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Abstract

We investigate the relationships between electron-density and electronic-energy er-

rors produced by modern exchange-correlation density-functional approximations be-

longing to all the rungs of Perdew’s Ladder. To this aim, a panel of relevant (semi)local
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properties evaluated at critical points of the electron-density field (as defined within

the framework of Bader’s atoms-in-molecules theory) are computed on a large selec-

tion of molecular systems involved in thermodynamic, kinetic, and noncovalent in-

teraction chemical databases using density functionals developed in a nonempirical,

minimally and highly parameterized fashion. The comparison of their density- and

energy-based performances, also discussed in terms of density-driven errors, casts light

on the strengths and weaknesses of the most recent and efficient density-functional

approximations.
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1 Introduction

How one could better assess the proper quality of a density-functional approximation (DFA)?

A dilemma still persists in the field of density-functional theory (DFT).1 It is common prac-

tice to rank a DFA according to its performance on extensive reaction energy databases.2–4

Being indeed defined as a global property, the energy criterion is expressed as a single number

associated with some chosen error metrics. Its cross comparison with a reference value de-

serves thus to be fast and reasonably easy to perform. In this way, reaction energy databases,

sometimes augmented by energy-related properties such as structures5–8 or electronic exci-

tations,9–13 just to cite some of them, represent the wide majority of reference datasets used

to validate and/or develop DFAs in a semiempirical fashion.

In theory, judging the DFA reliability for energies ensures its reliability for density-based

properties. The Hohenberg and Kohn theorems state indeed that the exact ground-state (GS)

energy of aN -electron system is expressed as a variational energy functional of its GS electron

density.1 They establish thus a unique one-to-one correspondence between the exact GS

energy and density, and guarantee obtaining an exact density under the condition of getting

the exact energy.14 Nevertheless, in practice, notably within the Kohn-Sham approach of

DFT (KS-DFT),15 energies and densities are approximated after choosing an exchange-

correlation term.16 As a result, the success of a DFA in assessing reaction energy databases,

independently of their size and composition, does not necessarily parallel (vide infra) with

its success in modeling density-based properties.

Assessing the density provided by DFAs has actually a long history,17–19 and was initially

closely related to quantum molecular similarity issues.20–22 In 2017, the topic has however

known a recent revitalization, fostered in particular from a work by Medvedev et al.23 which

initiated a still ongoing debate. Despite criticisms expressed on their computational method-

ology,24–29 livened up with intense comments and answers,30–32 they came to the conclusion,

in the special case of isolated atoms, that the highly parameterization of recently developed

exchange-correlation density functionals improve admittedly their accuracy versus energy
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properties, but can also lead to wrong densities if an overfitting occurs. In that specific case,

the overparameterization of the DFA may induce spurious oscillations that finally degrade

the density evaluation.32–34

This discussion, later extended to more ‘chemically relevant’ systems through the com-

parison between atomization energies and electron densities of diatomic molecules,35 con-

firmed the decorrelation between energy and density performances in recently developed

highly parameterized DFAs. However, setting apart this family, further benchmarks still

based on mono- or di-atomic systems showed that climbing Perdew’s Ladder of exchange-

correlation approximations36 tends to improve the quality of the density and its successive

derivatives.28,37–39 In that sense, the trend observed for nonempirical or minimally param-

eterized exchange-correlation approximations parallels with the one found for energy prop-

erties,40 and constitutes a systematic improvement while concomitantly strengthening their

theoretical background.

Atoms and diatomic systems used predominantly up to now as system probes are nev-

ertheless far to be representative of the molecular compounds found in the rich chemistry

landscape. Their high similarity and homogeneity makes of course the comparison of the

density and its derivatives with a reference easier, but also makes the extrapolation to real-

life chemical systems not trivial. We propose here to go further by analyzing the quality

of the density of larger and more diverse molecules containing up to 14 atoms and usually

involved to appraise the performance of DFAs versus atomization, barrier height and weak

interaction energy properties.

Interestingly, targeting larger systems requires a robust and tractable measure to assess a

property defined at each space position such as the density. A first approach is to calculate on

a grid a global descriptor as a cumulated density distance against a reference.37,41 It requires

the definition of density overlaps through the choice of a relevant dot product, which is clearly

not unique. Such an approach is global in the sense that each real-space point r is used to

compute the final and unique molecular value. Typical examples are the density overlaps
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already mentioned and the comparison of molecular dipole moments42,43 that requires the

knowledge of the electron density in whole space. However, such a measure is generally not

recommended since it is biased by the inert behavior of the core electrons in the vicinity of

the nuclei,39 and because it requires very large integration grids to reach the appropriate

accuracy (many decimal places needed for reliable overlaps) precluding its use for larger and

larger molecules.

We prefer here to focus on another analysis scale that we dub as a local approach. There,

relevant properties are scrutinized at some specific real-space points. This is a kind of coarse-

grained view of molecules: only a finite (and ideally small) number of pieces of information

are used to summarize the infinite information encoded in the electron density or in related

functions. In that sense, local descriptors provide a more ‘chemically intuitive’ picture of

density errors. They are usually derived from a topological analysis of the density such as the

quantum theory of atoms-in-molecules (QTAIM),44,45 or from analysis of the kinetic energy

density changes studied within the electron localization function (ELF),46 localized orbital

locator (LOL),47 or density overlap regions indicator (DORI) frameworks.48,49

With the aim to evaluate the quality of the density within the bonding region of a

molecule, we naturally turn to the QTAIM framework, continuing along the path paved by

some of us ten years ago50 and by other groups.51–54 Most of these studies were however

not explicitly conducted for DFT development purposes, and did not initially attempt to

draw guidelines for the improvement of exchange-correlation density functionals. Within this

investigation, we accordingly go further not only by measuring the performance of a broad

selection of DFAs belonging to the five rungs of Perdew’s Ladder, but also by comparing their

accuracy in modeling energy and density properties of molecular systems. In such a way,

without pretending to parallel our results with the formal knowledge of the sources of errors

in DFT, we investigate correlation or decorrelation between density and energy errors within

different families of DFAs developed in a nonempirical, minimally or highly parameterized

fashion, thus bringing closer the pure DFT and applied QTAIM communities.
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2 Local QTAIM Quantities

Developed by Bader et al. early in the sixties, QTAIM provides a robust and physically

grounded framework55–57 based on the topology of the electron density. In a nutshell, the

regional QTAIM viewpoint divides real space into nonoverlapping atomic basins separated by

interatomic surfaces, providing an exhaustive partition of the three-dimensional real space.

