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ABSTRACT

Vector born disease account for about one third of all cases of emerging
diseases. Culex sp., in particular, is one of the most important mosquito
vector transmitting important diseases such as the West Nile virus, filariasis
and related encephalitis. Because there are no vaccines available the most
effectual means to prevent infections from the above diseases, is to target
mosquitos to prevent bites and disease transmission. However, to be
effective such a strategy, it is important to predict the temporal change in
mosquito abundance as well as to study how it is affected by weather
conditions. This diseratiation is devoted on the development of new
methods to predict arthropod vector dynamics and with emphasis on the
development of stochastic models and computational methods for
predicting Culex sp. abundance in Northern Greece.

The current dissertation is divided in three parts. The first part explores the
non-trivial associations between Culex sp. mosquito abundance and
weather variables using traditional and straightforward stochastic and
novel machine larning techniques. The information from the first part was a
prerequisite for developing a series of stochastic prediction models based
on the most detrimental factors affecting mosquito abundance. In the
second part, a series of conventional and conditional stochastic Markov
chain models are applied for the first time to predict the non-linear
dynamics of Culex sp. adult abundance. In the third part of the dissertation
a soft computing approach is introduced to model the population dynamics
of Culex sp. and a series of autoregressive artificial neural networks are
implied. Finaly, the information of the models is extrapolated and a machine
learning algorithm is proposed to be used for predicting arthropod vector
population dynamics having practical implications for public health
decision making.

Based on the current results there was a high and positive correlation

between temperature and mosquito abundance during both observation



years (r = 0.6). However, a very poor correlation was observed between
rain and weekly mosquito abundances (r = 0.29), as well as between wind
speed (r = 0.29), respectively. Additionally, according to the multiple linear
regression model the effect of temperature, was significant. The continuous
power spectrum of the mosquito abundance counts and mean temperatures
depict in most cases similar power for periods which are close to 1 week,
indicating the point of the lowest variance of the time series, although
appearing on slightly different moments of time. The cross wavelet coherent
analysis showed that inter weekly cycles with a period between 2 and 3
weeks between mosquito abundance and temperature were coherent
mostly during the first and the last weeks of the season. Hence, the wavelet
analysis shows a progressive oscillation in mosquito occurrences with time,
which is higher at the start and the end of the season.

According to the correlation results a climate-conditioned Markov Chain
(CMC) model was developed and applied for the first time to predict the
dynamics of vectors of important medical diseases. Temporal changes in
mosquito population profiles were generated to simulate the probabilities
of a high population impact. The probabilities achieved from the trained
model are very near to the observed data and the CMC model satisfactorily
describes the temporal evolution of the mosquito population process. In
general, our numerical results indicate that it is more likely for the
population system to move into a state of high population level, when the
former is a state of a low population level than the opponent. Field data on
frequencies of successive mosquito population levels, which were not used
for the data inferred Markov Chain modeling, were assembled to obtain an
empirical intensity transition matrix and the observed frequencies. The
findings match to a certain degree the empirical results in which the
probabilities follow analogous patterns while no significant differences
were observed between the transition matrices of the CMC model and the

validation data (ChiSq=14.58013, df=24, p=0.9324451).



Furter, a soft system computing modeling approach was followed to
simulate and predict Culex sp. abundances. Three dynamic artificial neural
network (ANNs) models were developed and applied to describe and
predict the non-linear incidence and time evolution of a medical important
mosquito species Culex sp. in Northern Greece. The first is a simple
nonlinear autoregressive ANN model that used lagged population values as
inputs (NAR), the second is an exogenous non-linear autoregressive
recurrent neural network (NARX), which is designed to take as inputs the
temperature as exogenous variable and mosquito abundance as
endogenous. Finally, the third model is a focused time-delay neural network
(FTD), which takes in to account only the temperature variable as input to
provide forecasts of the mosquito abundance as target variable. All three
models behaved well considering the non-linear nature of the adult
mosquito abundance data. However, the NARX model, which takes in to
account temperature, showed the best overall modelling performances.
Nevertheless, although, the NARX model predicted slight better (R=0.623)
compared to the FTD model (R=0.534), the advantage of the FTD over the
NARX neural network model is that it can be applied in the case where past
values of the population system, here mosquito abundance, are not available
for their forecasting. This is very important considering that arthropod
vector data are not always available as climatic data.

Concluding, the proposed methods for simulating and predicting mosquito
dynamics are recommended as viable for modeling vector disease
population dynamics in order to make real-time recommendations utile for
dynamic health policies decision making. The proposed stochastic models,
as well as the current computational and machine learning techniques of
this work provide an accurate abstraction of the arthropod vector
population progress observed within the dataset used for their generation.
The current study may consider also as a new entry point into the extensive
literature of ecological modelling, medical entomology, as well as in

simulating arthropod vector diseases epidemics. From a public health
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standpoint, the current models have the potential to be integrated into a
decision support system allowing health policy makers in their planning to
initiate specific management actions against the period of high activity of

mosquito adults.

Keywords: Culex sp., decision support, epidemiology, Markov chains neural

networks, public health, wavelet analysis



RESUMEN

Introduccién y planteamiento del problema: Las enfermedades transmitidas
por vectores representan aproximadamente un tercio de todos los casos de
enfermedades emergentes. El mosquito Culex sp., en particular, es uno de
los vectores mas importantes que transmite enfermedades como el virus del
Nilo Occidental, la filariasis y encefalitis. Debido a que no hay vacunas
disponibles, el medio mas eficaz para prevenir infecciones de las
enfermedades mencionadas apuntando a los mosquitos para prevenir las
picaduras y la transmisién de estas enfermedades. Sin embargo, para que
una estrategia de este tipo sea eficaz, es importante predecir el cambio
temporal en la abundancia de mosquitos, asi como estudiar como se ve
afectado por las condiciones meteoroldgicas.

Especialmente, durante el 2020, los mosquitos desempefiaron un papel
fundamental en todo el mundo actuando como vectores de enfermedades
infecciosas, asi como en la reaparicién y expansion espectacular de
enfermedades erradicadas. Principalmente debido a la proliferaciéon de
condiciones ambientales favorables y mediante el desarrollo de lugares de
agua adecuados para el crecimiento de las larvas, que en su mayoria son
producidos por actividades humanas. Las poblaciones de mosquitos se
encuentran en gran abundancia y muy cerca de los huéspedes susceptibles.
Hasta hace poco, la mayor incidencia de enfermedades transmitidas por
mosquitos se observaba en las zonas tropicales y subtropicales. Sin
embargo, durante los ultimos afios, varias enfermedades transmitidas por
vectores fueron desatendidas, y en algunos casos fueron ocasionalmente
esporadicas, de forma que aparecen dindmicamente y causan brotes
también en climas templados. En Europa, especialmente durante la ultima
década, varias especies se han establecido y, por lo tanto, estan cambiando
el estado epidemiolégico de varias areas con respecto a la aparicion de

enfermedades transmitidas por vectores.



Elvirus del Nilo Occidental (WNV por sus siglas en Inglés) es probablemente
la enfermedad mas importante de transmision del mosquito Culex sp. que
actua como vector, sobre todo en el sur de Europa y los paises
mediterraneos. El WNV, en particular, es un miembro del género Flavivirus
y uno de los arbovirus de mayor distribucién en el mundo. A pesar de que la
Organizacion Mundial de la Salud resume algunas pruebas de la circulaciéon
del WNV a través de los paises mediante la Oficina Regional del
Mediterraneo Oriental (EMRO), el conocimiento exhaustivo sobre la
dinamica poblacional estacional del vector Culex sp. que es el que lo propa
y como se ve afectado por las condiciones climaticas mediterraneas sigue
siendo en gran parte desconocido.

La filaria, por otro lado, son exclusivamente parasitos de los tréopicos y
subtropicos, incluida la parte sur del Mediterraneo y Oriente Medio. Estos
parasitos provocan la filariasis que es una enfermedad parasitaria en la que
se bloquean los vasos linfaticos del abdomen. El mosquito Culex spp es el
principal vector de los nematodos de la familia Filaroidea, aunque especies
pertenecientes a otros géneros como Anopheles spp, Aedes sppy Mansonia
spp también pueden transmitir el nematodo.

Durante los ultimos afios, varios estados europeos han sufrido brotes
esporadicos de la enfermedad del WNV, tanto en humanos como en caballos,
aunque la epidemia mas importante se produjo en 1996 en el sureste de
Rumania. En el sur de Europa, el WNV se ha observado en las especies de
mosquitos autdctonos Culex pipiens, incluidas Italia y Portugal. Ademas, en
Grecia, el Culex pipiens se ha identificado como la especie dominante y
endofila en las zonas rurales de Macedonia central, incluidas las prefecturas
de Imathia, Kilkis, Pella, Pieria y Thessalonika.

Hasta ahora, el medio mas eficaz para prevenir la infeccidn por el virus del
Nilo Occidental, asi como otras enfermedades transmitidas por mosquitos,
es apuntar a los mosquitos para prevenir las picaduras y la transmisién de
enfermedades. Por tanto, el control de vectores, que se basa en el uso de

insecticidas, que es el principal medio de mitigar la propagacion de
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enfermedades relacionadas. Sin embargo, para que una estrategia de este
tipo sea eficaz, es importante predecir el cambio temporal en la presencia
de mosquitos, su abundancia y como se ve afectada por las condiciones
climaticas.

En este contexto, se utilizaron varios modelos matematicos para conectar
los procesos bioldgicos de la dindmica vectorial y el clima. Hasta la fecha, la
mayoria de los modelos epidemiolégicos y de poblacion de vectores tienen
un caracter determinista y se basan en algunos supuestos basicos para
definir los diversos parametros de la dindmica de vectores y enfermedades
en estudio. Sin embargo, la mayoria de las veces estos parametros se
desconocen y se considera necesario estimarlos primero para parametrizar
el modelo que se utilizara posteriormente para las proyecciones. Ademas,
debido a los impactos de diversos factores internos y externos, la evoluciéon
temporal de los procesos de la poblacién no es lineal y se caracteriza por
perturbaciones aleatorias y, en consecuencia, generalmente es dificil
analizar y pronosticar la dinamica de la poblacién utilizando solo modelos

mecanicistas.

Objetivos y estructura de la tesis: El objetivo principal de la Tesis que
presento es prevenir las enfermedades transmitidas por mosquitos, como el
WNV, la filariasis y la encefalitis, mediante el control de las poblaciones de
los mosquitos que actian como vector. La manera de hacerlo es mediante la
formulacién, desarrollo y aplicaciéon de nuevos enfoques de modelado
estocastico y métodos de prediccion computacional relacionados que
permiten predecir la abundacia de las poblaciones de estos vectores de
transmision.

Se hace énfasis en el analisis multivariado parala prediccion o modelado de
la dinamica poblacional del Culex spp. y variables ecoldgicas relacionadas y
cémo pueden utilizarse como herramientas de decision para el control de

artrépodos vectoriales y la planificacion de la salud publica. Con una
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prediccién de la abundancia de mosquitos, en particular, las autoridades de
salud publica podrian predecir la evoluciéon temporal de la abundancia de
mosquitos, que es un requisito previo para el manejo exitoso y la prevencion
de las enfermedades transmitidas por vectores relacionadas.

La tesis actual se divide en tres partes. La primera parte explora las
asociaciones no triviales entre Culex sp. abundancia de mosquitos y
variables climaticas utilizando tradicional y técnicas novedosas y sencillas.
La informacidn de la primera parte fue un requisito previo para desarrollar
una serie de modelos de prediccidn estocasticos basados en los factores mas
perjudiciales que afectan la abundancia de mosquitos. En la segunda parte,
se aplica por primera vez una serie de modelos estocasticos de cadena de
Markov convencionales y condicionales para predecir la dindmica no lineal
de Culex sp. abundancia de adultos. En la tercera parte de la disertacion se
introduce un enfoque de computaciéon blanda para modelar la dinamica
poblacional de Culex sp. Estan implicitas una serie de redes neuronales
artificiales autorregresivas que extrapola la informacién de los modelos y se
proponen métodos computacionales y un algoritmo de aprendizaje
automatico relacionado para predecir la dindmica de los vectores de
artréopodos con implicaciones practicas para la toma de decisiones de salud

publica.

Los Datos: Los datos gratuitos sobre trampas para mosquitos disponibles en
el portal abierto de datos de la Union Europea (EU ODP)
(http://data.europa.eu) (Figura 4), que proporciona acceso a datos de las
instituciones de la Unién Europea (UE) y otros organismos de la UE que
pueden reutilizarse con fines comerciales o no comerciales (Decisién de la
Comision Europea 2011/833 / UE). En particular, usamos datos de trampas
para mosquitos adultos de Culex sp. muestreados en 11 lugares del centro
de Macedonia-Grecia. Los datos se manejaron como vectores que consistian
en intervalos de tiempo cercanos a semanales del numero de mosquitos

adultos capturados en trampas de CO2 desde mediados de mayo hasta
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septiembre. Para el andlisis se utilizaron datos durante tres afios de
observaciéon sucesivos (2011, 212 y 2013). Los datos climaticos y las
temperaturas medias del aire en grados Celsius y los eventos de lluvia en
mm fueron obtenidos por el observatorio nacional de Atenas a través de una

estacion meteorologicahttp://stratus.meteo.noa.gr/front).

Métodos y Resultados: Para establecer si existen posibles asociaciones entre
las poblaciones de abundancia de mosquitos y las variables climaticas, se
realizé primero un analisis de correlacion por pares. Ademas, se realizé un
analisis de regresion lineal multiple para ajustar la variable dependiente, a
las variables independientes mas significativas, segin el analisis de
correlacion. Ademads, para detectar correlaciones no lineales entre la
abundancia de Culex spy la temperatura, que fue la variable mas influyente,
se realiz6 un analisis de ondiculas.

En este andlisis, cada ondicula de escala se desplaza en el tiempo a lo largo
de todala serie y se compara con la serie original (abundancia de mosquitos
y datos climaticos). El proceso se repite para todas las escalas dando como
resultado coeficientes que son una funcién de la escala de la ondicula y el
pardmetro de desplazamiento. En este contexto, el andlisis de ondiculas se
utiliza para cuantificar similitudes (es decir, sincronizaciéon en el dominio
del tiempo con respecto a diferentes escalas) en series de tiempo que se
caracterizan por fluctuaciones transitorias.

El analisis temporal revelo6 fluctuaciones similares para todos los lugares de
muestreo y durante ambos afios las abundancias estandarizadas de
mosquitos indicaron picos de temporada temprana en mayo y junio,
seguidos de una disminuciéon en el ultimo trimestre de junio y un
resurgimiento durante julio y agosto, especialmente para el segundo afio de
observaciéon. En particular, la figura 6 muestra los patrones de vuelo
estacionales y los errores estandar de la abundancia de Culex adulto. sp.
capturados durante 2011 y 2012 en la prefectura de Imathia en el norte de

Grecia, asi como las autocorrelaciones asociadas para diferentes rezagos
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(semanas). Los recuentos representan observaciones semanales de
mosquitos atrapados desde mayo hasta mediados de septiembre. La
poblacién de mosquitos comenz6 a aumentar a fines de mayo y alcanzé su
punto maximo a mediados de julio durante 2011. En 2012 se captur6 un
numero considerablemente mayor de mosquitos en comparacién con 2011.
Ademas, durante 2012 se observaron dos picos, el primero a fines de junio
y el segundo a mediados de agosto. Durante ambos afios, las
autocorrelaciones no indican fluctuaciones bruscas y / o patrén periodico
claro en la serie temporal del mosquito con respecto a los diferentes
rezagos. La autocorrelacion luego decae a cero, indicando posible la
existencia de un proceso de promedio movil, aunque existe cierta
ambigiiedad en cuanto a los diferentes patrones observados entre los dos
afios de observacion.

Ademas y segun los resultados actuales, hubo una correlacién alta y positiva
entre la temperatura y la abundancia de mosquitos durante ambos afios de
observacioén (r = 0,6). Sin embargo, se observé una correlaciéon suave entre
la lluvia y la abundancia semanal de mosquitos (r = 0,29), asi como entre la
velocidad del viento (r = 0,29), respectivamente. Ademas, segin el modelo
de regresion lineal multiple, el efecto de la temperatura fue significativo.
Los recuentos de abundancia de mosquitos y las temperaturas medias
representan en la mayoria de los casos valores similares para periodos
cercanos a 1 semana, lo que indica el punto de menor varianza de la serie de
tiempo, aunque aparece en momentos de tiempo ligeramente diferentes. En
general, el analisis concordante de ondiculas cruzadas mostré que los ciclos
inter-semanales con un periodo entre 2 y 3 semanas entre la abundancia de
mosquitos y la temperatura fueron concordantes principalmente durante la
primera y ultima semana de la temporada. En particular, el analisis de
ondiculas cruzadas para 2011 muestra que los ciclos inter semanales con un
periodo entre 2-3 semanas entre la abundancia de mosquitos (log MTD) y
la temperatura (media) fueron concordantes. Esta concordancia es notable

principalmente durante la primera y ultima semana de la temporada (es
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decir, mayo , Junio y finales de agosto) pero no durante la mitad de la
temporada de verano (julio y principios de agosto). Durante 2012 el analisis
de ondas cruzadas mostro patrones analogos, aunque durante el inicio de la
temporada (finales de mayo a principios de junio) se observaron dos ciclos
inter-semanales con periodos de 1-2 semanas y 6-7.

