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CHAPTER 1. PREFACE

Chapter 1

Preface

Given that the research conducted during the PhD has been published in in-
ternational peer-reviewed journals, this dissertation is configured as a thesis by
publication, which means that the main part of the work (published works part)
presents the papers as reprints of such publications in their original format. The
set of publications in chronological order are:

1. César González Mora, Irene Garrigós, Jose Zubcoff, and Jose-Norberto
Mazón. Model-based Generation of Web Application Programming Inter-
faces to Access Open Data. Journal of Web Engineering, pages 194–217,
2020.

2. César González-Mora, David Tomás, Irene Garrigós, José Jacobo Zubcoff,
and Jose-Norberto Mazón. Model-Driven Development of Web APIs to
Access Integrated Tabular Open Data. IEEE Access, 8:202669–202686,
2020.

3. Paloma Cáceres García De Marina, José María Cavero Barca, Carlos
E. Cuesta, Miguel Ángel Garrido, Irene Garrigós, César González-Mora,
Jose-Norberto Mazón, Almudena Sierra-Alonso, Belén Vela, and José Ja-
cobo Zubcoff. Open Data Consumption Through the Generation of Dis-
posable Web APIs. IEEE Access, 9:76354–76363, 2021.

The complete structure of this dissertation is organised as follows:

• Contents: the index of the thesis, with the suitable links to the different
parts and the number of pages.

• Preamble: includes this preface with initial explanations of the thesis,
then a summary of the research is presented, and finally, more details are
given in the introduction and proposals chapters.
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CHAPTER 1. PREFACE

• Published works: the compilation of papers that have been published
to conform this thesis.

• Closure: part that presents the conclusions of the thesis with a discussion
of the research done, including ongoing and future work.

• Appendices: Spanish summary of the presented thesis, including the
introduction, proposals, published works summary and conclusions.

• References: the bibliography used in Preamble and Closure parts of this
thesis, as the references of each published work are contained in their
related section within the corresponding paper.
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Chapter 2

Summary

Nowadays, there is a tendency to publish data on the Web, due to the benefits it
brings to the society and the new legislation that encourage the opening of data.
These collections of open data, also known as datasets, are typically published
in open data portals by governments and institutions around the world in order
to make it open – available on the Web in a free and reusable manner. The
common behaviour tends to be that publishers expose their data as individual
tabular datasets.

Open data is considered highly valuable because promoting the use of public
information produces transparency, innovation and other social, political and
economic benefits. Especially, this importance is also considerable in situational
scenarios, where a small group of consumers (developers or data scientists) with
specific needs require thematic data for a short life cycle. In order that these data
consumers easily assess whether the data is adequate for their purpose, there
are different mechanisms. For example, SPARQL endpoints have become very
useful for the consumption of open data, and particularly, Linked Open Data
(LOD). Moreover, in order to access open data in a straightforward manner,
Web Application Programming Interfaces (APIs) are also a highly recommended
feature of open data portals.

However, accessing open data is a difficult task since current open data plat-
forms do not generally provide suitable strategies to access their data. On the
one hand, accessing open data through SPARQL endpoints is a difficult task
because it requires knowledge in different technologies, which is challenging es-
pecially for novice developers. Moreover, LOD is not usually available since
most used formats in open data portals are tabular. On the other hand, al-
though providing Web APIs would facilitate developers to easily access open
data for reusing, there is a lack of suitable Web APIs in open data portals.
Moreover, in most cases, the currently available APIs only allow to access cat-
alog’s metadata or to download entire data resources (i.e. coarse-grain access
to data), hampering the reuse of data. In addition, as open data is commonly
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published individually, without considering potential relationships with other
datasets, reusing several open datasets together is not a trivial task. Thus, it
requires mechanisms that allow data consumers to integrate and access tabu-
lar open data published on the Web. Therefore, open data is not being fully
exploited because of its difficult access.

As the access to open data is thus still limited for end-users, particularly
those without programming skills, we propose a model-based approach to au-
tomatically generate Web APIs from open data. This proposal, which we have
entitled “APIfication”, takes into account the access to multiple integrated tab-
ular datasets and the consumption of data in situational scenarios. Firstly, we
focus on data that can be integrated by means of join and union operations.
Then, we coin the term disposable Web APIs as an alternative mechanism for
the consumption of open data in situational scenarios. These disposable Web
APIs are created on-the-fly to be used temporarily by a user to consume specific
open data.

Accordingly, the main objective is to provide suitable mechanisms to easily
access and reuse open data on the fly and in an integrated manner, solving the
problem of difficult access through SPARQL endpoints for most data consumers
and the lack of suitable Web APIs with easy access to open data. With this
approach, we address both open data publishers and consumers, as long as
the publishers will be able to include a Web API within their data, and data
consumers or reusers will be benefited in those cases that a Web API pointing
to the open data is missing. The results of the experiments conducted led us to
conclude that users consider our generated Web APIs as easy to use, providing
the desired open data, even though coming from different datasets and especially
in situational scenarios.
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Chapter 3

Introduction

In this chapter, the context is first presented regarding the whole research per-
formed during the PhD. This context involves the tendency of opening data
by global governments, the benefits that open data brings to the society, the
availability of open data and its access through Web APIs or Semantic Web
technologies. In addition to the context, the problems related to the access to
open data are then presented. These problems are detailed to point out the lack
of Web APIs, the difficulty in using Semantic Web Technologies, the low avail-
ability of SPARQL endpoints in open data portals, the shortage of mechanisms
to access integrated data and the specific problems in situational scenarios.
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3.1 Context

Worldwide governments and organisations are nowadays making their data avail-
able online [5, 8]. This open data is published in Web portals to be freely ac-
cessible and reusable [11], as long as it is considered highly valuable and there
is a great deal of awareness in most countries about open data [36, 6].

The adoption of open data initiatives promotes the use of public informa-
tion, which mainly leads to significant economic benefits according to several
studies [43, 38, 44]. Besides these economic benefits, the opening of data also
produces transparency, innovation and other social and political benefits [27].
The increase of open data initiatives is also motivated by the growing pressure
imposed by governments [42] with new legislation [1], which force public ad-
ministrations to offer data to citizens. The potential beneficiaries of the open
data are those citizens which are provided with large amounts of data, but
also data reusers (individuals and companies) that reuse data to create useful
applications, fostering the economy and benefiting the citizenship [46, 38].

In order to publish open data, there are two main options: (i) in open
data portals that offer a Web platform with a catalog of mostly tabular-form
data, and (ii) as Linked Open Data (LOD) generally available through SPARQL
endpoints. On the one hand, as an example of open data portals, among the
most popular open data repositories are data.gov.uk and data.gov, which pro-
vide a catalog of data resources from the UK and the USA governments, and
the European Data Portal1 that combines several data catalogs from the Euro-
pean Commission. On the other hand, as an example of LOD, the LOD cloud2

includes the datasets that have been published in the Linked Data format (avail-
able altogether through the “LOD-a-lot” queryable dump [21]), and the DBpedia
platform that offers structured data from Wikipedia by a SPARQL endpoint3.

In order to take advantage of open data, as many people as possible should
be able to easily access this data. Among the most adopted approaches to access
open data are the Web APIs [13], as they are an important and recommended
feature of open data platforms, allowing developers to make open data accessible
to citizens [11] by building their own applications based on this open data [30].
Regarding LOD, it allows users to access data, in the same way as a database
management system is used, by means of query languages such as SPARQL [17].
These interfaces to query data on the Web involve powerful query capabilities
such as SPARQL endpoints or direct download of data in RDF format such as
data dumps.

1https://data.europa.eu/en
2https://lod-cloud.net/
3https://dbpedia.org/sparql/
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CHAPTER 3. INTRODUCTION

3.2 Problems to solve

However, there is a large gap between open data and its access by the soci-
ety. Although several studies [40, 12] suggest the creation of Web APIs to fill
this gap, there is still a lack of suitable APIs to access data from open data
platforms around the world [22]. Indeed, only about the 6.6% of datasets on av-
erage include an API with direct access to open data, that is, query-level APIs
that allow to consult directly the data. In most cases the platforms include
an API, such as CKAN-based APIs4 that follow the DCAT5 standard, which
only provides data catalog metadata or a download link for the entire dataset
(coarse-grain access to data). A query-level API with fine-grain access to data
makes it easier for developers to provide specific data according to user needs
[11], enhancing the process of data reuse. In order to promote the use of these
APIs to access open data, a key factor is providing relevant and useful docu-
mentation [41, 14], following popular standards such as OpenAPI that allows
to easily understand and reuse open data [18]. However, existing APIs do not
typically include any proper documentation or any precise specification of the
functionality and data they offer [28, 4]. Therefore, understanding how to use
these APIs and consequently reusing data is a difficult task.

Additionally, exploring LOD by structured query languages such as SPARQL
can be challenging and error-prone, especially for novice developers and end-
users [24]. Therefore, data reusers are generally more familiar with REST-like
APIs than SPARQL [13]. Average open data consumers mainly lack the skills
required to use SPARQL queries and the underlying RDF (Resource Description
Framework) data model since they both have a steep learning curve [13].

Furthermore, another problem regarding the use of SPARQL is that LOD
is not usually available in open data portals, representing only a 0.5% of the
total [34]. Actually, as highlighted in recent and relevant studies [20, 37], these
portals are more concerned about tabular formats over LOD, being the most
used format with a representation of 46.4% (either direct tabular formats or
embedded tabular data).

Per contra, most publishers expose their tabular data as separate datasets.
Therefore, publishers share their data on the Web without considering potential
relationships with other open data [23]. This scenario provokes that data reusers
are required to make an extra effort to integrate different data. Consequently,
there is a great need for a mechanism that allows data consumers to integrate
and access open data published on the Web.

There are also concrete scenarios where a quick and easy access to open
data is especially important. This case is the scenario of situational data, which
consists of thematic data required for a short life cycle by a small group of
consumers with specific needs [3]. Consequently, in a situational scenario, alter-

4https://docs.ckan.org/en/2.6/api/
5https://www.w3.org/TR/vocab-dcat/
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CHAPTER 3. INTRODUCTION

native mechanisms are necessary to provide access to open data for data reusers
without any knowledge regarding Semantic Web technologies [9, 29]. Thus, it is
easier to have a Web API with simple access to open data without wasting time
processing tabular data sources or learning how to query a SPARQL endpoint
[15].

20
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3.3 Related Works

There is a variety of related research that deal with the topic of open data, LOD
and facilitating its access for developers. Firstly, to solve problems regarding
the access and reuse of data, considering the difficulty of accessing SPARQL
endpoints, the creation of APIs is proposed. However, related works such as
[40, 26, 35] generally propose the manual creation of APIs to access specific open
and linked data platforms, which is time-consuming. The automatic generation
of APIs is also addressed [39, 19], but fine-grain access to open data platforms is
not considered, they require specific artefacts which are not commonly available
and they do not provide suitable documentation.

Moreover, to the best of our knowledge, there is no solution that tackles sit-
uational scenarios in which thematic open data is temporarily used for specific
needs. Research [45, 32] that address the exploration of Linked Open Data fa-
cilitate the access through different interfaces, but they generally require knowl-
edge in RDF or SPARQL technologies or they only provide access to specific
endpoints.

Regarding the integration of data, although data integration challenges have
been researched for years with significant progress [25], efforts have been made
only on solving specific problems. However, according to Abadi et al. [2] more
work is required on researching how to pipeline data integration to cover all the
way from raw data to an end-user’s desired outcome. For instance, additional
metadata is required for developers to know how datasets can be related to
each other. Although several recent approaches proposed adding this kind of
metadata to tabular datasets by means of annotations [7, 16], this methodology
has not being widely adopted by publishers.

Accordingly, as far as the authors are aware, although related works help
data reusers to overcome the different problems to access open data, they do
not offer a flexible and complete solution that really facilitates developers to
obtain open data from different sources to improve the open data reuse process.

21





CHAPTER 4. PROPOSALS

Chapter 4

Proposals

One of the most adopted practices to facilitate the access to open data is the
deployment of Web APIs on top of open data portals and Linked Data sources
[31]. In this sense, we propose an approach to grant access to open data at
the query-level (i.e., fine-grain access), including the access to integrated data
and in situational scenarios. Therefore, this thesis is focused on facilitating
the access to open data, considering a data integration process together with
the generation of APIs to simplify the consumption of open data from different
datasets in particular scenarios. The Web APIs we propose are created on-the-
fly to be also used temporarily by users to consume open data as situational
data. These APIs have been denominated as disposable Web APIs because
they are suddenly created to allow data consumers to assess whether the data
is adequate for their purpose, thus avoiding the complexity and learning curve
of SPARQL and the effort of manually processing the data.

The main objective is twofold: (i) encourage open data publishers to include
an API within the data to be opened and (ii) help developers to create value
from open data, that is, facilitate the reuse of open data and thus promote
citizens to access it. In order to fulfil those objectives, we are going to explain
the different proposals separately: first the APIfication approach from tabular
open data is introduced; then, this APIfication approach is extended with the
proposal of integrating open data and accessing it altogether; and finally, the
proposal to take advantage of semantic information is applied to the initial
APIfication approach to generate disposable Web APIs.

23
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4.1 APIfication approach

First of all, we propose a model-driven APIfication approach in order to achieve
the automatic generation of query-level Web APIs with fine-grain access to data.
These Web APIs help developers to access and reuse open data, promoting then
the usage of open data by the citizenship.

This APIfication process [47] consists of a set of transformations in or-
der to auto-generate Web APIs for open datasets. The process is based on
automatic, generic and standardised mechanisms to generate Web APIs with
machine-readable documentation following the most popular open source stan-
dard: OpenAPI 3.0. Following this standard helps users to understand the
functioning of the API and to work with the API as a Web interface. Also,
model-driven mechanisms [10] allow us to face up with the heterogeneity of the
existing open data sources, integrating the API and its documentation in Model
Driven Development processes to standardise the way of creating and defining
APIs.

Figure 4.1: Automatic API generation process.

The transformation process for automatically generating Web APIs starts
with an open data source. These Web APIs help users to access and reuse the
initial data. Moreover, the process also creates OpenAPI documentation to help
Web API users, and a model of the data and the documentation in order to take
advantage of the large number of existing modeling tools for the integration of
these artefacts in model-driven development processes. The whole transforma-
tion process from the data source to the Web API - shown in Figure 4.1 - is
launched by the automatic generator program, including the following steps: a
text to model (T2M) transformation from the data source to the data model,
a model to model (M2M) transformation from the data model to the OpenAPI
model, a model to text (M2T) transformation from the OpenAPI model to its
OpenAPI documentation, and finally a text to text (T2T) transformation from
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the OpenAPI documentation to the Web API. When the process has finished,
users are able to query the generated Web API, so that the API access the data
from the source, and finally, the queried data is returned to the users. There-
fore, starting from a dataset containing rows and cells, the system performs a
direct transformation to construct a data model object with row and cell ob-
jects. Then, the data model is transformed to an OpenAPI model using each
cell of the first row as an API component (method, parameter, and property),
parsing this OpenAPI model object to a standard format for API documenta-
tion. Finally, the complete Web API is automatically created according to the
components detailed in its documentation.