The local counterpart relies on the inspection of the so-called critical points (CPs), defined

as points where the electron-density gradient vanishes. CPs are classified in terms of the rank

(i.e., number of eigenvalues) and signature (i.e., difference between number of positive and

negative eigenvalues) of the electron-density Hessian matrix evaluated at these points. For

instance, a (3,−1) CP, characterized by two negative and one positive Hessian eigenvalues,

corresponds to a density minimum along the atomic interaction line and to a maximum in the

perpendicular plane. At an equilibrium geometry, (3,−1) CPs are called bond CPs (BCPs),

their presence defining the bond between two atoms in the orthodox QTAIM interpretation.

In the same way, a ring CP (RCP) is found at the frontier between three or more atomic

basins forming a ring. Such a CP is encountered here in the case of the cyclobutane molecule.

It corresponds to a (3,+1) CP, with two positive and one negative eigenvalues of the Hessian,

and is mainly used to deal with aromaticity issues.58 It is worth remarking that two other

kinds of CP exist within QTAIM, i.e., (3,+3) cage and (non)-nuclear attractor (3,−3) CPs.

They are however not deeply inspected into the present investigation.

Plethora of studies showed that BCP properties are highly correlated to bond energies in

both covalent and noncovalent cases.59–64 Among the most common and relevant features, we

find the BCP location (rCP), its electron-density value (ρ), and its density Laplacian value

(∇2ρ), the latter measuring the charge accumulation or depletion. All of these properties

can be used to assess the quality of the density produced by a given DFA and unravel how

this quality is related to a correct description of the bond. These three local descriptors will

be supplemented with the electronic part (Φe in atomic units) of the molecular electrostatic
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potential evaluated at the considered CP according to

Φe(rCP) = −
∫

ρ(r)

|rCP − r|dr. (1)

With respect to the other local quantities, it provides additional information dealing with

the interaction of the whole electron density of the system with the one evaluated locally at

CP. Owing to its semilocal character, it allows to get a complementary picture of the quality

of the density at CP.

Obviously, other local descriptors might have been included, such as variation rates65,66

or some energy components, for instance the two flavors (Lagrangian and Hamiltonian) of

the kinetic energy densities at CPs, or the virial field value,67 which are often discussed in the

QTAIM literature. However, their evaluation generally requires not only the electron density,

but also the first-order reduced density matrices (1-RDMs). In the current practice of QTAIM

processed from DFT calculations, 1-RDMs are computed using the fictitious KS system.68

While the KS and exact densities are by definition equal (provided that the exact exchange-

correlation density functional is used), the exact KS 1-RDM differs generally from the 1-RDM

extracted from the exact wavefunction. As a result, such a local DFT quantity cannot be

safely compared to post-Hartree-Fock references. Accordingly, only descriptors explicitly

and exclusively expressed from the electron density or/and its derivatives are retained.

3 Theoretical Methods

It is common practice to rank DFAs according to their level of nonlocality within Perdew’s

Ladder.36 While climbing it, the first three rungs are dedicated to (semi)local, also dubbed

non-hybrid, exchange-correlation approximations. They explicitly depend on semilocal in-

gredients such as the density, its gradient and its Laplacian, and correspond to the local

density, generalized gradient, and meta-generalized gradient approximations (LDA, GGA,

and meta-GGA, respectively).
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Within the DFA landscape, the enhancement factor of non-hybrids is either developed in

a nonempirical fashion by identifying its constants to limit physical constraints, or by em-

pirically optimizing its parameters taking as a reference chemical reaction databases. Table

1 reports some examples of non-hybrids. For instance, PBE is considered as nonempiri-

cal whereas BLYP is viewed like a minimally parameterized approach (i.e., few parameters

entering into its expression), while other cases like Minnesota density functionals, are con-

sidered as highly parameterized, their number of empirical parameters being considerably

large.

The nonlocality of non-hybrids can be extended by adding a dependence into nonlo-

cal exact-like exchange (EXX). The resulting hybrid DFA corresponds to the rung 4 of

Perdew’s Ladder. The development of this approximation has largely contributed to the

still alive wide enthusiasm of the chemistry community for KS-DFT,69,70 particularly with

the development of the B3LYP or PBE0 models. In its global-hybrid (GH) formulation, the

exchange-correlation energy is expressed such as

EGH
xc [ρ, {φi}] = axE

EXX
x [{φi}] + (1− ax)Ex[ρ] + Ec[ρ], (2)

where Ex and Ec stands for the (semi)local exchange and correlation energy contributions,

respectively, and ax denotes the fraction of EXX energy (EEXX
x ) which depends on the set of

occupied orbitals {φi}. The transformation of GH into its range-separated exchange hybrid

(RSX-H) variant further improves the estimation of such a property by splitting the Coulomb

operator into a short- and long-range terms (SR and LR, respectively) such as71–73

