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Highlights 

 A Pd NPs supported onto an ionic liquid-modified carbon nanotube is prepared and 

characterized. 

 The new Pd catalyst applied efficiently in copper-free Sonogashira-Haghihara 

reaction. 

 This heterogeneous catalyst is recycled for 5 runs maintaining its efficiency. 

Graphical Abstract 

 

 

                  



 

Abstract 

A Palladium supported onto an ionic liquid-modified carbon nanotube is prepared. Scanning electron 

microscopy (SEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), 

transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are used to 

complete its characterization. The application as catalyst in the copper-free Sonogashira-Haghihara 

coupling is also studied employing different substrates. This heterogeneous catalyst is successfully 

recycled for 5 consecutive identical reactions maintaining its efficiency. After this fifth catalytic run 

the catalyst is characterized again.  

Keywords: MWNTs, Sonogashira-Hagihara, Copper-free, Ionic liquid, Palladium 

 

 

1. Introduction 

Nowadays, novel nanosized catalysts, having high surface area, produce excellent catalytic 

activity. Their recovery and recycling with minor leaching of active species and deactivation, are 

interesting features to study [1,2]. Apart from all different supports used in the preparation of 

heterogeneous catalysts, carbon nanotubes (CNTs), which have high surface areas, high thermal and 

chemical stabilities and excellent mechanical strengths, have received an enormous attention. In fact, 

many organic transformations involving this strategy have been published [3,4]. Particularly, the 

surfaces of CNTs can be modified with several phosphorous or nitrogenous ligands, or ionic liquids 

(ILs), resulting suitable sites for stabilization of catalytically active metal nanoparticles. ILs having 

excellent properties such as a wide temperature range over the liquid phase, high thermal stability, 

strong interaction with active metals, non-volatility and non-flammability, enable to dissolve polar 

organic compounds, are considered as green solvents, catalysts and reagents [5-8]. However, due to 

the high price of ILs, their use as a solvents are not advisable. Alternatively, the surface 

functionalization of solid supports with ILs structures allows organic transformations with the 

minimum amount of ILs [9].  Along this lone, recently special attention has been paid to using 

nitrogen-rich ionic liquids in different transformations [10-12]. 

The palladium-promoted Sonogashira-Haghihara reaction is a coupling reaction of aryl or alkenyl 

halides or triflates with terminal alkynes in the presence or in the absence of copper co-catalyst 

obtaining aryl alkynes. A large series of these compounds are important precursors for natural 

products, pharmaceuticals, pesticides, herbicides, etc. [13-15]. In recent years, many homogeneous 

and heterogeneous palladium catalysts have been reported for this specific coupling reaction [16-31]. 

                  



However, the bibliographic search reveals that there are few reports concerning the employment of 

palladium-supported carbon nanotubes as heterogeneous catalyst in C-C coupling reactions [32-40], 

and more specifically in the Sonogashira-Hagihara reaction [41-46]. So, in this work, the synthesis of 

functionalized multi-wall carbon nanotubes (MWCNTs) with imidazolium and DABCO derived ionic 

liquids and triazole moieties, and their application as recyclable catalyst in the Sonogashira-Haghihara 

reaction are reported. 

 

2. Experimental  

 

2.1. Synthesis of 3-(prop-2-yn-1-yl)-1-vinyl-1H-3λ
4
-imidazol-1-ium bromide (IL1): 

1-Vinylimidazole (6 mmol, 0.54 mL) and propargyl bromide (9 mmol, 0.65 mL) were added to a 

flask containing dry acetone (6 mL) and the resulting mixture was stirred at 40 °C for 24 h under an 

argon atmosphere. The acetone was evaporated and the resulting solid was washed with hexane 

(3×10 mL) and dried at 60 °C in an oven for 24 h. Pure white 3-(prop-2-yn-1-yl)-1-vinyl-1H-3λ
4
-

imidazol-1-ium bromide was obtained in 83% isolated yield and characterized by 
1
H  and 

13
C NMR 

spectra. 

