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Artificial structures can be considered as high spatially structured habitats in the
marine pelagic system, where patch connectivity would be strongly dependent on
the exchange of larvae or dispersing individuals. Fish-farms located offshore may
alter ecological connectivity, modifying trophic resources, and species dispersal among
patches. High population densities of invertebrates can be found associated with fish-
farm fouling communities, which can act as a seed source, contributing to the patterns
of connectivity through individuals exchange between subpopulations or with sink
populations. A field experiment was performed to analyse the role of fish-farms in the
colonisation of new uninhabited habitats (floating experimental units) located at different
positions relative to the fish farm and the main current, containing artificial habitats with
and without feed pellets similar to those used in the fish farm. Amphipods were used as
example of direct developing invertebrates for studying dispersing individuals from the
fish farm to the new habitats. The richest and most abundant populations in this study
were found close to and downstream of the fish farm, surpassing 1,000 amphipods at
their maximum. Moreover, some floating habitats located more than 2 km from the fish
farm were colonised in only 15 days. Thus, the role of fish farms has been shown to
extend beyond a ‘stepping-stones’ effect in species dispersal, and have an additional
effect on ecological connectivity by increasing population sizes and acting as population
source. Our study aims to provide recommendations for coastal zone management in
order to predict potential spread from fish farms to other platforms in the future and
promote solutions related to interactions and consequences of connectivity within and
between marine facilities.
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INTRODUCTION

Understanding patterns of species dispersal is crucial to address
questions of population persistence and community dynamics
between groups of populations (Grantham et al., 2003). In
spatially structured populations, or ‘metapopulations,’ source–
sink or continent-islands dynamics can sustain local populations,
such that populations with positive growth rate seed the
populations with negative growth rate (Munguia et al., 2007).
For fouling species, offshore facilities can be considered as
high spatially structured habitats in the marine pelagic system,
without obvious connectivity with other habitats, similar to the
inhospitable terrestrial landscapes that surround and limit the
dispersal of freshwater invertebrate populations (Bilton et al.,
2001). So that, fouling communities on floating structures such
as buoys, rafts or fish farms are isolated benthic habitats as
they are surrounded by the sea and far from the seabed.
Consequently, offshore facilities may lead to alteration of
ecological connectivity, where patch connectivity would be
strongly dependent on the exchange of larvae or dispersing
individuals (Bishop et al., 2017).

Floating rafts and fish farms are expanding across the
oceans since the practice of intensive marine aquaculture has
steadily increased in many countries during the last five decades
(FAO, 2014). As other artificial structures, they alter the local
hydrodynamics and represent new inhabitable niches which may
be used by some species apart from their natural substrates
(Bishop et al., 2017). However, aquaculture facilities additionally
provided an input of organic-enriched wastes that may also
influence population sizes. Despite biogeographical variations,
the most important sessile species found in shellfish and finfish
farms are bivalves especially mussels, hydroids, algae, and
tunicates (Cook et al., 2006; CRAB, 2007; Fitridge et al., 2012;
Giangrande et al., 2020). Additionally, main free-living and
epifaunal inhabitants are crustaceans, polychaetes, gastropods,
and echinoderms (e.g., Hodson et al., 2000; Hincapié-Cárdenas,
2007; Guenther et al., 2010; Gonzalez-Silvera et al., 2015;
Watts et al., 2015). Amphipods are however without doubt the
most reported group of mobile fauna in aquaculture facilities,
notably caprellids and tube-building amphipods (Hodson
et al., 2000; Cook et al., 2006; Greene and Grizzle, 2007;
Fernandez-Gonzalez and Sanchez-Jerez, 2017).

For most benthic invertebrate species, e.g., many groups of
crustaceans, the larval phase is the dominant dispersal stage,
usually undergone by pelagic larvae that can spend months in
the plankton. This phase is one of the most sensitive within
the life cycle of the animal (Thorson, 1950). This does not
happen with other invertebrates such as peracarid crustaceans,
which show a different and direct larval development, with a
complete retention of the offspring, emerging fully-developed
as juveniles from the ventral marsupium of the mother. This
evolutionary adaptation influences the processes of population
connectivity across fragmented habitats, which would depend on
active migration of later stages such as juveniles or adults (Gutow
and Franke, 2003). However, direct developing invertebrates
has been overlooked on studies about population connectivity
between offshore structures, which focus on marine invertebrates

with planktonic larval development (e.g., Simons et al., 2016; Van
der Molen et al., 2018; Coolen et al., 2020).