1

r12
=

1− [α + β erf(µr12)]

r12︸ ︷︷ ︸
SR

+
α + β erf(µr12)

r12︸ ︷︷ ︸
LR

, (3)

where α and α+ β govern the fraction of EXX in the SR and LR terms, respectively, and µ

the range-separation parameter.
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Reaching the rung number 5 of Perdew’s Ladder increases again the nonlocality of the

approximation. It is done by adding a dependence into nonlocal correlation. A robust and

now casual way to reach it is depicted by the double-hybrid (DH) model74–76

EDH
xc [ρ, {φi}, {φa}] = axE

EXX
x [{φi}] + (1− ax)Ex[ρ] + acE

PT2
c [{φi}, {φa}] + (1− ac)Ec[ρ] (4)

where ac denotes the fraction of second-order perturbation theory (PT2) correlation energy

(EPT2
c ) which depends on the set of occupied and virtual orbitals {φi} and {φa}, respec-

tively. By introducing nonlocal exchange and correlation, DHs (partly) correct non-hybrids

regarding the one-electron self-interaction error (SIE) and its extension to many-electron

systems,77,78 but allow also the recovery of the binding nature of weak interactions. The

computational effort requested to perfom a DH energy single point computation remains

one magnitude larger than for GHs (O(n5) versus O(n4), respectively, n referring to the size

of the basis set). It is nowadays common usage to alleviate it by turning on the Resolution-

of-the-Identity approximation.

Like non-hybrids, GH and DH approximations can be developed in a nonempirical fash-

ion. In that case, their expressions derive directly from the adiabatic connection formula79

and their parameters are identified to fulfill some constraints and known conditions. In

their global formulations, PBE0 and PBE-QIDH are two representative DFAs of this family

(Table 1). GHs and DHs can be also developed by empirically optimizing their fractions

of EXX and PT2 correlation versus reference energy databases. Within empirical variants,

Table 1 reports for instance hybrids such as B3LYP and ωB97X-D, and double hybrids such

as B2-PLYP and ωB97X-2. We consider here B3LYP and B2-PLYP as minimally parame-

terized since they introduce two or three more empirical parameters with respect to BLYP.

However, we class ωB97X-D and ωB97X-2 as highly parameterized DFAs since their pa-

rameterization process involves not only the fraction of nonlocal ingredients, but also the

enhancement factors of the (semi)local energy terms, increasing thus the total number of
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empirical parameters to more than 30.

4 Computational Details

Except when mentioned, electronic structure and wavefunction-based computations are per-

formed with the release C.01 of the Gaussian’16 program80 using, for each single-point energy

computation, a tight self-consistent field (SCF) convergence criteria and an ultrafine integra-

tion grid. All properties are uniformly computed with the very large def2-QZVP Ahlrichs’

quadruple-ζ basis set81 that ensures a nearly complete basis set convergence for energies

but specially for densities. ωB97X-2 electronic structure computations are performed with

the release 5.0.0 of the Orca program82 at the same level of theory using a tight SCF con-

vergence criteria, and taking advantage of the “chain-of-spheres” algorithm (COSX) variant

of the ‘Resolution-of-the-Identity’ (RI) approximation83 in association with the DefGrid3

integration grid.

For this benchmark investigation, we select a broad panel of 29 density functionals be-

longing to the five rungs of Perdew’s Ladder (Table 1). We especially choose them to probe

the quality of the density produced by (i) non-hybrid, hybrid and double-hybrid, and (ii)

nonempirical, minimally and highly parameterized DFAs. As recommended in previous

investigations dealing with the topic,23–32 we take high-quality densities derived from the

coupled-cluster singles and doubles method (CCSD) as reference.

Except for double-hybrid and post-Hartree-Fock computations, densities are produced in

a self-consistent fashion by solving the KS or Hartree-Fock (HF) equations. In the specific

case of double-hybrid density functionals and CCSD, SCF densities are relaxed a posteriori

via the Z-vector technique in order to take into account the response of the molecular orbitals

to the external perturbation.84,85

The four sets of density-corrected DFT (DC-DFT) computations86–88 are performed by

using the SOGGA11, PBE0, M06-2X and HF KS orbitals, respectively. In each set, KS
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orbitals self-consistently obtained are used to compute the KS kinetic energy, and the EXX

and PT2 contributions to the electron repulsion energy, while the SCF density is employed

to evaluate the nuclei-electrons interaction energy, the Hartree bielectronic repulsion energy,

as well as the LDA, GGA and metaGGA contributions to exchange-correlation.

For each computational approach, the evaluation of the electron density on a grid is ob-

tained with the release 2.1.1 of the HORTON package89 using an ‘ultrafine’ Becke-Lebedev

molecular integration grid.90 Section S3 in Supporting Information reports the detailed for-

mula of the cosine, Tanimoto and Dice overlaps used in this investigation.

All QTAIM computations are performed with the AIMAll package in its version 19.02.1391

using a ‘superfine’ integration grid and a Leb32 quadrature.

5 Results and Discussion

As stressed in the introduction, the most natural approach to benchmark the quality of the

electron density produced by a DFA is the evaluation of the density overlap (following the

Cosine, Tanimoto or Dice formula) between the probe and a reference, each density being

evaluated on a very large integration grid. However, as illustrated by the mean absolute

deviations reported in Tables S1 to S6 in Supporting Information, the computed overlaps for

a total of 211 molecules are in most cases higher than 0.9990. The discrepancies between the

different DFAs are thus encoded in the fourth decimal places. Despite the strict relationship

that exists between the whole electron density and DFT energy, the numerical accuracy of

this global approach is from our point of view difficult to properly assess.