2.2. Synthesis of 1-(2-bromoethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide [DABCO-

bromoethane][Br] (IL2): 

1,4-Diazabicyclo[2.2.2]octane (DABCO) (5 mmol, 0.56 g) was dissolved in dry THF (10 mL) and 

the mixture was cooled to 0 °C in an ice bath. Then, 1,2-dibromoethane (25 mmol, 2.1 mL) was added 

and the reaction mixture was stirred for 24 h at room temperature. Then, THF was evaporated and the 

obtained white solid was washed with hexane (3×10 mL) and dried at 60 °C in an oven for 24 h. Pure 

1-(2-bromoethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide was obtained in 92% isolated yield and 

characterized by 
1
H NMR spectra. 

2.3. Synthesis of 1-(2-(4-((3-vinyl-1H-3λ
4
-imidazol-1-ium-1-yl)methyl)-1H-1,2,3-triazol-1-

yl)ethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide (IL3): 

Initially, [DABCO-bromoethane][Br] (5 mmol, 1.5 g)  (IL2) and sodium azide (7.5 mmol, 0.48 g) 

were added to a flask containing deionized water (4 mL) and the reaction mixture was stirred for 24 h 

at 50 °C. Afterwards, to the resulting mixture, ionic liquid IL1 (5 mmol, 1.1 g), ascorbic acid (0.21 

mmol, 36 mg) and copper(II) sulfate pentahydrate (0.06 mmol, 15 mg) were added and the mixture 

was stirred at 50 °C for 24 h. Finally, solvent was evaporated until 1 mL of solution remained and, 

                  



then, 5 mL ethanol was added. The resulting solid was separated by filtration, washed with ethyl 

acetate (3×10 mL), and dried at 40 °C in a vacuum oven for 48 h. 

2.4. Preparation of multi-wall carbon nanotubes functionalized with the hydroxyl group: 

Multi-wall carbon nanotubes (MWCNTs) having the hydroxyl functional group were prepared 

following the procedure described in the literature [47]. MWCNTs (2 g) were added to a flask 

containing 30% H2O2 (40 mL) and the reaction mixture was sonicated for 10 min at room 

temperature. Then, the resulting mixture was stirred for 6 days at 65 °C. H2O2 (15 mL) was added to 

the reaction mixture every day. Finally, the MWCNTs functionalized with hydroxyl groups were 

separated by centrifugation and the obtained black solid was washed with deionized H2O (2×15 mL) 

and EtOH (3×15 mL) and dried at 80 °C in an oven for 24 h. Finally, 2.2 g of freshly hydroxyl 

functionalized MWNTs were isolated. 

2.5. Preparation of MWCNT@OH functionalized with the thiol group: 

 Dry toluene (15 ml) was added to a flask containing MWCNTs functionalized with the hydroxyl 

group (MWCNT@OH) (1 g) under argon atmosphere and the reaction mixture was sonicated for 10 

min at room temperature. Then, (3-mercaptopropyl)trimethoxysilane (5 mmol, 0.9 mL) was added 

and the resulting mixture was stirred for 24 h at 100 °C under an argon atmosphere. Finally, the 

MWCNT@OH functionalized with the thiol group was separated with centrifugation and the obtained 

black solid was washed with absolute ethanol (2×15 mL) and dried at 80 °C in an oven for 24 h.  

Finally, 1.06 g of freshly functionalized MWCNTs were isolated. 

2.6. Preparation of multi-wall carbon nanotubes incorporating ionic liquid 3 (IL3): 

Multi-wall carbon nanotubes functionalized with the thiol group (0.8 g) and ionic liquid IL3 (2.5 

mmol, 1.2 g) were added to a flask containing methanol (30 mL) and the reaction mixture was 

sonicated for 10 min at room temperature. The resulting mixture was purged with argon for 30 min 

under argon protection. In another flask, 2,2'-azobisisobutyronitrile (AIBN) (0.12 mmol, 20 mg) was 

dissolved in methanol (5 mL) and purged with argon for 30 min. Finally, the solution of AIBN was 

added dropwise to the reaction mixture of multi-wall carbon nanotubes functionalized with the thiol 

group and ionic liquid IL3 and the resulting mixture was stirred for 48 h at 70 °C under argon 

atmosphere. Then, the solid was separated by centrifugation and washed with H2O (2×15) and 

ethanol (2×15 mL) and dried at 80 °C in an oven for 24 h, achieving 1.3 g of the new grafted material. 