While the direct development of invertebrates limits dispersal,
it may result to be essential in establishing and maintaining high-
density populations in optimal habitats, due to local recruitment.
In contrast to organisms such as decapods with higher fecundity
and mortality in early life-stages, recruitment in peracarids does
not depend on favourable oceanographic conditions (defined as
a type III survivorship curve; Hedgecock, 1994). Brooding leads
to a comparatively reduced fecundity (35.5 eggs per female for
amphipods; Sainte-Marie, 1991), but local recruitment is ensured
by a lower mortality rate in the early stages and a steady survival
probability throughout their life history (Ito, 1980).

Amphipods are direct developing invertebrates that occur
in high numbers in floating off-coast fish farms. Thus, local
recruitment together with feed supply provided by aquaculture
wastes could explain the high population densities amount
thousands of amphipods per square meter associated with fish-
farm fouling (Fernandez-Gonzalez, 2017). In such a situation,
competition between juveniles and adults for both space and food
may arise within the original habitat, so that when habitat patches
are too crowded and competition for resources is hard, dispersal
to new habitats can be spurred (Cadet et al., 2003).

In this sense, fish farms can act as a seed source and
contribute to the patterns of connectivity through amphipod
exchange between subpopulations or with sink populations.
Thus, amphipod dispersal by drifting, rafting, dislodgement or
migration may occur at different life-history stages such as
juveniles or adults, leading to differences in initial population
sizes, survivorship or population growth rates (Munguia et al.,
2007; Munguia, 2015). Different drivers will determine the
dispersal and successful colonisation of a new habitat, e.g., the
biological condition of the source population, local currents and
tides, distance from the source to the sink population or the
existence of chemical cues that favour habitat selection by active
swimming. Even as the numbers of immigrants may decrease
with opposing currents or distance from their source, it is the
conditions at the receiving population that will determine what
level of subsidy is significant (Cowen and Sponaugle, 2009).

This study aims to understand the connectivity patterns for
direct developing invertebrates in fragmented marine habitats,
using amphipods as model organism. We analyse the potential
role of fish-farm fouling as a source population of amphipods
moving toward surrounding habitats located in the water column
to determine its influence in the establishment and maintenance
of local metapopulations. For this, the study was designed
trying to avoid misinterpretations related to other sources of
dispersal individuals or pathways such as hull fouling, floating
objects or other offshore structures. Thus, we hypothesised
that: (a) the main current and the intervening distance will
affect the initial biofouling community and the dispersal of
amphipods from a source population to surrounding habitats;
(b) the suitability of the new floating habitats in terms of refuge
and/or chemical stimuli from aquafeeds will elicit amphipod
colonisation; and finally (c) initial population sizes in the new
habitats will depend on the sex and life stage of the amphipods
dispersing from the source population. A field experiment
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accompanied by zooplankton hauls was therefore performed in
order to analyse differences in amphipod colonisation among
new uninhabited habitats (floating experimental units) located at
different positions relative to the fish farm and the main current,
containing artificial habitats with and without feed pellets similar
to those used in the fish farm. Additionally, the sex and life stage
of both early colonists and migrants moving in the water column
were noted so as to gain understanding about possible differences
in initial population sizes attained in the new habitats.

MATERIALS AND METHODS

Experimental Design
The field experiment was carried out at a fish farm off the
coast of Guardamar del Segura (Alicante, Spain: 38◦ 5′45.88"N;
0◦36′15.84"W) during July 2011. The fish farm consisted of 18
rings with a diameter of 19 m or 25 m and cage nets reaching
depths from 12 to 15 m, set over a seabed at approximately 25
m depth. The cage structures were located 3 to 4 km off-coast
and grow European sea bass Dicentrarchus labrax and gilthead
sea bream Sparus aurata.

Fouling communities in this fish farm acting as source
population of amphipods were characterised by a mean
population density of 176,487 ± 38,893 ind.m−2, with a
maximum of 1,008,727 ind.m−2 (Fernandez-Gonzalez and
Sanchez-Jerez, 2017). Ten amphipod species were identified
as part of the source population: Caprella dilatata, Caprella
equilibra, Elasmopus rapax, Ericthonius punctatus, Jassa
marmorata, Jassa slatteryii, Monocorophium insidiosum,
Stenothoe georgiana, Stenothoe tergestina, and Stenothoe valida,
being the gammarids J. slatteryi, E. rapax, E. punctatus and
the caprellids C. dilatata, and C. equilibra the most abundant
amphipod species. These species have been previously described
as frequent and dominant in fish-farm samples from different
points of the Mediterranean (Fernandez-Gonzalez and Sanchez-
Jerez, 2017), confirming that this facility is representative of the
Mediterranean aquaculture.

