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Abstract: A numerical formulation based on the precise-integration time-domain (PITD) method for
simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on
the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the
periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic
optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the
permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that
PITD is reliable and even considering anisotropic media can be competitive compared to traditional
FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be
much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which
the steady-state requires a large number of time-steps.

Keywords: computational electromagnetics; precise-integration time-domain (PITD) method;
periodic media; anisotropic media; diffractive optics

PACS: 42.40.Eq; 47.11.Bc; 42.70.Jk

MSC: 78A10

1. Introduction

Simulation of the electromagnetic wave distribution through periodic media is a
popular scenario in diffractive optics and photonics in general. Many optical devices are
based on periodicity on at least one dimension (one-dimensionally periodic structures),
and they can be used for different applications, i.e., waveguides, splitters, filters, etc. The
analysis of this kind of element sometimes can be analysed by analytical closed expressions.
However, in some applications, the fine detail of the structure is needed, thus implying a
numerical formulation based on finite-element methods (FEM), FDTD or rigorous-coupled-
wave theory (RCWT) amongst other numerical formulations. One of the most frequently
used is FDTD due to its versatility and accuracy for electromagnetic analysis. However, the
FDTD method has two main characteristics that limit the accuracy, stability, and indirectly
the applicability of the method. These two factors are the Courant-Friedrich-Levy (CFL)
condition and the dispersion error. Limiting the dispersion error implies considering small
spatial resolutions compared to the wavelength, thus setting up very fine meshes. In
these cases, the CFL condition forces small time-step sizes dramatically, thus resulting in
demanding simulations in terms of running time and memory resources.
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For improving the performance of FDTD, recently, a new approach for FDTD simula-
tions has arisen. The PITD permits to break through the CFL limit in terms of time-step
size. The basic idea follows the same paradigm as the traditional FDTD formulation, where
the spatial derivatives are computed through the central finite-difference scheme. This
step provides a set of ordinary differential equations (ODEs) that are solved by the precise
integration (PI) [1,2]. In recent years, researchers have focused their efforts on taking advan-
tage of this paradigm in different areas using the precise-integration time-domain (PITD)
for solving Maxwell’s equations in free and lossy space [3–8]. There have been different
contributions focused on improving PITD method: e.g., the extension of an unconditionally
stable PITD for the numerical solutions of Maxwell’s equations to the circular cylindrical
coordinate system was reported by Zhao et al. [9], and the works of Kang et al. related to
the application of the PITD method to model the wave propagation in magnetised plasma
based on the auxiliary differential equation (ADE) [10,11]. In the last years, some problems
related to memory requirements on PITD have been addressed from different perspectives.
Zhu et al. arranged the transverse electric/transverse magnetic (TE/TM) components in a
matrix, constructing a set of Riccati matrix differential equations (RDEs). This proposal was
able to reduce memory requirement compared to the conventional PITD for the analysis
of homogenous media [12]. Shao et al. [13] implemented the so-called region-splitting
(RS) technique for memory-saving realisations of the perfectly matching layers (PMLs) in
the PITD method. However, even considering all these new approaches, the problems
related to the memory requirements remain and, in some cases, limit the PITD method’s
applicability. It is worth noting the recent contribution of Zhu et al. [14] in which a PITD
method with a thresholding scheme is shown in order to reduce the computation cost of
the matrix exponential involved on PITD.

To the best of our knowledge, the PITD method has not been explicitly applied to
periodic optical media and neither to full anisotropic materials where the tensorial nature
of the electrical permittivity is considered. The numerical analysis of periodical media
through finite-difference approaches has been previously addressed in the literature. In
diffractive optics, usually one-dimensional or two-dimensional structures are considered.
Furthermore, there are some applications in which the optical device can have at least
one dimension larger in terms of the input wavelength, e. g. holographic volume grat-
ings [15,16]. Here, periodical boundary conditions help to minimise the simulation area,
thus increasing the accuracy and performance of the numerical method. It is worth not-
ing the outstanding contributions of Roden et al. [17] introducing a reliable formulation
based on the split-field technique for simulating periodic structures at oblique incidence.
The extension of SF-FDTD for simulating anisotropic media in 2D and 3D schemes was
presented by Oh et al. [18,19], and Miskiewicz et al. [20,21], respectively. The authors have
contributed to extending the SF-FDTD for the analysis of nonlinear optical media [22,23]
and with the computational acceleration by means of graphic processing units (GPUs) [24].
There are other powerful approaches for the analysis of anisotropic optical media, i.e. finite
element method (FEM) [25] or RCWA [26,27].