Using CHNS analysis amount of sulphur and nitrogen were found to be 1.3% and 1.47%, 

respectively. 

 

                  



 

2.7. Preparation of palladium nanoparticles deposited on MWCNT@IL: 

Supported IL3 multi-wall carbon nanotubes (0.5 g) were added to a flask containing deionized 

water (5 mL) and the reaction mixture was sonicated for 10 min at room temperature. Then, a 

solution of Na2PdCl4 (0.035 mmol, 10 mg) in deionized water (2 mL) was added. Afterwards, an 

aqueous solution of NaBH4 (1 mmol, 38 mg) in deionized water (0.5 mL) was slowly added and the 

final mixture was stirred for 24 h at room temperature under an argon atmosphere. Finally, the 

suspension was subjected to centrifugation and the obtained black solid was washed with EtOH (2×15 

mL) and dried at 80 °C in an oven for 24 h, achieving 0.48 g of the final functionalized MWCNT. 

 

 

2.10. General procedure for the Sonogashira-Hagihara reaction: 

To a flask containing the aryl halide (0.5 mmol) and phenylacetylene (0.75 mmol, 0.08 mL), 

DABCO (0.75 mmol, 0.08 g) and DMF (2 mL), MWCNT@IL-Pd nanocatalyst (25 mg containing 0.5 

mol% Pd) were added. The mixture was stirred at 80 °C for aryl iodides and 100 °C for aryl bromides 

under an argon atmosphere. After completion of the reaction (monitored by GC), deionized water (2 

mL) was added to the reaction mixture and the crude product was extracted with ethyl acetate (3×5 

mL). For further purification, the organic solvent was removed under vacuum and the resulting 

residue was purified by column chromatography on silica gel using hexane and ethyl acetate as 

eluents. 

 

2.11. General procedure for the recycling of the MWCNT@IL-Pd in the Sonogashira-Hagihara 

coupling between iodobenzene and phenylacetylene 

         Iodobenzene (0.5 mmol), phenylacetylene (0.75 mmol, 0.08 mL), DABCO (0.75 mmol, 0.08 g), 

DMF (2 mL), and MWCNT@IL-Pd nanocatalyst (25 mg containing 0.5 mol% Pd) were added 

to a 5 mL flask and the mixture was stirred at 80 °C for 6 h under an argon atmosphere. After 

completing the reaction, the catalyst was separated by centrifugation and, after washing with 

ethyl acetate and drying, was utilized in the next run. This catalyst recycling was repeated up to 

five successive cycles exhibiting the same catalytic activity. 

 

                  



 

 

2.12. General method for performing the PVPy test in Sonogashira-Hagihara coupling reaction of 

iodobenzene with phenylacetylene 

        In a 5 mL flask. iodobenzene (0.5 mmol) and phenylacetylene (0.75 mmol, 0.08 mL), DABCO 

(0.75 mmol, 0.08 g), DMF (2 mL), MWCNT@IL-Pd catalyst (0.5 mol% Pd, 25 mg), and PVPy 

(200 mg) were added. The mixture was stirred at 80 °C during 6 h under argon atmosphere. 

Next, deionized water (2 mL) was added to the reaction mixture, crude product extracted with 

ethyl acetate and progress of the reaction was monitored by GC.  