With this approach users are able to obtain a Web API from any open data
source to easily access the dataset with suitable OpenAPI documentation. More
details are presented in Chapter 5.
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4.2 Integration approach

In addition to the APIfication approach presented previously, it is worth noting
that there can be a previous step in this APIfication process in case data needs
to be integrated. This new step consists of integrating similar data so that the
generated Web API is able to access open data in an integrated manner.

Figure 4.2: Automatic open data integration and API generation process.

The process considering both steps (integration and APIfication) is shown
in Figure 4.2. The first step implies detecting unionable and joinable tabular
datasets using word embeddings techniques [33] to identify which columns from
different input tabular datasets are more likely to be integrated. The next
step consists of integrating the datasets by applying join or union operations.
Finally, from the previously integrated dataset, a Web API to access this data
is generated by means of the previously explained APIfication transformations.

The operators considered for integrating open data are union and join from
relational algebra, working as follows:

• Union operator aims to get a unique dataset from two tabular datasets (A
and B), containing rows that are in A or in B. A and B must have share
columns referring to the same concept.

• Join operator aims to get a unique dataset from two tabular datasets (A
and B), including every column from A and B, and containing rows that
fulfil a matching condition.

The operation is chosen between union and join, depending on the similarity
found between the datasets to integrate. For example, if two datasets are highly
similar in only a subset of columns, they are likely to be integrated by means of
a join operation. However, if two datasets are similar in almost all the columns,
they are more likely to be integrated by a union operation. More details are
presented in Chapter 6.
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4.3 Semantic approach

Finally, another previous step in the APIfication approach can be added to
leverage semantic information from data sources in order to automatically gen-
erate easy-to-use disposable Web APIs, which can be used to access open data
in situational scenarios.

Figure 4.3: Open data consumption process for situational scenarios.

The proposed process for open data consumption through the use of auto-
matically generated disposable Web APIs comprises three stages:

1. Data Input Process: in this stage, the Web data is selected to satisfy data
consumer needs in a situational scenario.

2. Semantic Annotation Process: the input data is annotated using a domain-
specific ontology, obtaining semantically annotated data.

3. Disposable Web APIs Generation Process: the input of this process is the
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previously semantically annotated tabular data, from which disposable
Web APIs are automatically generated in order to allow the consumption
of data in a situational scenario.

The complete open data consumption process is shown in Figure 4.3, includ-
ing the inputs and outputs of each process. Regarding the APIfication approach,
the new step of annotating the data is added in order to improve the quality
of the available data. This step first starts by studying the information con-
tained in the data source and important features of the selected domain. It is
then necessary to create a glossary of terms concerning the terminology used in
the data source, describing each one, after which a domain model with which
to represent these terms and their relationships must be defined in a domain
model by using a UML class diagram. After that, it is important to identify
the semantics of the information in order to align them with the terms of a
reference vocabulary, that is, a vocabulary that the developer needs to choose
(e.g. domain-specific ontology). The mappings required in order to establish
the correspondence between different information elements from the data source
(glossary of terms) and the reference vocabulary (domain-specific ontology) are
defined by means of a manual inspection of the input data source. We specif-
ically identify the subjects, predicates and objects of a tabular input file and
map them onto elements from the reference vocabulary (e.g. a domain-specific
ontology). This mapping is manually defined and added to a configuration file.
Once all the mappings have been defined, a custom script is programmed in or-
der to transform the input tabular source data into the semantically annotated
data, according to the mappings defined in the configuration file. Then, if the
alignment is possible, it is necessary to use the original data, and semantically
annotate them using the existing terms from the reference vocabulary (domain-
specific ontology) by means of the RDF language using the previously defined
mappings. If the alignment is not possible, then we should analyse the differ-
ence between the original data and the reference vocabulary in order to extend
it. Finally, the last step consists of integrating the semantic dataset with other
sources. This process is done by relating elements from the different semantic
datasets and discarding duplicated information in the datasets when necessary.

More details are presented in Chapter 7.
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4.4 Contributions

In order to reduce the gap between open data and its consumption by the users,
we proposed an APIfication approach with the suitable mechanisms to consider
open data, data integration and situational data.

Among the contributions of this APIfication approach are:

• The creation of a generic, automatic and model-based process for the
generation of Web APIs. This approach aims thus to directly simplify
the open data reuse process, which will result in economic benefits to
developers and the infomediary sector.

• The implementation of this automatic Web API generation process, which
is available online at GitHub6.

• The allowance for developers to easily create Web APIs by their own,
releasing to them the management on how to provide data to the citizen-
ship, such as creating mobile applications that access open data through
the automatically generated APIs. Even if they have to publish the API
on a server, they still have control over both the data and its access, which
also has its benefits. For example, these APIs can be easily customised by
developers, if needed, to improve the experience of obtaining data.

• The provision of Web API documentation following the most popular stan-
dard (OpenAPI), which facilitates the understanding of the APIs and con-
sequently promoting their use.

• The definition of a word embedding-based similarity measure between tab-
ular datasets. This measure allows identifying joinable and unionable tab-
ular open data in order to facilitate the process of integrating data to be
accessed altogether.

• The implementation of the integration and Web API generation processes
consecutively in the same pipeline, which is available online at GitHub7.

• A process for the semantic annotation of tabular data sources from the
Web.

• A model-driven approach that can be employed to ingest our semantic
annotation process and then generate disposable Web APIs to access data
sources.

• The evaluation of our approach through suitable experiments with devel-
opers and real tabular open data, generating Web APIs to access specific
data, comparing its use with the access by Semantic Web technologies
such as SPARQL.

6https://github.com/cgmora12/AG
7https://github.com/cgmora12/DataIntegration2API
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Abstract

In order to facilitate the reusing of open data from open data platforms’
catalogs, Web Application Programming Interfaces (APIs) are an important
mechanism for reusers. However, there is a lack of suitable Web APIs to
access data from open data platforms. Moreover, in most cases, the currently
available APIs only allow to access catalog’s metadata or to download entire
data resources (i.e. coarse-grain access to data), hampering the reuse of data.
Therefore, we propose a model-based approach to automatically generate
Web APIs from open data. Our generated Web APIs facilitate the access and
reuse of specific data (i.e., providing fine-grain or query-level access to data),
which will result in many societal and economic benefits such as transparency
and innovation. With this approach we address open data publishers which
will be able to include a Web API within their data, but also open data reusers
in case of missing APIs. This APIfication process, which means the creation
of APIs for every available dataset, is based on automatic, generic and stan-
dardised generation mechanisms. The performance and functioning of this
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1148 C. González-Mora et al.

approach is validated with different datasets, which successfully generates
Web APIs that facilitate the reuse of data.

Keywords: Web APIs, open data, data access, data reuse.

1 Introduction

As the World Wide Web has become an important information platform,
many organisations are interested in providing information via Internet
[2]. Therefore, worldwide governments and organisations are increasingly
generating data and making it available online [14], which contributes to
the globalisation of information. Promoting the use of public information
produces transparency, innovation and other social, political and economic
benefits [14]. The potential beneficiaries of these open data initiatives are
data reusers (individuals and companies), which can use data to create useful
applications or services to grow in economic terms [20] and benefit the wider
society [29].

Several studies [20, 27, 28] indicate that the economic potential of open
data is significant: it is estimated [27] that public information could generate
more than $3 trillion a year of value as a result of open data in different
areas of the global economy, such as Education and Transportation. It is
also stated [27] that direct and indirect economic benefits for the whole EU
economy were about the order of 200 billion euros in 2008. For example,
in the United Kingdom the open data program estimated [27] the direct
economic benefits of public sector information at around 1.8 billion pounds
a year, with an overall impact including direct and indirect benefits of around
6.8 billion pounds. Also, in Spain it is estimated from the Aporta project [20]
that there are over 150 companies that work solely on the infomediary sector,
generating around 500 million euros annually that can be directly attributed
to open data reuse [28]. Besides these economic benefits, the increase of open
data initiatives is motivated by the growing pressure imposed by governments
[14, 25] with new legislation [1], which force public administrations to offer
data to citizens. This open data is commonly offered in catalogs within Web
platforms. For instance, data.gov.uk provides a catalog of data resources from
the UK Government or the European Data Portal provides data catalogs from
the European Commission, which are among the most popular open data
repositories.

In order to handle open data, Web APIs are a recommended feature of
open data platforms [5], allowing developers to build their own applications
and bring open data to citizens. Therefore, Web APIs not only enable retrieval
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Table 1 Current amount of data and APIs in open data platforms
Datasets Datasets with % of datasets with Generic

Open Data Portal query-level API query-level API Web API
europeandataportal.eu
(Europe)

860,000 60,000 7% No

data.gov (US) 301,000 20,000 6.6% CKAN API

data.gov.uk (UK) 46,000 200 0.4% CKAN API

datos.gob.es (Spain) 20,000 2,000 10% API to
download
resources

open.canada.ca
(Canada)

80,000 40 0.05% CKAN API

data.gov.au (Australia) 30,700 6,300 20.5% CKAN API

data.gov.sg
(Singapore)

1,500 13 0.9% CKAN API

govdata.de (Germany) 21,000 200 1% No

datos.gob.cl (Chile) 3,500 3 0.1% CKAN API
Average results 150,522 9,862 6.6% CKAN API

of information, but also facilitate building of versatile applications based on
online data [17].

Although organisations and other organisms under the umbrella of smart
cities are starting to create public data catalogues [22], the absence of suitable
Web APIs to access online data is a common problem in open data platforms
around the world, as shown in Table 1. The amount of data offered on the most
important data platforms varies between more than a thousand and almost
a million datasets. However, only about the 6.6% of datasets, on average,
include a query-level API to ease the access to the data, which means a Web
API to access directly that data. In most cases, the platforms include an API
following the DCAT1 standard, such as a CKAN API2, which is oriented
to access only data catalog metadata. At most, a download link for entire
datasets is also provided (i.e., coarse-grain access to data). A query-level API
with fine-grain access to data allows to filter and project data sources in order
to get specific data. This type of access makes it easier for developers to
provide specific data according to user needs [5] and improve the process of

1https://www.w3.org/TR/vocab-dcat/
2https://docs.ckan.org/en/2.6/api/
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data reuse, but there is still a lack of these kind of query-level APIs in current
open data platforms.

Other problem arisen from open data platforms is that their APIs do not
typically include any proper documentation or any precise specification of the
functionality and data they offer. Therefore, understanding how to use these
APIs and consequently reusing data is a difficult task. Moreover, aiming at
standardising the way in which Web APIs are specified and documented, the
OpenAPI Initiative has been announced by several vendors, such as Google
and SmartBear [9]. However, most documentation does not follow a standard
that allow to easily understand and reuse open data [9].

In order to tackle these problems, we propose an approach to grant access
to open data at the query-level (i.e., fine-grain access). The main objective is
to help open data publishers to include an API within the data to be opened. It
is also very useful for helping developers to create value from open data, that
is, facilitate the reuse of open data and thus promote citizens to access it. With
our approach, open data reusers will be able to manage how they provide data
to the citizenship, such as creating mobile applications that access open data
through the automatically generated APIs. Therefore, the aim is to facilitate
access to the data, helping data publishers to provide the API for already
published data or for new data, and otherwise for developers who would use
the APIs to reuse data from apps or give access to third parties. This gives
developers an easy way to reuse data as long as they have not been provided
with an API, which usually happens. Even if they have to publish the API
on a server, but they have control over both the data and its access, which
also has its benefits. For example, these APIs can be easily customised by
developers, if needed, to improve the experience of obtaining data.

This approach consists of an APIfication process [30], which means
the automatic creation of APIs for every dataset, based on model-driven
approach mechanisms [4] which allow us to face up with the heterogeneity
of the existing open data sources. Also, model-driven mechanisms allow
us to more easily include APIs corresponding definition and documentation
following the most popular open source standard: OpenAPI 3.0. Following
this standard helps understanding the functioning of the API and supposes
an added value since it can be used for other purposes, such as the gener-
ation of models that represent the API [10]. The main advantage of using
models and metamodels is the integration of the API and its documenta-
tion in Model Driven Development processes, which consist of important
development artifacts [15] that help in standardising the way of defining
APIs, improving the visualisation of such structures using easy to read
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interfaces. Using models in software development is highly recommended
because models help us understand a complex problem and its potential
solutions through abstraction [24]. Therefore, we can take advantage of
using models and modeling techniques because they are one of the most
fundamental techniques to address challenges in software development such
as problem understanding, balancing time and effort, dynamic changes in the
development and the management of large projects [3]. It consists of a way
to increase the quality, efficiency and predictability of large-scale software
development [3].

This article is structured as follows. In Section 2 it is presented the
running example used to illustrate the approach explained in Section 3, in
which the overview of the APIfication approach is detailed. Then, in Section
4, the approach is validated to test its correct functioning and analyse its
performance. Finally, related work is described in Section 5 and the paper
concludes in Section 6.

2 Running Example

This section introduces a running example about accessibility in cities, which
is used along the paper to illustrate the proposal. One of the most important
things that smart cities want to achieve is to optimise the urban accessibility
for people with disabilities, which would improve the quality of people’s life
[18]. For that reason, it is used as a case of study of the automatic Web API
generation process.

This running example exposes a situation where a developer wants to
create value from open data. In this case, providing this open data through a
mobile application, containing information about local businesses that can be
accessed by people with disabilities. However, when searching on the Internet
for open data about accessible businesses to reuse them in the application,
the developer discovers different problems. Firstly, datasets that contain the
required data do not include the suitable Web APIs to reuse that data directly
(i.e. fine-grain access). And secondly, in case there is an API, it is difficult to
know how to use the API because proper documentation following a standard
such as OpenAPI is not included.

The example would be equivalent to approaching it from the point of
view of the data publisher, which aims to improve access to its information
by offering a Web API with query-level capabilities and documentation. For
creating such infrastructure, the data publisher can use our proposal that
facilitate this task, especially if data publisher lacks programming skills.
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Table 2 Extract of businesses accessibility data in CSV format
Decal Recipient Closed/

Moved
Location Year Category Sub-Category

AMC
Showplace 11

1351 S
College Mall
Rd

1996 Entertainment
Venue

Cinema

American Eagle
Outfitters

College Mall 1996 Retail Clothing

Andrew Davis
Mens Wear

101 W
Kirkwood
Ave

2011 Retail

Applebees
Neighborhood
Grill and Bar

College Mall 1996 Restaurant/Bar American

Thus, developers who want to create value from open data will take advantage
of the direct access and reuse of data through the auto-generated API.