Por lo tanto, aparece una mayor sincronizacion entre el mosquito y la
temperatura durante el inicio de la temporada (es decir, mayo-junio) y el
final de la temporada (es decir, septiembre). Esta sincronizaciéon o
concordancia es evidente para dos periodos que representan oscilaciones
similares entre los eventos maximos de mosquitos y la temperatura por
unidad de tiempo. Adicionalmente, valores mas altos sefialan una
sincronizacién muy alta entre los ciclos de abundancia de mosquitos y las
temperaturas medias, en contraste con valores cercanos a 0 que
representan una independencia de los ciclos en una escala de tiempo
determinada.

Ademas, hay dos puntos de influencia evidentes; durante el comienzo de la
temporada de 2012, en los periodos cercanos al 1y 7 respectivamente, que
representan la region del espectro de ondiculas en la que los efectos de
borde se vuelven importantes. En estos puntos se definen como el tiempo
de plegado electrénico para la autocorrelacion de la potencia de la ondicula
en cada escala, es decir, para ajustar.

Por tanto, el andlisis de ondiculas muestra una oscilacién progresiva en la
aparicion de mosquitos con el tiempo, que es mayor al inicio y al final de la
temporada. A diferencia de los métodos estandar de analisis, las ondiculas
pueden proporcionar informacién util sobre la estructura de oscilacién
resuelta en el tiempo de los datos de los mosquitos y la revelacién de una

asociacion no estacionaria con la temperatura.

Otro de los métodos de predicidon estocasticos que se desarrollaron en esta
Tésis, son dos modelos estocasticos de cadenas de Markov para predecir la

abundancia del mosquito Culex sp. En este contexto se consideran, otra vez,
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las capturas de mosquitos asi como las variables climaticas relacionadas
(temperatura y lluvia). Como en todo proceso estocastico que evoluciona en
el tiempo t y se define en un espacio de probabilidad (£, F, P). Donde ( es
un espacio muestral, F es un conjunto de resultados en el espacio muestral
y P asigna a cada evento de F una probabilidad, P corresponde la la matriz
de transicion. Si el numero de F no es contable, el proceso se indica
mediante {X (t): t > 0} o {Xt} t=0. En el primer caso el proceso se denomina
cadena en tiempo discreto y en el segundo, en tiempo continuo. Aqui se
consider6 el primer caso, ya que los datos se han observado en puntos de
tiempo especificos y no de forma continua.

Con base en el andlisis de correlacion cruzada, se determina que es
preferible utilizar la temperatura para condicionar la abundancia de
artrépodos vectores, ya que tiene una correlacion mucho mas fuerte que el
impacto de la lluvia como ya hemos visto. Existe una correlacion positiva
para la temperatura y el retardo de tiempo cero. Por lo tanto, es mejor
condicionar la temperatura en el momento mismo y no la temperatura una
semana antes o una semana después (es decir, los mosquitos no estan
rezagados en la temperatura), Ademas hay una correlacién positiva para la
temperatura y una relacidon negativa para la lluvia, ya que probablemente
afecta la actividad de vuelo.

Después de utilizar el algoritmo de agrupacion de k-medias para determinar
en numero de estadios, se han utilizado los k centros de agrupaciéon para
posicionar los datos y categorizarlos, considerando primero una situaciéon
con dos estados (niveles altos y bajos de poblacion) y luego cinco estados
(muy bajo, bajo, intermedio, alto y muy bajo). alto nivel de poblacién).
Hasta la fecha, para una duracién de secuencia de menos de 35 semanas,
como es el caso que estudiamos, los parametros del modelo no difieren
considerablemente de acuerdo con su contenido de entropia informativa y
el sistema se explicita un comportamiento aleatorio en lugar de
determinista, lo que sugiere que en un alto grado existe una matriz de

transicion subyacente que pretedemos determinar.
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Para el sistema de cinco estados y la red que se ha construido, las
probabilidades de transicion muestran que si durante una semana la
abundancia de mosquitos es alta (estado 4), existe un 10% de probabilidad
de que permanezca en el mismo nivel la préxima semana ( estado 4), 30%
de probabilidad de que esté en un nivel muy alto (estado 5), 30% de
probabilidad de que se mueva a un nivel muy bajo (estado 1) y sin
posibilidad de pasar a ninguna otra poblacién niveles (estado 2 y 3). Sin
embargo, debe tenerse en cuenta que las probabilidades cero de pasar al
estado 2 o al estado 3 podrian ser una indicacién de que existe cierta
incertidumbre en el proceso de estimacion relacionado con el conjunto de
datos particular utilizado, ya que si hubiera mas datos disponibles, estas
probabilidades de transicion serian observado con una probabilidad baja en
lugar de cero.

Utilizando los datos de las matrices de transiciéon, se ejecutaron
simulaciones de Matlab basadas en los modelos de cadena de Markov de dos
y cinco estados. En cada momento discreto del proceso de Markov o,
utilizando términos ecoldgicos, después de cada semana de observacion, se
podria tomar una decisién de control de mosquitos en funcién de los niveles
de poblacion previstos. La base de la decision sera la prediccion basada en
cémo evoluciona la cadena de Markov en funcién de los valores de la matriz
de transicion P. De acuerdo con los resultados de la correlaciéon, se
desarrollaron dos modelos, una cadena de MarkoV simple (MC) y una
cadena de Markov climatizada (CMC) para predecir ain mas la dinamica de
Culex sp. adultos, es decir, una cadena de Markov condicionada. Se
generaron cambios temporales en los perfiles de poblacién de mosquitos
para simular las probabilidades de un alto impacto poblacional. Las
probabilidades logradas con el modelo entrenado estdn muy cerca de los
datos observados y el modelo CMC describe satisfactoriamente la evolucion

temporal del proceso poblacional de mosquitos.
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En general, nuestros resultados numéricos indican que es mas probable que
el sistema de poblacion pase a un estado de alto nivel de poblaciéon, cuando
el primero es un estado de bajo nivel de poblacion.

Datos de campo sobre frecuencias de niveles sucesivos de poblacion de
mosquitos, que no se utilizaron para el modelado de MC inferido de datos,
se ensamblaron para obtener una matriz de transicién de intensidad
empirica y las frecuencias observadas. Los hallazgos coinciden hasta cierto
punto con los resultados empiricos en los que las probabilidades siguen
patrones analogos mientras que no se observaron diferencias significativas
entre las matrices de transicién del modelo CMC y los datos de validacion

(ChiSq = 14.58013, gl = 24, p = 0.9324451).

En la tercera parte de la disertacion se propuso utilizar tres tipos de redes
neuronales artificiales (ANN por sus siglas en inglés) como herramientas
matematicas para simular el funcionamiento complejo de la serie de tiempo
ecolégica (es decir, la abundancia de mosquitos en relacién con la
temperatura). Los enfoques estan inspirados en el funcionamiento del
cerebro humano. Las ANN tienen similitudes con las neuronas bioldgicas y
consisten en un conjunto de neuronas artificiales que interactiian a través
de sinapsis. Los modelos de red finales que se presentan tienen la capacidad
de procesamiento paralelo de datos y aprendizaje continuo a través de la
interaccion con el entorno. El grado de interaccion entre las sinapsis esta
determinado por pesos (pesos sinapticos). La red neuronal interactiia con
su entorno (es decir, las variables de interés) y los pesos sindpticos cambian
constantemente y, por lo tanto, fortalecen o debilitan el poder de cada nodo
de interaccion. Por lo tanto, la informacién de las variables externas (es
decir, el entorno) se codifica en los pesos sinapticos de la red y le da la
capacidad a la ANN para simular el proceso relacionado con esas variables.
Para la red, se utiliz6é un algoritmo de entrenamiento computacional que
tiene como objetivo optimizar mediante iteraciones el rendimiento del

modelo.
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Los tres modelos de redes ANN se utilizaron ademdas para describir y
predecir la incidencia no lineal y la evolucion temporal de una importante
especie de mosquito Culex sp. en el norte de Grecia. El primero es un modelo
ANN autorregresivo no lineal simple que utilizé valores de poblacion
rezagados como entradas, el segundo es una red neuronal recurrente
autorregresiva no lineal exégena (NARX), que esta disefiada para tomar
como entradas la temperatura como variable exdgena y la abundancia de
mosquitos como enddégena. Finalmente, el tercer modelo es una red
neuronal de retardo de tiempo (FTD) enfocada, que toma en cuenta solo la
variable de temperatura como entrada para proporcionar pronoésticos de la
abundancia de mosquitos como variable objetivo. En los modelos de ANN
aplicados, las predicciones de la dinamica de los mosquitos se realizaron a
partir de los valores previos pasados de la serie temporal de abundancia y
de los valores presentes y pasados de la entrada de temperatura exégena.
Hasta la fecha, para extraer estas dos variables de entrada clave, analizamos
previamente los coeficientes de correlacion de diferentes datos
meteoroldgicos con un desfase de tiempo impuesto. Ademas, se probaron
diferentes combinaciones de neuronas ocultas y retrasos para obtener los
mejores modelos de ANN. Las estructuras del modelo final han utilizado 10
neuronas ocultas y 2 retrasos (tiempo en semanas), porque estan dando
resultados satisfactorios después de un entrenamiento preliminar y
pruebas de diferentes combinaciones de neuronas ocultas y retrasos. La
division de datos se realiz6 al azar utilizando ambos conjuntos de datos
(2011 y 2012) en los que finalmente el 60% de los datos se utilizaron para
el entrenamiento NARX (38 pasos de la serie temporal objetivo)

En la mayoria de los casos, los errores de entrenamiento y validaciéon para
los modelos ANN disminuyen hasta el periodo resaltado y el mejor estado
de rendimiento de validacién para el modelo NARX esta en 0.388 en la que
se minimiza el error cuadratico medio (mse).

Ademas, el mse de los datos de prueba se minimiza después de 4 iteraciones

y permanece estacionario después de ese punto, lo que indica que el modelo
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habia alcanzado su estado 6ptimo. Sin embargo, los mejores estados para
los datos ocurren después de 3 interacciones, en los que el mse de los datos
se minimiza.

En la mayoria de los casos, los tres modelos se comportaron bien
considerando la naturaleza no lineal de los datos de abundancia de
mosquitos adultos. Sin embargo, el modelo NARX, que tiene en cuenta la
temperatura, mostré los mejores rendimientos generales de modelado. El
coeficiente de correlacién estuvo en niveles aceptables en ambos casos y con
respecto al conjunto de datos disponibles (R = 0,623 y R = 0,534 para los
modelos NARX y FTD, respectivamente). Ademas, teniendo en cuenta la
naturaleza abrupta y no lineal de los datos de los mosquitos, las
predicciones generales del modelo se encuentran en niveles aceptables
cuando se comparan con los datos de abundancia reales. Sin embargo,
aunque, el modelo NARX predijo algo mejor(R = 0,623) en comparaciéon con
el modelo FTD (R = 0,534),la ventaja del FTD sobre el modelo de red
neuronal NARX es que se puede aplicar en el caso de que los valores pasados
del sistema de poblacién, en este caso la abundancia de mosquitos, no estén
disponibles para su prondstico. Esto es muy importante teniendo en cuenta
que los datos de vectores de artropodos no siempre estan disponibles como
datos climaticos.

Ademas, debe mencionarse que el rendimiento del modelo es
considerablemente mayor al tomar en cuenta solo los datos de
entrenamiento (es decir,r = 0,8 y r = 0,62, para los modelos NARX y FDR,
respectivamente) que el rendimiento general final de los modelos. Por
tanto, los valores del rendimiento se ven afectados, a la baja, durante la
validacion y prueba del modelo. Por lo tanto, se puede esperar que el
rendimiento del modelo se mejore considerablemente si el tamafio del
conjunto de datos de prueba fuera mayor. Sin emabargo, para hacer que el
modelo de red sea mas eficiente, se ha decidido mantener un conjunto de

datos mas grande para ser preprocesado para el entrenamiento a pesar de
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los retornos mas pequefios mostrados para las pruebas y los resultados de
validacion.

Considerando las actuaciones finales de los modelos de ANN, en la mayoria
de los casos, las desviaciones entre pronoéstico y valores reales durante
ciertos pasos de tiempo estan en el rango de -1.4, 1.3 bins que es
relativamente bajo y la distribucién es alrededor de cero. Ademas, la
frecuencia global del término de error tiene 20 bins. El error de la red
neuronal NARX varia de -1.2 (bin mas a la izquierda) a 1.03 (bin més a la
derecha) mientras que el error de la red neuronal FTD varia de -1.1 (bin mas
a la izquierda) a 0.9 (bin mas a la derecha). Para ambos modelos y
especialmente para el modelo NARX, la gran mayoria de las salidas de
entrenamiento tienen un error menor y leve entre -0,4 y 0,4. Esto
probablemente se deba al hecho de que el conjunto utilizado para el
entrenamiento contenia mas datos (es decir, el 60% de los datos) que los
conjuntos de datos de validacién y prueba. Ademads, las funciones de
autocorrelacion del error 1 para los modelos ANN se encuentran en limites
aceptables. En particular, con un retraso cero, la autocorrelacion es igual a
la mse, mientras que para las siguientes autocorrelaciones rezagadas, el
coeficiente de correlacion no excede los intervalos de confianza superior e
inferior, salvo en algunos casos. Esto significa que la mayoria de los valores
auto-correlacionados rezagados, para ambos modelos, son pequefios y en
niveles aceptables considerando que los valores rezagados de cero a 15
(semanas) estan entre los intervalos de confianza superior e inferior. En
general, la prediccion tuvo un buen desempefio en ambos casos, aunque
hubo partes en las que los resultados de la produccion se desempefaron
peor y especialmente durante el final de la temporada.En gran medida, esto
debe abordarse al conjunto de datos particular que estaba disponible y al
hecho de que se utilizé un conjunto de datos limitado para la capacitacion.
Sin embargo, considerando que la dindmica de la poblacién de mosquitos
parecia bastante abrupta, caracterizada por alteraciones no lineales, dado el

conjunto de datos limitado, las predicciones generales del modelo se

21



encuentran en niveles aceptables para ambos modelos. Ademas, la inclusién
de la temperatura como factor exdgeno mejoré considerablemente el
rendimiento del modelo NARX y los datos predichos siguen en alto grado las
observaciones. Tenga en cuenta que tanto los modelos como los datos
representan datos reales de la poblacién de mosquitos. Se presenta un
algoritmo computacional de ANN final.

El algoritmo describe los pasos, las elecciones iniciales y las rutinas
relacionadas (es decir, bucles-decisiones) que se han utilizado para
terminar con el modelo ANN de retroalimentacion final con linea de retardo
en la entrada (es decir, un paso de tiempo - semana). De acuerdo con el
algoritmo aplicado, la primera preparaciéon de datos y las pruebas
preliminares se realizan para decidir cudl es el mejor conjunto de datos
utilizado para el entrenamiento y la validaciéon del modelo. Los conjuntos de
datos de validacién consisten en la muestra de datos retenidos del
entrenamiento, mientras que el conjunto de datos de prueba se usa para
ajustar (optimizar) los hiperparametros del modelo ANN (es decir, tomar
pesos de la ANN entrenada y usarla como inicializacién para un nuevo
modelo siendo entrenado y asi sucesivamente). Inicialmente, el proceso
comienza seleccionando una pequeila cantidad de neuronas y (es decir, 5-
10) con respecto a algunos pesos aleatorios iniciales (p. Ej., aprendizaje
supervisado) para las sinapsis y cada vez que se entrena la red da como
resultado una solucidn diferente debido a los diferentes valores iniciales de
peso y sesgo, asi como a las propiedades de la red (por ejemplo, numero de
neuronas). El modelo se vuelve a entrenar varias veces para garantizar que
tenga una buena precision hacia una soluciéon 6ptima basada en una
medicién de error. El error, como se muestra en la seccion de material, se
define como la diferencia de la salida de la ANN y la serie de datos deseados
externos preespecificados. Finalmente, se estima el error para diferentes
estructuras ANN relacionadas con el nimero de capas ocultas para derivar
el modelo final que funciona mejor. El modelo final optimizado se puede

alimentar con nuevos datos numero de neuronas). El modelo se vuelve a
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entrenar varias veces para garantizar que tenga una buena precisidn hacia
una solucién 6ptima basada en una medicién de error. El error, como se
muestra en la seccion de material, se define como la diferencia de la salida
de la ANN y la serie de datos deseados externos preespecificados.
Finalmente, se estima el error para diferentes estructuras ANN relacionadas
con el numero de capas ocultas para derivar el modelo final que funciona
mejor. El modelo final optimizado se puede alimentar con nuevos datos
numero de neuronas). El modelo se vuelve a entrenar varias veces para
garantizar que tenga una buena precision hacia una solucién 6ptima basada
en una medicién de error. Finalmente, se estima el error para diferentes
estructuras ANN relacionadas con el nimero de capas ocultas para derivar
el modelo final que funciona mejor. El modelo final optimizado se puede
alimentar con nuevos datos el error se estima para diferentes estructuras
ANN relacionadas con el numero de capas ocultas para derivar el modelo

final que funciona mejor.