Seventy-two artificial collectors (ACs) were deployed in the
dispersal and colonisation experiment, with an estimated volume
of 250 ml. Three kinds of ACs were used: ‘Habitat’ collectors (H),
based on those used by Vázquez-Luis et al. (2012), consisting
of a mesh bag with the artificial habitat (plastic raffia), ‘Habitat
and Pellets’ collectors (HP), identical to the previous but with
feed pellets inside them as used at the fish farm and ‘Control’
collectors (C), with only the external mesh bag used in making the
AC. Each AC represented a kind of possible receiving population
in such a way that ‘H’ represented habitats offering refuge,
‘HP’ simulated those conditions found in fish farm fouling with
available refuge and food while ‘C’ was a control for the treatment,
to check the effect of the external mesh bag. ACs were suspended
from a submerged buoy anchored by a rope at approximately
15 m from the sea bottom and between 5 and 8 m below the
surface (Figure 1). The whole structure was totally underwater
to avoid misinterpretations related to dispersal via hull fouling
or other floating objects. Three replicates of the same kind of
AC were attached on each rope with a minimal distance of

1m between them to ensure independence among replicates.
Different ropes were used for each kind of collector in order to
avoid interferences, particularly those related to the chemical cues
from fish feed, and separated by several metres. In the field, the
effects of distance and current on the dispersal and colonisation
processes were tested by placing ACs near (50 m) and far (more
than 2 km) from the fish farm and up and down the mainstream,
at two different sites. Sites were randomly selected and separated
by tens of metres. The main current was obtained from the
historical data from the two previous summer periods recorded
by the national government in the region1.

After 15 days, ACs were collected, covering them with
independent plastic bags, and retrieved by divers. In the
laboratory, the collected samples were preserved in 4% formalin
seawater solution and later sieved through a 250 µm mesh.
Artificial habitat and the biofilm that developed on the AC surface
were checked and all amphipods were sorted. Biofilm and the
initial fouling community on each AC were quantified by filtering
with pre-weighed GFC Whatman filters and drying at 80◦C.

The field experiment was combined with plankton hauls, in
order to detect amphipods drifting in the water column. Vertical
plankton hauls were performed using a conical 250 µm-mesh
plankton net 0.6 m in diameter from the maximum depth to
the surface. Samples were collected taking into account the same
zones where ACs were located, i.e., near and far from the fish
farm and up and down the mainstream. Plankton hauls were
repeated 2 days during the course of the experiment, considering
day and night-time to cover the possible nocturnal migrations
of amphipods in these areas. Three replicates were taken in each
case, resulting in a total of 48 plankton hauls. At the end of each
trawl, the net was washed down with seawater and the retained
material was also preserved in 4% formalin seawater solution.

All amphipods from AC and plankton hauls were sorted,
identified to species level whenever possible, classified according
to sex and life-history stage as males, females, brooding females
or juveniles and finally counted. Sexual dimorphism was used
to distinguish males and females adults by the size and shape of
the gnathopods and the presence of oostegites or penial papillae.
Females with eggs or juveniles in the brood pouch were termed
brooding females. Small amphipods that could not be clearly
identified as adult males or females were considered juveniles.

Data Analysis
To evaluate the influence of floating aquaculture facilities as
source populations on surrounding floating habitats, data from
AC were analysed taking into account a 4-factor mixed design:
‘Habitat suitability’ (orthogonal and fixed; three levels: habitat ‘H,’
habitat and feed pellets ‘HP’ and control treatment ‘C’); ‘Distance’
(orthogonal and fixed; two levels: ‘Near’ and ‘Far’), ‘Current’
(orthogonal and fixed; two levels: ‘up’ and ‘downstream’) and
‘Site’ (nested in the triple interaction and random, two levels),
with three replicates for each treatment.