This work includes details related to the periodic boundary conditions (PBC) and
anisotropic media implementation of PITD. In order to validate the approach, a set of well-
known optical experiences are simulated, e.g., Young’s double-slit experiment, thin-film
filters, dielectric binary diffraction gratings, and twisted-nematic liquid crystal (TNLC)
regarding anisotropic optical media. The results show that the PITD method is accurate
compared to split-field finite-difference time-domain (SF-FDTD) simulations. Furthermore,
some analyses are performed related to the computational performance and also, the
capability of using time-step resolution larger than the one established by the CFL condition
is corroborated.
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2. Formulation

As in the conventional FDTD method, Maxwell’s curl equations for inhomogenous
and anisotropic media are expressed as

∇× E = −∂B
∂t

(1)

∇×H =
∂D
∂t

+ J (2)

∇ ·D = ρ (3)

∇ · B = 0 (4)

The electric charge density is defined as ρ. The magnetic field H and the magnetic flux
density B, as well as the electric field E and the electric flux density D, are connected via
the following equations:

B = µH, (5)

D = εE. (6)

The magnetic permeability µ and the electric permittivity ε are in the most general
case time-dependent and imaginary second-order tensors. The electric current density J on
Equation (2) is connected to Ohm’s law via:

J = σE, (7)

where σ is the electric conductivity. In order to avoid big differences in the magnitude of
the electric and magnetic field, the following change of variable is performed:

Ê =

√
ε0

µ0
E, (8)

where ε0 and µ0 are the relative permittivity, and relative permeability, respectively. For
simplifying notation, from now E = Ê. Taking into account Equations (5) and (6), the new
normalized electric field Equation (8) can be introduced into Equations (1)–(4) obtaining
the following set of equations:

∂H
∂t

= − c
µr
∇× E (9)

∂E
∂t

=
c
εr
∇×H− σ′E, (10)

being σ′ = c
εr

√
µ0
ε0

σ = 1
ε0εr

σ, and c the speed of waves in vacuum.
If the material has lineal dielectric properties, only three dielectric constants (ε1, ε2

and ε3) and three geometric angles (α, β, and γ) are necessary to specify the full tensor
description of εr:

εr =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 = B−1(α, β, γ)

ε1 0 0
0 ε2 0
0 0 ε3

B(α, β, γ), (11)
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where B is the transformation matrix fully defined in Equation (3) in [18] and related to the
Euler angles (α, β, and γ). Defining κ = ε−1

r and ν = µ−1
r , the Equations (9) and (10) can

be redefined as the following set of equations:

∂H
∂t

= −cν∇× E (12)

∂E
∂t

= cκ∇×H− σ′E (13)

We limit ourselves to the analysis of 2D structures, but it is worth noting that applying
this scheme to 3D problems would be done straightforwardly. If the simulation plane is in
the xy plane, Equations (12) and (13) can be extended developing both curl terms in the
right side and neglecting the spatial derivatives along z-axis.

dHx

dt
= cνxy

∂Ez

∂x
− cνxx

∂Ez

∂y
− cνxz

(
∂Ey

∂x
− ∂Ex

∂y

)
, (14)

dHy

dt
= cνyy

∂Ez

∂x
− cνyx

∂Ez

∂y
− cνyz

(
∂Ey

∂x
− ∂Ex

∂y

)
, (15)

dHz

dt
= cνzy

∂Ez

∂x
− cνzx

∂Ez

∂y
− cνzz

(
∂Ey

∂x
− ∂Ex

∂y

)
, (16)

dEx

dt
= cκxz

(
∂Hy

∂x
− ∂Hx

∂y

)
− σxyEy − σxzEz − σxxEx − cκxy

∂Hz

∂x
+ cκxx

∂Hz

∂y
, (17)