Discusion y conclusion. En esta disertacion se introducen una serie de
métodos novedosos y enfoques de modelado relacionados para predecir la
dinamica de la poblacién de mosquitos vectores en un clima mediterraneo.
Se utilizaron datos de clima abierto y abundancia de Culex sp. para aplicar
los métodos de prediccion propuestos y demostrar su utilidad en
condiciones de campo realistas. Ademads, considerando que Culex sp. es el
principal vector de transmisién del WNV, la filariasis y otras especies de
Culex sp. encefalitis transmitida, los métodos predictivos de los estudios
actuales pueden contribuir a comprender el funcionamiento de la dinamica
de los vectores de artrépodos, asi como a predecir los periodos de alta
actividad de los mosquitos. Esta informacién es importante para iniciar
acciones de control de mosquitos y romper los ciclos de transmisién de
enfermedades vectoriales. Desde el punto de vista de la salud publica, el

presente estudio contribuye al desarrollo de herramientas de decision para
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ser utilizadas en acciones de control de vectores, asi como para iniciar
estrategias de manejo de salud publica y prevenir los virus del WNV, la
filariasis y la encefalitis. Aunque se probaron varias variables climaticas (es
decir, participacion, velocidad del viento, direccion del viento) afectan la
abundancia de mosquitos, la matriz de correlacién de Pearson no indicé
correlaciones significativas entre estas variables, pero si con la temperatura.
Ademas, la regresion lineal multiple sugirié una asociacion positiva entre la
abundancia de mosquitos y las temperaturas medias. Esto concuerda con
otros estudios que han demostrado que entre los factores climaticos
candidatos, la temperatura ejerce, con mucho, la influencia mas significativa,
probablemente porque el aumento de las temperaturas ambientales
aumenta las tasas metabdlicas, el rendimiento reproductivo, y el
comportamiento de buisqueda de hospedadores de estos vectores y, por lo
tanto, afectan la abundancia de mosquitos. Considerando los resultados del
analisis de ondiculas se revelé que la oscilacion de la abundancia de
mosquitos estd dominada por diversos modos semanales y esto se puede
observar en el respectivo espectro de ondiculas para ambos afios de
observacién. Sin embargo, los espectros de potencia de ondiculas revelaron
que las altas frecuencias, tanto para la abundancia de mosquitos como para
la temperatura, estan en la misma banda de frecuencias altas (=4 semanas)
un hecho que no se puede ver al observar la serie de tiempo de los mosquitos
per se. Ademas, el andlisis de ondiculas cruzadas aplicado a los mismos
conjuntos de datos muestra nada mas que un modo comun de oscilacion
significativo, principalmente durante el inicio y el final del periodo de vuelo
del mosquito. Por lo tanto, en contraste con las correlaciones simples, el
anadlisis de ondas cruzadas tiene la ventaja de revelar la relacion de tiempo
probable entre las series de dos tiempos. Por lo tanto, el analisis de
ondiculas es particularmente adecuado para el andlisis de las relaciones
entre dos series de tiempo, y especialmente apropiado para seguir el cambio
gradual cuando se ve forzado por variables exdgenas. Ademads, esta

demostrado que el analisis de ondiculas funciona mejor que la regresion
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lineal, lo que concuerda con otros estudios que muestran que las técnicas
clasicas de anadlisis estadistico pueden ser inadecuadas para modelar series
de tiempo no estacionarias. Con base en el analisis de correlacion
mencionado de la afrenta entre las poblaciones de mosquitos y las variables
climaticas, es evidente que la temperatura ejerce un mayor impacto en la
fenologia del vector de artrépodos adultos en comparacion con los eventos
de lluvia, a pesar de que esos mosquitos, particularmente prosperan en
condiciones de humedad ya que la lluvia afecta indirectamente a la
poblacién de mosquitos mediante el aumento de los criaderos.

Por lo tanto, se consider6 necesario incluir las variables meteorolégicas mas
influyentes (por ejemplo, solo la temperatura) para mejorar el rendimiento
de un modelo MC simple mediante el uso de un modelo CMC. En realidad, se
ha encontrado que el modelo de cadena de Markov de la dindmica de la
poblacién de vectores de artropodos que estd condicionado por las
temperaturas, funciona considerablemente mejor que el modelado
estocastico de MC simple de la dindmica de la poblacién de vectores.
Considerando, los diferentes modelos de ANN autorregresivos que se han
aplicado para describir la dinamica poblacional adulta de Culex sp. en la
mayoria de los casos se han realizado en niveles aceptables considerando la
dindmica no lineal de la abundancia de mosquitos adultos. Sin embargo, el
modelo que tiene en cuenta la temperatura como variable de entrada
exdgena, como en el caso del modelo de CM condicionado por la
temperatura, se comportd mejor que los demas. En comparacién con otros
métodos de prediccion paramétrica, la principal ventaja de las redes
neuronales es, en primer lugar, que almacena el conocimiento y la
experiencia del entorno utilizado para su entrenamiento (en este caso, la
abundancia de mosquitos y la temperatura), que luego puede recuperar
para simular el proceso. En segundo lugar, tiene la capacidad de generalizar,
es decir,

En conclusion, los métodos propuestos para simular y predecir la dindmica

de los mosquitos se recomiendan como viables para modelar la dinamica de
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la poblaciéon de enfermedades vectoriales con el fin de hacer
recomendaciones en tiempo real utiles para la toma de decisiones de
politicas de salud dinamicas. Los modelos estocasticos propuestos, asi como
las técnicas actuales de aprendizaje automatico y computacional, de este
trabajo proporcionan una abstraccion precisa del progreso de la poblaciéon
de vectores de artropodos observado dentro del conjunto de datos utilizado
para su generacion. Sin embargo, el estudio actual puede considerarse
también como un nuevo punto de entrada a la extensa literatura de
modelizacién ecoldgica, entomologia médica, asi como en la simulaciéon de
epidemias de enfermedades por vectores artrépodos. Desde el punto de
vista de la salud publica, por lo tanto, los resultados del modelo actual
podrian sentar las bases para pronosticar los niveles de poblacion de
vectores de artropodos y alertar a las personas pertenecientes a grupos
vulnerables y para implementar medidas efectivas de control de vectores
para proteger la salud publica durante incidentes de alta presion
poblacional. Por tultimo, y desde un punto de vista practico de la salud
publica, vale la pena seguir desarrollando un sistema de apoyo a la toma de
decisiones basado en la disponibilidad de los datos que pueda incorporar
los modelos epidimioldgicos actuales, asi como los relacionados, para
proporcionar prondsticos de la poblacién de artrépodos en tiempo real. Los
sistemas de soporte a la decisiéon pueden ayudar a automatizar el proceso

de toma de decisiones y evaluar las diferentes acciones de gestion sanitaria.

Palabras clave: Culex sp., Apoyo a la toma de decisiones, epidemiologia,

redes neuronales de cadenas de Markov, salud publica, analisis de ondiculas.
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Chapter 1: Introduction

1.1 Problem statement

Vector born disease account for about one third of all cases of emerging
diseases. During the lastyear’s mosquito vectors, particularly have a
worldwide critical role in the outbreak of vector borne diseases as well as in
the re-emergence and dramatic expansion of eradicated diseases (Gubler
2010). Mainly because of favorable environmental conditions and through
the development of suitable water sites for larval growth, which are mostly
produced by human activities, mosquito populations occur at high
abundance and in near proximity to susceptible hosts.

Until recently, the highest incidence of mosquito transmitted diseases was
observed in the tropical and subtropical areas. Yet, during the past years,
several neglected vector-borne diseases, which in a few events were
occasionally sporadic, get to a dynamic reappearance and cause outbreaks
in temperate climates as well. In Europe, especially during the last decade,
several species that have incurred due to importation and are potentially
able to biting nuisance, have now become established and therefore
changing the epidemiological status of various areas with regard to the
occurrence of vector-borne disease (Medlock and Leach 2015). However,
among the large number of mosquito species recognized worldwide, only a
limited number are causing transmission of diseases and viruses, including
species of the genus Culex, Anophelesand Aedes (Harbach and Howard
2007, Harbach et al. 2015).

Among the large number of mosquito species recognized worldwide, only a

limited number are causing transmission of diseases and viruses, including
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species of the genus Culex, Anopheles and Aedes (Harbach 2007, 2013 and
2015).

Moreover, in contrast to invasive species such as Aedesspp. in
Europe, the Culex spp. complex is probably the most common and has been
indicated as the primary vector of flaviroviruses such as the West Nile virus
(WNv) (Engler et al. 2013). In particular, species belonging to the genus
Culex are carriers of important diseases in warm-blooded animals,
including humans, equidae, birds and other animals. The diseases they
transmit are mainly due to viruses of the arbovirus family such as WNv but
also Japanese encephalitis, or St. Louis encephalitis. Culex spp. serve also as
important vectors nematode which are cause of the filariasis disease as well
as protest parasites belonging in the phylum Apicomplexa causing various
forms of avian malaria.

Consequently, various European states have suffered from sporadic
outbreaks of disease of the WNV, in both human and horses, although the
most significant epidemic has been occurring in 1996 in south-
eastern Romania (Nikolay et al. 2015). In southern Europe, the WNV has
been observed in the indigenous mosquito species Culex pipiens including
Italy and Portugal (Calzolari et al. 2009, Brugman et al. 2018). Moreover, in
Greece, C.pipienshas been identified as the dominant and endophilic species
in rural areas in central Macedonia including the prefectures of
Imathia, Kilkis, Pella, Pieria and Thessaloniki (Papaetal. 2011). Prevention
and control of arbovirus infections can be meet mainly through the
implementation of vector control strategies during the time of vector
activity along with surveillance to determine virus activity and vaccination
where possible (LaBeaud et al. 2011, Kading et al. 2019). The global
distribution of WNv is shown in Figure 1.

The WNV is maintained in an enzootic cycle between birds (amplifying
hosts) and the ornithophilic Culex spp. vectors, while humans, horses and
other mammals are incidental hosts (Papa etal. 2010). Evidence of WNv has

been reported in the majority of the sub-Saharan Africa as well as in North
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Africa including Egypt, Marocoand Algeria (Brugmanet al. 2018,
WHO 2019), while its expansion in Europe has been linked to the presence
of infected birds, acting as traveling reservoirs and the major bird migration
paths to Europe (Pfeffer and Dobler 2010, Jourdain et al. 2019). The life
cycle of WNv is shown in Figure 1a.

Filars are exclusively parasites of the tropics and subtropics including the
southern part of the Mediterranean and Middle East. The best known of
these diseases is lymph node filariasis which is also referred to simply as
filariasis. Filariasis on the other hand is a parasitic disease in which the
lymphatics of the abdomen become blocked. It is caused by a group of
worms called filariae. Culex spp are the main vector of the nematode,
although species belonging to other genera such as Anopheles, Aedes spp

and Mansonia spp may also transmit the nematode (Paily et al. 2009).
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Figure 1.The transmission cycle of the West Nile virus (a) and filariasis (b) (CDC
2021).
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The adult nematode worm lives inside the lymph nodes and lymph vessels,
which it eventually occludes, causing the striking clinical picture of
elephantiasis. The life cycle of filariasis is shown in Figure 2. It is apparent
that the transmition cycle breaks if the mosquitoes are eradicated
preventing the tranmsition of the desease.

Till now, the most effectual means to prevent infection from West Nile virus,
as well as other mosquito borne diseases, is to target mosquitos to prevent
bites and disease transmission. Hence, vector control, which relies on the
use of insecticides, is the principal means of mitigating the spread of related
diseases (Weidhass and Focks 2000). However, to be effective such a
strategy, it is important to predict the temporal change in mosquito
abundance and how it is affected by weather conditions (Deichmeister JM,
Telang 2011, Ferraguti et al. 2013, Lalubin et al. 2013).

Nevertheless, although Culex spp. populations have been the object of
intense vector control, realized pesticide treatment efficacy remains
difficult to prove. This is generally due to the various effects of climatic
variability on mosquito population dynamics, the fine scale and regional
landscape heterogeneity, as good as due to the high stages of uncertainty in
the prediction of population and disease outbreaks. Although climate has a
direct effect on mosquito populations there is a complex interrelationship
between vectors (e.g. abundance, behaviour, distribution and longevity),
their pathogens (e.g. incubation period, replication and lineage) as well as
their hosts and their interactions ( Lafferty et al. 2001, Lafferty 2009,
2018).

In this context several mathematical models were used to connect the
biological processes of vector dynamics and climate (Lord 2004, Lord 2007,
Grassly and Fraser 2008, Luz et al. 2010, Eikenberry and Gumel 2018). To
date, most epidemiological and vector population models have a
deterministic nature and rely on some basic assumptions to define the
various parameters of vector and disease dynamics under study

(Wonham 2004, Wei at al. 2008, Lewis et al. 2010). Yet, most often these
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parameters are unknown thought necessary to be first estimated to
parameterize the model to be used later on for projections. Moreover,
because of the impacts of various internal and external factors, the temporal
evolution of population’s processes is non-linear and characterized by
random perturbations and, consequently, it is generally difficult to analyze
and forecast population dynamics using only mechanistic models
(Damos 2015).

On the other hand, stochastic models, recognize that all variables are
probabilistic in nature and are handled as such and thus potentially may be
employed to model non-linear ecological processes and advance our
understanding of vector population dynamics which is utile for public health
planning (Damos 2011). Thus, avoiding inherent relationship assumptions
and parameter estimation in deterministic models; stochastic models
provide a realistic data-based alternative to simulation of complex systems

and robust predictions that could make informed and sound decisions.

1.2  Objective of the study

The main objective of the current work is preventing mosquito transmitted
diseases, such as WNy, filariasis and encephalitis, through the formulation,
development and application of novel stochastic modeling methods.
Emphasis is given on multivariate analysis and modeling of Culex spp.
population dynamics and related ecological variables and how they can be
used as decision tools for arthropod vector control and public health
planning.

With the mosquito abundance prediction, particularly, the public health
authorities could predict the time evolution of mosquito abundance which
is a prerequisite for successful management and prevention of related
vector transmitted diseases.

To meet the main objective the following specific objectives have been set:
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1. To identify the time where there is a high risk of mosquito populations
through a typical growth season in a Mediterranean climate, namely Greece
and an accurate apprehension of the climate affecting their dynamics to be
later used on climate related multivariate modelling. To detect any
synchrony and non-linear dependency between mosquito population
dynamics and environmental variables using parametric and non-
parametric methods and straightforward techniques such as wavelet
coherence analysis. This vital in understanding the hazard of the
transmission due to the presence of the vector and favourable climate
conditions.

2. To present a general stochastic modeling approach enabling the
multivariate analysis of vector population dynamics and related ecological
variables including temperature and precipitation. Particularly, since
fluctuations in mosquito population dynamics appears to a non-linear and
to certain degree random, the specific aim was the development, application
and testing for the first time a climate sensitive conditional Markov chain
model (MCM) for simulating and predicting the population dynamics of
arthropod vector dynamics and with the view to be potentially used in
arthropod vector control programs and decision making.

3. To develop, implement, train and validate an exogenous non-linear
autoregressive neural network (NARX), along with a recurrent neural
network (RNN) and to provide a framework utile for the development of
expert systems. These models represent a novel class of soft computing
modeling methods that can be used as a complement to the MCM model with

the view to be integrated in a public health decision support system.
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2: Material and Methods

2.1 Detecting the relationship between arthropod vector abundance and

climatic variables

2.1.1. The correlation coefficients and linear model

To establish if there are possible associations between the mosquito
abundance populations and the climate variables, we first performed the
pairwise correlation analysis. Moreover, multiple linear regression analysis
was performed to fit the dependent variable, to the most significant,
according to the correlation analysis, independent variables (Ganser and
Wisely 2013). For the above reason as well as for simplicity, combinations
and interaction terms of these variables were not included. The linear
models were fitted to each observation year separately, including two
climate variables (mean temperature in C° and rain events in mm/m?) and
one lagged mosquito population variable (lag 1) as indicated by

autocorrelations.

2.1.2. Wavelet analysis and the continuous wavelet transform

The wavelet analysis allows the analysis of the relationship between signals,
and is particulate appropriate for following gradual change in a time series
in forcing by exogenous variables (Cazelles et al. 2007, 2008). By definition,
the continuous wavelet transform (CWT) decomposes a signal (time series)
over dilated and translated functions known as ‘mother wavelets. The
mother wavelet is function of zero mean expressed as the function of two
parameters one for the time position (A¢) and one for the frequency (Aw) of

the wavelet (Cazelles et al. 2008).
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The CWT applies a wavelet as a band pass filter to the time series of
interest to be analyst. Particularly, the wavelet is stretched in time, ¢ by
varying scale (), in a way that n = s-t, and normalizing (Grinsted et al.
2004). The most common wavelet is the Morlet defined as (Maraun and

Kurths 2004):
Yo(n) = - 1/4giwong—n?/2 (D).

Where w, is the frequency along with time is are both without dimensions
and here taken to have value w, = 6 to satisfy the admissibility condition
which implies that the transform vanishes at zero frequency. The CWT of
the candidate time series variablex,,, n=1,2,...,n with time step J; is defined
as the convolution of x,, with the scaled and normalized wavelet as follows

(Grinsted et al. 2004):
(2).

5 ' 5
WE(s) = |2 By o [(n' = 1) 2]

The complex argument of W, (s) can be interpreted as the local phase, while
the wavelet power is defined as:

W (s)I? (3).

Because the wavelet is not completely localized in time the CWT has edge
effects (errors occur at the beginning and the end of the power spectrum of
finite-length time series) due to periodicity assumptions of the wavelet
transform. These should not be ignored and are defined as a Cone of
influence (COI), which also gives a measure of the decorrelation time for a
single spike in the time series (Torrence and Compo 1998, Foufoula-
Georgiou and Kumar 1996). The decorrelation process reduces
autocorrelation within the series and help to define critical change points
and detect patterns not explained by seasonal trends. Technically it bounds
the region of the wavelet spectrum in which edge effects become important
and is defined here as the e-folding time for the autocorrelation of wavelet

power at each scale.
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Thus, the wavelet analysis includes class of functions which are well
localized in time and frequency and exist for a finite duration. A stretched
wavelet (large scale factor and low frequency) permits to capture the slowly
varying changes in the time series, while a compressed wavelet (low scale
factor and high frequency), helps in capturing any abrupt changes.