Biomass of the sessile colonising community, amphipod
total abundance, species richness and abundance of the most
important amphipod species were analysed using Generalised

1http://www.puertos.es
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FIGURE 1 | Experimental design and scheme of the deployment of the three types of ACs containing habitat and feed pellets (HP), only habitat (H) or control (C).

linear mixed models (GLMs) to univariate responses. Mixed-
effects GLMs were fitted by means of the ‘lme4’ (Bates et al.,
2007) and ‘lmerTest’ packages (Kuznetsova et al., 2017) to
test for differences between main factors. Models were fitted
using a Gaussian, or a negative binomial, family distribution
of residuals, with a square-root link function. Moreover, GLMs
were also fitted to the multivariate abundance data matrix, by
means of the ‘mvabund’ package (Wang et al., 2012), using a
negative binomial family error distribution due to over dispersion
of abundance data, and P-values were calculated using 999
resampling iterations via a PIT-trap resampling procedure. The
relative contribution of each of the three main fixed factors to
explain the overall multivariate variance was estimated via the
‘best.r.sq’ function.

For all fitted GLMs, diagnosis plots of residuals and Q-Q plots
were visually inspected to check the appropriateness of fitted
models (Harrison et al., 2018). To select models with the largest
parsimony, the AIC (Akaike Information Criterion) was obtained
for the null model and models containing only the response
variable and the entire set of predictors (full model including the
four factors). The ‘Site’ factor did not help to explain any degree of
variability with respect to the null model and the AIC was larger
when this factor was included, hence finally not considered ‘Site’
in none of the univariate or multivariate models.

All modelling and testing were here implemented in the R3.6.1
statistical environment (R Core Team, 2019)2.

RESULTS

Development of the Biofilm and
Biofouling Community on Artificial
Collectors
After 15 days of the experiment, ACs showed a colonising
community formed of the initial biofilm community and sessile

2https://cran.r-project.org/bin/windows/base/old/3.6.1/

hydroids belonging to Campanulariidae family (mainly Obelia
sp.). Higher biomass was found on ACs near the fish farm and
downstream along the main current. Moreover, ACs containing
fish pellets generated a significantly higher quantity of colonising
community than the other ACs (P < 3.85e-6, Figure 2 and
Table 1). Thus, the three main factors tested in this study:
‘Distance’ from fish farm, orientation to main ‘Current’ and
‘Habitat suitability’ showed independently significant differences
regarding the biomass of colonising community generated
(Figure 2 and Table 1).

Effects of Main Current and Distance in
Amphipod Dispersal and the Importance
of Habitat Suitability in the Colonisation
of the New Habitat
A total of 16,211 individuals belonging to ten amphipod species
were identified. Total abundance and number of species were
higher on ACs located near the fish farm and downstream
(453.9 ± 99.2 ind.; 7.56 ± 0.24 species) than upstream
(366.2 ± 106.7 ind.; 6.28 ± 0.25 species) and far from it, both
downstream (49.9± 11.1 ind.; 5.28± 0.29 species) and upstream
(21.6 ± 7.7 ind., 2.17 ± 0.27 species). Thus, the interaction
between the factors ‘Distance’ and ‘Current’ was significantly
different for both variables (P < 0.036 for the abundance;
P < 0.006 for the richness; Figures 3, 4).

The multivariate structure of amphipod assemblage
composition showed independently significant differences
for the three main factors tested in this study: ‘Distance,’
‘Current,’ and ‘Habitat suitability’ (Table 2). The factors ‘Current’
and ‘Habitat suitability’ explained a larger amount of variation
in the multivariate structure (30 and 27%, respectively) than
did ‘Distance’ (21%). The most abundant amphipod species
were Ericthonius punctatus, Caprella equilibra, Jassa slatteryi and
Stenothoe tergestina, which were also responsible for differences
between Near and Far treatments (Figure 5 and Table 1).
To a large extent, all the amphipods tended to colonise ACs
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FIGURE 2 | (A) Fouling community on an AC after 15 experimental days. (B) Biomass of sessile colonising community, including biofilm and small hydroids,
expressed as dry weight (mg). ACs are represented as ACs containing habitat and feed pellets (HP), only habitat (H) or control (C). Significant GLM results are
expressed as *p < 0.05; **p < 0.01; and ***p < 0.001.

located downstream, and statistical differences were found
for the factor ‘Current’ except for E. rapax and E. punctatus
that also successfully colonised those nearer ACs located
upstream (Figure 5).