In this example, the suitable data is offered in the data.gov Portal,
where only a CKAN API is available to access metadata or to download
entire datasets (i.e. coarse-grain access). The Accessibility Decal Recipients
dataset3 contains information about the AccessAbility Decal program in order
to recognise businesses in the city of Bloomington (United States) that are
accessible to people with disabilities. This dataset is available in CSV, which
is a simple and well table-structured data format commonly used in open
data platforms, with 3 stars in the 5-star open data model4. In Table 2 there
is an extract of this accessibility data, which includes information such as the
name, place and category of the different businesses that are accessible by
people with disabilities. The column “Decal Recipient” is the name of the
accessible business, the “Closed/Moved” column is filled when a business is
closed or moved to another location, the next column “Location” specifies
the current place of the business, the opening year is detailed in column
“Year”, and finally, the “Category” and “Sub-Category” columns consist of a
classification of the business area of the establishment, which can be empty.

The application created by the developer should offer a list of accessible
businesses, being able to filter by the name of the business, the current
situation (if closed or moved), the location within the city of Bloomington,
the year when the business opened, the category of the business and the

3https://catalog.data.gov/dataset/accessibility-decal-recipients
4https://5stardata.info/en/
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subcategory. All these filters should be able to be applied both individually
and together (combined according to user needs).

This example attempts to demonstrate that developers need query-level
Web APIs to easily access and reuse the desired data. We provide an approach
to generate these APIs, which could also be used by the publisher of the data
to provide also the missing Web APIs. This approach is explained in the next
Section.

3 A Model-based APIfication Approach to Access Open
Data

In this section a model-driven APIfication approach is presented in order to
achieve the automatic generation of query-level Web APIs with fine-grain
access to data.

An overview of the automatic generation process is shown in Figure 1.
This APIfication process is able to automatically generate a Web API for any
dataset chosen by a developer. This transformation process starts with an open
data source, from which a complete Web API is generated, including interac-
tive OpenAPI documentation of the API. This auto-generated Web API helps
users to access and reuse the initial data, and the generated documentation
can be helpful to know how to use the API and even to try it through a
Web interface. The automatic generator creates a model of the data and
the OpenAPI documentation in order to take advantage of the large number

Figure 1 Automatic API generation process.
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of existing modeling tools for the integration of these artefacts in model-
driven development processes. The whole transformation process from the
data source to the Web API is launched by the automatic generator program5,
including the following steps: a text to model (T2M) transformation from the
data source to the data model, a model to model (M2M) transformation from
the data model to the OpenAPI model, a model to text (M2T) transformation
from the OpenAPI model to its OpenAPI documentation, and finally a text to
text (T2T) transformation from the OpenAPI documentation to the Web API.
When the process has finished, users are able to query the generated Web
API, then the API access the data from the source and finally the queried data
is returned to the users.

The automatic generator can be used by users without programming
skills, such as an open data publisher or an open data reuser. In order to
launch this generator, the only requirements are having installed java and
nodejs. An example of launching the generator consist of using the following
command in the computer’s terminal: java -jar ag.jar csv2api filename, where
“filename” can be the link to an online dataset or the name of a previously
downloaded dataset. More information is available at the GitHub page6.

The transformation process is explained in detail in the following subsec-
tions, describing the different stages that are part of the process.

3.1 From Data Source to Data Model (T2M)

The first stage of the transformation process starts from a specific data source,
from which a data model is inferred.

The data source is converted into the data model through a text to model
(T2M) transformation in order to represent the data and proceed with the
model-based transformation approach. This data model consists of a MOF7-
based model in XMI format according to its metamodel defined by the
authors (Figure 2), similar to the one specified in the Eclipse model trans-
formations scenarios8, which is implemented in the Ecore format from the
Eclipse Modeling Framework (EMF). In the metamodel, the relation between
the different objects is specified: a CSV file with its filename contains a set
of rows, and a row with its position contains a set of cells with value and
type. Each cell of the model contains the information of each cell from the

5https://github.com/cgmora12/AG/blob/master/ag.jar
6https://github.com/cgmora12/AG
7https://www.omg.org/mof/
8http://www.eclipse.org/atl/atlTransformations/
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Figure 2 CSV datafile metamodel.

first rows of the CSV file: the first row of the data source will be used by the
automatic generator for creating the API methods, properties and parameters;
and the second row will be used as example data and also for type inference.
This type inference is performed by analysing the data types of a set of
values from the dataset second row. We do not analyse the whole data due
to performance issues, but in case the type inference is not correct, the data
types specified in the API can be changed by developers after the generation
process is completed.

In order to work properly, the dataset to apply the automatic generation of
API must be in CSV format, which has been chosen in this example because
it is one of the most popular formats for publishing data. In case the dataset
is in other format the only effort to properly generate the API can be to parse
it to CSV, which can be performed by external tools such as Convertio9. This
CSV must have the information stored in a tabular form separated by commas
or semicolons, avoiding strange characters and metadata embedded in the
file itself. The first row of the CSV must contain the names of the columns,
whereas the other rows contain the different values for each column, always
using the same separator between those columns. This first row will be used
by the automatic generator to create, for each column name, a method of
the API, a parameter for this API method and a property defined in the API
documentation. The values obtained from the second row of the dataset will
be used by the automatic generator for example values of the API methods,
parameters and properties.

Particularly, in the running example the automatic generation program
reads the Accessibility Decal Recipients dataset, which is a CSV file, and
processes it by rows and columns. The data in the first couple of rows is
analysed, creating a data model with table, row, and cell objects, as shown in
Figure 3. This generated model contains an object “Table”, in which we can
find a set of “Rows” containing many “Cells”. The information contained
in the first row cells consists of the column names, while the second row
cells contain data examples about accessible businesses. An example of

9https://convertio.co/en/
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Figure 3 Datafile model in XMI format.

column name is “Decal Recipient”, which is converted into a cell in the
first row (Row 0 in Figure 3). This cell and all cells from the first row will
be then used as the name of an API method, parameter and property in the
following transformation steps. On the other hand, an example of value from
of “Decal Recipient” is “AMC Showplace11”, which is converted into a cell
in the second row (Row 1 in Figure 3), which will be used as example value
in the corresponding API method, parameter and property.

3.2 From Data Model to OpenAPI Model (M2M) and
Documentation (M2T)

The second stage in the automatic API generation process is about creating
the documentation of the API, which follows the OpenAPI standard and it is
based in models.

Once created the data model in the previous stage, a model to model
(M2M) transformation between the data model and the OpenAPI model is
performed. After that, a model to text (M2T) transformation between the
OpenAPI model and the OpenAPI documentation is carried out, obtaining
at the end of this stage a complete documentation of the API and its related
model.

First, the automatic generation program launches the M2M transforma-
tion defined in ATL language. ATL is one of the most widely used model
transformation languages, backed by a mature and efficient execution runtime
[15], which is used currently [8, 26]. For this reason, a set of transformation
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Figure 4 ATL transformation rules extract.

rules between the data model and the OpenAPI model have been defined
using the ATL language, as shown in the extract of the code in Figure 4.
The ATL transformation rules start from the Table object defined in its Ecore
metamodel, and its rows and cells are used to generate the OpenAPI model
and all the different objects contained in its OpenAPI metamodel. Basically,
from a data model containing the first rows of a CSV file, the OpenAPI model
is generated by creating the different elements of the OpenAPI documentation
from these set of cells.

The generated OpenAPI model is in XMI format, as shown in Figure 5.
It is based on an OpenAPI metamodel (Figure 6) defined by the authors,
in Ecore format. It has been created by updating an existing OpenAPI
metamodel10 from Swagger 2.0 to OpenAPI 3.0 specification. This OpenAPI
metamodel contains all the related objects required by OpenAPI. The main
parts of this metamodel are: the “API” object containing OpenAPI informa-
tion about the version and the related “Server” object which specifies the URL

10https://github.com/SOM-Research/APIDiscoverer/tree/master/metamodel
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Figure 5 Extract of OpenAPI model (XMI).

Figure 6 OpenAPI metamodel.

to the Web API; the “Path” object which includes a set of API operations
with their parameters and specific response with its code, content and type;
and finally, the “Component” object to define the properties of the API within
the “Schemas” and “MainComponent” elements. In this case, the automatic
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generator defines in ATL a transformation from each cell of the first row
(which is the column names of the CSV file) to an operation of the API,
and also each cell of this first row is transformed into a property and a
parameter of the API, using each cell of the second row as example value
for the corresponding property/parameter. The OpenAPI model contains all
of these objects with specific information about the running example, that
is, the different paths and components of the API to retrieve the accessible
businesses data.

Considering the “Decal Recipient” column name from the running
example, it is converted into a “Path” object with the pattern “/De-
cal Recipient/Decal Recipient” that includes a get operation, and also to
a Parameter object with name “Decal Recipient” that can be used in this
operation and a “Property” also with name “Decal Recipient”.

The definition and documentation of the Web API is represented by a
JSON file (Figure 7) according to the standards of Swagger,11 because it helps
us to design, build, document and test the API. Therefore, by a model to text

Figure 7 Extract of OpenAPI JSON file.

11https://swagger.io
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(M2T) transformation, the API documentation JSON file is directly inferred
from the OpenAPI model in XMI format. It consists of a simple element to
element transformation since the OpenAPI model contains the same elements
than the API documentation but in different format (JSON rather than XMI).

3.3 From OpenAPI Documentation to Web API

Finally, in this stage the complete Web API is generated from its OpenAPI
documentation.

The automatic generator creates the API represented by a server in
NodeJS,12 a simple and efficient runtime environment for network applica-
tions. This process is accomplished with the help of the Swagger Codegen
tool, which creates the structure of the server and manages the calls to the API
redirecting them to the corresponding method in the NodeJS code. It also cre-
ates an interactive documentation of the API from the existing documentation
generated in the previous step. After that, the automatic generator completes
the server with the needed features to return the asked data retrieved from the
data source, such as filtering by the required parameters. This code added
automatically contains functions to read the source file, searching for the
desired data and returning it to the user, which is independent from the data
source and equal in each API generated.

Between the OpenAPI and the API to generate there is a direct relation-
ship: each “Path” specified in the OpenAPI documentation will result in a
different method of the API, and each parameter of the API will be used by
the API for filtering and returning the results. The structure of the API also
contains: an “api” folder, which includes a swagger file defining structure
of the API; the folder “controllers”, which includes the main controller to
manage the queries and redirect them to the default controller to execute the
query, get the information and return it to the user; a “node modules” folder
with the required libraries to implement the NodeJS server; the file “data.csv”
containing the CSV input data; and finally a set of additional files in which
there is API information.

This generated Web API with query-level capabilities can be published in
an online server so that open data reusers can query the data with the desired
parameters to filter the information. As the generated API is managed by
the user, it can be easily customised, allowing developers with programming
skills to add new queries, change the existing ones, modify the filters and

12https://nodejs.org
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personalise the data they provide. The available queries and filters of the Web
API are specified in the interactive OpenAPI documentation, and because of
its simplicity they can be executed by non-experts in query languages. All
these queries will be of type HTTP GET, specifying the value of the different
columns for filtering the results. The queries that this auto-generated API
offers came from the dataset itself, so that each column of the dataset is used
to create one API method, which can be used to filter the information with
values from this specific column. Moreover, to improve the performance of
the APIs pagination of the results is available through using limit and offset
as parameters of the query. When a user queries the generated API, this query
is analysed in order to provide the suitable information. The information to be
returned to the user is extracted directly from the dataset, which is analysed
row by row by the API to check whether the row fulfils the query filters. Once
all the rows that fulfil the query are gathered together by the API, they are sent
together parsed as JSON13 format because it is easy for humans to read and
write and it is easy for machines to parse and generate.

For the running example, the Web API generated is available online14

and it contains a set of methods to query the accessible businesses. All the
operations available in the generated API as example are available in the Ope-
nAPI documentation online,15 which is shown in Figure 8. Considering the

Figure 8 Interactive OpenAPI documentation of the API.

13https://www.json.org
14https://wake.dlsi.ua.es/AG/RunningExample/
15https://wake.dlsi.ua.es/AG/docs/
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“Decal Recipient” column name from the original dataset, it is now a method
of the API which can be queried using the GET operation: https://wake.dlsi.
ua.es/AG/RunningExample/Decal Recipient/AMCShowplace11, which uses
“AMC Showplace 11” as value of the “Decal Recipient” parameter defined
also as property in the API documentation.

When a user queries this API, a list of accessible businesses that fulfil the
specified parameters (column values) is retrieved. For instance, a query that
requests the banks that are accessible for people with disabilities is: https:
//wake.dlsi.ua.es/AG/RunningExample/Category/Bank. From that request,
the Web API will response with the result obtained from the CSV dataset. In
this case, the result for the query example is the data about accessible banks.
An extract of API output in JSON format which contains information about
an accessible bank is:

{
‘ D e c a l R e c i p i e n t ’ : ‘ BloomBank ’ ,
‘ ClosedMoved ’ : ‘ ’ ,
‘ Loca t i on ’ : ‘1301 N Walnut S t r e e t ’ ,
‘ Year ’ : ‘2009 ’ ,
‘ Ca tegory ’ : ‘ Bank ’ ,
‘ Sub−Category ’ : ‘ ’

}
The application created by the developer specified in the running example

(Section 2) will access this Web API to reuse data according to the application
requirements. Therefore, with the help of this API it will be able to provide a
list of accessible businesses, which can be filtered by the name of the business
(“Decal Recipient”), the current situation (“ClosedMoved”), the location
within the city of Bloomington (“Location”), the opening year (“Year”), and
the category (“Category”) and subcategory of the business (“Sub-Category”).