2.13. General method for performing the TGA analysis of MWCNT@IL3 and CNT-OH catalysts 

       Firstly, the desired method was introduced controlling the temperature and atmosphere nature for 

performing the analysis (25-700 °C, O2 atmosphere) and then, the special crucible of TGA 

analysis was adapted in the device and its weight set onto zero. Next, 5-7 mg of MWCNT@IL3 

were added in the crucible and transferred to the thermobalance device. After that, the desired 

method was run for performing the analysis. The same procedure was repeated for performing 

the analysis of the CNT-OH sample. 

 

3. Results and discussions 

3.1. Materials and characterization 

For preparation of the IL3, initially 1-vinylimidazole was allowed to react with propargyl 

bromide in acetone affording IL1. In a parallel way, IL2 was obtained after reaction of DABCO with 

1,2-dibromoethane at 0 ºC. After azidation of  IL2, the non-characterized azide and IL1 were the 

components of a 1,3-dipolar cycloaddition mediated by ascorbic acid (AAC) and copper(II) sulfate, 

affording IL3 in 87% isolated yield (Scheme 1). 
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Scheme 1: Preparation steps of the IL3 

In order to prepare the palladium supported catalyst, MWCNTs were treated with H2O2 producing 

hydroxylated MWCNTs, which was reacted with (3-mercaptopropyl)trimethoxysilane to introduce the 

thiol group. Then, the resulting thiol functionalized MWCNTs were reacted with IL3 under thiol-ene 

reaction conditions. Afterwards, IL modified MWCNTs were allowed to react with Na2PdCl4 

followed by reduction with NaBH4 (Scheme 2). The final composite will be referred as 

MWCNT@IL-Pd throughout the text of this article (Scheme 2). The amount of palladium in 

MWCNT@IL-Pd was 0.11 mmol·g
-1

, which was determined by atomic absorption spectroscopy 

(ASS). 
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 Scheme 2: Preparation of the MWCNT@IL-Pd catalyst 

 

The presence of different elements such as N, C, S, Br, and Pd in the structure of MWCNT@IL-

Pd was confirmed using energy dispersive X-ray analysis (EDX). The presence of iron atom is due to 

the use of this element as a catalyst during the synthesis of CNTs [48-49] (Figure 1). 
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Figure 1: EDX spectrum of MWCNT@IL-Pd 

SEM-Map image of MWCNT@IL-Pd showed very uniform distribution of Pd particles in the 

structure (Figure 2). 

 

Figure 2: a) SEM and b) map image of Pd in MWCNT@IL-Pd 

 

 

Also, XRD analysis of MWCNT@IL-Pd is showed in Figure S1. The peak appeared at 25.7 is 

related to the hexagonal carbon structure of CNTs in the (002) plane. However, Pd(0) pattern 

did not appear in the XRD because the palladium content in the supported material is less than 3-5% 

[50]. 
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X-ray photoelectron spectroscopy (XPS) in C, Si, S, N, Br, and Pd regions were studied (Figure 3). 

The C 1s XPS spectrum for the MWCNT@IL-Pd  showed four peaks centered at 284.5, 285.4, 286.4, 

287.6, which are related to C=C, C-C, C-O, and C=O arrangements, respectively (Figure 3a) [51,52]. 

As it can be seen in Figure 3b, XPS spectra in Si 2p region showed two main peaks located at 102.1 

and 102.9, which were assigned to Si-C and Si-O bonds (Figure 3b) [53]. The existence of S 2p3/2 and 

2p1/2 doublet for S 2p region at 163.8 and 164.9 was ascribed to C-S bonds (Figure 3c) [54]. XPS 

spectra in N 1s region showed two peaks located at 399.9 and 402.0, which corresponded to neutral 

and positively charged quaternary nitrogen (Figure 3d) [55,56]. Related peaks to Br 3d5/2 and Br 3d3/2 

appeared at 67.5 and 67.9 confirming the presence of Br in the structure (Figure 3e) [57]. The Pd 3d 

spectrum could be deconvoluted into two doublets at 334.1 and 341.2 related to Pd(0) and 336.2 and 

343.1 related to Pd(II) (Figure 3F) [58,59]. XPS result indicated that 57% of Pd was in its reduced 

form. 