In the analysis each scale wavelet is shifted in time along the entire
length of the series and compared with the original series (mosquito
abundance and climate data). The process is repeated for all scales resulting
in coefficients that are a function of wavelet scale and shift parameter. In
this context wavelet analysis is used to quantify similarities (i.e.,
synchronisation in the time domain in respect to different scales) in time
series which are characterized by transient fluctuations (Tiwari 2016, Sato

etal. 2018).

2.1.3. The cross wavelet transforms

Because mosquito and climate data exhibit slowly abrupt changing trends
or oscillation punctuated with transients, we apply the cross wavelet
transform (XWT) for examining the relationship between mosquito
abundances and temperatures in the time- frequency space (Kilpatrick et al.
2004, Grinsted et al. 2004). The XWT can be used to measure the degree of
synchronization between two different time series conjointly and how it
evolves in time in terms of changes in its behaviour in a given time period
(Kilpatrick et al. 2004). In this work the XWT exposes regions in the time
(i.e., weeks of observation) with high common power and further reveals
information about the phase relationship between mosquitos and
temperature to be thought of as the local correlation between the series.

The cross-wavelet transforms (XWT) of two time series Xnand Y, is defined

as (Torrence and Compo 1998):
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WX (s) = WX (W (s) (4.

Where W,Y*(s) is the complex conjugate of W,Y (s). The cross-wavelet power
is:
WX ()] (5).
The confidence intervals for the XWT are derived from the square root

product of two chi-square distributions. The probability distribution of the

XWT of the two time series for a respective confidence level Z,, (p) is:

WE (W (s) Z,(p) 6),
D(l S S|<p): vp Plg(PIZ ()

Ox0y

where P and P} are the theoretical Fourier spectra and oy, o are the
standard deviations, respectively. The analysis was performed using R (R
Core Team 2017), including the package ‘biwavelet’ based on the WTC
MATLAB package written by Aslak Grinsted and the wavelet program
written by Christopher Torrence and Gibert P (Gouhier et al. 2019).

2.2. Stochastic modeling of arthropod vector disease variables through

Markov chains

2.2.1. Stochastic process of ecological time series

Let X(t) be the ecological variable (e.g., mosquito population, or climatic
variable), which is considered as a stochastic process that evolves in time ¢
and is defined in a probability space (£, F, P). Where ) is a sample space, F
is a set of outcomes in the sample space and P assigns each event of F a
probability. If the number of F is not countable then the process is denoted
by {X (t): t = 0}, or {Xt} t=0. In the first case the process is called a chain in
discrete time and in the second, in continuous time. Here we consider the
first case, since data have been observed in specific time points and not
continuously.

Let now S be the space created by all possible process values X(%) in

discrete time. If S=(0, 1,..), we refer to a stochastic process with integer
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values or a discrete state process, e.g., a population threshold or class that
corresponds to the number of mosquitos captured in a day, or a class of
mean temperature values for that day etc. Hence, we consider S to take real
and finite nvalues and this contemplative process is called an n-dimensional

stochastic process.

2.2.2. The Markov chain model

The above stochastic process consists of a Markov chain (MC) which is
determined by its initial state distribution and a transition probability
matrix P of size m is (Damos et al. 2011):
P(i,j) = Pr[X(t + 4t) = i|(X(¢) = j], t=12,...,n (7).

The simplest kind of discrete variables the transition matrix may have
two stages S=(1,2) which we define in their simplest form as a high or low
level of the ecological variable (e.g, mosquito vector population,
temperature) or occurrence or not occurrence (e.g., rain). A sequence of
weekly observations constitutes time series of that discrete variable. For the
first order Markov chain, the transition probability to future state depends
only on its current state. Thus, knowing that at week 7the variable X is either
in state 1 (low population levels X(i) = a), or state 2 (high population levels

X(i) =b) the related transition matrix is:

o _ [P11 P12 8)-
P(i,j) = [pil'] - [Pz1 Pzz] ”
Where:
{p11+P12 =1 ©
P21 +P22 =1

considering that P is a row stochastic matrix. By considering m states,

S=(1,..,m) a higher dimension of the transition matrix is as follows:
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P11 . 'plm'l (10).
PG, ) = [py] = | C rl}jzl,...m
Lot - Do)
Where 0 <p;; < 1,2}’;1}91-]- =1,vi=1,..,m and m is the number of
states. A state Sj is said accessible from state Si (written Si — §j) if the
defined transition system starting in state Si has a positive probability to
reach the state Sj at a certain point, i.e., 3n> 0: p;; > 0. Two states are said
to communicate if both Si — Sj and Sj — Si. Moreover, any state Si is
considered periodic if any return to state S7occur in multiplies of &7 steps
and k7is the period and k7= GCD {n: Pr(Xn = si |X0 = si) > 0}, where GCD is
the greatest common divisor. Thus, for ki = 1 the state Si is aperiodic, else if
ki >1 the state Si is periodic with period ki. In other words, a state is periodic
if after a fixed number of transitions, ki >1, the state can only return it itself

otherwise it is aperiodic.

2.2.3. Data inferred Markov chain modelling

Because the time evolution of a mosquito population process is too
complicated to derive laws and construct parameterizations from first
principles, we have used a data-driven method to construct
parameterizations by inferring from data.

First the data is classified into different scale states (e.g., population levels)
and a matrix is estimated for each scale state. In particular, for m states there
have to be m? matrix entries to be estimated. The transition probability
matrix entry P(i, j) is estimate as follows (Dorrestijn et al. 2013):

T(i,j) (12).

p(im,n) = TG

Where T(i,j) counting for the transition from m to n observed states
observed in a given data set and p(i, j) is accutally the maximum likelihood

estimator of p(i, j).
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Thus, the Markov chains are ‘trained with’ data accrue from real
observations with the aim of mimicking the observed behavior of the
population process afterwards in which a finite state MC is inferred from

data by estimating its transition probability matrix:

T(@,j) = Z 1[X(t + At) = {J1[X(t) = j] (13).

2.2.3. The conditional Markov chain model

For the case we are analyzing, the occurrence and level of mosquito
population depend on the physical state of climate conditions. Particularly,
since mosquitoes are arthropods and all arthropods are poikilothermic
organism, their development and occurrence of states are affected by
favorable temperatures and rain conditions. (e.g., favorable versus
unfavorable climate). This means that if a MC is used to mimic the process
of population occurrence X(t), it can be improved by taking into account the
condition of a second process Y(t) which is related to a climate variable (e.g.,
state transitions of temperature levels or rainy conditions). Under this
assumption, probabilities take the following form (Dorrestijn et al. 2016):

P,(i,)) = Pr[X(t + 4t) = i|(X(t) = j,Y(t) = V], t=1,2,...n (14).

2.2.4. Data inferred conditional Markov chain modelling

If a finite number of states is considered (say five as you will see later), then
itis possible to construct a conditional Markov chain (CMC) by estimating a
transition probability matrix, P, , for each possible state. This can be done
by knowing the time evolution of the series for a finite number of states that
is used as basis to train the chain model. The transition matrix is estimated

as follows:
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T, ) (15).

P,(i,j)= m

In which

T,(i,)) = X X (t + 4t) = i[1[X () = j]11 [X(t) = ¥)] (16).

In which 1 is the indicator function: 1(4) = 1 if A is true and 1(4) = 0 if A
is false (10), while ¢runs over time instances in the data set used to train the

Markov chain model.

2.2.5. Determination of transitions states and data encoding

In order to work with finite state conditional Markov chains, vector
population dynamics and climatic variables must be discrete and coded to a
finite number of states. If the data is uniformly distributed, this can be done
using tree classification schemes based on pre-defined thresholds.

However, since ecological data are most often not uniformly distributed,
choosing thresholds is difficult and could result in classes to which no data
is assigned and classes to which almost all data is assigned. Therefore, we
have used k-means clustering algorithm, performing preliminary trials, with
predefined k:2-6 to overcome the problem of subjective defining the
different mosquito population levels [18]. In particular, we considered each
set of mosquito population observations x1, x2,...,.xn as a d-dimensional real
vector and implemented a standard, k-means clustering algorithm aiming to
partition the n observations into k sets (k < n) that correspond to discrete
population states: S = {S1, S2, ..., Sk} so as to minimize the within-cluster

sum of squares (WCSS):

k

2

args minz Z”xj - yi”
i=1 Xj

where p; is the mean of points in Si. Let now nj denote the number of

(17),

individuals who were in state i in period t-1 and are in state j in period t. We

40



can estimate the probability of a mosquito population being in state ;j in
period tgiven that they were in state 7/in period ¢-1, denoted by pj; using the
following formula (Bielecki et al. 2017, Lafferty et al. 2019):

L) (18).
Ty

The probability of transition from any given state 7is equal to the proportion
of mosquitoes that started in state 7and ended in state jas a proportion of
all individuals in that started in state 7.

Thus, using the above scheme the observed behavioural stream of
population dynamics is first converted into a symbolic sequence of
population states to be used later on the estimation of the transition

matrices.

2.2.6. Markov chain modeling and equilibrium distribution

Field data on frequencies of successive mosquito population levels,
which were not used for the data inferred MC modeling, were assembled to
obtain an empirical intensity transition matrix. Then the empirical
transition matrices were generated and the observed frequencies were
compared visually, as well as statistically, with that obtained from the MC
models.

Two methods have been applied to evaluate the equidistribution between
the observed sequences and that of the MC models. First, the homogeneity
of the transition matrices was tested using a Chi-square (ChiSq) minimum
discrimination statistic test. In particular, we have wused the
verifyHomogeneity function inspired by Kulbach and Kamler [50, 51].
Particularly, considering the time evolution of the mosquito population as a
stochastic process that generates: i =1, 2,..., n discrete time Markov chain
samples and that the cardinality of the state space is S, the Homogeneity

function verifies whether a chain belong to the same unknown one. The
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function shows that its test statistics follows a chi-square law and is

estimated as follows:

Yy n*fy 19).
2 * 21':1Zj=1 k:lfijkln fzf]]: ~x%(r* (r—1)) (19)

If there are | realizations of a Markov chain of order 1 with S states, the null
hypothesis, Ho, is that the transition probability matrix is the same for all 7
and for every possible pairing of j and k and P(X>Chsq) which is less than
or equal to the significant level, « = 0.05. In the current work we have
considered the case of 1=2 chains as two realizations of the S=5-state
Markov chains (theoretical and empirical) that are tested for homogeneity.
The frequency entries, are: f;;, and i=1,2,j=1,2,... and k=1,2,..,5.

Secondly, the asymptotic distribution properties of the theoretical and
the empirical intensity transition matrices were compared using an
entropy-based divergence distance measure (Damos 2015). In this case, we
considered the mosquito population stochastic process as homogenous and
thus starting from an initial distribution of population states a limiting
probability, IT;, exist:

lim (P) =1; ,i=12,...,n (20).

It follows that:

iﬂi (] (21).

This is called the normalizing condition. We further associate an
entropy:

- (22).
H; = — z pij logpi;
j=1

H; represents the average amount of uncertainty of the population
system for moving one step ahead being initially in state Si. We are now
interested in estimating the average uncertainty of the chain for moving one

step ahead of any other initial state, which is (Damos 2015):
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n n (23).
H(X)=H(P) = —ZEPiPUlOgPU

j=1
Considering the Markov chain process as ergodic (e.g., MC and CMC models
as well as the Observed mosquito population process used for model
validation), so that:

H(X) = lim (/1) (24).

Finally, I define a distance measure by introducing the following norm:

||Ht _tholl, t:1,2,.... (25).

Where H,_,the entropy associated with the initial probability distribution
II,_; representing the different mosquito population levels and H,, the
entropy of each time step ahead t=2,3...

The above scheme quantifies the rate of convergence from a starting non-

equilibrium probability distribution towards equilibrium.
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2.3 Soft computing of arthropod vector population dynamics

2.3.1.General structure and functioning of ANNs

ANNSs were proposed as a mathematical tool to simulate the complex
functioning of the human brain. The brain has the ability to parallel
processing of data and continuous learning through the interaction with
environment. The ANNs has similarities with biological neurons and consist
of a set of artificial neurons that interact through synapses (Recknagel 2001,
Schmidhuber 2015). The degree of interaction between the synapses is
determined by weights (synaptic weights). The neural network interacts
with its environment (i.e., variables of interest), and the synaptic weights
change constantly and thus strengthening or weakening the power of each
interaction node. Thus, the information from the external variables (i.e.,
environment) is encoded in the synaptic weights of the network and gives
the ability to the ANN to simulate the process related to those variables. In
order for the network, it used a training algorithm which aims to optimize
through iterations the model performance.

The main advantage of neural networks is first that it stores
knowledge and experience from the environment used for its training (here
mosquito abundance and temperature), which it can then recall to simulate
the process. Second, it has the ability to generalize, that is, to extract the
basic features of a system characterized by noisy data and complex non-
linear processes. The artificial neuron is the structural unit of an ANN at is
shown in Fig.1 In this neuron, information always flows in one direction,
from left to right, i.e., there is no loop feedback. In the first phase, each input
is multiplied by the synaptic weight, w and in the second, the weighted
inputs and an externally applied bias threshold factor adds up and gives net

input according to an activation potential (Browne 1997).

An ANN can be defined by a different number of neurons that are

connected and interact according to their weights. Figure 2a shows a neural
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network that consist of three layers: the input layer (variables used to train

the model), the hidden layer (which consist of four neurons) and the output

layer. Figure 2b shows the most representative activation functions used in

ANN models.
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Figure 2. Simplified neuron which consists of the structural unit of an ANN.
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Figure 3. Simplified ANN that consists of three layers: the input layer (variables used to
train the model), the hidden layer (which consist of four neurons) and the output layer
(") and a summary of the most common activation functions, f (b"). The functions are
(a) (a) sigmoid, (b) Leaky ReLU, (c) tanh(x), (d) Maxout, (e) ReLu, and (f) ELU.
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2.3..2 Formulation of the NAR, NARX and FTD Neural networks

Soft computing of the mosquito vector population dynamics was modelled
using artificial neural networks (ANNs). Three different autoregresssive
models are applied. I have first applied a simle non-linear autoregressive
model (NAR). Secondly, a standard non-linear autoregressive network with
exogenous inputs (NARX) which is a part of discrete-time non-linear
systems which conceptually has feedback connections which enclose the
layers of the network and is using the past values for prediction (Bousada
et al. 2018). Lastly, a focused time delayed neural network (FTD) was
applied and which may considered as a simplified version of the NARX in
with the output feedback is eliminated (see below).
The self-regulating non-linear autoregressive neural network (NAR)
working with an external mosquito abundance time series is as follows
(MatLAB 2021):

yO=f(y(t-1),y(t-2),...y(t-p)) +e(t) (26)
Where y is the mosquito abundance which depends on previous mosquito
population values p and et is error term. The model is trained by a sequence
of available mosquito abundance data and predicts the population
abundance y(t) with data of previous abundances of the same sequence.
Further, to find the best model predictions a combination of available
mosquito abundance data and different model configuration tests were
performed with various delays of mosquito population based on the
autocorrelation function (ACF). To date, the ACF reveals how the correlation
between any two values of the population sequence changes as the
separation changes. Thus, it is a time domain measure and provides a
criterion of defining the memory of the population process.
The defining equation for the NARX model with a parallel architecture can

be expressed as follows (Beale et al. 2015, Akhtar et al. 2019):
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y(t) =F([y(t —1),y(t - 2), ...,y(t — dy),u(t —1),u(t 27)
—2),..,u(t—d,)]

Where F(-), is the mapping (unknown non-linear) function of the neural
network, y(t) is the output of the NARX at time step ¢ y(t —1),y(t —
2), ...,y(t - dy) are the past output values of the NARX, u(t — 1), u(t —
2),...,u(t — d,) are the exogenous inputs of the NARX, d,, is the number of
input delays and d,, is the number of output delays.

Thus, the output of the NARX networky(t), is fed back (close loop) to the
input of the network through delays #and thus equation 1 can be described

in a compact form as follows (Menezes and Barreto 2006):
y(&) = F(ly(®),u(®)] (28).

Where y(t) € Rand u(t) € R denote the output (mosquito abundance) and
the input (temperature) of the model at describe time ¢ respectively, for
different lagged output and input memory orders.

Moreover, a NARX neural network is usually trained in series-parallel (SP)
mode first and later on, on a parallel mode (PM). To date in the SP mode
only the actual values are taken in to account and form the outputs as

follows:
9) =F([y(t - 1),y —2),..,y(t — dy),ut — 1),u(t (29).
~ 2)! ...,u(t L du)] = F([ySP(t)ru(t)]

In the PM mode, the outputs which are estimated are fed back to the
network and are included in the outputs:
y&) =F(9p(t—1),9t—-2),...9(t — dy),ult — 1),u(t (30).
= 2), . u(t = dy)] = F([yp(®), u(®)]
In the case of the FTD neural network the output memory of a NARX model

is set by a zero delay (ny=0) resulting in a plain neural network architecture

which can be described as follows:

y(t) = Flu(t — 1), u(t —2),..,u(t —d,)] = F([u(t)] (31D).
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Where u(t) € R is the input regressor (here temperature). Thus, the FTD
neural network is a simplified formulation of the NARX model which

discards all the dynamic learning information of the output past memories.