Few differences were found regarding habitat suitability,
except for the provision of refuge. Mean total abundance and
species richness were significantly higher in those ACs containing
artificial habitat, both HP (268.33 ± 67.16 ind., P < 7.44 e−5; 5.6
species, P < 0.001) and H (298.71 ± 58.04 ind., P < 2.67 e−7;

6.0 species, P < 0.00001), than control ones (101.83± 24.54 ind.,
4.4 species; Figures 3, 4). Amphipod assemblage composition was
also significantly different in control ACs (Table 2; H = HP6=C);
this was mainly due to the significant lower abundances of
E. punctatus, C. equilibra, J. slatteryi, Elasmopus rapax and
S. tergestina found in the control ACs (Figure 5 and Table 1).

Sex and Life Stage of the Colonisers and
Dispersing Amphipods
High amphipod abundances found in ACs after 2 weeks hindered
the identification of sex and life stage of the colonisers, given that
most of the species found in ACs near the fish farm showed a
large proportion of juveniles (around 44.9%) and reproductive
females, including brooding females and females with empty
marsupium (16.2% approximately, Table 3). However, records
of each individual being the only specimen of its species in an
AC were identified and classified according to their sex and life
stage, in order to consider them as first colonisers (assuming that
some growth could have occurred at the new habitat). Data thus
obtained reflected that most of the species tend to disperse as
adults, but they are able to operate several dispersal modes as did
C. dilatata which also arrived at ACs as juveniles (Table 3).

In the other hand, only 25 amphipods were captured
using vertical plankton hauls. According to these results for
dispersing amphipods, C. equilibra were detected dispersing in
the water column in different stages as non-brooding females,
females with empty marsupium and juveniles, while dispersing
A. acutum and J. slatteryi individuals were adults and those of
E. punctatus were juveniles.

DISCUSSION

Artificial structures near and offshore may lead to alteration of
ecological connectivity of some species (Bishop et al., 2017).
Offshore facilities provide habitat in the pelagic system in such
a way that can be considered as subpopulations with patch
connectivity strongly dependent on the exchange of individuals.
Fish farms as highly productive habitats may maintain increasing
biomass of inhabiting organisms to the limit of their carrying
capacity and have a strong influence promoting and maintaining
surrounding sink populations. Thus, according with this study,
the role of fish farms extends beyond that of a subpopulation by
acting as a source population. Population connectivity have been
demonstrated for amphipods which lack of planktonic larvae and
depend on active migration of dispersal individuals. As expected,
distance between the source and receiving habitats and their
position down the main current are determining factors in the
successful colonisation of the new habitats. In fact, the richest and
most abundant populations in this study were found close to and
downstream of the fish farm, surpassing 1000 amphipods at their
maximum. Moreover, high connectivity between floating habitats
seems to exist when even those located more than 2 km from the
fish farm were colonised in only 15 days.
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FIGURE 3 | Mean total abundance of amphipods in the different ACs containing habitat and feed pellets (HP), only habitat (H) or control (C) located near and far
downstream and near and far upstream. Significant GLM results are expressed as *p < 0.05 and ***p < 0.001.

After dispersal through the water column, planktonic larvae or
dispersing individuals must locate a suitable substrate on which
to settle, which may depend on the presence and strength of
cues to which the larvae may respond (Kingsford et al., 2002).
The surface film of microorganisms has long been recognised
as a prerequisite for the settlement of many fouling species
(Pawlik, 1992). By the end of the field experiment, the clean
surfaces provided by the new habitats had been covered by an
initial biofouling layer consisting of a biofilm and some small
hydroids. Fish farming activity can enhance biofilm biomass near
the facility (Sanz-Lázaro et al., 2011) and in fact, the presence of
feed pellets in experimental units led to a greater quantity of this
initial biofouling, as did proximity and the location downstream
from the fish farm.

In our study, higher abundances were detected downstream
but amphipods were able to colonise all the habitats close to the
fish farm, even those located upstream. This can be explained by
both physical and biological processes. The structural framework
of fish farms locally affects the oceanographic conditions,

deviating currents and reducing their speed (Klebert et al., 2013).
Therefore, the altered pattern of the main current, together with
other secondary currents and eddies may well promote passive
dispersal to upstream locations. Furthermore, active swimming
and nocturnal migrations related to the lunar cycle may also
be responsible for the arrival in new habitats of dispersing
invertebrates against the main current (Fernandez-Gonzalez
et al., 2014, 2016). This is more conspicuous when the species
show strong swimming capabilities, such as the gammarids
E. rapax or E. punctatus in the case of this study, which
is probably why these species reached higher abundances in
upstream locations. The effect of the main current on amphipod
dispersal was more patent with distance, where ‘far’ habitats
located downstream of the fish farm were colonised with higher
abundances than those upstream.