As a more numerically stable alternative, we prefer here to turn on the analysis of the

quality of the density at well-defined ‘chemically’ relevant space points of a molecular system

such as the critical points derived from the QTAIM framework. Computing density errors

at critical points does not provide a strict and formal correlation between electron density

and energy errors. However, it depicts the quality of the density produced by a given DFA
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within a ‘chemically’ relevant region of a molecule and allows to correlate it with an energy

property governed by a molecular reactivity occurring in the same region. On this line,

Grimme92 and Cioslowski93 already showed that local QTAIM properties are instrumental

in predicting atomization energies and enthalpies of formation. Here, we will follow this path

in comparing density errors at critical points with (i) atomization energy, (ii) barrier height

energy, and (iii) weak-interaction energy errors.

To further validate our protocol of comparison between density and energy, Figure S1

in Supporting Information correlates the global electron density overlaps evaluated on an

integration grid with local density errors calculated at critical points. First, it shows that

the latter errors are one or two orders of magnitude larger than the former, assuring thus

a more numerically stable analysis of the DFA performance. Then, it demonstrates, with

one exception over 30 computational methods, that the density overlap integrated on a grid

decreases linearly when the local density error at critical point increases. It thus empha-

sizes that for most of computational approaches, the local density error at critical point is

representative of the electron density quality of the whole molecular system.

Our density versus energy benchmark starts now with the selection of ‘chemically rele-

vant’ systems. To make the comparison between both properties easier, we first select three

small representative benchmark sets whose two of them are designed to provide a statistical

estimate of the DFA performance from extensive datasets at a considerably reduced com-

putational cost. We especially focus on the AE6 and BH6 sets,2,94 each of them containing

six representative reactions and probing for atomization and kinetic properties, respectively.

For instance, the DFA errors calculated on AE6 deviate in average only by 1.9% from the

DFA errors computed on the larger reference set of 109 atomization energies from which it

was generated.2

We complement them with six noncovalent interactions gathered in the so-called WI6

dataset. It is composed by the methane and water dimers at three different distances: the

CCSD equilibrium one and two non-equilibrium ones, the first corresponding to a more
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compressed system (90% with respect to the global energy minimum) and the second to

a decompressed complex (by 150%). The two considered systems are actually part of the

S22×595 and S66×896,97 datasets, respectively, the former being mainly maintained by Lon-

don dispersion and the latter by electrostatic interactions. The whole energy benchmark set

thus contains a total of 18 reference energies characterizing 18 molecular reactions ruled by

short- (AE6), middle- (BH6) and long-range (WI6) bonding interactions.

The 18 molecular reactions described above involve a total of 15 main molecular struc-

tures whose QTAIM topologies computed at the reference CCSD level are depicted in Figure

1. More precisely, the AE6 dataset contains six minimum energy structures that gather

a total of 29 BCPs and one RCP. The BH6 set is composed by three transition state

(TS) structures which are characterized by 11 BCPs. Finally, the WI6 dataset contains

six dimer (non)equilibrium structures, each of them characterized by a unique ‘weak’ BCP

located in between both monomers as a consequence of the Poincaré-Hopf relationship.98

The whole density benchmark set is thus composed by a total of 47 characteristic CPs in

which (semi)local density-based quantities are estimated.

As already mentioned in the computational details Section, local QTAIM properties for

DFAs are evaluated at the geometries optimized at a reference level in order to disentangle

electronic and structural effects. While density, density Laplacian and electrostatic potential

values are different for each method, this is no longer the case for the BCP location in

symmetric systems. For instance, the BCP of the disulfur molecule is found exactly in

the middle of the bond for all tested levels of theory. Conversely, in case of polar bonds,

the BCP position is strongly related to the electronegativity differences between the two

bonded atoms,99,100 and thus constitutes a descriptor suited to assess the quality of the ionic

character of a bond by the considered DFAs.

A first comparison between energy and density-based properties is depicted in Figure 2.

We especially focus here on a short selection of methods belonging to the generalized gradient

approximation (GGA), and to the hybrid (in the global or range-separated exchange expres-
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sions) and double hybrid classes of approximation in order to measure both the influence of

their rung (ruled by Perdew’s Ladder) and level of parameterization on their performance.

This selection is composed by three DFA families developed (i) in a nonempirical fashion,

i.e. PBE, PBE0 and PBE-QIDH, (ii) by introducing few empirical parameters, i.e. BLYP,

B3LYP and B2-PLYP, and (iii) by following an extensive empirical parameterization ap-

proach, i.e. B97-2, ωB97, ωB97X, ωB97X-D and ωB97X-2.

Independently of the parameterization level and interaction type, it is worth recalling

that climbing Perdew’s Ladder systematically improves the DFA performance with respect

to energy properties.40 For instance, going from PBE to PBE-QIDH decreases the mean

absolute deviation (MAD) versus atomization energy properties (AE6 dataset) from 14.7 to

4.3 kcal mol−1 and from 9.5 to 0.8 kcal mol−1 for energy barrier heights (BH6). This large

improvement corresponds to a MAD decrease of about ∼10 kcal mol−1. The same trend is

observed for the BLYP family and for the highly parameterized DFAs with a MAD decrease

of about ∼4 and 1 kcal mol−1, respectively.

The smaller amplitude decreases observed for the latter families comes from the bet-

ter performance of their semilocal and global-hybrid approximation, probably induced by

their empirical parameterization derived from these type of properties (i.e., 6.8 and 3.8 kcal

mol−1 for BLYP and B97-2 on the AE6 subset), with the double-hybrid approximation pro-

viding merely close MADs. Out of thermochemistry and kinetic properties, the same trend

is observed for weak interactions except that the magnitude of improvement is reduced con-

sequently due to the smaller strength of the interaction.