 

Figure 3: XPS spectrum of MWCNT@IL-Pd in a) C 1s,  b) Si 2p, c) S 2p, d) N 1s,  e) Br 3d and f) 

Pd 3d regions. 

 

The thermal properties of MWCNT@IL3 were studied using thermogravimetric analysis (TGA). 

Results showed two main weight loses between 200-520 °C (Figure 4). The first one, around 200-500, 

was related to the decomposition of organic materials (including IL fragments) and second one, at 520 
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°C, is ascribed to the decomposition of CNT. It should be noted that MWCNT@IL3 decomposed at a 

significantly lower temperature than CNT-OH (hydroxylated CNT by using H2O2), due to the 

presence of Br
- 
anions

 
and catalytic metal nanoparticles able to oxidize CNTs [60,61]. 

 

Figure 4: TGA diagrm of a)CNT-OH; b) MWCNT@IL3 

 

Scanning electron microscopy (SEM) images of MWCNT@IL-Pd showed a entangled structural 

morphology (Figure 5).  
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Figure 5: SEM images of MWCN@IL-Pd 

Transmission electron microscopy (TEM) image of CNTs showed the presence of supported Pd 

nanoparticles in a range of 3-6 nm size (Figure 6). 
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Figure 6: TEM images of MWCNT@IL-Pd 

 

 

 

3.2. Catalytic performance 

The prepared catalyst was assessed in the Sonogashira-Hagihara coupling reaction (Table 1). In order 

to find the optimized reaction conditions, the reaction of iodobenzene with phenylacetylene was 

selected and the effect of different factors such as solvent, base, catalyst loading and time was 

surveyed. Results showed that using 0.5 mol% of the catalyst excellent yields were obtained in DMF 

after 6 h, whilst lower yields were observed when the reaction was performed in toluene, Xylene, 

EtOH, and CH3CN, H2O and PEG-200 (Table 1, entries 1-9). Selecting DMF as a most efficient 

solvent, the effect of the base was next investigated (Table 1, entries 10-13). The best result 

corresponded to the reaction performed with DABCO rather than the other inorganic bases. Using 

DABCO as base, DMF as the solvent the lowering both of the reaction temperature and the catalyst 

amount, lower yields were obtained (Table 1, entries 14-16). Also, Sonogashira-Hagihara coupling 

reaction of iodobenzene and phenylacetylene was tested in the presence of MWCNT@IL-Pd catalyst 

without DABCO but any trace of the product was obtained (Table 1, entry 17). 
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Table 1. Optimization of the reaction conditions in the Sonogashira-Hagihara coupling reaction of 

iodobenzene with phenylacetylene.a
 

 

Yield 

(%)
b
 

Time (h) 
Catalyst 

(mol%) 
Solvent Base T (°C) Entry 

99 24 0.5 DMF DABCO 80 1 

96 12 0.5 DMF DABCO 80 2 

94 6 0.5 DMF DABCO 80 3 

52 6 0.5 Toluene DABCO 80 4 

44 6 0.5 Xylene DABCO 80 5 

56 6 0.5 CH3CN DABCO 80 6 

85 6 0.5 PEG200 DABCO 80 7 

37 6 0.5 EtOH DABCO 80 8 

90 6 0.5 H2O DABCO 80 9 

17 6 0.5 DMF K2CO3 80 10 

58 6 0.5 DMF Et3N 80 11 

31 6 0.5 DMF Na2CO3 80 12 

<5 6 0.5 DMF NH4OH 80 13 

53 6 0.5 DMF DABCO 60 14 

80 6 0.3 DMF DABCO 80 15 

57 6 0.1 DMF DABCO 80 16 

0 6 0.5 DMF - 80 17 

a) Reaction conditions: iodobenzene (0.5 mmol), phenylacetylene (0.75 mmol), base (0.75 mmol), 

Catalyst (see column) and solvent (2 mL). 