dEy

dt
= cκyz

(
∂Hy

∂x
− ∂Hx

∂y

)
− σyyEy − σyzEz − σyxEx − cκyy

∂Hz

∂x
+ cκyx

∂Hz

∂y
, (18)

dEz

dt
= cκzz

(
∂Hy

∂x
− ∂Hx

∂y

)
− σzyEy − σzzEz − σzxEx − cκzy

∂Hz

∂x
+ cκzx

∂Hz

∂y
, (19)

where κk,p, νk,p and and σk,p are the components of the tensor k, ν and σ′, with k, p = x, y,
and z, respectively. For solving Maxwell’s equations in FDTD simulations the different
electromagnetic field components are staggered in a computational grid space known as
Yee’s cell [28,29]. The discrete expressions for Equations (14)–(16) can be written as:

dHx|i+1/2,j

dt
=

cνxz

2

(
Ey|i−1/2,j − Ey|i+3/2,j

∆x

+
Ex|i,j+1/2 − Ex|i,j−1/2 + Ex|i+1,j+1/2 − Ex|i+1,j−1/2

∆y

)
−

cνxy

4∆x

(
Ez|i−1/2,j+1/2 − Ez|i+3/2,j+1/2 (20)

+Ez|i−1/2,j−1/2 − Ez|i+3/2,j−1/2

)
− cνxx

∆y

(
Ez|i+1/2,j+1/2 − Ez|i+1/2,j−1/2

)
,

dHy|i,j+1/2

dt
=

cνyz

2

(
Ex|i,j+3/2 − Ex|i,j−1/2

∆y

−
Ey|i+1/2,j + Ey|i+1/2,j+1 − Ey|i−1/2,j − Ey|i−1/2,j+1

∆x

)
+

cνyx

4∆y

(
Ez|i−1/2,j+1/2 − Ez|i+3/2,j+1/2 (21)

+Ez|i−1/2,j−1/2 − Ez|i+3/2,j−1/2

)
+

cνyy

∆x

(
Ez|i+1/2,j+1/2 − Ez|i−1/2,j+1/2

)
,
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dHz|i+1/2,j+1/2

dt
= cνzz

(
Ex|i,j+1/2 − Ex|i,j−1/2

∆y
−

Ey|i+1/2,j − Ey|i−1/2,j

∆x

)
+

cνzy

2∆x

(
Ez|i+1/2,j+1/2 + Ez|i+1/2,j−1/2

−Ez|i−1/2,j+1/2 − Ez|i−1/2,j−1/2

)
(22)

− cνzx

2∆y

(
Ez|i+1/2,j+1/2 − Ez|i+1/2,j−1/2

+Ez|i−1/2,j+1/2 − Ez|i−1/2,j−1/2

)
.

The unit cell has ∆x, and ∆y sizes. Note that employing a discrete grid implies
that some values are not available directly, and hence they must be interpolated from
neighbouring grids [18,30]. These additional approximations still hold the second order of
accuracy. Note that each component is located in an auxiliary grid-point inside the Yee cell,
i.e. Hy is defined in (i, j + 1/2). Hence, the spatial first-order partial differentiation on the
right side of Equation (22) must be computed on (i, j + 1/2) needing elements outside the
grid cell in the grid boundary region. Considering normal incidence, the periodic boundary
condition (PBC) scheme is

E(x = 0, y) = E(x = ∆, y), (23)

H(x = 0, y) = H(x = ∆, y), (24)

where ∆ is the periodicity of the system. The same relationships can be applied for
periodical structures along the y-axis. PBC is applied along the periodical axis for one-
dimensional periodic structures, whereas perfectly matched layers (PML) are applied
along the propagation direction. The implementation of PML for the PITD method is fully
detailed in [13].