Dispersal is often density-dependent in such a way that
populations with a positive growth rate can promote emigration
of individuals to other local populations (Pulliam, 1988;
Amarasekare, 2004). Thus, density-dependent dispersal has

Frontiers in Marine Science | www.frontiersin.org 6 November 2021 | Volume 8 | Article 785260

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-785260 November 23, 2021 Time: 10:31 # 7

Fernandez-Gonzalez et al. Connectivity in Marine Invertebrates Metapopulations

FIGURE 4 | Amphipod species richness in the different ACs containing habitat and feed pellets (HP), only habitat (H) or control (C) located near and far downstream
and near and far upstream. Significant GLM results are expressed as **p < 0.01 and ***p < 0.001.

important consequences on source-sink dynamics. Density-
dependent changes seem to drive the flow of individuals from
the fish farm to new habitats, since three of the most abundant
species of direct developing invertebrates in the fish-farm fouling
(E. punctatus, C. equilibra, and J. slatteryi) were also the most
abundant in new ‘near’ habitats.

Conditions in the newly available habitats may not be
appropriate to allow a species to complete its life history, in
such a way that even when a species is able to disperse and
arrive at a new site, it will not occur if its niche or preferred
habitat are absent (Pulliam, 1988). The physical structure of
the substrates and habitat complexity play an important role in
the abundance of associated invertebrates (Hacker and Steneck,
1990; Aikins and Kikuchi, 2001; Hauser et al., 2006) as well as
the existence of trophic resources may produce chemical cues
that increase the colonisation rate. Refuge or greater surface
available seem to be the most important issues in amphipod
colonisation in this study, since higher densities and species
richness were reached in the experimental units that offered
an additional artificial habitat. Thus, tube-building amphipods
such as E. punctatus and J. slatteryi colonise all new habitats

including control ACs, regardless of their distance from the
source, by attaching their tubes to any kind of hard substrate.
They can even occupy clean surfaces or those in an initial
stage of colonisation that fulfil their ecological requirements
(Beermann, 2014).

Food stimuli seem to be unrelated to the selection of a
new site to settle, at least regarding chemical cues from feed
pellets. When living in fish-farm fouling, amphipods are able
to assimilate the organic matter derived from food pellets and
other farming activity as a trophic resource (Gonzalez-Silvera
et al., 2015) but in this study, no differences were detected in
the number or abundance of amphipod species in those ACs
containing fish pellets, even though the biofouling community
on them was also higher. Some issues could explain the lack of
response to the availability of food. For example, the enriched
environment near the fish farm could hinder finding differences
between experimental units with and without fish pellets, due
to both the strong presence of the same chemical cues or
other food available in the water column around the farm.
Other scenarios include the possible inability of the amphipod
to detect chemical cues from feed pellets, especially when

Frontiers in Marine Science | www.frontiersin.org 7 November 2021 | Volume 8 | Article 785260

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-785260 November 23, 2021 Time: 10:31 # 8

Fernandez-Gonzalez et al. Connectivity in Marine Invertebrates Metapopulations

TABLE 1 | Results of the GLM testing for the effects of “Distance,” “Current,” and “Habitat suitability” for the biofilm and the most abundant amphipods of the
assemblage, including associated P-values.