b) Yields were determined by GC. 
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Having optimized reaction conditions in hand, that means, DMF as solvent, DABCO as base, 0.5 

mol% of catalyst at 80 °C, the coupling reaction between structurally different aryl halides and 

alkynes was studied (Table 2). Reactions of aryl iodides, having electron withdrawing groups such as 

–NO2, –F, –Cl, –CHO, –CN, and aryl iodides having electron donating groups such as –Me and –

OMe as well as iodobenzene, with phenylacetylene proceed satisfactorily and the desired aryl alkynes 

were obtained in 83-94% yields (Table 2, entries 1-8). Reaction of 2-iodothiophene with 

phenylacetylene was also performed in very high conversion affording the coupling product in 91% 

(Table 2, entry 9). Also, reactions of aryl bromides having both electron donating and withdrawing 

groups as well as challenging heterocyclic aryl bromides proceed efficiently and the corresponding 

products were isolated in excellent yields (Table 2, entries 10-16). It should be noted that reactions 

involving aryl iodides and bromides with propargyl alcohol were also accomplished and products 

were achieved in 81-86% yields (Table 2, entries 17-20). Since high yields were obtained in PEG200 

and H2O (Table 1, entries 7, 9), the Sonogashira-Hagihara reaction of some aryl halides in PEG200 

and H2O (Table 2, entries 2, 8-9, 14, 18) were performed.  However, all the results indicated the 

formation of the desired products with lower yield than the obtained in the same reactions using DMF 

as solvent. 
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Table 2. Sonogashira-Hagihara coupling reaction of aryl and heteroaryl halides with terminal 

alkynes in the presence of the MWCNT@IL-Pd.
a 

 

TOF
g 

Yield (%)
b
 Product 

Time 

(h) 
R1 Ar-X Entry 

31.3 94 
 

6 C6H5 
 

1 

22.5 90
d 

(80)
c
 

 

8 C6H5 

 

2 

14.8 89
d
 

 
12 C6H5 

 

3 

15 90 
 

12 C6H5 

 

4 

18.2 91
d
 

 

10 C6H5 

 

5 

18 90 
 

10 C6H5 

 

6 

9.3 93 

 

20 C6H5 

 

7 

9.7 83
d
 (70)

c
 

 

17 C6H5 

 

8 
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30.3 91
d
 (81)

c
 

 
6 C6H5 

 
9 

26 78
d,e

 
 

6 C6H5 

 

10 

16.4 82
d,e

 

 

10 C6H5 

 

11 

23.5 94
e
 

 

8 C6H5 

 

12 

16.8 84
e
 

 

10 C6H5 

 

13 

22.2 
89

e
 (60)

f 

(45)
c
  

8 C6H5 

 

14 

11.4 86
e
 

 
15 C6H5 

 

15 

32.3 97
e
 

 

6 C6H5 

 

16 

27 81
d,e

 
 

6 -CH2OH 

 

17 

20.7 83
d
 (70)

f
 

 
8 -CH2OH 

 

18 

14 84
d
 

 
12 -CH2OH 

 

19 

28.6 86
d
 

 
6 -CH2OH 

 
20 

a) Reaction conditions: aryl halide (0.5 mmol), terminal alkyne (0.75 mmol), DABCO (0.75 mmol), catalyst (25 mg) and DMF (2 mL). 
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b) Yields were determined by GC. 

c) Reaction condition: aryl halide (0.5 mmol), terminal alkyne (0.75 mmol), DABCO (0.75 mmol), Catalyst (25 mg) and PEG200 (2 mL). 

d) Isolated yields after purification. 

e) The reaction was performed at 100 °C. 

f) Reaction condition: aryl halide (0.5 mmol), terminal alkyne (0.75 mmol), DABCO (0.75 mmol), Catalyst (25 mg) and H2O (2 mL).  

g) [TOF] values [(mol product/mol catalyst)/time of reaction (h)]. 