The discrete expressions for Equations (17)–(19) can be also written as:

dEx|i,j+1/2

dt
=

cκxz

2

(
Hy|i+1,j+1/2 − Hy|i−1,j+1/2

∆x

+
Hx|i+1/2,j − Hx|i+1/2,j+1 + Hx|i−1/2,j − Hx|i−1/2,j+1

∆y

)
−

σxy

2

(
Ey|i+1/2,j + Ey|i+1/2,j+1 + Ey|i−1/2,j + Ey|i−1/2,j+1

)
(25)

−σxz

(
Ez|i+1/2,j+1/2

2
+

Ez|i−1/2,j+1/2

2

)
− Ex|i,j+1/2σxx

−
cκxy

4∆x

(
Hz|i+1,j + Hz|i+1,j+1 − Hz|i−1,j − Hz|i−1,j+1

)
− cκxx

∆y

(
Hz|i,j − Hz|i,j+1

)
dEy|i+1/2,j

dt
=

cκyx

4∆y

(
Hz|i,j+1 − Hz|i,j−2 + Hz|i+1,j+1 − Hz|i+1,j−1/2

)
−

σyx

4

(
Ex|i,j+1/2 + Ex|i,j−1/2 + Ex|i+1,j+1/2 + Ex|i+1,j−1/2

)
−

σyz

2

(
Ez|i+1/2,j+1/2 + Ez|i+1/2,j−1/2

)
(26)

−
cκyz

2

(
Hx|i+1/2,j+1 − Hx|i+1/2,j−1

∆y

+
Hy|i,j+1/2 + Hy|i,j−1/2 − Hy|i+1,j+1/2 − Hy|i+1,j−1/2

∆x

)
−Ey|i+1/2,jσyy +

cκyy

∆x

(
Hz|i,j − Hz|i+1,j

)
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dEz|i+1/2,j+1/2

dt
= cκzz

(
Hx|i+1/2,j − Hx|i+1/2,j+1

∆y
−

Hy|i,j+1/2 − Hy|i+1,j+1/2

∆x

)
−σzx

2

(
Ex|i,j+1/2 + Ex|i+1,j+1/2

)
−

σzy

2

(
Ey|i+1/2,j + Ey|i+1/2,j+1

)
(27)

−Ez|i+1/2,j+1/2σzz +
cκzy

2∆x

(
Hz|i,j + Hz|i,j+1 − Hz|i+1,j − Hz|i+1,j+1

)
− cκzx

2∆y

(
Hz|i,j − Hz|i,j+1 + Hz|i+1,j − Hz|i+1,j+1

)

The above ODEs can be rewritten as a matrix form:

dX
dt

= MX + f(t), (28)

where X = (Hx, Hy, Hz, Ex, Ey, Ez)T is a one-column vector containing both all of the electro-
magnetic field components. The matrix M contains the information related to the spatial-step
and the medium parameters, and f(t) is a column vector with the excitations [3,10]. Here,
harmonic plane waves are considered for illuminating the PITD grid. More specifically, a
source line is placed parallel to the input plane of the device. This scheme is the same that
the one used in standard FDTD simulations, e.g., [18]. The full derivation of the excitation
source for polarized plane waves can be found in [31]. PBC is applied in Equations (14)–(19)
over the unknown terms next to the boundary (out of the PITD grid). These terms are
needed due to the spatial interpolation or the spatial derivative. It is worth mentioning
that this paradigm is quite different to the one used in the traditional FDTD scheme, where
Equations (23) and (24) can be directly applied after the updating of each electromagnetic
field thanks to the leapfrog algorithm [28,29]. Here, this procedure can not be applied since
all the components are computed at once when Equation (28) is solved.

Taking into account the theory of ODEs, the analytical solution of Equation (28) can
be written as follows.

X(t) = eMtX(0) +
∫ t

0
eM(t−s)f(s)ds, (29)

and the discrete from of this equation is

Xk+1 = eMtXk + Tk+1
∫ tk+1

tk

e−sMf(s)ds, (30)

where Xk = X(k∆t), ∆t the time step, and T = eM∆t is the exponential matrix which can
calculated by using the power rule:

T =
[
eM∆t/2n

]2n

, (31)

where n is a preselected arbitrary integer, such as n = 20 [7,14]. An approximation of the
term between brackets in Equation (31) is given as

eM∆t/2n ≈ I + Ta, (32)

where I is the identity matrix and Ta is computed by the iterative process fully defined
in Equations (5)–(7) in [14]. The interested reader in PI technique can find more specific
information about the implementation in [7,10]. It is convenient to introduce here the
Courant-Friedrichs-Lewy (CFL) condition for standard FDTD formulations to link it with
the time step previously defined. The maximum time step in Yee’s FDTD is constrained by
the CFL condition, which in 2D and square grid cell ∆x = ∆y = ∆ reads

s =
c√
2

∆t
∆
≤ 1. (33)
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The CFL limit becomes particularly restrictive in the presence of small geometrical
features, which impose a small cell size ∆ and, consequently, a small-time step, leading to
long simulations. Here, a smaller value for CFL condition is established as a reference for
ensuring stability, so we define ∆t0 = ∆/c. PITD permits overcoming this CFL condition,
and the syntax for addressing this feature is defined through the scaling factor α′ as
∆t = α′∆t0.

Returning to the PITD formulation, once T is known from Equations (31) and (32), the
right-side of Equation (30) is approximated using the Gauss integration technique

Xk+1 = TXk +
5∆t
18

exp

[(
∆t
2

+
∆t
2

√
3
5

)
M

]
f

(
tk +

∆t
2
− ∆t

2

√
3
5

)

+
8∆t
18

exp
[

∆t
2

M
]

f
(

tk +
∆t
2

)
(34)

+
5∆t
18

exp

[(
∆t
2
− ∆t

2

√
3
5

)
M

]
f

(
tk +

∆t
2

+
∆t
2

√
5
5

)

Once matrix M is fully defined, a thresholding scheme is applied for the matrix
exponential terms in Ta. This procedure is fully detailed in [14] where sparse matrices
are used for storing the exponential matrices, and the following thresholding scheme
is considered:

(Ta)i,j =

{
0 si |(Ta)i,j| ≤ αδ

(Ta)i,j otherwise
(35)

where the threshold value is δ and the maximum absolute value of all elements in Ta is α. In
practice, the selection of threshold value is not necessary if δ is experimentally determined
previously through a set of preliminary simulation tests. δ can be set as a smaller value
to achieve higher accuracy. It is worth noting that δ = 0 implies no threshold scheme,
hence considering values between 10−5 and 10−8 should provide good results in almost
all analysis. It should be mentioned that Zhu et al. [14] reported the application of the
implicitly restarted ARnoldi method (IRAM) method for dynamically determining the
value of δ. However, this approach has not been considered here due to the computation
time that implies on each simulation run. Moreover, the convergence of the IRAM method
is sometimes compromised, which is not an optimal solution considering the setup here.

3. Results

The diffraction pattern produced by one single slit or two slits is a very popular
experiment in Physics since it shows the wave behaviour of light and is an experience that
reinforces the Huygens principle and the relationship between diffraction and interference
in Physics. The diffraction efficiency can be easily obtained through analytical closed
expressions. However, for simulating this experiment numerically, some add-ons must
be included. First, it is worth noting that the diffraction efficiency pattern is measured
in the Fraunhofer region. Simulating areas far from the slits in PITD would require a
considerable grid cell arrangement being impossible to simulate. Therefore, the near-to-far
field transformation [28,29,32] has been implemented for obtaining the irradiance pattern
in far-field. This far-field distribution is computed from the near-field electromagnetic
field close to the slits computed by the PITD simulation. The analysis of one single slit or
even two slits is not strictly a periodic problem. Hence, in this first set of analyses, PBC is
disabled. This setup serves as an initial validation of the implementation and benchmark
for simulating a typical scenario in diffractive optics where the grid form factor is far from
being square and large in one dimension compared to the input wavelength.
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Figure 1a shows the scheme of a single slit of length b. θ is the angle formed between
the normal of the slit and the path between the centre of the aperture and the observation
point in the same plane.

Figure 1. Schematic diagram of the media considered. (a) Scheme of a single slit of length b. (b) Two
thin-film filters of 3 and 5 layers where high and low refractive indices are stacked. (c) Diffraction
phase grating [33]. (d) Representation of the spatial variation of εyz and εzy in a TN-LC [18].

Figure 2a shows the diffraction efficiency as a function of the parameter β = kb
2 sin θ,

where b is the length of the aperture, k is the wavenumber.

Figure 2. Simulation of the diffraction pattern of one and two slits of width b by means of PITD. The
setup parameters are summarised in Table 1 (a) = b = 80∆. (b) b = 80∆ and a = 150∆.