2.3.3. Architecture and components of the NARX and FTD neural network

Both, the NARX and the FTD neural networks consist of the input layer and
the output layer which are approximating the map function F(-) through an
internal architecture known as the Multi-Layer Perceptron (MLP). By
definition the classical MLP consist at least of three layers: the input, the
hidden and the output layer. If /is the number of neurons in the layer, ;is
the number of elements in input vector p;, then each vector of the input
layer is connected to each neuron input trough the weight matrix W

(Matworks 2020):

W11 Wi Wyj (32).
|W2’1 Wz'z e Wz'jl

Wi,l WN,Z Wi,j

Since in most cases the number of inputs to a layer may differ from the
number of neurons, the matrix is no necessary nxn. For each single layer,
each neuron multiplies the input layer p; given be the previous layer by the
weight vector w;; which yields to the following scalar product: p; - w; ;
(Matworks 2020). The weighted sum of inputs (netsum) consists of the
transfer potential, 8, which aggregates the inputs and its weights as follows:

The transfer potential passes through a predefined activation function,f,

to obtain the output a; of the following neuron (Boussaada et al. 2018):
a; = f(Rit1pjwy; + b) (33)
Where /is the index of neuron in the layer, jis the input index of the neural

network and b is a bias vector. The output of the NARX neural network has

a hyperbolic tangent sigmoid transfer (fansig) function in the inner layer

48



and a pure linear function (purelin) in the output layer which are given as
follows:

f(6) = tansig(0) = T35 (34),

f(@) = purelin(0) = 6 (35).

The equations which describe the function of the first and the second layers
of a NARX and FTD neural network are as follows (Aribowo 2017):

J (36),
al(t) = Z wy p1(t — d1) + b1

J (37).
a2(t) = Zwkj al(t) + b2

Where 7and k are the number of neurons, w;; is the weighted input of the
network, p1(t — d1) are the lagged inputs of the layer 1, a1(t) is the output
of the hidden node, wy ; are the weights of the second layer and a2(t) is the

output of the kth neuron in the Ith layer at the time (t).

2.3.4. Model training, testing and validation

In the applied NARX model, the predictions of mosquito dynamics were
performed from the past predicted values of the abundance time series and
from the present and past values of the exogenous temperature input. To
date, to extract these two key input variables we prior analyzed the
correlation coefficients of different meteorological data with an imposed
time lag. Moreover, we have used 10 hidden neurons and 2 number of
delays-time in weeks, because they are giving satisfactory results after a
preliminary training and testing of different combinations of hidden
neurons and delays. Data division was performed random using both data
sets (2011 and 2012) in which finally 60% of the data were used for NARX

training (38 target time series steps), 20% for validation (13 target time
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series steps) and 20% for testing (13 target time series steps). To date that,
the validation datasets consist of the sample of data held back from training,
while the test data set is used for fine tuning (optimizing) the ANN model
hyper parameters (i.e., taking weights of the trained ANN and use it as
initialization for a new model being trained and so on).

Each time step corresponds to the weekly counts of the Culex sp. mosquito
abundances. The Levenberg-Marquardt (LM) was used as training
algorithm in which the network training automatically stops when
generalization stops improving, as indicated by an increase in the mean
square error (mse) of the validation samples which is used as cost function,
C defined as:

L& 1 (38).
Cwb) =2 @) =5 =3’

Where w and b referred to all the weights and biases in the network,
respectively, nnis the number of training inputs, y; are the outputs when y;
is the input. The LM algorithm minimize Cas small as possible by optimizing
weights and biases through gradient descent. The partial derivatives of the
cost function with respect to any weight w and any bias b were estimated
through backpropagation algorithm.

All data analysis was performed using Matlab numerical computing
environment and ANNs Simulink toolboxe and related programing language

developed by Mathworks (Mathworks 2020).

2.4. Study area, mosquito surveillance data and handling
2.4.1 Study area
The population dynamics of Culex. spwas studied along 50 km close to

the city of Thessaloniki on the west coast of the Thermaic gulf in Northern

Greece. The special geography and climatic conditions favor the
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development and evolution of mosquito populations.In especial, the
location lies close to the coast and consist of a wetland complex which
includes the Lagoon of Kalochori, the estuary of the Gallikos river, the delta
of the Axios river, the estuary of the Loudias river, the delta of the Aliakmon
River, the wetland of Nea Agathoupoli and the Alyki Citrus wetlands as well
as closely related agricultural and semi urban areas. The climate of this area
is classified as Csa Mediterranean climatic type (Képpen, 1923) with long,
hot, and dry summers (the mean maximum temperature lies often in the
range of 29° and 35° degrees of Celsius), relatively mild and rainy winters,

and average annual air temperatures of approximately 15°C.

2.4.2 Mosquito Surveillance and climatic data

Free mosquito trap data available from the open European Union

Data Portal (EU ODP) (http://data.europa.eu) (Figure 4), which provides

access to data from the European Union (EU) institutions and other EU
bodies which can be reused for commercial or non-commercial purposes
(European Commission Decision 2011/833/EU). In particular, we used
adult mosquito trap data of Culex sp. sampled from 11 locations in central
Macedonia-Greece. Data were handled as vectors which consisted of close
to weekly time intervals of the number of adult mosquitoes captured in CO2
traps from mid-May to September. Data during three successive observation
years (2011, 212 and 2013) were used for the analysis.

Climate data and mean air temperatures in Celsius and rain events in
mm were obtained by the national observatory of Athens through a
meteorological station, which is located in Makrohori town which in the
same location and latitude and near to the mosquito observation area

(http://stratus.meteo.noa.gr/front).
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Figure 4. European open access data portal.

2.4.3 Data curation and transformation

Mosquitoes were sampled weekly for a total of nine weeks from May till
September. Because of slight differentiations between the times intervals
of some of the trap counts, data were transformed to mosquito per Trap per
Day (MTD) and thereby averaged over the 11 nearby sampling locations
(Figure 5). The index estimates the average number of mosquitoes
captured in on the day that the trap is exposed in the field. Its value is the
result of dividing the total number of captured flies by the product obtained
from multiplying the total number of serviced traps by the average number

of days the traps were exposed. The formula is as follows:

M (39)
MTD = —— '
T-D

where: M = Total number of mosquitos trapped, T= Number of serviced

traps and D= Average number of days traps were exposed in the field. The
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function of this population index is to have a relative measure of the size of
the insect population in a given space and time (IAEA?, Trapping-wide fruit
fly programs, Vienna 2003). To meet normality assumptions the MTD data
were further transformed as follows:

MTD_log = log(MTD + 1) (40).

Figure 5. Mosquito surveillance area in Greece (left) and specific Culex sp.

surveillance locations (in yellow) in the wider area of Thessaloniki municipality in

Northern Greece (right).

! [nternational atomic energy agency
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Chapter 3: Results

3.1. Detecting seasonal transient correlations between populations of the
West Nile Virus vector Culex sp. and temperature with wavelet coherence

analysis.

3.1.1. Adult mosquito seasonal flight patterns

The temporal analysis revealed similar fluctuations for all sampling
locations and during both years the standardized mosquito abundances
indicated early season peaks in May and June followed by a decline in the
last quarter of June and resurgence during July and August especially for the
second observation year. In particular, figure 6 shows the seasonal flight
patterns and the standard errors of adult Cu/ex. sp. captured during 2011
and 2012 in the prefecture of Imathia in Northern Greece as well as the
associated autocorrelations for different lags (weeks). Counts represent
weekly observations of mosquitoes trapped from May till mid-September.
The mosquito population started to increase in late May and peaked in mid-
July during 2011. In 2012 a considerable higher number of mosquitos were
captured compared to 2011. Additionally, during 2012 there were observed
two peaks the first in late June and whilst the second in mid-August. During
both years, the autocorrelations do not indicate any abrupt fluctuations
and/or clear periodic pattern in the mosquito time series with regard to
different lags. Nevertheless, after some perturbations the autocorrelation
later decay to zero, indicating possible the existing of a moving average
process, although there is some ambiguity regarding the different patterns

observed between the two observation years.
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Figure 6. Average (Culex sp.) mosquitos per trap per day (MTD) (straightlines) and
standard error (dashed lines) in relation to normalized weekly counts and

autocorrelations of in relation to previous count lags.

3.1.2. Pairwise correlations between mosquito abundances and climate variables

In 2011 there was a high and positive correlation between temperature
and the average mosquito counts (r=0.60) as well between temperature
and lagedl log transformed MTD (r=0.65). Nevertheless, the highest
correlation was observed between temperature and the log transformed
MTD (r=0.78). Additionally, a very poor correlation was observed between
rain events and mosquito abundances (r=-0.32, for the log transformed
MTD), as well as between wind speed or wind direction and mosquito
captures (r=0.23 and r=-0.14, for the log transformed MTD, respectively)
(Figure 7). The same patterns, although with lower values of correlation
coefficients were observed during the season of 2012 (Figure 8). In
particular, there was a positive correlation between temperature and the
average mosquito counts (r=0.46). The highest correlation was observed
between temperature and the log transformed MTD (r=0.74). On the other

hand, a very poor and negative correlation was observed between rain
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events and mosquito abundances (r=-0.11, for the log transformed MTD),
as well as between the wind speed or the wind direction and the mosquito

captures (r=0.005 and r=0.006, for the log transformed MTD, respectively).
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Figure 7. Correlations and linear trend with confidence intervals, between climate
variables: mean temperature (Temp_M11, Temp_m_12), Rain (Rain_11, Rain_12), wind
speed (Speed_11, SPeed_12), wind direction and Culex sp. adult mosquito counts
expressed as mosquito per trap per day (logMTD_11, logMTD-2012), lagl log
transformed mosquito per trap per day (logMTD(t-1)11, log(t-2)12) for 2011,

(correlations are estimated by residual maximum likelihood, REML, met
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Figure 8. Correlations and linear trend with confidence intervals, between climate
variables: mean temperature (Temp_M11, Temp_m_12), Rain (Rain_11, Rain_12), wind
speed (Speed_11, SPeed_12), wind direction and Culex sp. adult mosquito counts
expressed as mosquito per traps per day (MTD_11, MTD_12), log transformed mosquito
per trap per day (logMTD_11, logMTD-2012), lag1 log transformed mosquito per trap
per day (logMTD(t-1)11, log(t-2)12) for 2012 (correlations are estimated by residual
maximum likelihood, REML, method).

Table 1 illustrates the p-values for testing the hypothesis of no
correlation between the different expressions of mosquito abundances and

the climate variables. Each p value represents the probability of getting a

il "_'
LT T T
] _r‘k [ |

3qr= 04'531 J'%TEB r‘iﬁ]¥5 e r=03
.

eed _12|{r=0009%
L

-

3.

ey

15 30

RRFER_ [=DAlEN, =(R0004
i g e

=0,0993

-
“u

: 'il

., .i-. L
L ] [ ]
=01Y58 |rE.02447
- e

r=-0.0655 * |r=-0227C0
. .

qL s Jw‘s%- o

MTD_12|r=05529

b

nm?.s

r j_?.?;zn

. '-
[ ]
|
0 1000

57

" r=-0,0325
- et
et
o 1 “'5
! Ic:-gMT 2r=-ﬁi§11-.'i,-
5 3
.i-l__" -'-;_
. 3‘:
. -
--i,lEQS-_ logM
.*___-'"I—_
. L ]
- :“-‘



correlation as large as the observed value by random chance, then the true
correlation is zero. During both years of observations, significant p - values
(<0.05) are observed between log transformed mosquito abundance (log
MTD). Grounded on this relationship the number of variables used to model

the mosquito abundance was deducted (see below).

Table 1. p-values of correlations between adult mosquito counts and climatic

variables.
p-value
Culex spp. Climate variable 2011 2012
MTD Mean temperature 0.003* 0.015*
Rain (mm) 0.968 0.309
Wind speed (km/h) 0.784 0.253
logMTD Mean temperature 0.000* 0.009*
Rain (mm) 0.406 0.450
Wind speed (km/h) 0.681 0.484
logMTD(t-1 Mean temperature 0.022* 0.041*
Rain (mm) 0.873 0.881
Wind speed (km/h) 0.191 0.393

* Significant at the p=0.05 level

3.1.3. Multivariate linear regression model between mosquito vector abundance
and climate variables

The overall multivariate linear regression model is represented in terms
of a Leverage plot in Figure 9 and 10 are scatter plots of the x predicted
residuals against their observed residuals. During both years, 2011 and
2012, the points at the extremes exert lower leverage than points in the

middle exert. The parameters of the multiple linear regression models
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Figure 9. Leverage scatter plot of overall linear regression model performance
between actual log(x+1) transformed mosquitos per trap per day and predicted values
for 2011 (straight red line: model, dashed red lines: confidence intervals, dashed blue

line: midpoint of estimates, RMSE: root mean square error.
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Figure 10. Leverage scatter plot of overall linear regression model performance
between actual log(x+1) transformed mosquitos per trap per day and predicted values
for 2011 (straight red line: model, dashed red lines: confidence intervals, dashed blue

line: midpoint of estimates, RMSE: root mean square error.
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testing the associations among environmental variables and mosquito
abundance are given in table 2. In general, model performance was higher
during 2011 compared to 2012. Nevertheless, during both years (2011 and
2012) the effects of the climate predictor variable and especially
temperature, was significant (p<0.05). However, model performance was

higher for 2011 (Rsq=0.60) compared to 2012 (Rsq=0.26).

Table 2. Parameter estimates, standard errors (StdError), t Ratio and
probability of rejecting the hypothesis the parameter is significant different from
zero (Prob>|t|) for the multivariate linear regression models between Culex. sp
mosquito abundance (log MTD ), and mean temperature, rain and lagged 1

mosquito abundance (logMTD(t-1)) applied for the years 2011 and 2012.

Year Parameter Estimate S.E. t Ratio p-value
2011 Intercept -0.939 0.624 -1.50 0.148
Temp_M11 0.12 0.033 3.62 0.001*
Rain_11 -0.01 0.01 -0.64 0.527
logMTD(t-1)11 | -0.015 0.217 -0.07 0.942
ANOVA 0.004*
Year Parameter Estimate Std t Ratio p-value
Error
2012 Intercept 0.698 | 0.994 0.70 0.487
Temp_m_12 0.106 | 0.034 3.12 0.003*
Rain_12 -0.2 | 0.238 -0.84 0.405
logtMTD(t-1)12 | -0.347 0.161 -2.16 0.037*
ANOVA 0.012*

* Significant at the p=0.05 level
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3.1.4. Continuous wavelet transforms

Figures 11 and 12 shows by terms of a continuous wavelet transform the
two variables of consideration for 2011 and 2012, respectively that are
expected to be linked according to the analysis so far namely the mosquito
abundance and the mean temperatures. The time-scale map shows the
correlation between the data variation and the signature of the wavelets
used. Thus, the hot colours represent the time point (week) in relation to
different periods of the variable (the peaks of the time series) in which they
are perfectly synchronized with the mother wavelet for each case (i.e.,
baseline population peak). It is apparent that a higher synchronization, in
respect to different scales (periods), of mosquito abundance with the
mother wavelet appears at the end of the time domain (i.e.,, August to
September), whilst the synchronization temperature and the mother
wavelet appears at the start of the season (i.e., May to June). The bold black
line represents the cone of influence (COI) that delimits the region not
influenced by edge effects which may indicate some false periodic effects

due to periodicity assumptions of the wavelet transform.

The mean temperatures are a key factor that directly may affect the
development and the population dynamics of arthropods such as mosquitos.
The continuous power spectrum of the mosquito abundance counts and
mean temperatures for 2011 depict the same power, for a period which is
close to 1, although appear on a different time scale. During 2012, the
wavelet spectra displayed different significant areas (designated by solid
dark lines - COI). In particular the mosquito abundance data displayed large
significant areas of both the high and low periods (i.e., frequencies),
whereas the mean temperature data only on the low period close to 1. These
results were to some degree expected considering that the previous
correlation analysis and the multivariate regression model showed a poorer

influence of temperature on mosquito abundance for 2012 in comparison to
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2011. In addition, their location was not consistent and especially for the

mosquito abundance.
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Figure 11. Continuous wavelet transforms and power spectrum of log(x+1) MTD
(a) and mean temperature (b) for 2011, respective
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Figure 12. Continuous wavelet transforms and power spectrum of log(x+1) MTD

(a) and mean temperature (b) for 2012, respectively.
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3.1.5. The cross-wavelet transforms

The cross-wavelet coherence analysis between temperature and adult
mosquito population occurrence in respect to weekly sampling intervals (time)
are shown in Figure 13. White lines correspond to confidence intervals. In both
plots the y-axis represent the time scale, or period measured in weeks, at which
mosquito abundance and temperature are coherent (synchronized), while the
x-axis represents successive time where counts were performed (note that
during 2012 the sampling space was bigger than 2011). Coherence values are
given to right of each plot and ranging from zero (blue - cold colours) to one
(red - hot colours). The two series (mean temperature and vector mosquito
population) share power (i.e., variability - synchronization) in the red-hot
regions of the plot. It is apparent that a higher synchronization between
mosquito and temperature appears during the start of the season (i.e., May-
June) and the end of the season (i.e.,, September). This synchronisation is
apparent for two periods which represent similar oscillations between the peak
events of mosquito and temperature per unit of time. Black lines indicate the
cone of influence, not affected by edges of the data and are significant coherent
(p<0.05).