The demonstration example, including the dataset used and all the auto-
generated files, is publicly available online.16

4 Validation of the Approach

In order to evaluate the correctness and performance of the automatic gener-
ation process, an experiment was carried out with 20 datasets in a Windows

16https://github.com/cgmora12/AG/tree/master/RunningExample/AG accessibilityBusine
sses
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Table 3 Validation results of the automatic generation process
Open Data # of # of Generation

CSV Title Topic Platform Rows columns Time
Traffic state Transport datos.gob.es 3,565,683 4 13.4 s
Bikes usage Transport datos.gob.es 5,185 5 10.2 s
School
grants

Education Data.gov 2,494 7 10.2 s

Demographic
statistics

Government Data.gov 237 46 10 s

Voter data Government Data.gov 7,517,745 46 29.2 s
Biodiversity Environment Data.gov 20,017 12 10.3 s
Road safety Transport datos.alcobendas.org 113 4 9.7 s
Metro stops Transport datos.alcobendas.org 44 12 9.8 s
Train stops Transport datos.alcobendas.org 19 12 9.7 s
Population Government datos.alcobendas.org 441 5 9.7 s
Salmonella
tests

Government data.gov.uk 13 3 9.7 s

Radioactivity Environment data.gov.uk 794 57 10.1 s
Schools list Education data.gov.uk 102 16 9.7 s
Street lights Government data.gov.uk 27,409 15 10.5 s
Travel data Government data.gov.uk 1,853 20 10.3 s
British
behaviour

Government data.gov.uk 168 10 9.7 s

Innovation Government open.canada.ca 2,413 17 10.2 s
Wholesale
trade sales

Economy open.canada.ca 8,752,568 17 35.1 s

International
payments

Economy open.canada.ca 245,107 17 10.9 s

Employee
earnings

Economy open.canada.ca 21,072,480 18 80 s

10 computer with an Intel i5 processor and 8GB of RAM memory. The list
of CSV data sources analysed in this experiment is shown in Table 3. These
online datasets are from different open data platforms: datos.gob.es from the
Spanish goverment, data.gov from U.S. Government, datos.alcobendas.org
from a city in Madrid, data.gov.uk from UK and open.canada.ca from Gov-
ernment of Canada. They contain information about education, environment,
transport, government and economy. The performance of the approach has
been evaluated by analysing the API generation time for each data source
with a variable number of rows and columns, as shown in Table 3. The range
of file sizes covers from just 10 rows to over 20 million and from 3 columns
to 57, resulting in a maximum of 379,304,640 cells and a minimum of 39
cells.
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For each dataset, the automatic generation process creates the correspond-
ing Web API with OpenAPI documentation. The time calculated considers
the process of copying the whole file without non-alphanumeric characters
in the first row (which is dangerous for the API routes), but not the time
to download the resource because it depends on network issues, so that
the process starts with an already downloaded file. Moreover, in order to
get proper results the processing time of the automatic generator has been
calculated 5 times for each dataset, thus the generation time is an average of
all these 5 different executions.

4.1 Results

The results obtained (Table 3) show that the automatic generation process
barely takes between 9 and 80 seconds (Figure 9), with source files of up to
more than 20 million of rows, to generate from any dataset a complete Web
API, including related models and interactive OpenAPI documentation.

Figure 9 shows a linear behaviour depending on the size of the dataset
with a significant positive trend. Thus, as the number of records increases, the
time increases in a fraction of seconds (3.1e-06 seconds/record or 3 seconds
per million records). The determination coefficient indicates that 98.18% of
the variability of the measured time is explained by the number of records. No
significant relationship has been found with the number of columns observed.

Figure 9 Generation time of the approach depending on the evaluated source file size.
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On the other hand, the performance of the Web APIs is also taken into
account. When the number of rows is really high, such as 21 million rows,
it can take an amount of time similar to the generation time shown in Table
3. This situation can be overcome with the help of pagination of the results
(using “limit” and “offset” parameters), optimising the performance of the
API and thus significantly reducing the time to get the desired results. There-
fore, although the APIs still access data from original CSV file, with this
performance improvement it can take less than 4 seconds to return requested
data from datasets of up to 21 million rows. For example, a query without
filters that specifies the limit of 10.000 results to the Web API that manages
21 million rows takes barely 3 seconds to bring the results to the browser. This
validation has been performed using an API generated using our approach
from the dataset ”Employee earnings” (last row in Table 3).

Consequently, from this validation we can state that the proposal is func-
tional and useful, since it successfully achieves the objective of efficiently
performing the APIfication process in an average time of 16 seconds. From
the situation where open data platforms do not provide suitable mechanisms
to reuse data, such as Web APIs at the query level (i.e. fine-grain access to
data), our approach contributes towards the generation of these APIs, which
not only eases the task of accessing and reusing open data by developers, but
also allows open data publishers to facilitate the reuse of their open data by
these developers. Furthermore, the automatic generator successfully provides
a modeling environment around open data, helping reusers and citizens to
understand better the information offered on the Internet.

5 Related Work

There is a variety of related research that deal with the topic of open data
and accessing it using Web APIs, which makes it easier for the developers.
In [6], it is supported the idea that the society is opening its data, but there
is still the need of building the technology required to enable the citizens to
access it. The main goal of this project, which is in an early stage, is giving
the citizenship unrestricted access to the open data available online. In [29]
it is detailed how open data is mostly not readily usable from the citizen,
so it is important to facilitate the access to encourage software developers
to use the open data, which is essential in smart cities. Also [22] proposes
the development of an open data API which supplies tools that will help
the general public to access the data about their own cities. This creation
of APIs has also been addressed by other research [13], which describes a
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simple query-level API which is used to provide access to a semantic Web
to developers unfamiliar with the RDF and SPARQL complex technologies.
Additionally, the approach described in [19] is addressing the query of RDF
data and convert it to structures and formats which can be processed by
data mining tools, because accessing the RDF over numerous SPARQL
endpoints supposes a challenging task. In particular, it targets the retrieval and
integration of RDF data into the processes designed using RapidMiner, a data
mining environment widely used in the industry and research. However, these
proposals require the manual creation of the APIs, which is time-consuming.

The automatic generation of APIs has also been proposed [12, 21]: the
EMF-REST framework for generating Web APIs [12] needs a model of the
API to perform the creation of APIs, thus requiring users to create this model
by themselves because they are not generally available; and [21] is focused
in helping developers to create automatically Web APIs. However, these
approaches are not targeting the access and reuse of data from open data
platforms. In addition, csv-to-api17 dynamically generates RESTful APIs
from static CSVs, allowing users to interact with that CSV as if it was a native
API. However, this process does not use a model-based approach for the
transformations and API documentation is not provided, so that the generated
APIs are difficult to use and integrate in model-based scenarios.

Other works propose the use of transformations between metamodels of
APIs and other related elements. The paper [15] describes ATL, a domain-
specific language for specifying model-to-model transformations, because
models are the main development artefacts and model transformations are
among the most important operations applied to models, in the context of
Model Driven Engineering. In [10, 11] models are used to represent the
Web API definition, offering a better visualisation of the API operations.
Also, in [9] the metamodel of the API definition is used to simplify the
transformation between the API and its definition, to include the API in
the OpenAPI initiative. In [23] they use a metamodel for standardising the
information extracted from Web APIs documentation; and a method for the
extraction of models, discovering useful data, and automatically generating
the corresponding models that conform to the defined metamodel. These
metamodels help designers to better understanding of each Web API they
are using. The tool Direwolf Interaction Flow Designer [16] generates Web
frontends from API definitions, using as an intermediary step an API defini-
tion model in IFML. The API2MoL engine [7] creates bridges between APIs

17https://github.com/project-open-data/csv-to-api
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and model-driven engineering, with the objective of creating models from
the APIs for facilitating the management of a plethora of APIs. As we have
seen, model-based approaches can be used to represent and generate Web
API documentation, but they are not used to generate the whole Web API as
proposed by the authors in this paper.

As seen in the existing research, the creation of APIs is proposed to solve
problems regarding the access and reuse of data. However, they generally
propose the manual creation of APIs to access specific open and linked data
platforms which is time-consuming. The automatic generation of APIs is
also addressed, but fine-grain access to open data platforms is not addressed
and they require specific artefacts which are not generally available. Instead,
our approach starts directly from the data source, which would avoid the
need for users to create these artefacts manually. Therefore, as far as the
authors are aware, although related works help data reusers to create APIs
and documentation, they do not offer a flexible solution for generating Web
APIs from existing open data sources that provide query-level access (i.e.,
fine-grain access). To do so, our research proposes a model-based approach to
automatically generate this kind of Web APIs. Furthermore, we also address
open data publishers to easily provide Web APIs, unlike the studied related
work which only focus on end users.

6 Conclusions and Future Work

In this paper we have presented an approach that addresses the problem
related to accessing and reusing open data available online due to the shortage
of query-level Web APIs. In order to solve this problem, we have proposed
a model-driven APIfication approach which aims to make open data easily
reusable for open data reusers. This process, based on automatic, generic
and standardised generation mechanisms, is made up of model-based trans-
formation rules to generate Web APIs with documentation following the
OpenAPI 3.0 standard. With this approach we address at first to help open
data publishers, so that they can include a Web API that facilitates the reuse
of data. In case that an API is missing to reuse open data, we address to help
open data reusers such as developers that aim to create value from open data.

The evaluation of the approach with different datasets demonstrates that
the generator performs efficiently: it is able to auto-generate successfully
a complete Web API for any dataset that did not came up with an API
before. Accordingly, the main contribution of this research is the creation
of an automatic API generation process to facilitate the access and reuse of
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1168 C. González-Mora et al.

open data. Therefore, the approach aims to directly simplify the open data
reuse process, which will result in economic benefits to developers and the
infomediary sector.

As future work, the transformation process needs to be extended to work
with different formats of open data, considering performance of Web APIs,
data integration and semantics. Regarding performance, we plan to keep on
working on improving it by considering to include a data stage layer. This
layer would include required functionality borrowed from a NoSQL DBMS
such as MongoDB to store processed open data coming from CSV. Also, we
plan to explore how to use in-memory databases in our approach. Regarding
data integration, we plan to consider open data that is split in several datasets
and provide unique access to them through a Web API.
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simo Tisi, and Jordi Cabot. EMF-REST: Generation of RESTful APIs
from Models. In Proceedings of the 31st Annual ACM Symposium on
Applied Computing, pages 1446—-1453. Association for Computing
Machinery, 2016.

[13] I. Hopkinson, S. Maude, and M. Rospocher. A Simple API to the
Knowledgestore. In Proceedings of the International Conference on
Developers, volume 1268, pages 7–12. CEUR-WS.org, 2014.

[14] M. Janssen, Y. Charalabidis, and A. Zuiderwijk. Benefits, Adoption
Barriers and Myths of Open Data and Open Government. Information
Systems Management, 29(4):258–268, 2012.
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ABSTRACT More and more governments around the world are publishing tabular open data, mainly in
formats such as CSV or XLS(X). These datasets are mostly individually published, i.e. each publisher
exposes its data on the Web without considering potential relationships with other datasets (from its own
or from other publishers). As a result, reusing several open datasets together is not a trivial task, thus
requiring mechanisms that allow data consumers (as software developers or data scientists) to integrate
and access tabular open data published on the Web. In this paper, we propose a model-driven approach
to automatically generate Web APIs that homogeneously access multiple integrated tabular open datasets.
This work focuses on data that can be integrated by means of join and union operations. As a first step, our
approach detects unionable and joinable tabular open data by using a table similarity measure based on word
embeddings. Then, an APIfication process is developed to create APIs that access the previously integrated
datasets through a single endpoint. A running example is presented throughout the article, as well as a set of
experiments for performance evaluation to show the feasibility of our approach.

INDEX TERMS Data integration, join, union, open data, data access, Web APIs, word embeddings.

I. INTRODUCTION
Nowadays the amount of open data available on the Web
is increasing due to the great interest of governments
and institutions around the world in adopting open data
initiatives [1]. A good example is found in the smart city
arena, where open data has attracted great attention for local
and regional governments as the best way of publishing the
big data they are producing [2].
This open data is commonly offered in catalogues within

Web platforms, named open data portals. For instance,
https://www.data.gov/, which provides a catalogue of data
resources from the USA Government (at national level),
or https://data.cityofchicago.org/, which gathers open data
from Chicago (at local level).
The ultimate goal of open data portals is to provide Linked

Open Data (LOD) that allows consumers to use Semantic

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

Web technologies to identify relationships among data [3].
LOD is easy to integrate and access by means of query lan-
guages such as SPARQL. Unfortunately, LOD is not usually
available since most used formats in open data government
portals are tabular (46.4%), either direct tabular formats such
as CSV (9.1%) andXLS(X) (6.1%), or embedded tabular data
such as HTML (25.0%) and PDF (9.2%). Meanwhile, LOD
formats such as RDF only represent 0.5% of the total [4]
(even though there exist proposals to transform from CSV to
RDF [5]). The prevalence and priority of tabular formats over
LOD in open data government portals has been highlighted
in recent studies by the European Comission [6] and the
Organisation for Economic Co-operation and Development
(OECD) [7]. In this scenario, accessing and manipulating
tabular datasets remains a relevant research topic in the field
of open data.
When it comes to integrating tabular open data, additional

metadata is required for developers to know how datasets can
be related to each other (such as relational-like primary keys
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or foreign keys, as stated by the ‘‘Model for Tabular Data and
Metadata on the Web’’1 developed by the W3C CSV on the
Web Working Group). Although several recent approaches
proposed adding these kind of metadata to tabular datasets
by means of annotations [8], [9], this methodology has not
being widely adopted by publishers. Therefore, open data is
mostly individually published, i.e. each publisher shares their
data on the Web without considering potential relationships
with other open data. This scenario hampers users of open
data government portals (such as software developers or data
scientists) in reusing open data, since additional effort must
be done to successfully integrate this data. Thus, mechanisms
that allow data consumers to integrate and access tabular open
data published on the Web (through open data government
portals) are highly required.
To this end, in this paper we propose a model-driven

APIfication process to define transformations for automat-
ically generating Web APIs that access integrated tabular
open data. Data integration is a complex process, involving
several kinds of transformations (such as cleansing, combi-
nation, normalisation, etc.) to offer a unified view of a set
of heterogeneous data from different sources. In this paper,
we focus on join and union operators since they are specially
relevant for open data integration [10]. In addition, it should
be noted that considering these operators provides the basis
for including other ones (such as filtering and sorting).
Although data integration challenges have been researched

for years with significant progress [11], efforts have been
made only on solving specific problems. However, according
to Abadi et al. [12] more work is required on researching
how to pipeline data integration to cover all the way from
raw data to an end-user’s desired outcome. This could be
achieved, for instance, by means of generating mechanisms
that support developers and data scientists in consuming the
right data for their purposes by using external programming
languages such as Java, Python, and R. In this sense our work
is aligned with Abadi et al., since the approach we propose
focuses on pipelining the data integration process together
with an API generation in order to simplify consumption of
integrated open data.
The first step in the approach proposed consists of detect-

ing the tabular datasets that are more likely to be inte-
grated by means of join and union operations.2 For this
purpose, we defined a similarity measure between tabular
data based on word embeddings [13]. Afterwards, in a sec-
ond step a Web API is automatically generated to directly
access the integrated datasets. Web APIs are a recommended
feature of open data portals [14], allowing data consumers
to build data-intensive applications and bring open data to
citizens. Moreover, the documentation of the Web API is
also automatically generated (i.e. its interactive OpenAPI3

1https://www.w3.org/TR/tabular-data-model/
2It is worth noting that our approach could be used for any tabular format,

although we focus on CSV files in this article.
3https://www.openapis.org/

documentation), helping data consumers to better understand
how to access and reuse integrated tabular open data coming
from different sources.
It is worth noting that both steps in the APIfication process

are decoupled and can be used independently, while at the
same time relationships among steps (e.g. passing informa-
tion from integrated data to a datamodel in order to initiate the
Web API generation) can be easily considered by following
a model-driven development approach.
In summary, the contributions of this article are as follows:
• The definition of a word embedding-based similarity
measure between tabular datasets to identify joinable
and unionable tabular open data.