Response variable Predictor Estimate Adjusted SE z statistic p-value

Biofilm Distance (near) 0.10 0.03 2.88 0.00531

Current (downstream) −0.07 0.03 −2.01 0.04813

Habitat (H) 0.07 0.04 1.72 0.09005

Habitat and feed pellets (HP) 0.22 0.04 5.03 3.85e-6

Caprella equilibra Distance (near) 4.55 0.29 15.67 <2e-16

Current (downstream) −0.77 0.27 −2.82 0.0047

Habitat (H) 1.01 0.34 2.94 0.003

Habitat and feed pellets (HP) 1.45 0.34 4.25 2.1e-5

Elasmopus rapax Distance (near) 3.43 0.51 6.71 1.82e-11

Current (downstream) −0.19 0.39 −0.49 0.6191

Habitat (H) 1.11 0.51 2.14 0.0318

Habitat and feed pellets (HP) 1.64 0.50 3.23 0.0012

Ericthonius punctatus Distance (near) 3.06 0.28 10.75 <2e-16

Current (downstream) −0.02 0.28 −0.07 0.9390

Habitat (H) 1.57 0.35 4.47 7.82e-6

Habitat and feed pellets (HP) 1.48 0.35 4.23 2.31e-5

Jassa slatteryi Distance (near) 1.75 0.22 7.73 1.03e-14

Current (downstream) −0.58 0.22 −2.56 0.0103

Habitat (H) 1.00 0.27 3.62 0.000295

Habitat and feed pellets (HP) 0.56 0.27 2.02 0.042806

Stenothoe tergestina Distance (near) 2.24 0.21 10.58 <2e-16

Current (downstream) −1.45 0.20 −6.94 3.85e-12

Habitat (H) 1.20 0.25 4.65 3.33e-6

Habitat and feed pellets (HP) 1.02 0.26 3.94 8.15e-5

Significant predictors are highlighted in bold.

they are juveniles, or the interferences with other wild fauna
attracted to ACs with pellets such as fish. Further studies about
the potential influence of chemical cues from aquafeeds on
amphipods should be performed in the laboratory in order
to resolve these issues, avoiding possible interferences in this
field experiment.

Differences in life-history stages influence the dispersal
potential of each species as well as the processes of population

TABLE 2 | Multivariate GLM results for the whole amphipod assemblage showing
significant different between factor levels and associated P-values (*P < 0.05,
**P < 0.01, and ***P < 0.0001).

Wald value P

Intercept 8.630 0.000999***

Distance (near) 10.637 0.000999***

Current (upstream) 3.194 0.006993**

Habitat (H) 4.828 0.000999***

Habitat (HP) 5.319 0.001998*

Distance (near) × Current (upstream) 2.371 0.104895

Distance (near) × Habitat (H) 1.648 0.813187

Distance (near) × Habitat (HP) 2.623 0.290709

Current (upstream) × Habitat (H) 1.157 0.593407

Current (upstream) × Habitat (HP) 2.577 0.064935

Distance (near) × Current (upstream) × Habitat (H) 0.943 0.737263

Distance (near) × Current (upstream) × Habitat (HP) 2.158 0.148851

connectivity (Levin, 2006). Indeed, dispersal as juveniles or
adults can lead to different initial population sizes, survivorship
or population growth rates (e.g., Highsmith, 1982; Munguia
et al., 2007; Munguia, 2015). According to the results of this
study, most of the species tended to disperse as adults, except
for some dispersing juveniles of C. equilibra, E. punctatus
and C. dilatata, whose presence in the plankton, together
with juveniles of E. rapax, was also confirmed through more
selective methods like light traps (Fernandez-Gonzalez et al.,
2014). Species that disperse mainly as juveniles usually colonise
more slowly and disperse more evenly than species dispersing
as adults, sometimes dominating them in terms of numerical
abundance (Munguia et al., 2007), which seems to be in
accordance with the abundances attained by these species in
the new habitats. Nevertheless, caprellid females with empty
marsupium were also detected as dispersing individuals and
first colonisers, suggesting that dispersal may occur at different
stages. Dispersal just before or during the reproductive period,
as ovigerous females, facilitates the colonisation process and
may explain population persistence even at very low densities
(Gilpin, 2012). Such breeding dispersal could be assumed for
E. punctatus, since around 20% of swimmers belonging to
this species captured with light traps were ovigerous females
(Fernandez-Gonzalez et al., 2014) or for J. slatteryi, given the
initial population sizes and the high proportion of reproductive
females in the new habitats. Indeed, dispersal as adults promotes
higher initial population sizes when a new habitat is colonised,
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TABLE 3 | Proportion of juveniles and reproductive females present in the artificial collectors (ACs) and sex and life-stage of the first colonisers in an AC and the
dispersing habitat detected in this study.

Species Near ACs Far ACs First colonisers Dispersing individuals

Juv. (%) F. repr. (%) Juv. (%) F. repr. (%) M F Fb Fe Juv M F Fb Fe Juv

Apocorophium acutum 0 0.01 0 0 X(1) X(4) X(1)

Caprella equilibra 59.6 42.9 11.6 18.1 X(2) X(3) X(4) X(1) X(3) X(2) X(2)

Caprella dilatata 31.2 17.7 0 2.8 X(2) X(4) X(3) X(4)

Elasmopus rapax 27 1.9 1.4 2.8 X(4) X(3) X(1)

Ericthonius punctatus 61.1 20.9 21.2 23.5 X(2) X(5) X(1) X(1)

Jassa slatteryi 58.8 26.6 37.6 27.7 X(1) X(2)

Phthsica marina – – 0 5.6 X(1)

Stenothoe georgiana 47.2 26.6 21.1 12.5 X(1) X* (1)

Stenothoe tergestina 50.8 0.24 17.5 0.08 X(3)

Stenothoe valida 23.8 8.9 3.2 0 X(4) X(1)

Individuals were classified according to life history as males (M), females (F), females with empty marsupium (Empty), and juveniles (juv). *Damaged Stenothoe sp.