The role of the empirical parameterization on the energy performance is a point already

taken up by previous investigations.101,102 However, it is also important to remind that highly

parameterized DFAs perform generally better than minimally or nonempirical ones within

their application domain. On the other hand, nonempirical approaches have the advantage

to keep less marked statistical fluctuations independently of the system size and beyond

training sets.
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For density-based properties calculated at CPs (Figure 2), a similar trend is observed

for nonempirical and minimally parameterized density functionals. The density error for the

AE6 testset is indeed reduced from 0.005 to 0.001 a.u. when going from PBE to PBE-QIDH,

and from 0.003 to 0.001 a.u. for BLYP and B2-PLYP, respectively. The other local and

semilocal quantities like the CP location, Laplacian of the density and electron electrostatic

potential display the same decreasing trend. Still within the same dataset, going from the

semilocal approximation to the double-hybrid one decreases the MAD related to these criteria

of 0.008, 0.068 and 0.023 a.u, respectively, for the PBE-based family, and of 0.009, 0.045 and

0.025 a.u., respectively, for the BLYP-based one. Among this set of density functionals, PBE-

QIDH is the one producing the best estimates over the whole set of density-based quantities

on the AE6 testset. It is worth noticing that such local and semilocal CP quantities allow

magnifying the discrepancies between the generated electron densities. For instance, for the

S2 molecule, the (3,−1) density value equals 0.1969 a.u. with SVWN5 and 0.2015 a.u. at

the CCSD level, while the cosine, Tanimoto and Dice overlaps between SVWN5 and CCSD

densities are equal to 0.99998, 0.99993 and 0.99997, respectively.

If nonempirical and minimally parameterized DFAs improve systematically and concomi-

tantly their performance versus energy and density-based properties while climbing Perdew’s

Ladder, highly parameterized methods belonging to the B97 family do not behave similarly.

Among them, the B97-2 global hybrid is indeed the best performer on the AE6 testset, while

it is the worst for energy properties. The addition of further empirical parameters in the

more sophisticated ωB97, ωB97X, ωB97X-D and ωB97X-2 approaches is definitively not a

guarantee to get an improvement of density-based performances, since the density MAD

equals 0.0016 a.u. for B97-2 (GGA) and 0.0028 a.u. for ωB97X (range-separated hybrid).

Their parameterization process was indeed designed to minimize their error versus extensive

energy database, however for the sake of computational time saving and affordability, each

single point energy was not computed in a self-consistent fashion, but from a selected guess

of KS orbitals (see the corresponding references reported in Table 1). This lack of self-
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consistency is probably the reason for not having a systematic improvement of density-based

properties while climbing Perdew’s Ladder.

As depicted in Figure 2, the performance trend obtained on the AE6 testset is also

verified for molecular systems involving longer range interactions such as noncovalent ones

(WI6 testset) or lengthened (forming or breaking) bonds (BH6 testset). For nonempirical

and minimally parameterized methods, density errors estimated at the (3,−1) CPs of TS or

inter-monomer structures tend to decrease when the level of approximation increases. For

instance, the density MAD values for the BH6 dataset equal 0.0035 a.u. (PBE), 0.0021 a.u.

(PBE0), 0.0008 a.u. (PBE-QIDH), while highly parameterized approaches do not follow this

trend. For the same dataset, the density MAD stagnates when going from ωB97X (0.0017

a.u.) to the much more time-consuming ωB97X-2 double-hybrid functional (0.0017 a.u.).

The case of ωB97X-D is particularly interesting for the WI6 testset. Indeed, the addition

of a Grimme’s dispersion term to the density functional divides by a factor four the energy

error with respect to ωB97X-noD (0.1 versus 0.4 kcal mol−1, respectively, see Table S9 within

Supporting Information), a considerable breakthrough. This atom pairwise correction, which

has not to be confused with self-consistent van der Waals density functionals,103 is added

on top of the KS-DFT SCF energy in order to recover the missing asymptotic correlation

energy.104 Except for some formulations that introduce a density dependency and can be

turned into a self-consistent variant,105–108 these classical potentials impact only the total

energy of the system (and the shape of potential energy surfaces). This implies that in

principle they should have exactly no effect on density properties, decorrelating density and

energy performances, and should be therefore inadequate to partly correct the density of the

uncorrected DFA.

Noticeably, for the BH6 set, the MAD for the (3,−1) CPs density values is found higher

with ωB97X-D (0.0021 a.u.) than for ωB97X (0.0017 a.u.), and the same observation holds

for Laplacian values (0.0286 with D-correction vs. 0.0237), and also for the AE6 set. Coun-

terintuitively, the dispersion correction deteriorates density properties for strong bonds, while
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almost insensitive to noncovalent ones. This is actually due to the fact that the parameters

entering the ωB97X and ωB97X-D expressions take slightly different values because they

were refitted in the latter one to minimize energy errors in presence of the dispersion term.

On the contrary, by adding a nonlocal correlation contribution, the double-hybrid ap-

proximation is considered as a first-principle alternative to correct DFAs for dispersion issues.

By construction, it allows correcting for both the energy and density. Taking PBE-QIDH

as example, Figure 3 illustrates the impact of the nonlocal correlation term on the electron-

density value at the inter-monomer (3,−1) CPs for water and methane dimers by comparing

the PBE-QIDH density with those produced by PBE and PBE0. As depicted above, the

GGA provides the worst estimates of the density characterizing the hydrogen bond in the

water dimer and the noncovalent interaction in the methane one. More precisely, it tends to

overestimate the density on both examples with an error amplitude few times larger for the

water (0.0013 a.u.) than for methane (0.0002 a.u.) dimer at the equilibrium distance, the

error decreasing with an inter-monomer distance increase.

The addition of a 25% of EXX leading to PBE0 improves the results by decreasing the

density overestimation. Increasing again the fraction of EXX to 69% by the SCF part, i.e.,

before adding the PT2 correction (the PBE-QIDH(SCF) model), slightly underestimates the

density in the weakly interacting regions. However, relaxing the density with the PT2 term

(PBE-QIDH) turns the double hybrid approximation into the best method to estimate the

density in this region with a density error of about 0.0002 a.u. and lower than 10−4 a.u.,

respectively. This shows that the density accuracy strongly depends on the balance between

the fraction of EXX and PT2 correlation within the double-hybrid scheme.