Moreover, the cross wavelet coherent analysis for 2011 show that inter
weekly cycles with a period between 2-3 weeks between mosquito
abundance (log MTD) and temperature (mean) were coherent mostly
during the first and the last weeks of the season (i.e., May, June and late
August) but not during the middle of the summer season (July and early
August). During 2012 the cross wavelet coherent analysis showed
analogues patterns, although during the early season (late May to early
June) there were observed two inter weekly cycles with period 1-2 weeks
and 6-7 (Figure 6b). This can be inferred by viewing the y-axis in respect to
the x-axis which represents time (in weeks). In particular the y-axis scale
indicates the period of the cycles, and the coherence, which is depicted by
hot colours, which represent the overlap that are displayed in the mosquito

counts and the respective temperatures (Poh et al. 2019). The coherence
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can be understood as a special type of correlation estimate, which does not
depend upon the normality assumptions of the series. Additionally, higher
values point out a very high synchronization between the cycles of the
mosquito abundance and the mean temperatures in contrast to values
which are close to 0 which represent an independence of the cycles at a
given time scale. Moreover, two cones of influence (COI) are apparent
during early season of 2012, with periods close to 1 and 7 respectively,
representing the region of the wavelet spectrum in which edge effects
become important and are defined here as the e-folding time for the

autocorrelation of wavelet power at each scale.
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Figure 13. Cross-wavelet coherence analysis between temperature and adult

mosquito population occurrence in respect to weekly sampling intervals (time).
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3.2. A climate conditioned Markov Chain model

3.2.1 Mosquito population dynamics and cross correlation with whether
variables

Successive mosquito catches through the observation period and
meteorological data are presented in Figure 14. These data correspond to
the standardized weekly counts of Cu/exmosquito species (MTD), as well as
the mean temperatures (°C) and rainfall incidence (mm) recorded in two
successive seasons (2011 and 2012) of typical mosquito activity (May
through September) under a typical temperate climate in Northern Greece.
As presented in Figure 1(a) there are similarities in the time evolution of the
three variables, but it is not easy to evaluate the degree to which this occurs.
Nevertheless, based on the cross-correlation analysis, we determine that it
is preferable to use temperature to condition the abundance of arthropod
vectors, as it has a much stronger correlation than the impact of rain (Figure
15). For the cross-correlation analysis all the available data were used in a
combined way to detect inherent correlations and increase the validity of
the results.

There is a positive correlation for temperature and that the cross-
correlation at time lag zero is highest for temperature. Hence, it is best to
condition on temperature at the moment itself and not temperature a week
earlier or a week later. The cross-correlation at time lag zero is highest for
temperature (i.e., Mosquitos are not lagging temperature), and there is a
positive correlation for temperature and a negative relationship for rain.
This is in consistence with previous study analysis (section 3.1), suggesting
that higher temperatures result in more adult mosquito populations, while

the opposite occurs for rain which probably affects flight activity.
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Figure 14. Observed time series of mosquito abundance (Y: log_MTD), rain levels
(Z: Rain) and mean temperature (X: Temperature (°C). The data correspond to two

consecutive periods of mosquito activity (combined periods of 2011 and 2012).
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Figure 15. Cross correlation between mosquito abundance and Temperature (Red

line) and between mosquito abundance and Rain (Green line) as function of time

lag (weeks).
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Based on the time lagged correlation analysis, we derive that it is best
to condition on temperature at the moment itself and not temperature
a week earlier or a week later. However, we cannot exclude the
possibility that in reality mosquitos could lag the temperature for
shorter time intervals (i.e., by maybe one single day), but this cannot be

detected since the data consist of averages over a week.

3.2.2. Data partitioning, population transition networks and model training

After using k-means clustering algorithm, the k cluster centers have been
used for positioning the data and considering first a case of two states (high
and low levels of population) and then five states (very low, low,
intermediate, high and very high population level). The same process has
been applied to temperature data. First, [ consider a case of two states (high
and low temperature levels) and then five states (very low, low,
intermediate, high and very high temperature level).

Moreover, because we expect that transition probabilities may affected by
the length of the input data, we have performed a preliminary analysis, using
different lengths of input variables, to find the point from which the size of
the sequence does not differentiate the transition probabilities of the
mosquito population. To date, for a sequence length>35 weeks the model
parameters do not differ considerable according to their informational
entropy content and the system explicit a random behavior rather than
deterministic suggesting that to a high degree an exact underlying transition
matrix exists.

Figure 16 depicts a directed graph (or trained network) which represents
the actual transition matrix of the mosquito abundance systems. The
criterion of determining how many states to use in the Markov chain
depends on both the characteristics of the time series data (range) and the

criterion used to limit the classes (e.g., k-means) as previous described. In

69



this work I have decided to use first the simplest case, having two clusters
as well as the example of having five states based on the data range
distribution and k-means clustering statistics. Thus, the transition matrix
and the relative graph shown were built for a vector population system with
two states (high and low) and five stages (very low, low, intermediate, high

and very high) (Figure 16a and b, respectively).

@) (b)

Figure 16. Transition matrix of the mosquito abundance system illustrated in terms

of a directed graph (or network). (a) The transition matrix has been constructed for
two states (high and low) and (b) for five stages (very low, low, intermediate, high and

very high).

The values that are shown represent the probability of transition from
one state to another in the form of an arrow. States are represented as
vertices (or nodes) whereas transitions are represented as directed
edges (or links). This representation scheme allows the population
system of mosquitoes to change from state 1 (e.g.: node i - low
population) to state 2 (e.g., node j high population) along the k edges of
the graph through a path of length k from i to j. For the five states
system, for instance, the transition probabilities show that if for a week

the mosquito abundance is high (state 4), there is a 10% chance that it
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will remain at the same level the next week (state 4), 30% chance that
itwill be at a very high level (state 5), a 30% chance that it will be move
at a very low level (state 1) and no chance to move to any of the other
population levels (state 2 and 3) (Figure 2b). Yet, it should be noted that
the zero probabilities to move to state 2 or state 3 could be an indication
that there is some uncertainty of the estimation process related to the
particular data set used, since if more data were available these
transition probabilities would be observed with a low probability

instead of zero.

3.2.3 Markov chain model realizations of mosquito population levels

Utilizing the data from the transition matrices, Matlab simulations
were executed based on the two and five states Markov chain models,
respectively (Figure 17 and 18). The charts show the weekly sequence
of the mosquito population levels with two and five states, where the
stochastic process X (t) remains in the same state, or, moves from one
state to another, depending on the probabilities of the transition matrix.
At each discrete moment of the Markov process or, using ecological
terms - after each week of observation, a mosquito control decision will
be made depending on the predicted population levels. The basis of
decision will be the prediction based on how the Markov chain evolves
based on the values in the transition matrix P. The division into five
population states, compared with only two, results in sections of the
series where the X(t) process presents large deviations from the
probability range of values as it evolves over time. By making predictions
over time, in order to make decision-making actions, it is our intention
to capture the time point where the probability of a high population
increases and to avoid any action if the prediction shows that the

probability value of the observed variable will decrease. Otherwise, if the
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state

forecast indicates that the observed arthropod vector population

variable will remain in its present state over a longer period (i.e., low or

moderate population level), it is of little practical interest as it is difficult

in that situation to decide to undertake control action.
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Figure 17. (a) Long term sequence of observation of the mosquito population

process having two states, (b): realization of a Markov Chain trained model on these

observations.
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Figure 18. (a) Long term sequence of observation of the mosquito population
process having five states, (b): realization of a Markov Chain trained model on these

observations.

3.2.4. Conditional Markov chain model realizations of mosquito population levels

Taking into account the temperature-dependent Markov chain, the
situation is different from the previous example because an additional
variable is known from the model which can improve simulation
performance and population prediction efficiency (Figure 19). The
different states are; State 1: very low mosquito population or
temperature levels, state 2: low mosquito population or temperature
levels, state 3: moderate mosquito population or temperature levels,
state 4: high mosquito population or temperature levels, state 5: very
high mosquito population or temperature levels). Each time period
corresponds to an observation for a finite number of successive
seasons. The initial state at time 0 corresponds to the first observation
made. Due to the relatively limited data set and to avoid less accurate
transition probabilities the CMC model in this study was trained and

tested on the same two season’s data. The actual observations that have
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been used to run the model (Figure 19a) is very close to the realizations
generated by the conditional Markov Chain model which was trained on
these observations (Figure 19¢) in contrast to the realization of the non-
conditioned of the Markov Chain model (Figure 19b). Again, the
prediction is built solely on empirical data from the past and never from
the future which is very important to decision-making. Say for example,
thatata given time point, but before making any control action decision,
we know the states of the process in the two preceding moments, then
we can judge to implement an action against the vector if the population
level prediction is high. In summary the simulation results with the
conditional Markov chain model we came up with more promising

results than those with the simple Markov chain.
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Figure 19. (a) Long term sequence of observation of the mosquito population

process having five states (straight black line) and the process of a large-scale

temperature having five states (red dash - dotted line), respectively and acting as

background variable (b): realization of a Markov Chain trained model on these

observations and (c) realization of a conditional Markov Chain trained model on these

observations.
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3.2.5 Validation of Markov chain models and homogeneity

Figure 20a and 20b depicts the sequence of realizations generated from the
trained MC and MCM models and that of the empirical intensity transition
matrix, respectively and which were created using data that were not used
for MC model training. The MC model and the empirical realization follow a

similar pattern although there are also slight deviations in some time points.
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Figure 20. Medium term sequence of observations of the mosquito population
process having five states generated from the trained model (black strait line) and that
of the empirical intensity transition matrix. (a) Markov chain model and (b) conditional
Markov chain model (pink dashed line) which were resembled using data that were not
used for the model training.

These deviances could be justified by the fact that the amount of data

available for model evaluation was relatively small. Nevertheless, over all
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the general model patterns fit well to that of the observed probabilities and
this is in accordance with the results of the Chi-square test which test the
null hypothesis that both realizations are homogenous, that is, they come
from the same matrix of transition probabilities. Particularly, there were no
significant differences between the transition matrix of the MC model and
the transition matrix used for validation (ChiSq=18.736, df=24, p=0.765).
Additionally, no significant differences were observed between the CMC

model and the validation matrix (ChiSq=14.58, df=24, p=0.932).

3.2.6. Limiting probabilities of Markov chain models and stationary distribution.

The convergence of the three Markov chain (MC, CMC models and observed
transitions) are illustrated in Figure 21a, b and c, respectively. Our findings
match to certain degree the empirical results in which the probabilities
follow analogous patterns. For instance, by looking at the plot we observe
that all probabilities convergence fast and the final probabilities are
analogous to the stationary distribution. Yet, the chain which was developed
using the empirical data shows slight deviations and especially for low
population levels, although they finally converge with a consistent rate.

Figure 21d illustrates the similarities of the time evolution of the entropy,
which is related to the average probability of the MC, CMC and the validation
data, starting from the initial probabilities of mosquito population levels
towards equilibrium (e.g., stationary distribution for each case). The
Markov chain models have shown very similar convergence patterns

towards equilibrium.

(b)
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Figure 21. Limiting probabilities of a 5 states Markov chain according to the MC
model (a), the CMC model (b) and the empirical MC of the observed validation data (c)
as well as the mixing times towards the steady-state probability (d). The steady state
represents the equilibrium distribution when the mosquito population dynamics is

considered as ergodic process.

A different representation of the conditional data driven Markov chain
transition matrix (e.g., direct graphic) used to project the temporal
development of the mosquito population system is shown in Figure 22. This

illustration indicates of how and to what extent the system evolves after
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many steps (probabilities are not indicated). Based on this representation,
we conclude that it is more likely for the system to go into a state of high
population level, when the former is a state of a low population level. On the
other hand, there is a lower probability to remain in the same state of low
or even high population pressure, especially in the case of the five-state
transition matrix. So, the transition matrix can be the fundament for the
decision on a control method in a given moment - either a high or moderate
arthropod vector population level, depending on the probability of

occurrence of a state lying below or above the current level.

(b)

Very Low

Moderate

Very High

Figure 22. Mosquito Population Transition Network with two states (a) and five
states (b) depicting state transition probabilities indicated by different arrows (thicker

arrows indicate greater probability of transitions).
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3.3. Soft computing of the dynamics of a medically important mosquito

vector using recurrent and dynamic artificial neural networks

3.3.1. Network architecture

The NARX neural network is a nonlinear auto-regressive model with
exogenous Inputs. Figure 23 is a graphical illustration of a NARX network,
in a parallel identification mode, with du input and dy output delays. The
NARX neural network structure has an input layer which consists of the
mosquito abundance counts and the temperature recording counts, which
are connected through the weight matrix to each of the 10 neurons which
consist of the hidden layer. The model has been generated for two input
delays of 1and 2 weeks respectively, for each of the two variables (mosquito
counts and mean temperatures). The results of the hidden layer are linked
through the summation function in the output layer.

An abbreviated dynamic model structure, in a parallel mode, of the overall
NARX neural network for the input layer (a) and the output layer (b)
according to the Mat Lab Simulink ANN system model construction process
is shown in Figure 24. In this structure the network simulation data (the
input of the model) consist of 2 concurrent vectors: p1 = [12] and p2=[21],
where p1, is the mosquito abundance vector which corresponds to weekly
counts of Culex sp. adult stages and p2 is the respective mean temperature
vector. The FTD neural network architecture has the same topology with
NARX model but without the lagged mosquito input variable and therefore
it consists of a feedforward network with a tapped delay line at the input.

is set dy=0, then the NARX network is reduced to a plain FTD neural network
architecture.

The model is applied to predict the population (a{2}) of a medical important
mosquito species (Culex. sp), from previous temperature recording values

(Delays 1) of exogenous inputs (p{1}) and previous (Delays 2) mosquito
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population values (p{2}). Each element of the input and output network is

connected to each neuron through a weighted matrix (W).

Input layer Hidden layer Output layer

.‘ : \ [ : | ’ : ‘.

-

\ AN Y,

Figure 23. Graphical illustration of the NARX network with du input and dy output

memory and a number of neurons in the hidden layer. Note that if the output memory

Elements of layer 1, such as its bias (b{1}), net input, and output have a
superscript 1 to indicate that they are associated with the first layer, while

those of layer 2 have superscript 2. The FTD neural network has the same
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topology without the p{2} mosquito input variable as well the related delays
and weights (netsum: transfer potential 0, tansig: hyperbolic tangent

sigmoid transfer function, purelin: pure linear function transfer function).

<]

A4

p{1} Delays 1 IW{1,1}
(@
p{2} Delays 2 IW{1,2} netsum tansig af1}
b{1} nm

a{1}

(b) Delays 1 LW{2,1} \H_p
v
netsum purelin a{2}
.
b{2}

Figure 24. Abbreviated dynamic model structure, in a parallel mode, of the overall
NARX network for the input layer (a) and the output layer (b) according to the Mat Lab

Simulink ANN system model construction process (details in text).

3.3.2. Model training and validation

Figure 25a and Figure 25b show the variation of the mse of the training,
validation and test data in respect to a successive number of iterations
(epochs), for the NARX and the FDR neural network models, respectively.
The three curves have a similar overall trend but the train data. Moreover,
it can be seen thattraining and validation errors for the NARX model

decrease until the highlighted epoch and the best validation performance
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state is in 0.388 at epoch 3 in which the mse is minimized. Additionally,
considering that validation error does not increase before this epoch
informs that overfitting has not occurred. The mse of the test data has a
similar pattern and is minimized after 4 iterations and remained stationary
after that point, which indicates that the model had reached its optimal
state. However, the best states for the train data occurring after 3-time steps
(epochs), at which the mse of the test data is gradual minimized.

Figures 25 and 26 shows model performance in terms of regressions
between the output and the target data sets (i.e., training, validation, testing
and overall) for the NARX (Figure 25) and the FTD model (Figure 26). In
most cases the model performs well considering that the data are in the in
the vicinity of the diagonal. The correlation coefficient was at acceptable
levels in both cases and in respect to the available data set (R=0.623 and
R=0.534 for the NARX and FTD models, respectively). Moreover,
considering the non-linear and abrupt nature of the mosquito data the
overall model predictions are in acceptable levels when comparted to the

actual abundance data.
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Figure 25. NARX (a) and FTD (b) neural network training, validation and testing

performance. Note that the best validation performance for the NARX model is 0.388 at

epoch 3 and for the FDR is 0.276 at epoch 3.
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In addition, it should be mentioned that the model performance is
considerable higher by taking inn to account only the training data (i.e.,
r=0.8 and r=0.62, for the NARX and FDR models, respectively) and that the
final overall model performance values is affected by the lower validation
and model testing performances. Thus one can expect that the model
performance could be considerably improved if the test data set size was
higher. However, to make the network model more efficient [ have decided
to keep a larger data set to be preprocessed for training despite the smaller

returns showed for the testing and validation performances.
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Figure 26. NARX neural network training, validation and testing performance.
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Figure 27. NARX neural network training, validation and testing performance.

3.3.3 Overall model performances

Figure 28a and Figure 28b show the variation of the mse of the training,
validation and test data. The time scale corresponds to weekly time intervals
(from mid-May till September). In general, the prediction-output trend
performs well although there are time steps where the prediction results
are not ideal and the reason for that is that the amount of available data is
relatively small. However, for the first model (NARX model) there are some

cases which show high values with low target values and thus positive bias,
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(b)

while in the second (FTD model) there are few low output values with high

target values suggesting a negative bias. Nevertheless, in most cases the

deviations during certain time steps are in the range of -1.4, 1.3 which is

relatively low and the distribution is around zero. Moreover, the overall

frequency of the error term is shown in Figure 29 which is an error

histogram chart having 20bins.
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The number of samples from each data set is represented by a vertical bar.
The error of the NARX neural network ranges from -1.2 (leftmost bin) to
1.03 (rightmost bin) while the error of the FTD neural network ranges from
-1.1 (leftmost bin) to 0.9 (rightmost bin). For both models and especially for
the NARX model the vast majority of the training outputs have smaller error
and slight between -0.4 and 0.4. This is due to the fact that the set used for
training contained more data (i.e., 60% of data) than the validation and test
data sets.