 

 

3.3. Recycling of the catalyst 

Since one of the most important advantages of heterogeneous catalysts is their recovering and 

recycling, recycling of MWCNT@IL-Pd after this Sonogashira-Hagihara coupling reaction of 

iodobenzene with phenylacetylene and 4-bromonitrobenzene with phenylacetylene under the 

optimized reaction conditions were studied. Results showed that this catalyst was successfully 

recovered and reused for five consecutive runs with small decrease in activity (Figure 7).  

 

Figure 7: Recycling of the catalyst for the reaction of iodobenzene with phenylacetylene (red) and 4-

bromonitrobenzene with phenylacetylene (yellow) 

 

EDX spectrum of the reused catalyst after the 3
rd

 consecutive run showed the presence of 

elements analogously to the observed ones in the fresh catalyst spectrum (Figure 8).  
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Figure 8: EDX expectrum of reused catalyst after 3
rd

 run. 

 

Also, SEM and TEM (Figures 9 and 10) images of the reused catalyst after 3
rd

 run were analyzed 

and the results showed similar pattern to the obtained ones for the fresh catalyst, indicating the 

preservation of the catalyst structure with small aggregation of Pd NPs. 

 

Figure 9: SEM images of reused catalyst after the 3
rd

 run.  
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;  

Figure 10: TEM images of reused catalyst after the 3
rd

 run. 

Finally, in order to find some information about homogeneous or heterogeneous nature of the 

catalyst, two important tests, including hot filtration and poly(4-vinyl-pyridine) (PVPy) addition, were 

investigated (Figure 11)[62]. In the case of hot filtration, the reaction mixture (iodobenzene and 

phenylacetylene) was filtered after 2 h. At this moment, the conversion of the reaction was 40% 

according to GC plot. The resulting solution obtained by hot filtration was allowed to proceed under 

optimized conditions during 6 additional hours.  GC analysis of the reaction showed a 51% 

conversion for diphenylacetylene (Figure 11). In the next experiment PVPy (in molar ratio to 

[Pd]∼400) was added at the beginning of the reaction between iodobenzene and phenylacetylene 

under optimized reaction conditions. It is worth mentioning that PVPy is strong poisoning polymer for 

homogeneous catalysts. Results of PVPy test indicated that the reaction proceeded similarly to 

standard reaction affording slightly less yield than normal reaction conditions (Figure 11). It is proved 

that heterogeneous catalysts lose their activity in the presence of mercury, although recent studies 

revealed that this experiment must be carefully observed. When we added 150 equiv. of mercury per 

equivalent of palladium at the beginning of the reaction of iodobenezene with phenylacetylene under 

optimized conditions, the reaction did not proceed satisfactorily obtaining a 10% of product only. 

According to all these three results, we could conclude that this catalyst mainly operated under 

heterogeneous conditions with negligible leaching of the Pd loading [63-65]. 
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Figure 11: PVP poisoning, mercury poisoning and hot filtration tests for the MWCNT@IL-Pd 

catalyzed Sonogashira-Hagihara reaction of iodobenzene and phenylacetylene. 

 

In order to show the important role of IL in structure, the catalytic activity of MWCNT@IL-Pd was 

compared with other prepared intermediate catalysts shown in Scheme 2 such as CNT, Pd/CNT and 

Pd/CNT-OH as well as the commercially available Pd/C (Table 3, entries 1-3). As it is depicted in 

Table 3, results showed that MWCNT@IL-Pd had the highest activity. Also, the recycling of the 

Pd/CNT-OH was investigated for 4 runs in the bench reaction but rapidly failed after 1
th 

possibly due 

to the leaching of Pd during reaction in the absence of IL (Table 3, entries 4-7). Furthermore, we also 

prepared other catalyst via reaction of thiol functionalized MWCNTs with 1-benzyl-3-vinyl-1H-

imidazole-3-ium and resulting material was used for stabilization of Pd (depicted as a 

MWCNT@ILBVI-Pd in Table 3). Using this catalyst, with same Pd amount in the reaction of 

iodobenzene with phenylacetylene under optimized reaction condition 76% yield was obtained. 