Table 1. Simulation parameters for Figure 2. nx = 150 for analysis in Figure 2a and nx = 250 for the
results shown in Figure 2b.

∆ α′ ∆t = α′∆t0 ts Nλ ny nPML n δ

10 nm 1 4.71× 10−8 ns 20 ns 15 150 10 20 10−5

I = I0

(
sin β

β

)2
, (36)
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where I0 is the input light amplitude. For two slits, the Equation (36) can be reformulated
with an additional term related to the separation of the slits a as:

I = 4I0 cos2 α

(
sin β

β

)2
. (37)

where α = ka
2 sin θ. The results for two slits are shown in Figure 2b. The PITD setup is sum-

marized in Table 1, where ∆ and ∆t are the spatial and time step resolutions, respectively.
The parameter α′ is the factor applied to ∆t to overcome the CFL condition. In this specific
case, the relationship between ∆ and ∆t fits the CFL condition. The time window analysed
is ts, and the grid density (number of cells by wavelength) is defined as Nλ. The parameters
ny and nx define the size of the simulation grid in cells for the y and x axis, respectively.
Since the analysis of the diffraction pattern of slits is not a periodic problem, PBC is disabled
only here, and PML in all boundaries of the simulation grid are considered. The number of
additional cells considered for the absorbing boundary conditions is represented by nPML.
The parameters n and δ are related to the PI formulation.

For modelling the metal wall that defines the aperture a considerably high value for
σii = 107 S/F is considered in Equations (17)–(19). For the rest of parameters, νij = 0 with
i, j = x, y and z, since non-magnetic media is considered, and κii are defined as unity and
κij = 0 with i 6= j due to be the specific case in which homogeneous and isotropic media is
considered.

Figure 3. Simulation of the diffraction pattern of one slit of width b = 80 cells by means of PITD.
The setup parameters are summarised in Table 2. Each graph is related to a different α′ parameter:
(a) α′ = 1. (b) α′ = 2. (c) α′ = 3. (d) α′ = 4. (e) α′ = 5. (f) α′ = 6.

Figure 3 shows the results of the simulation of one single slit but using a time-step
resolution larger than the one established by the CFL condition. More precisely, α′ goes
from one (CFL condition) up to six. The sequence Figure 3a–f shows the normalised
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irradiance as a function of the parameter β/π. It can be seen that the results are accurate in
all cases. However, some discrepancies can be identified close to the second-order lobes for
α′ ≥ 5. Hence, using larger values for α′ would not be recommendable due to the potential
error obtained in that analysis and the drawbacks related to computational costs.

Table 2 summarises the parameters considered for the PITD simulation in Figure 3,
whereas Table 3 shows some parameters related to the computational performance of this
set of simulations. Nt is the number of time-steps in order to simulate the 60 ns. As α′

rises, the number of time-steps is reduced. However, considering a constant threshold
scheme implies that the size of T and Ti also grows since increasing ∆t implies larger
values in these matrices; hence a larger number of values in this matrix are non-zero and
are stored. The running time on Table 3 shows that even reducing the number of time-steps,
the rise of the computation time of the matrices implies a significant increase in the total
running time. This increase is mainly due to the overhead in the stage of setting up the
matrices T and Ti and in a lower degree, the impact that these structures induce in the
time per iteration that also grows when α′ rises. Simulations performed in server with
2 Intel Xeon E5-2630-2.5 GHz, 15 MB Cache, 32 GB RAM DDR3 1333 MHz, SSD Samsung
840 Pro MZ-7PD512 6Gbps, and Mainboard Asus Z9PE-D8 WS and in MATLAB 2019b.
Considering the threshold scheme shown in [14], where a variable δ parameter is computed
is not worth the effort since the calculus of the eigenvalues needed for IRAM introduces
a non-negligible penalty in terms of time simulation for the calculus of matrices T and
Ti. Besides using IRAM, it has been experimentally proven that even considering to scale
δ for each α′ scaling simulation, the overhead introduced by the growth of the memory
previously detailed is not compensated. That is why a constant δ = 10−5 parameter that
has been previously determined is a more convenient strategy considering the setup here
proposed. For comparing the results in Table 3 a FDTD simulation is performed with an
equivalent setup of Table 1. Therefore, the traditional FDTD simulation takes 12.29 s for
running a complete simulation with the finest time step for the same grid size (and the
same number of time steps). The memory required for storing the simulation is 4.23 MB,
and the time per iteration ratio is 9.7. As it can be affirmed, the traditional FDTD scheme is
still more competitive than PITD, even the ability of PITD of overcoming the CFL condition
considering this setup.