Figure 30 shows the autocorrelation function of error 1 for the NARX
(Figure 30a) and the FTD (Figure 30b) model, respectively, in relation to
different time lags and related confidence limits. At zero lag the
autocorrelation equals the mse, while for the succeeding lagged
autocorrelations, the correlation coefficient not exceed the upper and lower
confidence intervals but for some cases. This means that the most of the
lagged self - correlated values, for both models, are small and in acceptable
levels considering that values lagged from zero till 15 (weeks) are between
the upper and the lower confidence intervals.

Figure 31 presents the response outputs of the best fitted model, namely the
NARX model, to the Culex sp. population time series as well as the observed
data, respectively. In general, the prediction-output performed well in both
cases, although there were parts were the output results performed less
well and especially during the end of the season.

To a high degree this should be addressed to the particular dataset that was
available and the fact that a limited data set was used for training.
Nevertheless, considering that mosquito population dynamics appeared
quite abrupt, characterized by non-linear alterations, given the limited data
set, the overall model predictions are in acceptable levels for both models.
Moreover, the inclusion of temperature as exogenous factor improved

considerable the NARX model performance and the predicted data follow to
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a high degree the observations. Note that both, models and data, represent

actual mosquito population data.
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3.3.4. Soft computing algorithm and extension for decision support

Figure 32 shows the procedure that have been followed to develop the ANNs
model as well as an extension which can be potentially be generated to be
used for vector eradication programs and related health management
actions decision making. The ANNs model development provide a robust
method for analyzing the past data and to be later used to forecast the
arthropod vector population dynamics in respect to real time data (i.e.,
temperatures).

The algorithm describes the steps, initial choices and relate routines (i.e.,
loops-decisions) that have been used to end up with the final feedforward
ANN model with tapped delay line at the input (i.e., one time step - week).
First data preparation and preliminary testing is performed to decide upon
the best data set used for model training and validation. The validation
datasets consist of the sample of data held back from training, while the test

data set is used for fine tuning (optimizing) the ANN model hyper
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parameters (i.e, taking weights of the trained ANN and use it as
initialization for a new model being trained and so on).

Initially, the process starts by selecting a small number of neurons and (i.e.,
5-10) in respect to some initial random weights (e.g,, supervised learning)
for the synapses and each time the network is trained it results to a different
solution due to the different initial weight and bias values as well as network
properties (e.g., number of neurons). Note that different divisions of data in
to training, validation and testing may result also to different model
performance. The model is retrained several times to ensure it has good
accuracy towards an optimal solution based on an error measurement. The
error, as shown in the material section, is defined as the difference of the
output of the ANN and the pre-specified external desired data series. The
error is estimated for different ANN structures related to the number of
hidden layers to derive the final model which performs best. The optimized
Final model can be feeded with new data per se, or to be retrained the model

and to predict the values of future time steps.
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Chapter 4: Discussion

In this work a series of novel methods and related modeling
approaches are introduced in predicting mosquito vector population
dynamics in a Mediterranean climate. Open climatic and Culex sp.,
abundance data were used to apply the proposed prediction methods and
demonstrate their utility under realistic field conditions. Furthermore,
considering that Culex sp. is the major transmission vector of the WNV,
Filariasis as well as other Culex sp. transmitted encephalitis, the predictive
methods of the current studies may contribute to the understanding of the
functioning of arthropod vector dynamics as well as to predict the periods
of high mosquito activity. This information is important to initiate mosquito
control actions and break the vector diseases transmission cycles. From a
public health standpoint, the current study contributes to the development
of decision tools to be used vector control actions as well as for initiating
public health management strategies and preventing WNV, f(ph)ilariasis
and encephalitis viruses.

Bearing of the issue ofthe effect of the climate variables,
temperature, as expected, had a strong influence on mosquito temporal
population dynamics. Particularly, although several climatic variables were
tested (i.e. participation, wind speed, wind direction) whether they affect
mosquito abundances the Pearson’s correlation matrix did not indicate
significant correlations among these variables but temperature. Moreover,
the multiple linear regression suggested a positive association between
mosquito abundance and mean temperatures. This is in accordance with
other studies which have shown that among candidate climatic factors
temperature exerts by far the most significant influence (Ganser and Wisely

2013) probably because increased environmental temperatures increasing
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metabolic rates, reproductive output, and host-seeking behavior of these
vectors and thus affect mosquito abundance (Shone et al. 2006).
Nevertheless, although environmental temperatures arethe most
important abiotic variables affecting insect physiology, development and
bio ecology (Reinhold et al. 2018) the wavelet analysis revealed transient
relations between adult mosquito captures and temperatures. On the
opposite, despite the innate perception that precipitation levels may have a
strong effect on indigenous population dynamics, the analysis do not explicit
such direct effect for both years since we in all cases we observed a weak
negative association with participation. This may be related to the fact that
the rainy condition may cause an early indirect effect on population
dynamics providing suitable wet sites for breeding. In addition, the
particular region of research is reachin water resources since it is
characterized by irrigated cultivations of high agricultural intensity
providing suitable breeding sides throughout the summer
season. Temperature is noted to have a stronger influence rather than
participation on abundances of other mosquito species such
as Anopheles arabiensis and was the main driver of a population model
(Abiodum 2016).

Considering the results of the wavelet analysis revealed that the
oscillation of the mosquito abundance are dominated by diverse weekly
modes and this can be observed in the respective wavelet spectrum for both
observation years. The wavelet power spectrums however revealed that the
high frequencies, for both mosquito abundance and temperature are in the
same band of high frequencies (=4 weeks) a fact which cannot be seen by
observing the mosquito time series per se. Moreover, the cross-wavelet
analysis applied to the same data sets shows nothing but a significant
common mode of oscillation mostly during the start and the end of the
mosquito flight period. Thus, in contrast to simple correlations, the cross-
wavelet analysis has the advantage to revel the time were likely relationship

between the two-time series. Thus, wavelet analysis is particular suitable
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for the analysis of the relationships between two time series, and especially
appropriate for following gradual change in forcing by exogenous variables
(Cazelles et al. 2008). Moreover, it is demonstrated that wavelet analysis
works better than linear regression, which isin agreement with other
studies which show that classical statistical analysis techniques may be
inadequate in modeling non-stationary time series (Simoes et al. 2013).

The major advantage of wavelet transforms over statistical correlation
is as it can be applied to analyse time series that incorporate non-stationary
power at many different frequencies. This is feasible by decomposing a time
series into a time-frequency space to determine both, the dominant modes
of variability and how these vary in time. Moreover, to analyze relationships
in time-frequency space between two time series the cross-wavelet
transform (XWT) and wavelet coherence (WTC) can be applied, while the
phase angle statistics can be applied to acquire confidence in causal
relationships and to test physical relationships between the time series
(Ehelepolaet al.2015). The XWT isalso preferred overthe furrier
transforms since it does not represent abrupt changes efficiently because it
represents data as a sum of sine waves which are not localized in time or
space.

Based on the affront mentioned correlation analysis between mosquito
populations and climatic variables, it is apparent that temperature exert a
higher impact on the adult arthropod vector phenology compared to rain
events, despite those mosquitoes, particularly thrive in wet conditions since
rain indirectly affects the mosquito population through increase breeding
grounds. Therefore, it was judged as necessary to include the most
influential meteorological variables (e.g., only temperature) to improve the
performance of a simple MC model through the use of a CMC model instead.
Actually, it is found that the Markov chain model of arthropod vector
population dynamics which is conditioned over temperatures, performs
considerable better than single MC stochastic modeling of vector population

dynamics.
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Thus, after the importance of the meteorological conditions was found,
it is apparent that once the population reach a high state during a week,
there is a very high probability to remain in this state by the following week
and so on. Moreover, considering that time evolution of temperature states
is quite analogous of that of the arthropod vector states, once can conclude
that if we register increased probabilities of higher temperature states there
is also an increased probability to observe very high mosquito levels. Thus,
a part of the CMC mode results, modeling only temperatures through MC
model may be proved very utile in judging whether during the same period
the mosquito population is also high. This is very important for public health
management and vector eradication programs considering saving costs and
time for the establishment of mosquito surveillance programs over different
areas.

Summarizing the modelling approach and related simulations, itis
worthwhile to look at some of the features of the conditional Markov chain
modelling method under consideration. Classical conditional Markov chain
models (also known as Linear-Chain Conditional Random Fields in the
literature e.g., Lafferty et al. 1999)are defined very recently
by Bielecki and Rutkowski (2004), for applications in finance and
insurances. This is done in response to the need for modeling dependence
between dynamic systems in cases when some conditional properties of a
system are important and should be accounted for (Bieleckiet al.
2017). Hence, conditional Markov Chains are defined as a versatile class of
discriminative models for the distribution of a sequence of hidden or latent
states conditional on a sequence of observable variables and are used in this
study for the first time in modeling Cul/ex sp. dynamics.

Considering, the different autoregressive ANN’s models that have
been applied to describe the adult population dynamics of Culex sp.in most
cases they have been performed in acceptable levels considering the non-
linear dynamics of the adult mosquito abundances. However, the model that

takes in to account temperature as exogenous input variable, as in the case
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of the temperature conditioned MC model performed better than the others.
Structurally, the NARX recurrent network receives the sequence of two
external inputs as well as the recurrent output layer state, while the NAR
and FTD network not. To the best of my knowledge, the development and
application of the current ANNs is one of the first of its kind in modeling
arthropod vector dynamics. One advantage of the ANNs models, over the MC
model, is that they can be used in cases where the data series are short.
Additionally, since they are non-parametric methods, they do not depend
strongly on normality assumptions. To date, a practical limitation of MC
models is that the initial transition matrix may be affected by the length of
the sequence.

Moreover, considering the soft computing approach, the networks
that have been applied belong to the general class of recurrent dynamic
neural networks (RNNs), which in contrast to ANNs, are designed to take a
series of inputs with no predetermined limit on size and to memorize prior
inputs while generating an output. Although, the NARX model predicted
slight better in compared to the FTD model, the differences in model
performance are in general low. A practical implication of this fact in model
development is that temperature can be used as the main input contributor
of the ANN to predict population abundance and that the inclusion of
previous mosquito population abundance does not improve dramatically
the model performance. As a result, the advantage of the FTD over the NARX
neural network model is that it can be applied in the case where past values
of mosquito abundance are not available.

One other advantage of using ANNs models, over time series models
(linear and non-linear), is the fact that the cases were predictions are
performed form a random sample from the same population as the time
periods about which one makes the prediction. Additionally, the
performance of autoregressive time series models is also affected in
situations of limited data availability, while the true shape of data

distribution is unknown (Jain and Kumar 2006, Damos 2015, Damos 2016).
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On the other hand, one limitation of ANN models is that there is no
set method for the construction of the network architecture (Eftekhar
2005). For instance, the development of the final model structure, which is
presented in the current study, is the result of numerous prior combinations
of candidate ANNs model structures (i.e.,, number of neurons and hidden
layers) and input variables (i.e., lagged climate and mosquito abundance
data). One other explanatory limitation of ANNs is that the analysis
generates weights, instead of standardized coefficient parameters, which
are difficult to interpret and often not present as they are in regression
analysis (Baxt 1995). Therefore, one of the most criticized features in ANN’s
is the lack of interpretability at the level of individual variables (Ohno-
Machado and Rowland 1999). Moreover, since the ANN learning
performance has been checked against the disjoint set of data that was
available (i.e., test set), it is of fundamental importance to choose an
appropriate training set size, and to provide representative coverage of all
possible conditions for modeling.

Nevertheless, from a practical standpoint the purpose of the
proposed methods for modeling mosquito dynamics was to predict the next
value of mosquito abundance taking into account past values of input
variables as well all past predictions of the model to improve its forecasting
efficacy. Based on the modelling results, the mosquito populations have a
certain period of high activity in a temperate climate (i.e., population peaks
of high abundance), which can be further used to initiate specific
management actions against periods of high activity of mosquito adults.

Compared to other recent studies applying univariate ANNs to
model underlying population abundance trajectories and don’t take in to
account the effect of other dynamics variables to model population process
with structure or interactions (Goodacre et al. 1996, Lee et al. 2016). For
cold blood species, however, such as mosquito and other arthropod vectors,
temperature is considered as predominant factor affecting their life history

traits (Shapiro et al. 2017, Reinhold et al. 2018). As a result, the addition of
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temperature has considerably improved predicting performance of both,
the CMC as well as the NARX model.

This is consisted with other studies as well, which show temperature
as major factor affecting mosquito development rates and related dynamics
(Samy etal. 2016). Meta-analytic results, for instance, performed on another
mosquito species Aedes aegypti, indicated that the environmental factor of
temperature is sufficient to explain development rate variability and factors
such as diet should never be considered to the exclusion of temperature in
modeling development (Couret and Benedict 2014). In addition, related
dengue virus transmission is influenced by the amplitude and pattern of
daily temperature variation (Lambrechts et al. 2011), while development
and survival rate of both Anopheles mosquitoes and the Plasmodium
parasites that cause malaria depend on temperature, making this a potential
driver of mosquito population dynamics and malaria transmission (Beck-
Johnson et al. 2013). In addition, for West Nile Virus in Culex pipiens
increasing temperatures may accelerate transmission of WNV, as
demonstrated by Kilpatrick et al. (2008).

Because mosquitoes that feed on both birds and mammals, they are
referred to as bridge vectors for WNV between an infected reservoir (birds)
and mammalian incidental host (Kilpatrick et al. 2005). Additionally, since
the epidemiology of WNV maintained in nature depends in an enzootic
transmission cycle between birds and mosquitoes, their infection rates are
suppressed by the absence mosquito (Chancey etal. 2015). Moreover, there
is a delay in human and horse cases because due to incubation and because
they are considered incidental hosts which do not participate in the WNV
lifecycle since they do not develop sufficient viremia to infect mosquito
vectors (van der Meulen et al. 2005). Thus, control management actions
against the mosquito bridge vector is critical in breaking the
epidemiological cycle of vector borne diseases.

Thus, the understanding of mosquito phenology and the description

of its population dynamics is essential for the prevention of vector borne
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diseases and to initiate proper management actions (Diuk-Wasser et al.
2006, , Wijaya et al. 2019). Thus, to facilitate this understanding it seems
reasonable to build mathematical models of increasing complexity that
reflect some true state of the time evolution and dynamics of natural
populations of mosquitoes (Hacker et al. 1973).

In specific, the current modelling approaches may tend to contribute
very significantly to the improvement of accuracy of population data
description and particularly that of mosquito abundances which due to their

specific life cycle are most often are characterized by abrupt outbreaks.
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Chapter 5: Conclusion

5.1 Overall conclusion

This work introduces novel prediction methods and based on
stochastic and soft computing techniques for modeling the population of
arthropod vectors, to date the world's deadliest animal, which accounts for
80% of human vector-borne diseases. Surely, the most important asset of
the current research is the introduction of novel analysis and prediction
methods for Culex sp. and finally, the evolution of a series of models
which potentially can be applied as a method for detecting and forecasting
the periods in which there is a high probability of vector population
persistence.

Moreover, the currentresults provide a strong evidence of the
presence of transient relationships between meteorological variables and
mosquito abundance and may support.an ecological justification based on
the fact that mosquito populations are able to find refuge or even decrease
their flying behavior when environmental conditions are extreme. The
results of the wavelet analysis, for example, suggestalso that mosquito
dynamics may not be stationary over the full range of sampling points which
is an important information for selecting appropriate modeling methods
and is generally not captured by the regression analysis.

The current study shows also that modeling of the Markov chain is
useful for simulating future population dynamics of arthropod vectors and
that modeling performances are improved with the addition of temperature.
This is probably one of its first kind application in modeling arthropod
vector population dynamics. Furthermore, the estimation of the transition
matrix through the use of empirical data first to define the system states and
later on for training the Markov chain model, is a principal step for the

simulation of realistic vector population projections and without the need
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for defining differential equations and related state variables. Therefore,
the CMC model that is proposed in this study might prove very suitable in
public health decision making and particularly helpful for vector eradication
programs.

Considering the ANNs models, in contrast to traditional statistical
models (i.e. autoregressive models, multivariate regression models), that
have been used to model arthropod vector abundance and related disease
dynamics (Wangetal. 2011, Earnestetal. 2012, Simdes et al. 2013, Archana
2017, Karen et al. 2019), the ANNs model that have been applied in the
current study have as main asset their ability of their neurons (i.e. sub model
of different weights) working simultaneously, but independent from each
other (Saproska et al. 2014). Especially, in the cases were the outcome
variable (i.e., here the mosquito abundance) is affected by more factors (i.e.,
temperature, previous mosquito abundance and more), these can be
independently introduced and taken in to account by the network in terms
of its weight during the learning process (or training).

In the context of prevention to mitigate the effects of arthropod
vector dynamics on population health there is an urgent demand for
warning systems that will aid Public Health structures in vector control
decision making. The current model results thus could form the basis to
forecast arthropod vector population levels and to alarm people belonging
to vulnerable groups and to implement effective vector control measures to

protect public health during incidents of high population pressure.

5.2 Recommendations and prospects of future work

The  presented results are promising, althoughitshould be
remembered that they were obtained under certain assumptions, such as
the stability of the particular study environment and the conditioning over
only one climate variable, namely temperature. However, it might be

possible that additional ecological factors may affect mosquito population
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dynamics in a more complex manner and due to the limitations of the
current dissertation have not been taken into account. For instance, among
them is the possibility of a parallel influence of two or more climate
variables on the mosquito population dynamics or even a more substantial
influence of lagged population values.

Another future direction worth verifying would be the calculation of a
multivariate semi Marcov conditional model with different
orders. Although this is a bigger challenge and it is not yet known if it is too
promising, the result should not be pre-judged before testing.

Therefore, the proposed predictive methods and related modeling
approaches, although valuable inn the frame of the current study, have the
potential to be further improved. This can be achieved not only by including
more more variables, but also by extending and testing the prediction
performance of the current models in to new areas.