• A set of model-driven transformations to automatically
generate a Web API to easily access previously inte-
grated data (by applying the corresponding join and
union operations).

• Evaluation of our approach with real tabular open data.
• The implementation of our approach for automatically
data integration and the corresponding Web API gener-
ation, which is available online at GitHub.4

This article is structured as follows. Section II presents the
running example used to illustrate the approach explained in
Section III. That section describes ourmodel-driven approach
for automatically generating Web APIs to access integrated
tabular open data. Then, Section IV presents the evalua-
tion of the approach. Finally, related work is described in
Section V and conclusions and future work are sketched out
in Section VI.

II. RUNNING EXAMPLE
This section introduces a running example which is used
throughout the article to illustrate our approach. The con-
sidered scenario is related to available open data regarding
the COVID-19 pandemic coming from different open data
portals, and how they can be integrated and accessed through
an automatically generated Web API. All the files related to
the running example are publicly available online.5

This running example describes a situation where a data
scientist is willing to use available open data to create a dash-
board to analyse the COVID-19 pandemic evolution along
different cities in USA. However, the data scientist has to
address a data integration problem, since open data about
COVID-19 is published at different portals, by different local
or regional governments (USA cities or states), and usually
federated in a national open data portal. This data may rely
on different schemas (i.e. data structures), being necessary
to integrate them first in order to successfully analyse them
together.
In our running example, data comes from USA Govern-

ment’s open data portal.6 On one hand, data from Chicago is

4https://github.com/cgmora12/DataIntegration2API
5https://github.com/cgmora12/DataIntegration2API/tree/master/

runningExample
6https://www.data.gov/
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gathered from two different datasets. The first one7 provides
figures of positive COVID-19 cases by day, filtering by gen-
der, race, and different ranges of age. It contains 148 rows
and 39 columns. An excerpt of this data (called dataset 1) is
shown in Table 1. The second one8 (dataset 2) provides hos-
pital capacity metrics during COVID-19 period. It contains
132 rows and 33 columns. See Table 2 for a sample data.

TABLE 1. Excerpt of data from COVID-19 cases in Chicago (dataset 1).

TABLE 2. Excerpt of hospital capacity data from Chicago (dataset 2).

On the other hand, open data from New York City is
gathered from a unique dataset9 (dataset 3) that includes
daily counts of cases, hospitalisations, and deaths from
COVID-19. It contains 151 rows and 4 columns. An excerpt
is shown in Table 3.

TABLE 3. Excerpt of data from COVID-19 cases in New York City
(dataset 3).

In order to consider data provenance, we automatically add
a new column to each dataset containing its publisher before
processing the data: in dataset 1 and dataset 2 the publisher
is ‘‘City of Chicago’’, whereas ‘‘City of New York’’ is the
publisher of dataset 3. This provenance data comes from the
datasets’ metadata (USAGovernment’s open data portal) and
can be easily obtained through its API.

7https://catalog.data.gov/dataset/covid-19-daily-cases-and-deaths, last
accessed October 2020

8https://catalog.data.gov/dataset/covid-19-hospital-capacity-metrics, last
accessed October 2020

9https://catalog.data.gov/dataset/covid-19-daily-counts-of-cases-
hospitalizations-and-deaths, last accessed October 2020

If a data scientist wants to use this data to get the
COVID-19 positive cases, deaths, and people hospitalised
by day using ventilators, three datasets must be downloaded
and integrated by applying join and union operators (a more
detailed explanation about these operators is provided in the
next section) as follows (see also Fig. 1):

• Dataset 1 and dataset 2 contain data with different mea-
sures that can be joined by the column ‘‘date’’ (result-
ing in a new dataset) in order to have positive cases,
deaths, and hospitalised people using ventilators by day
in Chicago. For example, the 25th of March, there were
367 cases and 5 deaths in Chicago (dataset 1), and
also 79 hospitalised people that used ventilators due to
COVID-19 (dataset 2). All this information is joined in
the same row because they share the same ‘‘date’’, which
is used as a condition for the join operator.

• Union of the previously joined dataset and dataset 3 can
be applied to get the positive cases, deaths, and hospi-
talised persons using ventilators by day in both Chicago
and New York. For example, in order to perform the
union operation, the columns are matched as follows:
‘‘date’’ with ‘‘date’’ (previously considering that a date
format conversion must be done), ‘‘case count’’ with
‘‘cases’’, ‘‘death count’’ with ‘‘deaths’’ and ‘‘hospital-
ized count’’ with ‘‘ventilators’’.Matching these columns
and applying a union operator results in a new table
containing all the rows from the input tables. Fig. 1
shows that the first row of the integrated data comes
from dataset 3, whereas the second row comes from the
previously joined datasets. Additionally, a new column
has been included with information about the publisher
of the data.

Manually obtaining the integrated dataset required in this
example is a time-consuming task for the data scientist. In the
following section, we use this running example to show how
our approach can be useful to save time and effort in integrat-
ing and accessing tabular open data.

III. A MODEL-DRIVEN APIfication APPROACH TO
ACCESS INTEGRATED TABULAR OPEN DATA
This section presents our model-driven APIfication approach
to automatically generate Web APIs to access previously
integrated tabular open data.
Operators considered for handling input tabular data are

union and join from relational algebra. For the sake of sim-
plicity, in this article we borrow these operators from SQL
(the well-known implementation of the relational algebra and
a recognised standard for querying and handling tabular data):

• Union operator is denoted by ∪ symbol in relational
algebra. Given two tabular datasets (A and B), union
operator aims to get a unique dataset that contains rows
that are in A or in B (denoted as A ∪ B). A and B must
have the same columns (number, order, and datatype) to
be computed. Also, each column of each dataset must
refer to the same concept to be meaningful.
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FIGURE 1. Example of integrating COVID-19 datasets.

FIGURE 2. Automatic open data integration and API generation process.

• Join operator is denoted by FG symbol in relational alge-
bra. Given two tabular datasets A and B, join operator
aims to get a unique dataset that includes every column
fromA and B (denoted as A FGB) and contains rows that
fulfil a matching condition (applied to values of some
columns).

An overview of our approach is shown in Fig. 2. It consists
of two parts:
• Data integration (‘‘Similarity Data’’ and ‘‘Integrated
Open Data’’ boxes in Fig. 2). The first step implies
detecting unionable and joinable tabular datasets from
an open data portal. Our approach uses word embed-
dings [13] to detect which columns from different input
tabular datasets are more likely to be integrated by
using join and union operators. The next step consists
of applying the required join and union operators to get

an integrated tabular dataset. More details are given in
Section III-A. As shown in Fig. 2, prior to this data
integration phase a data profiling is performed in order
to discover data types and to apply type conversions to
homogenise them (e.g. conversion of date formats by
using the ‘‘mm/dd/yyyy’’ pattern), as well as to detect
keys that will be used later to apply the join operator.

• Model-driven transformations to obtain a Web API to
access integrated data, including its interactive OpenAPI
documentation: ‘‘Data model’’, ‘‘OpenAPI model’’,
‘‘OpenAPI documentation’’, and ‘‘Web API’’ boxes
in Fig. 2. From the previously integrated dataset, a Web
API to access this data is generated by means of the fol-
lowing model-driven transformations: (i) a text to model
(T2M) transformation from the integrated data to the
data model; (ii) a model to model (M2M) transformation
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from the data model to the OpenAPI model; (iii) a model
to text (M2T) transformation from the OpenAPI model
to its OpenAPI documentation; and finally (iv) a text to
text (T2T) transformation from the OpenAPI documen-
tation to the Web API. Therefore, starting from a dataset
containing rows and cells, the system performs a direct
transformation to construct a data model object with row
and cell objects. Then, the data model is transformed to
an OpenAPI model using each cell of the first row as
an API component (method, parameter, and property),
parsing this OpenAPI model object to a standard for-
mat for API documentation. Finally, the complete Web
API is automatically created according to the methods
detailed in its documentation. These model-driven trans-
formations are explained in detail in Section III-B.

A. INTEGRATION OF TABULAR OPEN DATA
As mentioned before, the first part of the process consists
of integrating datasets by means of join and union operators.
The initial step is to determine which columns of the datasets
are similar enough to apply these operations. The following
sections explain in detail how similar columns are detected,
as well as how union and join operators are applied for
integrating tabular data (we specifically focus on CSV files).

1) MEASURING COLUMN SIMILARITY FOR DETECTING
UNIONABLE AND JOINABLE TABULAR DATA
Word embeddings is a Natural Language Processing (NLP)
technique in which words or phrases are mapped to vectors
of real numbers. This mapping is based on the distributional
hypothesis, which states that words that occur in the same
contexts tend to have similar meanings [15]. Word embed-
dings have been shown to capture semantic regularities in
vector space, since the relationship between two word vectors
mirrors the linguistic relationship between those words [13].
In order to determine whether union or join operations

between tabular data can be performed, we have estab-
lished a mechanism based on word embeddings to calculate
the (semantic) similarity of two tabular datasets. Using word
embeddings overcomes the problems of lexical approaches
based on string similarity: terms such as ‘‘city’’ and ‘‘loca-
tion’’ could be considered as being very different in terms
of string matching, but in a word embedding space these two
termsmay be closely related and considered as highly similar.
The similarity mechanism takes as an input a set of tabular
datasets to be compared, returning as a result a JSON file
where all the columns of each dataset are compared with each
other, obtaining a similarity measure for each pair of columns
belonging to different datasets. These column pairs are sorted
in descending order of similarity. This measure serves as
the input to decide whether union or join operators can be
applied to integrate different datasets (see Section III-A2 for
additional information). In order to calculate the similarity
between columns, we take into account two elements of
the tabular datasets: name of the columns and their content
(values) for each row.

The first step consists of normalising these values by
splitting CamelCase and hyphenated words (very common in
column names), removing punctuation, and converting text to
lowercase. After that, the word embedding model is used to
extract two vectors for each column: one represents the name
of the column and the other the content of the column for each
row of data. In those situations where the name of the column
includes more than one word, the vectors representing each
word are averaged to get a single vector. Averaging word
embeddings is one of the most popular methods of combining
embedding vectors, outperforming more complex techniques
especially in out-of-domain scenarios [16]. The same strategy
is applied to the content of the column, where the final vector
is the result of calculating the mean between the vectors of
each of the values contained.
As in previous works [13], we use the cosine similarity

to compute the distance between vectors in the embedding
space:

sim(v1, v2) =
v1v2
‖v1‖‖v2‖

=

∑n
i=1 v1iv2i√∑n

i=1 (v1i)2
√∑n

i=1 (v2i)2
,

where v1 and v2 represent the word embedding vectors of the
name of the columns or the content of the column for each
row, and sim(v1, v2) is a float value in the range [0, 1], where
0 means no similarity and 1 means maximum similarity
between the vectors considered.
If the word embedding model does not provide coverage

for the name of the column or its content (i.e. their tokens
are not in the vocabulary of the model), the Levenshtein dis-
tance [17] is used as a backup strategy to ensure that the sys-
tem always returns a similarity value between columns. This
string metric is based on the number of single-character edits
(insertions, deletions or substitutions) required to change one
string into the other. We applied the normalised edit distance
to obtain values in the range [0, 1], computed as (length −
distance)/length, where distance is the Levenshtein distance
and length is the sum of the lengths of the two strings to
compare.
For each two columns compared, we obtain a similarity

value of the name of the column and a similarity value of
its content. To obtain a single final similarity score of two
columns c1 and c2, we perform a linear combination of these
two values:

sim(c1, c2) = α · sim(cn1, cn2)+ (1− α) · sim(cc1, cc2),

where sim(cn1, cn2) is the similarity of the names of the
columns, sim(cc1, cc2) is the similarity of their contents, and
α is a parameter in the range [0, 1] that weights the relevance
of the two similarity scores in the final result.

2) APPLYING UNION AND JOIN OPERATIONS FOR DATA
INTEGRATION
The similarity measure computed in the previous step is used
to decide whether union or join operations can be applied for
integrating tabular data. Two rules apply:
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• A join operator can be applied to datasets that have at
least one column (detected as candidate key in the data
profiling) with similarity value higher than a specific
threshold (as explained below). These columns are con-
sidered as key columns in the join operation (several
columns can be detected as key for joining).

• A union operator can be applied to datasets that have
all columns with similarity value higher than a specific
threshold. Columns with similarity below this threshold
can be removed previously. Also, if the majority of
columns are similar, the union operation can be applied
only on these columns omitting the rest of non-similar
columns.

The value of the thresholds mentioned are obtained
empirically considering that: (i) join operation requires key
columns, which are a small subset of columns from the input
datasets (usually one or two); (ii) union operation requires
the same columns to be present in both input datasets. In the
running example, the threshold for join operator was set to
0.95, whereas for union operator was set to 0.75. However,
our approach is flexible and thresholds can be adapted at any
time.
Join and union operators between datasets are automati-

cally applied by dynamically developing and executing trans-
formations with Pentaho Data Integration Java libraries.10

Therefore, after analysing the similarity calculations we can
automatically create a transformation using these libraries
and execute it to obtain the integrated data. This generated
transformation includes the following operations: (i) reading
the datasets to be integrated; (ii) sorting data; (iii) comput-
ing similarity measures to apply join/union operations; and
(iv) save the integrated data to an output file. An excerpt of
the code required is shown in Fig. 3 (the full code is available
at the GitHub repository11).
Regarding the running example, a join operation is per-

formed automatically on the two datasets from Chicago
(dataset 1 and dataset 2) because the similarity of ‘‘date’’
column from COVID-19 cases dataset and the ‘‘date’’ col-
umn from Hospital Capacity Metrics is the highest com-
puted (0.9988) and above the threshold of 0.95. Both ‘‘date’’
columns are selected as key columns for the join operator.
After joining, we obtain a single tabular dataset with data
coming from both datasets (see Table 4). Moreover, after
calculating the similarity between columns from the pre-
viously integrated datasets and dataset 3 from New York,
the similarity obtained is higher than the 0.75 threshold for
the following matching columns: ‘‘case count’’ with ‘‘cases
total’’ (0.8847), ‘‘death count’’ with ‘‘deaths total’’ (0.8724),
‘‘date of interest’’ with ‘‘date’’ (0.8607), and ‘‘hospitalized
count’’ with ‘‘ventilators in use covid 19 patients’’ (0.7793).