FIGURE 5 | Mean abundances of the main amphipod species studies in the different ACs containing habitat and feed pellets (HP), only habitat (H) or control (C)
located near and far downstream and near and far upstream.

especially when an ovigerous female reaches and releases her
brood into these new habitats (Mills, 1967; Munguia et al., 2007).
This is even more so when one single brood of J. slatteryi consists
of up to 40 embryos (Jeong et al., 2007) or 10 embryos for
E. punctatus (Rumbold et al., 2016).

Once the species arrived in the new habitats, especially
the closer ones, all of them (except A. acutum) showed all
developmental stages (adult males, adult females, including
brooding females and juveniles). This indicates they can all
undergo their complete life cycle in the new habitats and maintain
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local populations, not only receiving individuals from the fish
farm but also through self-recruitment. Nevertheless, as the
respective proportions of each stage varied among the samples,
the dynamics of the local populations had still not become
stabilised (Gutow and Franke, 2003).

Complex mechanisms explain the connectivity between highly
productive habitats and newly available habitats in the water
column. The case of fish farms in off-coast areas is very
special because is an optimal habitat, in the case of amphipods
with population densities above 170,000 individuals per m2

(Fernandez-Gonzalez, 2017). The near-saturated populations
found in these habitats promote the dispersal of individuals ready
to start breeding immediately (presaturation dispersal), and
even less fit individuals such as juveniles (saturation dispersal;
Hansson, 1991). This experiment confirms that connectivity
in highly spatially structured populations such as suspended
underwater habitats is feasible at a scale of hundreds of metres,
where individuals move across a distressing environment like
the water column with the risk of predation or failing in an
unsuitable habitat. This successful colonisation happens in only
15 days even when species with limited dispersal such as direct
developing invertebrates have been considered. Thus, higher
connectivity can be expected for species with pelagic dispersal
phase, which could potentially travel up to 10 km (Simons
et al., 2016). Moreover, the fact that the new habitats colonised
also include those without obvious trophic resources suggests
that different kinds of floating habitat beyond the aquaculture
facilities may be colonised.

The role of anthropogenic structures providing habitat that
could facilitate species range expansions and the introduction
of non-native species have been widely suggested in published
literature (e.g., Boos et al., 2011; Mineur et al., 2012;
Fernandez-Gonzalez and Sanchez-Jerez, 2013; Adams et al.,
2014). However, the presence of hard substrata in offshore
areas is extremely limited in comparison to the surfaces
available in shallow coastal waters (e.g., natural rocky habitats,
breakwaters and jetties; Bulleri and Chapman, 2010). Few studies
have previously explored potential connectivity among existing
offshore structures or their possible role in the dispersal of marine
species. Here, the role of fish farms has been shown to extend
beyond a ‘stepping-stones’ effect, and have an additional effect on
ecological connectivity by increasing population sizes and acting
a population source. Dispersal of direct developing species may
particularly benefit from these structures which, however, has
been rarely investigated in ecological connectivity studies.

Models or approaches to assess connectivity are needed and
should consider these factors in order to predict potential spread
to other artificial structures in the future with the aim to favour or
reduce interactions within and between marine facilities (Van der
Molen et al., 2018). Considering distance and position regarding
the main current from fish farms to different marine facilities is
particularly important in order to reduce the risk of spreading
in case of non-indigenous species. It should be considered that
the successful colonisation of a new habitat depends on the
presence or not of a resident population and local factors such
as competition or predation.

In the opposite side, artificial structures can reduce
connectivity by acting as physical barriers to the movement of
organisms within and among habitats (Bishop et al., 2017). In
the light of the results, coupling drop-ropes with collectors to the
existing floating cages could act as physical barrier and achieve
potential accessory cultures as part of more environment-friendly
models such as integrated multi-trophic aquaculture (IMTA)
systems (Fernandez-Gonzalez et al., 2018). Further studies are
necessary to assess this and other possible consequences of the
connectivity between floating artificial habitats in off-coast areas.
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