In essence, all the same, the current subject field can be seen as valuable
since it’s not just the first of its sort, but also encouraging further modelling
and exploration of the behavior of more complex vector population
systems.

Finnally and from a practical public health standpoint, it is worth to develop
a web based decision support system which can incrorporate the current, as
well as related apidimiological models, to provide real time artropode
population forecasts. DSS systems can help to automize the decision-making

process and evaluate the different health management actions.
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7. Annex

7.1. Congresses presentations and published abstracts

7.1.1 Damos, P. Caballero, P., Dorrestijn, J. 2021. Markov chain modelling of
ecological time series data with emphasis on arthropod disease dynamics. 19th
Conferennce of the Applied Stochastic Models and Data Analysis International
Society ASMDA, 1-4 June 2021, Athens, Greece.

BOOK of ABSTRACTS
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Markov chain modeling of ecological time series data
with emphasis on arthropod disease vector dynamics

Petros Damos', Pablo Caballero' and Jesse Dorrestijn®
'Department of Preventive medicine, Public Health and History of
Science, Faculty of Health Science, University of Alicante, Carretera San Vicente
s/n03690 San Vicente del Raispeig, Alicante, Spain
ZDelf University of Technology, Delf, Netherlands

Several mathematical and standard epidemiological modeis have been
proposed in studying vector transmitted infectious disease dynamics.
However, most models are of deterministic nature and are not able to
estimate other relevant metrics such as the probability of vector population
emergence as well as the probability and expected time to reach certain
population and/or infection state. Here we are focusing in stochastic
modeling of ecological and epidemiological time series data using Markov
chains (MCs) and are particularly interested in estimating transition
probabilities (TPs) which are conditioned with other non-trivial stochastic
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variables. The aim is to generalize a formulation of conditional Markov
chain models (CMSs) for predicting probability transition estimates of
vector populations and disease outcomes at discrete future time steps. In
this context, first we present the basic principles and assumptions behind
Markov chain modeling approach with an intuitive interpretation of the
integration of conditional Markov chains (CMCs). We also include an
approach for estimating the probability of state transitions between
consecutive time steps from typical ecological and medical survey data.
Finally, we demonstrate the usefulness of the current approach by training
a CMCs model from existing vector disease data to obtain a simulated
probability sequence of the variable of interest. Understanding and
predicting vector population and related disease dynamics, is crucial for
gaining insight into the abundance and dynamics of arthropod disease
vectors, and for the design of effective vector control strategies. We
conclude that discrete-time Markov chain technique is recommended as
viable for modeling vector disease population dynamics in order to make
real-ime recommendations utile for dynamic health policies decision
making.

Although, the Markov models generated in this work provide an accurate
abstraction of the vector disease progress observed within the dataset
used for their generation we envision the current approach as an entry
point into the extensive literature and potential applications of Markov
chains in ecological modeling and vector diseases dynamics simulation
Keywords: born diseases mosquito, climate, vector, time series,
stochastic models, epidemiology.
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7.1.2 Damos, P., Tuels, ]., Caballero, P. 2021. Predictive modelling of seasonal
mosquito population patterns with neural networks. 1St International Electronic
Conference on Entomology, 1-15 July, https://iece.sciforum.net/

sciforum GROUPS ABOUT

IECE The 1st International Electronic
Conference on Entomology
01-15 JULY 2021 | ONLINE

sciforum-046118  Predictive modelling of N/A N/A L " Petros Damos, Hide Abstract
seasonal mosquito ‘ José Tuells,
population patterns @ Pablo Caballero

with neural networks

Mosquito species are considered important vectors of many diseases in humans, companion animals, and livestock. Thereis a
great need to understand their dynamics and to develop methods for predicting their abundances. However, the population
dynamics of mosquitoes are often complex displaying non-linear dynamics. Thus, making it difficult to be modeled using linear
statistical approaches. In this project, we explored the seasonal population patterns of mosquito populations in a Mediterranean
environment in Northern Greece using straightforward machine learning techniques such as Artificial Neural Networks (ANNs). To
train, validate and test the network model we have used 2 years weekly counts of adult mosquito data including Culex sp., a major
vector of the West Nile virus and related encephalitis diseases. The model training was performed in an open-loop (i.e., parallel
series network architecture), including the validation and testing step and later on, after training, it was transformed to a closed-
loop for the needs of a multistep-ahead mosquito abundance prediction. Determined by the autocorrelation function, one of the
final models is using as inputs one week lagged values of mosquito abundances and was able to capture the adult seasonal
mosquito patterns in most cases at acceptable levels. We conclude that ANNs suggest an important candidate for modeling and
predicting the seasonal abundance of mosquito data since it is suitable for modeling noisy and incomplete ecological data, with
no specific assumptions to be made about the underlying relationships and which are solely determined through data mining.
However, we are also looking forward to improving the particular model performance using new data sets since it is of
fundamental importance to choose an appropriate training set size and to provide representative coverage of all possible
conditions to capture accurately the patterns of ecological time series. Nevertheless, despite the limitations of the current study,
this work contributes to knowledge of the seasonal functioning of arthropod vector dynamics and contributes towards the
development of decision tools to be used in the preventive management of the transmission cycle of vector-borne diseases.

Invitation for oral presentation:

113


https://iece.sciforum.net/

12 July 2021
Live Session 4: Session “Biodiversity, Ecology and Evolution” and Session “Medical and
Veterinary Entomology”
Time: 9:00am (CEST) | 03:00am (EDT) | 15:00pm (CST Asia)

Speaker Time (CEST) Presentation Topic

Session Chair 9:00-9:25 The introduction of Harmonia axyridis in the Azores
Anténio Onofre Soares B islands: why was it not successful?

Invited Speaker Biodiversity erosion in islands: quantifying impacts

9:25-9:50 using long-term monitoring of forest arthropods in

. -
Paulo A. V. Borges Aosran Tdands

Short Break 9:50-10:00

Session Chair 10:00-10:30 Urbanization and the rise of vector mosquitoes and
Andre B. B. Wilke ’ ’ arbovirus transmission
Invi ki
nvllted Spfa = 10:30-11:00 Microbial symbiosis in mosquito vectors
Guido Favia

Invited Speaker Predictive modelling of seasonal mosquito population
11:00-11:30 2
Petros Damos patterns with neural networks

114



7.2. Published work in scientific Journals with impact factor

7.2.1 Damos, P., Caballero, P. 2021. Detecting seasonal transient correlaations
between populations of the West Nile Virus vector Culex sp. and temperatures with
wavelet coherence analysis. Ecological Informatics, 61, 101216,
https://www.sciencedirect.com/science/article/pii/S1574954121000078

Ecological Informatics 61 (2021) 101216

Contents lists available at Sciencelirect

Ecological Informatics

FLSEVIER journal homepage: www.elsevier com/locate/ecolind

Detecting seasonal transient correlations between populations of the West &5&

Nile Virus vector Culex sp. and temperatures with wavelet

coherence analysis

Petros Damos ™ , Pablo Caballero”

* Deperveent of Preventive Medicine and Pidlic Health and Histoey of Science, Facully of Health Science, University of Aicawe, Alicante, Spain

" Pharsacy Depernment, Usiversity Generel Mfictions Disesse Hogpind of Thessolaaii AHEPA, Aristotke University of Thessalandi, Greece

ARTICLEINFO ABSTRACT

Keywords: Cullex sp. Is one of the mast Important mosquito disease vector and chm.'m- is considered to be a key factoc

Vecsor Bome diseases affcﬂmg its populamn dynamics. In this study we use straightforward techniques based on correl and

Rsequiio lysis to d the non-trivial associations between Qudex sp. mosqs bundance and b

Chm"", . varlables (lagged pop bundance, mean temp es, raln and wind speed) In Noethem Greece during

Correligions A 4 M

Waveless mo successive years. In pamn\hr e5 were far colll; Y using Pearson’s cor-

Peblic Reslth and redundant or low mmdxed variables were excluded from further analyses. Multiple linear
regression anz!yxls was pcrhmcd to ﬂt nofmdm'd masquito abundance weekly counts as the dependent var.
lable to the indep : mean temp raln as well as lagged mosquito populations.
There was a hlgh and positive correlation bel\ntcn P and ¥ bundance during both obser-

vation years (r - 0.6). However, a very poor correlation was abserved between rain and weekly masquito
abundances (r =~ 0.29), as well a5 between wind speed (r = 0.29), respectively. Additionally, according to the
multiple linear regression model the effect of temperature, was significant. The continuous power spectrum of
the mosquito abendance counts and mean temperatures depict In most cases stmilar power for pertods which are
clase to 1 week, indicating the paint of the lowest varlance of the time series, although appearing oa slight
different moments of time. The cross wavelet coberent analysis showed that inter weekly cycles with a period
between 2 and 3 weeks between masquito abundance and temperature were coberent mostly during the first and
the last weeks of the season. Hence, the 1 lysis show a progr  oscillation in mesquito cocurrences
with time, which is higher at the start and the end of the season. Moreover, in contrast with standard methods of
analysts, wavelets can provide useful insights Into the time-resolved osclllation structure of mosquito data and
accompanying revealing a noastatlonary assocfation with temperature.
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Simple Summary: Arthropod vectors are responsible for transmitting a large number of diseases,
and for most, there are still not available effective vaccines. Vector disease control is mostly achieved
by a sustained prediction of vector populations to maintain support for surveillance and control
activities. Mathematical models may assist in predicting arthropod population dynamics. However,
arthropod dynamics, and mosquitoes particularly, due their complex life cycle, often exhibit an
abrupt and non-linear occurrence. Therefore, there is a growing interest in describing mosquito
population dynamics using new methodologies. In this work, we made an effort to gain insights
into the non-linear population dynamics of Culex sp. adults, aiming to introduce straightforward
soft-computing techniques based on artificial neural networks (ANNs). We propose two kind of
models, one autoregressive, handling temperature as an exogenous driver and population as an
endogenous one, and a second based only on the exogenous factor. To the best of our knowledge, this
is the first study using recurrent neural networks and the most influential environmental variable for
prediction of the WNv vector Culex sp. population dynamics, providing a new framework to be used
in arthropod decision-support systems.

Abstract: A central issue of public health strategies is the availability of decdision tools to be used
in the preventive management of the transmission cycle of vector-borne diseases. In this work, we
present, for the first time, a soft system computing modeling approach using two dynamic artificial
neural network (ANNs) models to describe and predict the non-linear incidence and time evolution
of a medically important mosquito species, Culex sp., in Northem Greece. The first model is an
exogenous non-linear autoregressive recurrent neural network (NARX), which is designed to take as
inputs the temperature as an exogenous variable and mosquito abundance as endogenous variable.
The second model is a focused time-delav neural network (FTD). which takes into account onlv the
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7.2.4 Damos, P., Tuels, ]., Caballero, P. 2021. Predictive modelling of seasonal
mosquito population patterns with neural networks. Proccedings of the 1St
International Electronic Conference on Entomology, 1-15 July,
https://iece.sciforum.net/ (accepted for publication)

Broceedings
Predictive modeling of seasonal mosquito population patterns
with neural networks *

Petros Damos *?, José Tuells * and Pablo Caballero **
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Abstract: Mosquito spedies are considered important vectors of many diseases in humans, compan-
ion animals, and livestock. There is a great need to understand their dynamics and to develop meth-
ods for predicting their abundances. However, the population dynamics of mosquitoes are often
complex displaying non-linear dynamics and thus, making it difficult to be modeled using linear
statistical approaches. In this project, we explored the s2asonal population patterns of mosquito pop-
ulations in a Mediterranean environment in Northern Greece using straightforward machine learn-
ing techniques such as Artifidal Neural Networks (ANNs). To train, validate and test the network
model we have usad 2 years weekly counts of adult mosquito data including Culex sp.. a major vector
of the West Nile virus and related encephalitis diseases. The model training was performed in an
open-loop (i.e, parallel series network architechure), including the validation and testing step and
later on, after training, it was transformed to a dosed-loop for the needs of a multistep-ahead mos-
quito abundance prediction. Determined by the autocorrelation funciion, one of the final medels is
using as inputs one week lagged values of mosquito abundances and was able to capture the adult
seasonal mosquito patterns in most casas at acceptable levels. We conclude that ANNs suggest an
important candidate for modeling and predicting the seasonal abundance of mosquito data since it

is suitable for modeling noisy and incomplete ecological data, with no specific assumptions to be
made about the underlying relationships and which are solely determined through data mining.
However, we are also looking forward to improving the particular model performance using new
data sets since it is of fundamental importance o choose an appropriate training set size and to
provide representative coverage of all possible conditions to capture accurately the patterns of eco-
logical time series. Nevertheless, despite the limitations of the current study, this work contributes
to knowledge of the seasonal functioning of arthropod vector dynamics and contributes towards
the development of decision tools to be used in the preventive management of the transmission
cycle of vector-borne diseases.
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7.2. Unpublished work-unnder consideration

7.2.1 Damos, P., Dorrestijn, ], Thomidis T., Tuells., T, Caballero, P. 2021. A climate
conditioned Markov chain model for predicting the dynamics of medical important
diseases vectors

Abstract: Understanding and predicting mosquito population dynamics is crucial
for gaining insight into the abundance of arthropod disease vectors, and for the design
of effective vector control strategies. In this work, a climate-conditioned Markov
Chain (CMC) model was developed and applied for the first time to predict the
dynamics of vectors of important medical diseases. Temporal changes in mosquito
population profiles were generated to simulate the probabilities of a high population
impact. The probabilities achieved from the trained model are very near to the
observed data and the CMC model satisfactorily describes the temporal evolution of
the mosquito population process. In general, our numerical results indicate that it is
more likely for the population system to move into a state of high population level,
when the former is a state of a low population level than the opponent. Field data on
frequencies of successive mosquito population levels, which were not used for the
data inferred MC modeling, were assembled to obtain an empirical intensity transition
matrix and the observed frequencies. Our findings match to a certain degree the
empirical results in which the probabilities follow analogous patterns while no
significant differences were observed between the transition matrices of the CMC
model and the validation data (ChiSq=14.58013, df=24, p=0.9324451). The proposed
modeling approach is a valuable eco-epidemiological study. Moreover, compared to
traditional Markov chains, the benefit of the current CMC model is that it takes into
account the stochastic conditional properties of ecological related climate variables.
The current modeling approach could save costs and time in establishing vector
eradication programs and mosquito surveillance programs.

Keywords: Stochastic process; Forecasting techniques, Decision Making,

Disease Vectors, West Nile virus, Public Health.
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7. 3. Activities and courses taken during the doctorate

7.3.12018-2019

3.1 DOCUMENTO COMPROMISO DOCTORAL

Tipo:DOCUMENTO COMPROMISO DOCTORAL Fecha de creaciéon:28/02/2019

Estado actualizado por:Angeles Sirvent Ramos (28/02/2019)Mostrar detalle
actividad

3.2 ACTIVITY 1: Tools for the administration and recovery of information
Tipo:ACTIVIDADES FORMATIVAS COMUNESFecha de creacion:05/03/2019Estado
actualizado por:Pablo Caballero Pérez (15/05/2019)

3.3 ACTIVIDAD 1: HERRAMIENTAS PARA LA GESTION Y RECUPERACION DE LA
INFORMACION

Tipo:ACTIVIDADES FORMATIVAS COMUNESFecha de creacién:14/05/2019Estado
actualizado por:Angeles Sirvent Ramos (14/05/2019)

3.4 actividad formativa especifica SEMINARIOS ] - PROYECTOS DE TESIS - 10 May
Tipo:AFTOE: SEMINARIO J (PROYECTOS DE TESIS).Fecha de
creacion:24/05/2019Estado actualizado por:Pablo Caballero Pérez (20/06/2019)

3.5 ACTIVIDAD 2: FINES Y OBJETIVOS DE LA INVESTIGACION
Tipo:ACTIVIDADES FORMATIVAS COMUNESFecha de creacién:27/05/2019Estado
actualizado por:Angeles Sirvent Ramos (25/05/2019).

3.6 ACTIVIDAD 3: MODELOS DE COMUNICACION CIENTIFICA
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Tipo:ACTIVIDADES FORMATIVAS COMUNESFecha de creaciéon:28/05/2019Estado
actualizado por:Angeles Sirvent Ramos (28/05/2019)

3.7 ACTIVIDAD 4: MODELOS DE TRANSFERENCIA DEL CONOCIMIENTO
Tipo:ACTIVIDADES FORMATIVAS COMUNESFecha de creacién:26/06/2019Estado
actualizado por:Angeles Sirvent Ramos (25/06/2019)

7.3.2.2019-2020

3.8 Detailed PhD Research Plant Report 2019-2020

Tipo:DOCUMENTO COMPROMISO DOCTORALFecha de
creaciéon:25/03/2020Estado actualizado por:Pablo Caballero
Pérez (07/07/2020)

3.9 CURSO FORMACION ONLINE SCOPUS -APIS

Tipo:ACTIVIDADES FORMATIVAS OPTATIVAS DEL PROGRAMA DE
DOCTORADOFecha de creacion:25/03/2020Estado actualizado por:Pablo Caballero
Pérez (07/07/2020)

7.3.3.2020-2021

3.10. Recognition of specific activity1 through participation in research project
Tipo:AFTOE:;COMO FINANCIAR UN PROYECTO DE INVESTIGACION?Fecha de
creacion:01/05/2021Estado actualizado por:Pablo Caballero Pérez (01/05/2021)
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8. Research internships

1/1/2020-12/12/2020
International Hellennic University. Department of Nutritional Sciences

and Dietetics, Greece.
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