10https://www.hitachivantara.com/en-us/products/data-management-
analytics/pentaho-platform/pentaho-data-integration.html

11https://github.com/cgmora12/DataIntegration2API/blob/
7cca3fb915f933a315858ac7ae6e0e1358f7df33/src/table/union/
TableUnion2API.java#L341

FIGURE 3. Excerpt of Java code for generating a join transformation.

TABLE 4. Excerpt of joined dataset from COVID-19 cases in Chicago.

Therefore, a union operation is performed to integrate both
datasets based on these matching columns.
Although a Pentaho Data Integration transformation is

created and executed dynamically by using its corresponding
Java libraries, the transformation for the running example
can be accessed by using the Pentaho Data Integration GUI,
named Spoon, as shown in Fig. 4. It is worth noting that,
by doing this, Spoon capabilities for debugging transforma-
tions can be easily used if required. For example, users could
use Spoon for manually editing joining keys automatically
selected previously by our approach.

FIGURE 4. Example of join transformation auto-generated dynamically.

Once the data is integrated by applying join and union
operators, a Web API is automatically generated to access
these data (Table 5) as shown in the following section. This
process of generating the Web API from the integrated data
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TABLE 5. Excerpt of the dataset obtained after union operation of the
datasets from COVID-19 cases in Chicago and New York.

is decoupled from data integration itself and can be used
independently. However, at the same time, the required infor-
mation is easily transferred throughout the process thanks to
the model-driven development principles. In particular, after
obtaining the similarity results, the decision on which tables
to perform the union/join operation depends on a threshold.
Although there is a default threshold, users could change it
at the beginning of the data integration process. This deci-
sion does not affect the process of API generation since
only already integrated data, together with other information
stored in the models, are required as an input.

B. MODEL-DRIVEN TRANSFORMATIONS FROM
INTEGRATED DATA TO WEB API
After generating the integrated data, the transformation pro-
cess continues in order to generate aWeb API that offers easy
access to this data. As shown in Fig. 2, this transformation
from the integrated data to the Web API contains a text to
model (T2M) transformation to create a data model, a model
to model (M2M) transformation to generate the documenta-
tionmodel in OpenAPI, a model to text (M2T) transformation
to obtain the complete OpenAPI documentation, and finally
a text to text (T2T) transformation that completes the process
by producing the Web API.
The T2M transformation starts from the integrated open

data, generating the related data model. It consists of a MOF-
based12 model in XMI format according to its metamodel
defined in Fig. 5 by using the Ecore format (actually, the de
facto reference implementation of MOF) from the Eclipse
Modeling Framework (EMF). This metamodel specifies that
tabular data as CSV file contains a name and a set of rows,
which include a position and a set of cells with value and
type. The first row of a tabular dataset, which represents the
column names, is used for the API method, properties, and
parameters; the second row, which contains the data, is used
as example values for each column. Therefore, the integrated
data in a CSVfile is processed by rows, analysing the first two
rows for creating the data model with row and cell objects.
Particularly, in the running example the generated data

model shown in Fig. 6 contains an object ‘‘Table’’, formed by
a set of ‘‘Rows’’ containing many ‘‘Cells’’. The information

12https://www.omg.org/mof/

FIGURE 5. Tabular dataset metamodel.

FIGURE 6. Datafile model in XMI format.

contained in the cells of the first row consists of the column
names, while the cells in the second row contain integrated
data examples about COVID-19. An example of column
name is ‘‘date_of_interest_date’’, which is converted into a
cell in the first row (Row 0 in Fig. 6). This cell, and all
the cells from the first row, will then be used as the name
of an API method, parameter, and property in the subse-
quent transformation steps. On the other hand, an example
value of ‘‘date_of_interest_date’’ is ‘‘02/29/2020’’, which is
converted into a cell in the second row (Row 1 in Fig. 6)
and will be used as an example value in the corresponding
API method, parameter, and property.
Once the data model is created, the M2M transformation is

performed. In this step an OpenAPI model is created from the
data model. This transformation is defined using ATL, one of
themost used languages for model transformations [18], [19].
Using the ATL language we defined a set of transformation
rules (see Fig. 7) that automatically convert the data model

FIGURE 7. Excerpt of ATL transformation rules.
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FIGURE 8. OpenAPI metamodel.

to the OpenAPI model. Starting with the table object from
the data model, we are able to generate the OpenAPI model
and all the different objects contained in its OpenAPI meta-
model, which has been created by the authors according to the
OpenAPI structure (Fig. 8). The main elements of this Ope-
nAPI metamodel are: the API object containing OpenAPI
information about the version and the URL of the Web API;
the Path object which includes a set of API operations with
their parameters; and the Component object to define the
properties of the API.
The generated OpenAPI model for the running example is

shown in Fig. 9. The ‘‘date_of_interest_date’’ column name
from the running example is converted into a ‘‘Path’’ object
with the pattern ‘‘/date_of_interest_date/
date_of_interest_date’’ including aGET operation, a ‘‘Param-
eter’’ object ‘‘date_of_interest_date’’ that can be used in this
operation, and a ‘‘Property’’ named ‘‘date_of_interest_date’’.
After that, the M2T transformation between the OpenAPI

model and the OpenAPI documentation is carried out. This
OpenAPI documentation of the Web API is represented by
a JSON file according to the standards of Swagger.13 This
JSON file is directly inferred from the OpenAPI model in
XMI format by a simple element to element transformation,
since theOpenAPImodel contains the same elements than the
API documentation. An excerpt of the OpenAPI documen-
tation in JSON format generated for the running example is
shown in Fig. 10. It contains important elements such as API
information, server URL, components of the API, and paths
to obtain the COVID-19 data filtering by different parameters
and properties. The ‘‘Path’’ object ‘‘date_of_interest_date’’

13https://swagger.io

FIGURE 9. Excerpt of the OpenAPI model (XMI).

from theOpenAPImodel is now converted into a JSONobject
inside the ‘‘Path’’ JSON array. This ‘‘date_of_interest_date’’
JSON object also contains more details about the GET oper-
ation and the parameter to filter the information.
Finally, the complete Web API is generated by the

T2T transformation from the OpenAPI documentation. The
T2T process is able to automatically generate the whole Web
API represented by a server in NodeJS.14 This API generation
is performed with the help of the Swagger Codegen tool,15

which helps in the creation of the structure required for
the API, managing the calls to its different methods. Next,
the code for the methods of the API is provided by our
approach, which includes the required features to retrieve and

14https://nodejs.org
15https://swagger.io/tools/swagger-codegen/
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FIGURE 10. Excerpt of the OpenAPI JSON file.

return the integrated data requested by the data consumers.
To this end, we first developed a base programming code
which is then automatically added to each generated API.
This code is then adapted to the method of the API and the
source dataset, being able to perform the operations to read
the dataset, search and filter specific information, and return
it to the users.
There is a direct relationship between the OpenAPI and

the API to generate: each ‘‘Path’’ specified in the OpenAPI
documentation will result in a different method of the API,
and each parameter will be used by the API for filtering and
returning the results. The structure of the API also contains:
an ‘‘api’’ folder, which includes a Swagger file defining the
structure of the API; the folder ‘‘controllers’’, which includes
the main controller to manage the queries and redirect them to
the default controller to execute the query, get the information
and return it to the user; a ‘‘node_modules’’ folder with
the required libraries to implement the NodeJS server; the
file ‘‘data.csv’’ containing the CSV input data; and a set of
additional files including API information.
The generated Web API can be published in an online

server so that users can query and filter the integrated
data with the desired parameters. Data consumers are also
able to perform API queries using the interactive Ope-
nAPI documentation. This interactive documentation reduces
the possibility of introducing errors such as writing mis-
takes. For example, if data consumers want to query the
API directly and filter the data by a parameter called
case_count_cases_total, they have to specify the
exact parameter taking into account symbols and lowercase.
However, with our interactive documentation data consumers
do not need to write down the parameter since they can just
click on the specific method to filter by the desired parameter.

With regard to the running example, the OpenAPI model
generated contains all the objects with the specific infor-
mation. That is, the different paths and components of the
API to retrieve the integrated COVID-19 data filtering by
different parameters, which are indeed the columns con-
tained in the integrated data. The API of the running exam-
ple is available at https://wake.dlsi.ua.es/IntegrationAPI/,
whereas the corresponding documentation (see Fig. 11) is at
https://wake.dlsi.ua.es/IntegrationAPI/docs/.
When the API from the running example is queried,

the COVID-19 data that fulfils the specified parame-
ters (column values) is retrieved. For instance, a query
that requests the COVID-19 data in date 03/25/2020
is: https://wake.dlsi.ua.es/IntegrationAPI/?date_of_interest_
date=03/25/2020. From this request, the Web API returns
the required information in JSON format. The result obtained
from this query example is the data about COVID-19 in the
date specified, containing the following information:

IV. EVALUATION
This section describes the evaluation carried out on our
approach. We evaluated three aspects of the system: the
word embeddings-based similarity approach for tabular data
integration, the automatic generation of Web APIs to access
integrated data, and the execution time performance of the
entire pipeline.

A. WORD-EMBEDDINGS FOR DISCOVERING JOINABLE
AND UNIONABLE TABLES
This section presents an intrinsic evaluation of the word
embeddings-based similarity approach for tabular dataset
integration. The goal of these experiments is not only
to evaluate the performance of the similarity approach,
but also to identify the best model and parameters to be
used in the subsequent API generation stage (described
in Section IV-B).
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FIGURE 11. Interactive OpenAPI documentation of the API.

1) EXPERIMENTAL SETUP
In the evaluation carried out, we assimilated the task of
computing similarity of tabular datasets to the task of ad hoc
table retrieval: answering a search query with a ranked list of
tables [20]. In this context, the search query is not a sequence
of keywords but a table itself [21].
Given a set of tables T , the similarity sim(t1, t2) for every

pair t1, t2 ∈ T is computed as:

sim(t1, t2) =

∑i≤n,j≤m
i=1,j=1 sim(c1i, c2j)

|C1||C2|
,

where C1 = {c11, c12 . . . , c1n} and C2 = {c21, c22 . . . , c2m}
are the set of columns of t1 and t2 respectively. Thus, the sim-
ilarity between two tables is computed as the average sim-
ilarity between their columns (calculated using the formula
described in Section III-A1). For a given table, the systemwill
return a ranked list of related tables based on this similarity
measure.
The dataset used to test the approach was developed by

Nargesian et al. [22] and it is publicly available for the eval-
uation of approaches related to tabular data integration. This
database consists of more than 5,000 tables in CSV format
extracted from USA, Canada, and UK open data portals, pro-
viding a ground truth that identifies which columns of a table
match the columns of the other tables. The dataset was built
starting with 32 base tables, which were manually aligned to
identify matching columns. The final set was created by first
issuing a projection on a random subset of columns of a base
table, and then a selection with some limit and offset on the
projected table. The tables contain the name of the columns
and the corresponding content of the cells, comprising text,
numeric, and date values.
Although the word embedding approach is specially suit-

able for textual data, our proposal also provides coverage

for columns containing other data types. First, the name of
the columns are textual data, even if its contents are num-
bers or dates. Thus, the system can return a similarity value
based solely on the column names. Secondly, if the content
of the columns is considered, even though all the possible
numeric values are not represented in the embedding space,
the word embedding models still provide coverage for many
of them. For instance, the fastText model described below
covers 99.90% of the numbers ranging from 0 to 10,000.
This implies that any numeric value used to represent
days, months, or years has a vector representation in the
model.
In order to perform the experiments, a subset of 1,000 tables

was randomly selected. Every table in this subset was used as
a query to the system and compared with all the other tables in
it, obtaining a ranked list of the most similar tables according
to the measure given above. In our experiments, we consider
a returned table to be relevant to a query table if there is at
least one matching column between them in the ground truth
provided.
In this evaluation, we use two pre-trained word embedding

models and one task-specificmodel in order to decide the best
configuration to incorporate in our pipeline:
• Word2vec:16 embedding vectors pre-trained on part of
Google News dataset, comprising about 100 billion
words. The model contains 300-dimensional vectors for
3 million words and phrases [13], although in the exper-
iments presented here only words are considered.

• fastText:17 embedding vectors pre-trained on Wikipedia
2017, UMBC webbase corpus and statmt.org news
dataset, comprising about 16 billion words [23].

16https://code.google.com/archive/p/word2vec/, accessed October 2020.
17https://github.com/facebookresearch/fastText, accessed October 2020.
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As in the previous case, the vectors are composed
of 300 dimensions.

• WikiTables: task-specific model using skip-gram
Word2vec [24] trained on the Wikipedia Tables cor-
pus, containing 1.6 million Wikipedia relational
tables [25]. The corpus was pre-processed as mentioned
in Section III-A1, splitting CamelCase and hyphenated
words, removing punctuation, and converting text to
lowercase. For every table in this corpus, all the names
of the columns were extracted and treated as an input
document to train Word2vec.18 A second model was
created for the content of the cells. In this case, all the
attribute values in a column were considered as an input
document to train the model. Thus, we have two sepa-
rate word embedding models to calculate the similarity
between names of the columns and the content of the
cells. Again, vectors are composed of 300 dimensions.

In the case of fastText, we also conducted experiments with
a pre-trained model containing subword information, but the
results obtained were worse than the model presented above.
We decided to remove these results from the following section
for the sake of simplicity.
We computed the coverage of each of these models, calcu-

lated as the percentage of tokens in the 1,000 tables bechmark
dataset that has a representation in the model. In the case of
GoogleWord2vec, the coverage for names of the columns and
content of the cells is 83.02% and 78.18% respectively. fast-
Text provides a coverage of 87.69% and 80.91% for columns
and cells. Finally, the coverage of WikiTables is 71.54%
for columns and 78.19% for cells. These values reflect that
fastText is the model offering the largest coverage, whereas
WikiTables provides the lowest results. As mentioned in
Section III-A1, the Levenshtein distance is used as a backup
strategy when a word is not represented in the model.