Recycling of this catalyst demonstrated that yield was decreased to 45% in second run and to 35 in 3
rd

 

run (Table 3, entries 8-10). 
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Table 3. Comparative catalytic activity of MWCNT@IL-Pd with other catalysts in Sonogashira 

coupling reaction of iodobenzene with phenylacetylene. 

 

 

Entry Catalyst Condition Yield (%) 

1 CNT DMF, DABCO 2 

2 Pd/CNT DMF, DABCO 35 

3 Pd/C DMF, DABCO 10 

4 Pd/CNT-OH (Run 1) DMF, DABCO 90 

5 Pd/CNT-OH (Run 2) DMF, DABCO 50 

6 Pd/CNT-OH (Run 3) DMF, DABCO 10 

7 Pd/CNT-OH (Run 4) DMF, DABCO 2 

8 
MWCNT@ILBVI-Pd 

(Run 1) 
DMF, DABCO 76 

9 
MWCNT@ILBVI-Pd  

(Run 2) 
DMF, DABCO 45 

10 
MWCNT@ILBVI-Pd 

(Run 3) 
DMF, DABCO 35 

a 
Reaction condition: aryl halide (0.5 mmol), terminal alkyne (0.75 mmol), DABCO (0.75 mmol), DMF (2 mL) 

and catalyst (0.5 mol% Pd).  

 

 We have also compared catalytic activity of MWCNT@IL-Pd with some other catalysts in 

Sonogashira-Hagihara reaction of 4-bromonitrobenzene and phenylacetylene as a common reaction. 

In Table 4, the overall high catalytic activity and robustness of the titled catalyst is demosntrated. 
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Table 4. Comparative catalytic activity of MWCN@IL-Pd with other reported catalysts in 

Sonogashira coupling reaction of 4-bromonitrobenzene and phenylacetylene. 

 

Entry Catalyst 
T (°C), 

time (h) 

Pd 

loading 

Yield 

(%) 
TOF Refs. 

1 Pd/MIL-101 6 h, 130 °C 3.5% wt 90 4.6 [66] 

2 CPS-MNPs–NNN–Pd  24 h, 90 °C 0.5 mol% 80 6.6 [67] 

3 
Pd/PEG-functionalized 

silica  
7 h, 110 °C 1 mol% 94 13.4 [68] 

4 Pd@Fe3O4 
24 h, 110 

°C 
1 mol% 68 2.8 [69] 

5 
G3-Gu-Pd 

 

12 h, 100 

°C 
1 mol% 90 7.5 [70] 

6 SBA-15–EDTA–Pd 

 
6 h, 120 °C 2.5% wt 99 8.2 [71] 

7 PdTSPc@KP–GO 9 h, 100 °C 1 mol% 95 10.5 [72] 

8 PdNPs@NCmw 24 h, 90 °C 10% wt 85 0.38 [73] 

9 MWCN@IL-Pd 6 h, 100 °C 0.5 mol% 97 32.3 
This 

work 

 

The proposed mechanism for this copper-free MWCNT@IL-Pd catalyzed Sonogashira-Haghihara 

reaction involves a well-known cycle including oxidative addition of aryl halide to Pd(0),  

complexation and addition of alkyne to Pd and reductive elimination step which produce desired 

product and regenerate Pd(0) [10-11].
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Scheme 3: Proposed C–C coupling reaction mechanism by using MWCNT@IL-Pd catalyst. 

 

 

4. Conclusion 

In summary, a new ionic liquid modified carbon nanotube supported Pd NPS, MWCNT@IL-Pd, 

was developed. This new catalyst has shown high catalytic activity in the Sonogashira-Hagihara 

reaction of aryl iodides and bromides. This catalyst can be easily recoverable by centrifugation and 

recycled for five runs with small decrease of activity. The heterogeneous nature of the catalysts was 

confirmed after hot filtration and addition of PVPy and Mercury. Catalyst robustness is excellent 

allowing to reuse the same catalyst up to more than 5 consecutive batches ensuring very high yields 

(up to 97%). 
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