OQSO [1] PASS
DNA [1] PASS
COUNT-THE-1’s (specific bytes) [1] PASS

All the p-values obtained in the corresponding tests evaluated are in the range (0, 1).

states that the input sequence is randomly generated. If the hypothesis is not rejected in all the tests,
then it is implied that the input sequences are random.

Most of the tests in DIEHARD return a p-value or the KS p-value (given by the Kolmogorov-
Smirnov test), which should be uniform on [0,1) if the input file contains truly independent random
bits. It is considered that a bit stream really fails when it is gotten p-values of 0 or 1 to six or more
places.

Hundreds of GSS-concatenated sequences of 229 bits have passed correctly the great majority
of tests in the Diehard battery of Marsaglia with good results. In Table 2 we show the results
obtained with the Diehard battery from a GSS-concatenated sequence with characteristic polynomial
of degree 16.

FIPS test 140-2
The FIPS 140-2 test [11], issued by the American National Institute of Standards and Technology

(NIST), has been widely used for the verification the statistical properties of the randomness of
the pseudo-random numbers generated by PRNGs. In this package there are 4 statistical random
number generator tests: The Monobit Test, The Poker Test, The Runs Test and The Long Runs Test.
The proposed GSS-concatenated sequences with characteristic polynomials of degree ≤ 16 pass all
these tests with perfect results.
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FIGURE 8. Run test for a GSS-concatenated sequence with characteristic polynomial of degree 16.

From Figure 8, we can show a graphic result of the Runs Test, for a GSS-concatenated sequence
of degree 16. The test is passed if the runs (for both the runs of zeros, red line, and the runs of ones,
blue line) that occur (of lengths 1 through 6) are each within the corresponding interval specified by
the green line. Observe that the test is passed since they all the runs fall within the corresponding
range specified by the green line.

Lempel–Ziv Compression Test
The focus of this test is the number of cumulatively distinct patterns (words) in the sequence. The

purpose of the test is to determine how far the tested sequence can be compressed. The sequence is
considered to be non-random if it can be significantly compressed. A random sequence will have a
characteristic number of distinct patterns.

The proposed GSS-concatenated sequences with characteristic polynomials of degree ≤ 16, pass
this test with perfect results.

Ziv–Lempel Test is passed with a p-value>= 0.01. For more than hundreds of GSS-concatenated
sequences analysed we have obtain p-values ≥ 0.01.

Maurer’s ‘Universal Statistical’ Test
The focus of this test is the number of bits between matching patterns (a measure that is related

to the length of a compressed sequence). The purpose of the test is to detect whether or not the
sequence can be significantly compressed without loss of information. A significantly compressible
sequence is considered to be non-random.

If the computed p-value is < 0.01, then conclude that the sequence is non-random. Otherwise,
conclude that the sequence is random. For more than one thousand of GSS-concatenated sequences
analysed, we have obtain p-values ≥ 0.01.

Although statistical and graphical tests analyse in deep the randomness of the sequences, such tests
do not provide information on the weaknesses of the generators against cryptanalytic attacks, e.g.
linear cryptanalysis. Indeed, the potential linear relationship between the key bits (initial state) and
the generated bits has been already studied in the literature on the whole family of decimation-based
generators. Most of these cryptanalytic techniques deal with linearization procedures whose main
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proposals are listed as follows: (i) The decimated bits can be arranged into interleaved sequences
whose characteristics and properties are well-known, see [12] and [6, Chapter 3]. (ii) The decimated
bits can be generated by means of linear models based on cellular automata (rule 120 and rule 60),
see [8] and [6, Chapter 4]. In both cases, the huge amount of intercepted bits needed to launch a
linear cryptanalysis successfully defeats the feasibility of this type of attacks.

4 Conclusions

In this article, we perform a deep study of the randomness of the GSS-concatenated sequences,
generated from the family of generalized self-shrunken sequences, S(a), based on PN-sequence
{ai}i≥0. As future work, we would like to apply other powerful statistical tests as CRYPT-X [3] or
TestU01 [17]. Furthermore, it would be interesting to study if there exist some relations among the
GSS-sequences of a same family and if this fact could be advantageous for launching cryptanalytic
attacks. Finally, we would like to analyse and study the interleaving of GSS-sequences of the same
family and from different families.
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