2) RESULTS AND DISCUSSION
This section reports the precision of top-k table searches at
different k. More precisely, P@10 and P@50 where com-
puted, corresponding to the number of relevant results among
the top 10 and top 50 documents retrieved respectively.
This measure is in accordance with web-scale information
retrieval systems, where thousands of relevant documents are
available but no user will be interested in reading all of them.
The final score is computed as the average precision for the
1,000 queries carried out, one for each table.
The experiments include the three word embeddings mod-

els mentioned above. In addition, we tested a baseline using
BM25 [26], a classical ranking function widely employed by
search engines to estimate the relevance of documents to a
given search query. The implementation of the baseline was
carried out using Apache Solr.19

In order to identify the best value for α, we tested each
embedding model with different values for this parameter,

18https://radimrehurek.com/gensim/models/word2vec.html
19https://lucene.apache.org/solr/.

from 0 to 1 inclusive, in 0.1 increments. In the case of the
baseline, three different queries were employed in Apache
Solr to simulate the ranking experiment done with the embed-
ding vectors: a query that uses only the content of the cells
(equivalent to α = 0.0), a query that uses only the names of
the columns (equivalent to α = 1.0) and, finally, a query con-
taining both (equivalent to α = 0.5). Fig. 12 and Fig. 13 show
the results for Google pre-trained Word2vec (gl), pre-trained
fastText (ft), task-specific Word2vec trained on Wikipedia
Tables (wt), and BM25 (bm).

FIGURE 12. P@50 for each of the embedding models (gl, ft, and wt) and
the baseline (bm).

FIGURE 13. P@10 for each of the embedding models (gl, ft, and wt) and
the baseline (bm).

The results at P@50 show that the three word embed-
dings models perform very close for every α value. The best
result is obtained by Google pre-trained embeddings with
P@50=0.6964 and α = 0.4, which means that the content
of the cells have a higher relevance in the final similarity
score. The other two embedding models reach also its best
performance with α = 0.4. In the case of the BM25 baseline,
it is worth noting that the results using only the content
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of the cells are significantly lower than the word embed-
dings approaches. These results slightly improve when both
names of columns and content of cells are taken into account
(α = 0.5), but it achieves the best results when only the name
of the columns are considered (α = 1.0), outperforming the
other models.
Results at P@10 are encouraging in terms of the perfor-

mance of the word embeddings models. The best results
(0.9276) are obtained by the fastText model with α = 0.3.
This result improves 7.71% the performance of the baseline.
The comparison between the three embedding models shows
that its performance correlates with the coverage previously
described. This highlights the importance of having a large
enough corpus to properly build an effective word embed-
dings model for this task.
For the end user, the most important aspect is to

improve the precision of the first results obtained by our
approach. Therefore, P@10 is the measure that we should
try to maximise. For this reason, we choose the best per-
forming configuration in this evaluation (fastText model with
α = 0.3) to tune the system for the API generation experi-
ments described in the following section.
The retrieval phase described here was omitted in the

running example, since we started directly having the tables
we wanted to integrate. Nevertheless, we can compute the
similarity sim(t1, t2) between these tables to see how they
would rank in an hypothetical retrieval task such as the one
presented in this section. The similarity between the two
tables from Chicago used in the join operation is 0.2872. This
value reveals that the tables present an average low similarity,
which is an expected result for join operations since most
of their columns are not related. It should be noted that the
formula is computing the similarity between all possible pairs
of columns, which in this case involves 33 and 39 columns for
a total of 1,287 pairs. Following our approach the tables were
considered as joinable since one pair of columns achieved a
similarity value over 0.95 as described in Section III-A2. The
similarity between the resulting joined table (71 columns)
and the New York table (4 columns) is 0.6304, showing
significantly higher similarity than the previous case. The
reason is that the number of column pairs to compare is
lower (284) and there are more related pairs of columns.
Indeed, all the columns in the New York city table presented
a similarity over 0.75 with the corresponding columns in
the Chicago table, resulting in the union of both tables as
established in our methodology.
Although the task proposed in this section is similar to

that defined by Nargesian et al. [22], the results are not
directly comparable. While they try to maximise the per-
formance on their own definition of ‘‘unionability’’ (involv-
ing all the unionable columns of a table), our goal is to
address both union and join operations where tables have at
least one matching column in common. Taking into account
these differences, the authors obtained a P@10 value of
around 0.8 with an approach based solely in word embed-
dings, which improved to about 0.95 when combined with

semantic information from YAGO [27] and the actual set of
values from the tables. Thus, our best result (0.9276) is in a
similar range to those obtained by Nargesian et al. with their
best performing ensemble of features, whereas we are using
only embedding information at this stage.

B. GENERATING WEB APIs FOR ACCESSING INTEGRATED
OPEN DATA
In this section, we provide an evaluation of the approach
for automatically generating Web APIs to access integrated
data. This evaluation measures the quality by considering the
number of correctly generated APIs for a set of input tabular
datasets.

1) EXPERIMENTAL SETUP
We use again the benchmark described by Nargesian et al.
for this evaluation. As mentioned before, this dataset was
generated starting from a set of 32 base tables on which
the authors performed different selections and projections on
various sizes to obtain the final set of 5,000 tables. From this
set of 32 base tables, only 27 were involved in the generation
of the 1,000 random subset used in the previous evaluation
(see Section IV-A). With the aim of aligning both experi-
ments, we focused on these 27 base tables for the evaluation
done in this section.
In order to test the performance of our approach on both

union and join operations, each table was divided into three
subtables by using projection and filtering as reverse opera-
tions of join and union, respectively. The goal of the system
in this experiment is to automatically generate a Web API for
accessing the integration of these subtables by using first join
and then union operations.
Two experiments were conducted either considering

columns names or not when calculating the similarity
between tables. The rationale behind this is to avoid bias
regarding the fact that subtables coming from the same table
have the same column names, and this would not be the
usual situation in a real scenario. Thus, the first experiment
considers only the content of the cells, and the second experi-
ment uses both content and column names for computing the
similarity between tables.

2) RESULTS AND DISCUSSION
The results of the experiments for evaluating the generated
Web APIs are shown in Table 6. The column Original Web
API functions represents the expected functions to be gen-
erated for each of the 27 base tables in the benchmark. The
columns Correctly generated Web API functions indicates
the number of functions that were correctly generated by
our proposal in the two settings proposed: with and without
column names. Precision is defined in this case as the number
of functions of the API generated from the integrated tables
compared to the number of functions offered by the API
from the original tables. In the final results, we consider both
micro-averaged precision (i.e. aggregating the functions of
all the tables to compute the average) and macro-averaged
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TABLE 6. Results of the Web API generation experiments.

precision (i.e. precision is computed for every table and then
averaged). Macro-averaged precision allows treating all the
APIs generated equally regardless of the number of functions
they have.
The value of micro-averaged precision obtained is 0.76

when column names are not consider. This value rises
to 0.86 when the column names are taken into account in
the similarity measure formula. Macro-averaged precision is
0.74 if column names are not considered and 0.87 otherwise.
In both cases, the use of column names improves the results

as expected, since they are clear cues to identify whether
two columns match in the similarity algorithm proposed. It is
worth noting that using only the content of the cells allows
generating the correct API functions about 75% of the time.
In order to clarify why the system fails to generate the

correct API functions in some situations, we analysed in
more detail the specific case of table 3, where our approach
obtained perfect precision using the names of the columns
but dropped to 0.43 when using only the content of the cells.
This table contains data about ridership from Chicago Transit
Authority.20 The API generated for the original dataset has to
include the 7 functions that are shown in Fig. 14.

FIGURE 14. Functions of the Web API generated to access data
from table 3.

The API automatically generated considering column
names has the same 7 functions, whereas the API generated
using only content of the cells fails to produce the following
4 functions:

/alightings/{alightings}
/boardings/{boardings}
/cross_street/{cross_street}
/on_street/{on_street}

When only the content of the table is considered, the sim-
ilarity algorithm incorrectly matches the columns ‘‘alight-
ings’’ and ‘‘boardings’’ with a value of 0.9996, while the
similarity with the correct column ‘‘alightings’’ is 0.9991.
The reason is that both columns have very similar values as
the concepts are closely related (‘‘boarding’’ means going
into a bus, while ‘‘alighting’’ means going out of the bus),
making it difficult for the algorithm to discriminate between
the two cases.

20https://www.transitchicago.com/
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TABLE 7. Description of the dataset and execution time performance (in seconds) for the integration and generation processes.

Another example is the column ‘‘cross street’’, which
is incorrectly matched to ‘‘on street’’ with a similarity
of 0.9914, while the similarity with the correct column ‘‘cross
street’’ is 0.9833. Again, the reason is that both columns have
similar values as the concepts are related (‘‘on street’’ refers
to the street where the bus stop is, while ‘‘cross street’’ refers
to the nearest crossing street).
In this situation, when the contents of the cells are very

similar, it is required the use of additional metadata such as
the names of the columns to achieve a good performance in
the automatic generation of the API.
In the case of the running example, using the best configu-

ration (fastText model with α = 0.3) all the API functions
expected were correctly generated for the resulting tables
after join (72 functions, including the publisher column)
and union (5 functions, including also the publisher col-
umn) operations, achieving a perfect precision of 1.00 in this
experiment.

C. EXECUTION TIME PERFORMANCE
This section analyses the execution time performance of the
system proposed, providing a reference on the time required
to carry out the integration and generation processes from a
CSV file, and discussing their implications in a production
environment.

1) EXPERIMENTAL SETUP
In order to evaluate the execution time performance of the
integration and API generation processes, two experiments
were carried out using 10 different CSV datasets.21 These
files were retrieved from different open data platforms, rep-
resenting an heterogeneous set in terms of their size and
nature. The content of the tables includes texts, numbers, and
dates. The amount of rows in the tables ranges from 13 (table
‘‘Salmonella tests’’) to over 21 millions (table ‘‘Emloyee
earnings’’), and from 3 columns (table ‘‘Salmonella tests’’)
to 20 (tables ‘Travel data’’ and ‘‘Voter data’’), resulting in a
minimum of 39 cells and a maximum of 379,304,640. The
specific number of rows and columns for each CSV file is
shown in Table 7.

21Datasets available in GitHub repository: https://github.com/
cgmora12/DataIntegration2API#example-datasets.

The measurement of the execution time of the experiments
was carried out in a desktop computer running Windows 10,
equipped with an Intel i7 processor and 16 GB of RAM.

2) RESULTS AND DISCUSSION
First we evaluated the time elapsed during the integration
process. In this phase calculating the embeddings for each
column of a table is the bottleneck of the task. Once the
embeddings are obtained, computing the similarity between
two tables is reduced to calculate the inner product between
300-dimensional vectors representing their columns, which
can be computed in a minimal time. Thus, in this first exper-
iment we have focused on determining the time taken to
calculate the embedding vectors for each table.
This task is time consuming when the tables have a large

number or rows, since the embedding of each column is
computed as the average of the embeddings of its content.
For instance, in the example table ‘‘Traffic state’’ containing
3,565,683 rows and 4 columns, the process of obtaining the
embedding vectors takes 423.41 seconds in the hardware
setting mentioned above, which can be unsuitable for a pro-
duction environment.
To reduce the time required for this process, we first anal-

ysed to what extent the number of rows could be reduced
without affecting the embedding representation of the table,
taking into account that in many cases columns contain
repeated values that could be removed seamlessly. For each
tablewe randomly choose samples of rows of different sizes22

(ranging from 1 to 20,000 in increments of 10) and obtained
the corresponding embeddings. Then, the similarity measure
sim(t1, t2) defined in Section IV-A1was used to compare how
similar were the reduced version of the table and the full
version containing all the rows. The results of this experiment
revealed that, in all the cases, wewere able to obtain a reduced
version of the table that was 99% similar to the original one
by considering a small sample of the rows.
Table 7 shows the number of rows and the percentage

it represents from the original (column Rows selected) that
was required for each table to exceed the 99% similarity
threshold. For instance, table ‘‘Traffic state’’ contains over
3 million rows, but the reduced version has only 20 rows as

22Except for ‘‘Salmonella tests’’, which contained only 13 rows.
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a result of having a small number of columns (only 4) and
a large number of repeated values in them. The table that
required a larger number of samples was ‘‘Voter data’’, with
700 rows. In all the cases, the time taken to obtain the
embedding representation of the reduced table was below
one second (column Integration time). For the largest tables
(above 200,000 rows), the percentage of rows kept from the
original was below 0.01%. This value could be established
as a fixed threshold in a production environment to ensure
that the tables can be processed in real time while retaining
(at 99%) their original representation in the word embedding
space.
Regarding the evaluation of the API generation process,

the results presented in Table 7 (column Generation time)
show that the automatic process takes between 9.7 and
80.0 seconds to generate a complete Web API, including
the related models and interactive OpenAPI documentation.
This evaluation was carried out using all the rows in the
tables to identify how this number affects the execution time
of the generation module. If we took the reduced tables of
the previous experiment, where the largest table contains
700 rows, the generation time would be comprised between
9.7 and 10.3 seconds in all cases.
Fig. 15 shows a linear behaviour considering the number

of rows of the tables. The process is able to generate the Web
API and its related components (models and documentation)
in an average time of 16 seconds. The results indicate that,
as the number of rows in the source file increases, the time to
generate the Web API also increases in a ratio of 3 seconds
per million rows.

FIGURE 15. Generation time of the API depending on the size of the
tables.

Regarding the performance of the generated APIs in
returning the results, when the number of rows is really
high (such in the case of ‘‘Employee earnings’’) the API
takes a time similar to the generation performance shown
in Table 7. This situation can be overcome by the pagination
of the results using ‘‘limit’’ and ‘‘offset’’ parameters: ‘‘limit’’
indicates the maximum results to show, whereas ‘‘offset’’

indicates the starting point of results bypassing the records
until the specified offset. This pagination auto-generated by
our APIfication approach optimises the performance of the
API and reduces the time to get the results. With this mech-
anism, APIs are able to return results from datasets of up to
21 million rows in less than 4 seconds. For example, a query
that specifies a limit of 10,000 results to the Web API that
manages the largest dataset (‘‘Employee earnings’’) takes
around 3 seconds to return the results to the browser.

V. RELATED WORK
The following paragraphs summarise the existing related
work. Specifically, we focus on two areas: (i) word embed-
dings for data integration; and (ii) Web API generation for
open data access.

A. WORD EMBEDDINGS AND TABULAR DATA
INTEGRATION
In recent years, word embeddings have enjoyed widespread
use in a variety of semantic tasks in the field of Natu-
ral Language Processing, such as sentiment analysis [28],
machine translation [29], text classification [30], and dialog
systems [31].
Prior works related to tabular data considered word embed-

dings as a means to represent the content of the tables. In the
task of table retrieval, consisting on answering a search query
with a ranked list of tables, Zhang et al. [32] used pre-trained
word and entity embeddings combined with different sim-
ilarity measures to beat a strong learning to rank baseline.
The work by Deng et al. [20] considered different table
elements (caption, column headings, and cells) to train word
embeddings that were utilised in three table-related tasks:
row population, column population, and table retrieval. In a
similar vein, Nargesian et al. [22] defined a semantic measure
based on word embeddings that were trained on Wikipedia
documents. The authors defined natural language domains
and statistical tests between the vectors that were used to
evaluate the likelihood that two attributes were from the same
domain.
In the work presented in this paper, we follow a sim-

ilar approach to previous research using pre-trained word
embeddings, but introducing as a novelty the inclusion of
task-specific embeddings based on a large dataset of tabular
data. More importantly, unlike previous works that treat data
integration as an isolated process, we include this procedure
in a pipeline to automatically generate Web APIs for the
integrated data.