To further confirm the performance trend obtained with the three small representative

datasets, and improve the robustness of this density versus energy benchmark investigation,

we complement it by assessing the QTAIM topology of 138 (out of 148) molecules gathered

into the G2 atomization energy database,109–111 12 TS structures belonging to the DBH24

barrier height energy dataset,112 and 27 (out of 31) dimers in weak interactions derived from
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the NCB31 noncovalent bond set.113 A detailed list of the systems involved here is reported

in Section S1 in Supporting Information. We insist however on the difficulty we faced to

compute the CCSD reference densities for these 177 extra molecular systems. The very large

computational effort requested for some of the largest targeted molecules, notably the huge

integral storage demand, forced us to leave them out of this investigation. The resulting

177 additional topologies count for a total of 727 (3,−1) and 19 (3,+1) additional CPs (see

for instance Tables S13 to S205 within Supporting Information), all of them calculated on

reference geometries provided by each dataset.

Figures S2 and S3 report the accuracy of the BLYP, PBE and B97 families of DFAs

in computing the density and density-related descriptors at these CPs, and compare them

with their energy performance on each dataset. As observed on the small representative

datasets, a large and concomitant density and energy performance improvement is found

while climbing Perdew’s Ladder for the nonempirical and minimally parameterized family of

DFAs. For instance, the density error on the G2 dataset goes from 0.0040 to 0.0014 a.u. for

PBE and PBE-QIDH, respectively, and from 0.0024 to 0.0016 a.u., for BLYP and B2-PLYP,

respectively (Figure S2). On the same set, the energy performance trend parallels and goes

from 16.2 (6.8) to 4.5 (1.9) kcal mol−1 for PBE (BLYP) and PBE-QIDH (B2-PLYP), re-

spectively. The same trend is observed for the DBH24 and NCB31 databases. It is also

worth noticing that Figure S2 further confirms the energy and density performance stagna-

tion of the B97 family of highly parameterized DFAs while going from the non-hybrid to the

double-hybrid approximation. It results that the trends obtained on the small representative

datasets compare with the ones derived from the largest ones. Moreover, in discriminating

the density-based properties computed at the (3,−1) and (3,+1) CPs, Figures S6 and S7

show that the performance trends are independent on the type of CPs. Despite the more

stable character of BCPs, a linear relationship between density errors at BCPs and RCPs

can be evidenced. It thus confirms that the same conclusions can be drawn independently

on the position and type of the local density descriptor.
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The conclusions drawn up to now from a short DFA selection emphasize that the level of

empirical parameterization decorrelates the performances for energy and density properties.

It indeed tends to improve the DFA accuracy for all of the energy properties investigated

here but does not improve with the same gain the density at covalent and noncovalent bonds.

To confirm this trend, we extend our investigation to 20 extra highly parameterized DFAs

belonging to the semilocal or hybrid classes (see Section S2 within Supporting Information).

Figure 4 compares their energy and density performances on the AE6, G2, BH6, DBH24,

WI6 and NCB31 datasets to those of the nonempirical PBE0 global hybrid, and classify them

according to their electron density accuracy. Figures S4 and S5 in Supporting Information

provide a comprehensive database by database comparison of the deviations reported in

Figure 4.

At first glance, it is worth noting that the density performance of the nonempirical

PBE0 cumulated over the three datasets ranks it in position 7 over 21, while a ranking over

energy criteria would push it in the 19th position, far from some popular empirical DFAs.

This proves again that a highly empirical parameterization does not a fortiori improve the

quality of the density while it is supposed to do it by construction for energy. This rule of

thumb is also corroborated by the R2 coefficient of determination assessing the quality of

the linear relationship between energy and density MADs (Figure 5). On each separated

dataset, R2 is lower than 0.23 (AE6 + G2 and WI6 + NCB31) and is about 0.01 for BH6

+ DBH24. Over the six datasets, R2 remains very low (0.38), showing once more the

full lack of correlation between energy and density performances for highly parameterized

approximations in comparison to nonempirical and minimally parameterized ones (0.83).

Note that the same trends are obtained while considering separately each dataset, and that

the AE6 and BH6 representative datasets provide close statistics to their larger G2 and

DBH24 extensions (see Figure S4 and S5 within Supporting Information).

The top two of the best highly parameterized methods is composed by two Minnesota

DFAs whose cumulated MAD is lower than 0.0086 a.u. (Figure 4). In increasing density

19



error order, these are the M06-2X and SOGGA11-X global hybrid approaches. Among them,

M06-2X, which is 13 years old and hence among the oldest approaches benchmarked here,

provides indeed very low density deviations of about 0.0021, 0.0013 and 0.0004 a.u. on the

G2, DBH24 and NCB31 databases, respectively (Figure S4 within Supporting Information).

It provides also the first best cumulated energy MAD (6.8 kcal mol−1). They are followed by

three members of the ωB97 family which are characterized by a cumulated MAD of about

∼0.0095 a.u. and ∼9.1 kcal mol−1 for density and energy errors, respectively. M11, MN15,

N12-SX and N12 provide close cumulated density errors to PBE0. N12 is however the worst

performer regarding energy errors (28.2 kcal mol−1).

The remaining DFAs ranked from M05-2X to M06-HF poorly perform with a cumulative

density error higher than 0.0176 a.u. which corresponds to a MAD more than twice larger

than for M06-2X (Figure 4). It corresponds to density deviations of about 0.0051, 0.0042

and 0.0005 a.u. on the G2, DBH24 and NCB31 databases, respectively (Figure S4 within

Supporting Information). The cumulated density error of M06-HF is the worst found in

this investigation (0.0393 a.u.) however its cumulated energy error remains in the upper

scale (15.6 kcal mol−1), showing again the lack of correlation between energy and density

performance for highly parameterized DFAs.