Table 2. Simulation parameters for Figure 3.

∆ α′ ∆t = α′∆t0 ts Nλ ny nx nPML n δ

10 nm
√

2 4.71× 10−8 ns 60 ns 60 100 600 30 20 10−5

Table 3. Running time and memory resources of simulations shown in Figure 3.

α′ Nt
Size of T Running Time Running Time Time/Iter

(MB) T and Ti (s) PITD (s) PITD (s)

1 1273 761.54 123.04 417.99 0.23

2 637 1594.44 236.59 519.13 0.44

3 425 2682.50 365.78 682.88 0.75

4 319 3960.6 584.55 915.78 1.04

5 255 5352.6 1090.52 1536.29 1.75

6 213 6889.0 1693.62 2151.43 2.15

Figure 1b shows the scheme of the thin film filters (TFF) considered. Specifically,
high-reflective coatings (HRCs) are is a basic type of TFF and is composed of a stack of
alternate high- and low-index films, all one-quarter wavelength (considering λ0 as the
design wavelength for the structure) thick as it has been illustrated in Figure 1b. Light
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reflected within the high-index layers does not suffer any phase shift while a change of
180◦ in the low-index layers is produced [34]. It is straightforward to see that the light
(with λ = λ0) produced by reflection at successive boundaries throughout the assembly
reappear at the front surface, all in phase so that they recombine constructively.

Figure 4 shows the results obtained from PITD simulations and the theoretical curves
by means of the matrix method fully detailed in [34]. The results show a good accuracy
between the two methods considered. The PITD parameters setup are summarised in
Table 4. The physical parameters for the refractive indices for the high and low layers
arr nH = 2.3, and nL = 1.38, respectively. The refractive index of the substrate is ns = 1.52,
and the excitation wavelength is λ0 = 230 nm. It is worth mentioning that results show in
Figure 4 are computed using α′ =

√
2 taking advantage of the PITD capabilities.

Figure 4. Simulation of the reflectance for two thin-film filters based on three layers and five stacks
of layers. The setup parameters are summarised in Table 4.

Table 4. Simulation parameters for Figure 4.

∆ α′ ∆t = α′∆t0 ts Nλ ny nx nPML n δ

1.15 nm
√

2 5.42× 10−9 ns 10−8 ns 200 500 20 20 20 10−5

Figure 5 shows the results of the PITD method applied to binary diffraction gratings
and TNLC devices. More specifically, Figure 5a shows the diffraction efficiency of the 0th-
and 1st-orders as a function of the normalised pillar length. The scheme of a binary phase
grating is shown in Figure 1c where the parameters are the same ones used in the analysis
in [33]: ∆ = 2λ, ng = 1.5 and f = 50%. The length h has been varied for obtaining the
results shown in Figure 5a. PITD simulation is compared to SF-FDTD results [33], showing
that PITD provides close values to SF-FDTD. Some minor deviations are in the curves that
can be produced by the spatial average that must be carried on in time-domain simulations
and differences between spatial and time resolutions in both methods. Table 5 summarises
the PITD setup for simulating the results in Figure 5a.
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Table 5. Simulation parameters for Figure 5a.