The most intriguing case remains nevertheless M11-L that is ranked as second to last.

Despite its 19 empirical parameters, both its energy and density performances remain among

the poorest of our selection. More precisely, a careful analysis of the QTAIM topology of

the propyne molecule computed from its density shows a wrong description of the alkyne

triple bond (Figure 6). The latter is indeed described by two (3,−1) CPs located around

a non-nuclear attractor. This feature, usually found in lithium clusters and caused by the

very sparse charge density distributions in between the nuclei,114–117 shows that M11-L does

not satisfactorily describe the density along the triple bond.

In conclusion, the analysis of Figure 4 shows that highly parameterized density functionals

provide in their large majority excellent performance versus energy properties, however their
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excellent energy accuracy seems to not correlate with a good accuracy in predicting density

properties, and independently of the CP type considered (see Figures S8 and S9 within

Supporting Information). Among the 20 analyzed density functionals, M06-2X is the one

providing the best compromise between energy and density accuracy (0.0086 a.u. and 6.8

kcal mol−1, respectively). Its cumulated performance has to be compared with the ones of

the B2-PLYP minimally parameterized (i.e., 0.0050 a.u. and 8.6 kcal mol−1) and PBE-QIDH

nonempirical (i.e., 0.0052 a.u. and 11.5 kcal mol−1) double hybrids.

The quality of the density is finally evaluated here by measuring its impact on the density-

driven error property measured over the AE6, BH6 and WI6 datasets. This concept is

part of the DC-DFT approach pioneered by the Burke’s group,86–88 which decomposes DFA

errors into contributions driven by the energy functional and those due to errors in the self-

consistent density. Figure 7 collects the diagrams correlating the energy errors computed in a

self-consistent fashion and estimated from the SOGGA11, PBE0, M06-2X and HF densities,

for the previous selection of 20 highly parameterized functionals. These choices for guess

densities are motivated by the following facts: (i) SOGGA11 is a pure (without EXX and

PT2) density functional and was found as the one providing a good estimate of the density;

(ii) PBE0 is a global hybrid including a small fraction of EXX (25%) and is considered as

the nonempirical standard of this investigation; (iii) M06-2X includes approximatively twice

the fraction of EXX (54%) and is the second best approach of this investigation; (iv) finally

HF is underlined by several investigations to provide a self-interaction-free density that can

alleviate severe DFA deficiencies.29

One could also wonder whether the same protocol could be applied using the CCSD

electron density and CCSD natural orbitals (NOs, which diagonalize the Z-vector relaxed

1-RDM). However, this would lead to double counting of the correlation kinetic energy since

the kinetic energy calculated from NOs would incorporate correlation effects to the kinetic

energy that are in principle included in the exchange-correlation functional. For such reasons,

post-HF methods are preferred to be not used in this density-corrected approach.
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As a first observation, it is important to note that rare are the density functionals for

which using a non-self-consistent density improves their accuracy in predicting energy prop-

erties (these few cases can be graphically identified by looking at points above the first

bisector in Figure 7). It thus emphasizes that, when developed, highly parameterized DFAs

should be parameterized in a self-consistent fashion. Moreover, we observe that plugging

the density derived from a non-hybrid approximation (SOGGA11) into various exchange-

correlation expressions provides very large deviations, or in other words, largely worsens the

energy performances (Figure 7). Except for WI6, using the HF density provides similar devi-

ations. The best energy agreement between non-self-consistent and self-consistent densities

is obtained with the PBE0 or M06-2X global hybrid densities.

Even if we do not intend to systematically analyze the influence of the EXX fraction,

such observations suggest that by reducing the one- and many-electron self-interaction er-

rors (SIEs),77,78 global hybrids including between 25 and ∼50% of EXX produce the best

density compromise minimizing the density-driven energy error. In such a way, our findings

corroborate with the ones published very recently by Santra and Martin on the extended

GMTKN55 dataset.118 They recall also that by exclusively using the PBE0 density (25%

of EXX), the xDH-PBE0 doubly hybrid,119,120 a non-self-consistent double hybrid from the

xDH family,121 succeeds to display impressive performance for an extended panel of energy

and energy-related properties.122,123 Our findings demonstrate also that, excluding WI6, the

lack of correlation in the HF SIE-free density increases the density-driven error. Above all, it

proves that for highly parameterized exchange-correlation expressions, the use of an accurate

density does not certify to get a good estimate of the energy.

6 Conclusion

In this benchmark investigation, we concentrated on the quality of the electron density

produced by a wide selection of 29 exchange-correlation density functionals belonging to
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each rung of Perdew’s Ladder. With respect to previous investigations that mainly evaluated

density errors with respect to atomic benchmark sets, we focused on ‘chemically relevant’

molecular systems. Furthermore, the electron density in molecules is known difficult to

analyze as a whole, particularly due to the large density amplitudes in the close neighborhood

of the nuclei. We alleviated this difficulty by restricting our investigation to the study of

the ‘chemically relevant’ bonding regions by means of local and semilocal density-dependent

QTAIM quantities evaluated at the bond and ring critical points.

As a first conclusion, we evidenced that the systematic energy error improvement usu-

ally observed while climbing Perdew’s Ladder is not a fortiori reproduced for the density

criteria. More precisely, a clear dichotomy was unraveled. On the one hand, we showed

that increasing the sophistication level of the exchange-correlation approximation improves

concomitantly and in a remarkable way the performance of nonempirical and minimally pa-

rameterized density functionals, while, on the other hand, this was not the case for modern

highly parameterized approaches. We conjectured that this disparity comes from the param-

eterization process, and particularly from the fact that it was not systematically carried out

in a self-consistent fashion.

Then, we demonstrated that for nonempirical and minimally parameterized density func-

tionals, the double-hybrid approximation overperforms the others. As for energy purposes,

it not only succeeds in accurately describing the density within the covalent bond region,

but also provides a good estimate of the density within noncovalent bond areas. In this

sense, the double hybrid scheme achieves adding to the electron density the missing nonlocal

correlation that a classical dispersion correction brings only to the energy but not to the

density.

As a third conclusion, we revealed the absence of linear correlation between energy and

density performance for the 20 highly parameterized density functionals selected here. Most

of them overperform nonempirical and minimally parameterized approaches of the same

category regarding energy properties, however their density performance improvement, even
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if it exists and remains of course excellent, is generally not as large as the one found for energy.

We particularly showed that the M06-2X global-hybrid approximation is the most accurate

in term of density-based and energy properties, and that the ωB97 family of functionals

could be also recommended if paying a special attention to the dispersion-corrected variants.

In this sense, it is worth to note that highly parameterized density functionals can be also

recommended to tackle topological investigations of the density.

Finally, by studying the density-driven error, we emphasized that a good quality density

does not guarantee a good energy when dealing with highly parameterized functionals. In

this sense, we strongly encourage to use them in a self-consistent fashion. However, in the

specific case a non-self-consistent computation would be required, we showed that a density

produced by a global hybrid including between 25 and ∼50% of EXX is the best compromise

to recover the self-consistent performances.
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Supporting Information Available

Within Supporting Information, Figure S1 depicts the linear relationship between density

errors integrated globally on a grid and evaluated locally at critical point. Figures S2 to

S9 complement Figures 2, 4 and 5 by providing statistics calculated (i) on the larger G2,

DBH24 and NCB31 datasets, and (ii) in function of the CP type. Tables S1 to S6 report

the detailed results of global density overlap functions estimated from the systems gathered

the tested databases. A detailed list of all the reaction energies and QTAIM descriptors

computed for each molecular systems is reported in Tables S7 to S12 (energy property),

Tables S13 to S205 (density property), and Tables S206 to S397 (Laplacian of the density

property).
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AE6

propyne cyclobutane glyoxal S2 silane SiO

BH6

HO· · ·H· · ·CH3 OH· · ·H HSH· · ·H

WI6

water dimer

R/Req ∈ {0.90, 1.00, 1.50}
methane dimer

R/Req ∈ {0.90, 1.00, 1.50}

Figure 1: Views of the 15 QTAIM molecular topologies under investigation within the 3
representative databases, computed at the CCSD/def2-QZVP reference level of theory. Six
of them (top) derive from the representative AE6 atomization energy database and count
a total of 29 (3,−1) bond + 1 (3,+1) ring reference critical points (CPs). Three of them
(middle) are the transition-state structures considered in the representative BH6 barrier
height energy database and gathers 11 (3,−1) bond reference CPs. The last six (down)
are gathered into the WI6 weak-interaction energy database. They probe six reference CPs
governing the six weak intermolecular interactions. The entire set of molecules gathers a
total of 47 reference CPs. Color code: H in white, C in grey, O in red, S in dark yellow, Si
in blue, (3,−1) bond CP in bright yellow, and (3,+1) ring CP in purple.
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Figure 2: From top to down, mean absolute deviations (MADs) calculated over the density
(ρ in a.u.), position (rCP in a.u.), Laplacian of the electron density (∇2ρ in a.u.), and
electrostatic potential from electrons (Φe in a.u.) errors from the 47 critical points gathered
into the AE6, BH6 and WI6 representative databases for a selection of density functionals.
As a matter of comparison, the energy performance (MADs in kcal mol−1) of each density
functional is provided in the down panel. All computations are performed with the def2-
QZVP basis set.
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density functionals at the def2-QZVP level of theory.
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Figure 4: Mean absolute deviations (MADs) calculated over the (top) density (ρ in a.u.) at
critical points, and (down) reaction energy (in kcal mol−1) errors on the atomization energy
(AE6 and G2 in red and light red, respectively), barrier height (BH6 and DBH24 in blue and
light blue, respectively) and weak interaction (WI6 and NCB31 in green and light greeen,
respectively) databases for a selection of 20 highly parameterized density functionals (see
Section S2 within Supporting Information). The performance of the nonempirical PBE0
density functional regarding these databases is provided as the sake of comparison. All the
computations are performed with the def2-QZVP basis set.
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Figure 5: Correlation diagrams between the density and energy mean absolute deviation
(MAD) criteria for (left) PBE- and BLYP-based nonempirical and minimally parameterized
density functionals, and (right) a selection of 20 highly parameterized density functionals (see
Section S2 within Supporting Information) on the (red) atomization energy [AE: AE6 (empty
circles) and G2 (filled circles)], (blue) barrier height [BH: BH6 (empty squares) and DBH24
(filled squares), and (green) weak interaction [WI: WI6 (empty triangles) and NCB31 (filled
triangles)] databases. For each database and the whole databases (black), the coefficients of
determination (R2) related to each linear regression are provided in the legend. See Figures
S3 and S5 within Supporting Information for more detailed statistics on the single datasets.
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Figure 6: Comparison between the quantum theory of atoms-in-molecules (QTAIM) molec-
ular topology of propyne derived from the M11-L density functional density and the reference
CCSD approach. All the computations are performed with the def2-QZVP basis set. Colour
code: H in white, C in grey, (3,−1) bond CP in yellow, and (3,−3) non nuclear attractor
CP in green.
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Figure 7: Correlation diagram depicting the energy- versus density-driven errors on the
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performed with the def2-QZVP basis set. A lower deviation to the diagonal means here a
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