∆ α′ ∆t = α′∆t0 ts Nλ ny nx nPML n δ

52.7 nm 1 87.9× 10−9 ns 125 · 10−9 s 12 120 24 10 20 10−5

To demonstrate the potential of the PITD implementation here proposed an anisotropic
device is simulated. More precisely, a TN-LC layer is considered. The scheme of this
device is shown in Figure 1d. A TN-LC layer is based on LC layer of thickness d that
has anisotropy along the y-axis (propagation direction) defined in Equation (38). The
TNLC here considered is fully defined in section 3.1 in [18], being n‖ = 1.7, n⊥ = 1.5,
∆n = n‖ − n⊥ = 0.2 and φtwist = 90◦. Therefore the εr matrix is defined as follows:

εr =

n2
⊥ 0 0
0 n2

⊥ cos(α)2 + n‖ sin(α)2 (n2
⊥ − n2

‖) ∗ sin(α) cos(α)
0 (n2

⊥ − n2
‖) ∗ sin(α) cos(α) n2

⊥ ∗ sin(α)2 + n2
‖ ∗ cos(α)2

, (38)

with α = (y/h)φtwist, being h the thickness of the TNLC layer. Interested reader into the
details of the binary phase grating and the TNLC device here considered can find more
specific information into [18,33], respectively.

Figure 5b shows the Stokes parameters obtained in the output plane of the TN-LC
layer. In both cases (Figure 5a,b), the input light is linearly polarised along the x-axis with
a wavelength λ = 633 nm.

Figure 5. Comparison between PITD and SF-FDTD results of two periodic media. (a) Diffraction
efficiency of the zeroth and first-order of a binary diffraction grating with period Λ = 2λ, fill factor
of 50% and refractive index of 1.5 [33]. SF-FDTD curve is reproduced with permission from Francés
et al., In Proceedings of SPIE Optical Modelling and Design II, Vol. 8429, 2012. (b) Normalized
Stokes parameters of a 90◦ twisted-nematic liquid crystal cell between with parameters: ∆nl = 0.2,
n‖ = 1.5 [18].

Figure 5b shows the calculated polarization state of outgoing light from the TNLC
cell in terms of the normalized Stokes parameters. Table 6 summarises the PITD setup for
simulating the results in Figure 5b. The PITD results are compared with those obtained
through SF-FDTD simulations and show a good agreement. It is worth noting that the
results are consistent with those shown in Figure 3a in [18]. The differences between PITD
here are related to the time-step resolution since the computation of Stokes parameter
implies the estimation of the phase difference between electric field components. The
resolution of the phase difference is closely related to the time resolution. In SF-FDTD, the
Stokes parameter was directly related to the inner electric field components since the phase
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term is implicitly included in the split-field formulation. In spite of this PITD shows a good
agreement in this case.

Table 6. Simulation parameters for Figure 5b.

∆ α′ ∆t = α′∆t0 ts Nλ ny nx nPML n δ

25 nm 1 41.8× 10−9 ns 125 · 10−9 s 20 260 12 20 20 10−5

4. Conclusions

In this paper, the implementation of the PITD method for the analysis of periodic
optical media is shown. More precisely, the formulation can simulate anisotropic periodic
optical media. The scheme is fully defined, and some canonical examples are simulated
and compared with the SF-FDTD method. PITD for optical media is validated through
the diffraction efficiency computation of a single and two slits. Here, PITD is tested with
time-step resolutions larger than the one established by the CFL condition. The stability
of the method and accuracy is good enough for values of the time-step larger than six
times than the largest time-step that fits with the CFL condition. A binary phase grating
is also analysed regarding periodic optical media, obtaining good results compared to
the SF-FDTD curves. Anisotropic periodic media is also covered through the analysis of
a 90◦ TNLC layer. Here, the output polarisation state is analysed and compared to the
ones obtained in the literature, showing that PITD is a good approach for simulating this
type of devices. It is worth noting that simulating optical media where at least one or
two dimensions are larger than the input wavelength can be afforded in the current state
without any problems in terms of computational resources.

PITD has shown good accuracy for the analysis of periodic optical media. However,
the method still has some drawnbacks related to the formulation. Even using sparse
matrices, the memory requirements for time-steps larger than the one established by the
CFL condition imply larger values for the matrices, and an experimental tuning of the
threshold scheme must be carried out to minimise the overload in terms of computation
time and memory requirements. Nevertheless, the authors consider that PITD can become
a reference for the analysis of electromagnetic and optical materials where a fine mesh is
needed, and hence larger time steps can be applied to reach the steady-state of the structure
faster. However, more research and improvements must be developed to outcome the
disadvantages that currently has this formulation.
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