B. WEB APIs FOR OPEN DATA ACCESS
Web APIs are created to make accessing open data easier
for developers. However, this process has been usually done
manually [33], [34] as a time-consuming task.
The automatic generation of APIs has been addressed in

recent studies. EMF-REST [35] is a framework for generating
Web APIs that needs a model of the API to create it, requiring
users to build themodel by themselves since it is not generally
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available. Another work [36] focused on guiding developers
in creating Web APIs for accessing required data. However,
these approaches are not targeting the access and reuse of
integrated open data coming from different sources.
Other works propose the use of model-driven approaches

for API definitions. The models are used to represent the
Web API definition, offering a better visualisation of the API
operations [37], [38]. Also, the metamodel of the API defini-
tion is used to simplify the transformation between the API
and its definition to include it in the OpenAPI initiative [39].
The API2MoL engine [40] creates bridges between APIs
and model-driven engineering, with the objective of creating
models from the APIs for facilitating the management of a
plethora of APIs.
These model-based approaches for generating Web APIs

can be used to represent and generate the Web API documen-
tation, but they are not employed to generate the whole Web
API to access integrated data as proposed in this paper.

VI. CONCLUSION AND FUTURE WORK
In this paper we have presented an approach to address the
problem of accessing integrated open data from different
sources by using a unique end point. Specifically, we have
proposed an APIfication approach which aims to facilitate
the integration and access to tabular datasets. Our APIfica-
tion approach has two parts: (i) a word embeddings-based
approach that uses column similarity to determine which
datasets can be integrated by using union and join operators;
and (ii) a model-driven approach for automatically generating
a Web API to access and reuse open data in an integrated
manner, as well as the documentation of the Web API to
support users in consuming the integrated data easily through
a Web interface.
In the experiments conducted, the proposed similaritymea-

sure based on word embeddings achieved precision values
over 0.92 in the task of retrieving unionable/joinable tables
given a query table. When this measure was included in the
API generation pipeline, our approach was able to automat-
ically integrate the tables and generate the expected func-
tions with a micro-averaged precision of 0.76 using only
the content of the cells, and 0.86 precision when the names
of the columns were also taken into account. These results
are promising, even more so considering that the whole data
integration and API generation process is fully automated.
The execution time performance experiments revealed that
selecting a small number of rows allowed to obtain the word
embeddings representation for large tables in real time, while
keeping the table representation almost unchanged in the vec-
tor space (99% similarity with respect to the original table).
Additionally, the API generation procedure for tables of more
than one million rows took around 10 seconds to complete,
which makes the whole pipeline suitable for a production
scenario.
As a future work, we plan to extend our approach by

considering more operators for data integration in addition
to union and join. We also plan to develop mechanisms to

guide users in the application of the approach, for example,
by defining GUIs to allow developers to provide semantic
hints about the open data to be integrated. Moreover, we plan
to investigate how metadata coming from the W3C CSV
on the Web Working Group23 can improve our approach,
as well as whether it is a motivation for publishers to properly
describe their tabular open data.
Regarding the similarity module, future experiments are

required in order to determine the best performing combi-
nation of models, i.e. using one model (e.g. Word2vec) to
calculate the similarity between column names and another
one (e.g. fastText) for the content values. The backup strategy
based on Levenshtein distance can also be improved by using
subword embeddings that can handle the problem of out-
of-vocabulary terms, such as the subword version of fast-
Text mentioned before, or models using Byte-Pair Encoding
(BPE) [41]. This approach could benefit the system when
the content of the tables include numbers and dates, as it
provides better coverage than word-based models that could
offer limited representation of numeric values. An interest-
ing path for further research is the use of contextual word
embedding models such as BERT [42] and its derivatives
(e.g. ALBERT [43], RoBERTa [44], and DistilBERT [45]).
These models provide different vector representations for
a term in the embedding space depending on the context
(surrounding terms) where it occurs. They have demonstrated
to achieve state-of-the-art results on a number of language
understanding tasks, including question answering and natu-
ral language inference. Another issue that deserves attention
is the improvement of the WikiTables task-specific model
by gathering additional tabular examples. In the experimen-
tal evaluation we showed that this model offered a lower
coverage than the other pre-trained models, which could be
affecting its performance. Finally, another line of future work
is the combination of the similarity functions provided by
the word embeddings models with traditional information
retrieval ranking functions such as BM25, which demon-
strated to obtain better results than the word embedding
models in those experiments where only the content of the
tables was taken into account.
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ABSTRACT The ever-growing amount of information in today’s world has led to the publication of more
and more open data, i.e., that which is available in a free and reusable manner, on the Web. Open data is
considered highly valuable in situational scenarios, in which thematic data is required for a short life cycle
by a small group of consumers with specific needs. In this context, data consumers (developers or data
scientists) need mechanisms with which to easily assess whether the data is adequate for their purpose.
SPARQL endpoints have become very useful for the consumption of open data, but we argue that its steep
learning curve hampers open data reuse in situational scenarios. In order to overcome this pitfall, in this
paper, we coin the term disposable Web APIs as an alternative mechanism for the consumption of open
data in situational scenarios. Disposable Web APIs are created on-the-fly to be used temporarily by a user
to consume open data. In this paper we specifically describe an approach with which to leverage semantic
information from data sources so as to automatically generate easy-to-use disposable Web APIs that can
be used to access open data in a situational scenario, thus avoiding the complexity and learning curve of
SPARQL and the effort of manually processing the data. We have conducted several experiments to discover
whether non-experienced users find it easier to use our disposableWeb API or a SPARQL endpoint to access
open data. The results of the experiments led us to conclude that, in a situational scenario, it is easier and
faster to use the Web API than the corresponding SPARQL endpoint in order to consume open data.

INDEX TERMS Disposable Web APIs, open data, semantic annotation, SPARQL.

I. INTRODUCTION
The volume of data on the Web has, with the advent of
the open data movement, exploded in the last few years.
Open data is published in order to be freely accessible and
reusable (without copyright restrictions) and is, therefore,
usually considered highly valuable as situational data. Situ-
ational data [1] has a narrow focus on a specific area and,
often, a short lifespan so as to add value to data owned (and
controlled) by a small group of consumers with a unique set of

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Anwar Hossain .

needs. Examples of this might be data scientists who wish to
analyze a company’s sales with respect to weather conditions
within a period of time, or a Web developer who needs to
implement a prototype of an envisioned smart city app that
employs traffic data.
There are roughly two ways in which to publish open data:

(i) open data portals that focus on published tabular-form
data (such as CSV files), and (ii) Linked Open Data that
allow users to use Semantic Web technologies to access data
on the Web in the same way as a database management
system is used, i.e., by means of query languages such as
SPARQL [2]. The current goal of any open data project is
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to provide a SPARQL endpoint that will enable the powerful
and seamless querying of data. However, average open data
consumers (such as data scientists or developers) lack the
skills required to smoothly use the SPARQL query language
and the underlying RDF (Resource Description Framework)
data model, since they both have a steep learning curve.
Moreover, recent surveys [4] conclude that no usable tool that
could be used to support the whole Linked Data consumption
process currently exists. Consequently, in a situational sce-
nario, alternative mechanisms that will allow powerful open
data consumption without any knowledge of Semantic Web
technologies are, therefore, required [3], [5].
Our hypothesis is that, in situational scenarios, it is easier

to have a Web API access to open data than a SPARQL
endpoint. These Web APIs must specifically allow data con-
sumers to access data easily and rapidly without wasting time
processing tabular data sources (from CSV files or fromWeb
sites) or learning how to query a SPARQL endpoint. They
have been denominated as disposableWeb APIs because they
are created on-the-fly to be used temporarily by a user to
consume open data as situational data. Moreover, the use of
a disposable Web API allows a data consumer (data scientist
or developer) to easily assess whether the data is adequate for
his/her purpose, thus avoiding the complexity and learning
curve of SPARQL and the effort of manually processing the
data. However, developing disposable Web APIs requires to
enrich tabular data sources with data semantics in the sense
of the ‘‘Model for Tabular Data and Metadata on the Web’’
developed by the W3C CSV on the Web Working Groupi1

which proposes to add semantic annotations by means of
separated metadata file to supplement tabular data. In this
paper we, therefore, describe an approach with which to
leverage semantic information from data sources so as to
automatically generate easy-to-use disposable Web APIs that
can be used to access open data in a situational scenario. Our
specific contributions are the following:
• A process for the semantic annotation of tabular data
sources from the Web.

• Amodel-driven approach that can be employed to ingest
our semantic annotation and generate disposable Web
APIs with which to query data sources.

• A controlled experiment carried out in order to com-
pare the process of accessing data from the SPARQL
endpoints with that of using our equivalent generated
disposable Web APIs.

Throughout this paper, we use a real situational case study
(i.e., a running example) based on data obtained from the
public transport sector in Madrid (Spain), namely Metro
Madrid data, in order to exemplify our approach. A data
scientist working at a real estate company was willing
to analyze the company’s internal data regarding housing
rental and incomes in Madrid by considering additional open
data related to the accessibility of public transport, which
helps create a more inclusive society that provides the same

1https://www.w3.org/TR/tabular-data-model/

opportunities for all [11]. This would, therefore, allow the
real estate company to attain new insights and make informed
decisions with which to, e.g., provide adapted solutions to
those of its customers with special mobility needs during
a short-term marketing campaign. A disposable Web API
with which to consume public transport accessibility data for
Madrid was, therefore, required.
The remainder of the paper is as follows: Section II

presents some related work, while Section III describes the
process of automatically generating disposable Web APIs
using semantic-annotated open data sources. Section IV pro-
vides a validation of the proposal by describing an experiment
in which data consumption from a Web API and the use of
SPARQL were compared, and finally, Section V shows a
summary of our main conclusions and future work.

II. RELATED WORK
This section reviews some research works related to howWeb
APIs are useful as regards providing easier data consumption.
The starting point for our current work was the research

described in [11], which was focused on adding semantics to
existing data. In the present paper, however, we have used this
step as a part of the whole process carried out to make it easier
for users to access open data on the Web.
In [6], a simple API, which is used to provide access to

the KnowledgeStore, a semantic web storage, is described.
It is used by many developers that are unfamiliar with RDF
and SPARQL technologies to build web applications that
use this data. The developers have to compose a query
using simple API methods, which is then converted into a
SPARQL query so as to access the endpoint and obtain the
data required. However, this API was created manually and is
used only to access specific data from specific semantic web
storage.
The authors of [19], [20] propose an automatic

query-centric API for routine access to Linked Data. In these
papers, they present and extend ‘‘grlc’’, a generic Linked
Data gateway. The papers propose the generation of APIs that
provide uniform API access to any Linked Data published in
SPARQL endpoints, Linked Data Fragments servers, RDF
dumps, or RDFa embedded in HTML pages. Unfortunately,
a Github repository containing all possible SPARQL queries
to the endpoint is required, signifying that a developer must
manually write down all possible queries that might be
unfamiliar with RDF and SPARQL queries.
Rather than using SPARQL queries, users can also use

GraphQL-LD [21] queries to access RDF data, which
are GraphQL queries enhanced with a JSON-LD context.
This GraphQL-LD approach is a developer-friendly alter-
native to SPARQL, but only for experts in GraphQL APIs,
signifying that developersmust be familiar with this program-
ming language. Instead, users employing our approach are
providedwith an easy-to-use standardAPI based onOpenAPI
principles.
An approach to help Web developers access Linked data is

proposed in [22]. The objective is to transform ontologies into
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Ontology-Based APIs such that developers can easily query
Linked Data. However, our approach is directly addressed
toward developers who wish to access open data available on
the Web, signifying that the starting point is not an ontology
or an SPARQL endpoint from the Linked Data cloud.
In [7], a RESTful API with which to semantically augment

the data that is being published by a sensor is proposed, but it
is not useful as regards retrieving data from the semantic web.
The authors have manually created a system that transforms
a set of inter-linked JSON documents into an RDF graph
in order to obtain a semantically-enriched dataset and have
the full query capability provided by SPARQL. However,
an API that facilitates access to the semantic data without
advanced knowledge of the SPARQL query language is still
required.
The authors of [8] describe how cities are starting to release

their public information and create public data catalogues,
but there is still a lack of open APIs, which is restricting
the full potential of the open data. The paper in question
therefore proposes the development of an open data API,
which provides tools that will help users to access the data
concerning their own cities.
In [9], a framework called Prov4J is described, which uses

Semantic Web tools and standards. It provides to developers
a provenance management mechanism with which to build
provenance-aware applications. Tracking the origin of infor-
mation currently plays a fundamental role on theWeb because
it enables users to determine the suitability and quality of the
data. The Prov4J framework includes a Client API that con-
tains key interface methods for a set of provenance queries,
thus minimizing the users’ interactions with SPARQL. How-
ever, this API was created manually for data provenance
purposes only.
Finally, mapping strategies have been investigated to a sig-

nificant extent, and work researching conversion from other
formats to RDF has also been carried out for static [23] and
live conversion [24]. Other solutions [3], [5] aim to reduce the
difficulty involved in using SPARQL and RDF technologies.
However, they still lack the support specifically required by
data scientists and open data reusers to overcome the diffi-
culty of accessing RDF data using SPARQL. According to
experts (as detailed in [3]), the problem does not reside in
RDF, and these solutions may not be suitable for non-experts
in this Semantic Web environment. It is even more neces-
sary in a situational scenario, where data consumers need
to temporarily access data easily and rapidly without spend-
ing too much time learning how to query the SPARQL
endpoint.
In our approach we, therefore, provide an alternative

through the use of standard and easy-to-query APIs rather
than SPARQL endpoints that access RDF data.
In summary, there is much research on the creation of Web

APIs with which to access data, but there is, to the best of
our knowledge, no solution that tackles situational scenarios
in which thematic open data is temporarily used for specific
needs.

III. OPEN DATA CONSUMPTION PROCESS FOR
SITUATIONAL SCENARIOS
The proposed process for open data consumption through the
use of automatically generated disposable Web APIs com-
prises three stages:
1) Data Input Process: in this stage, it is necessary to

select the Web data from either open data sources or data
embedded in the HTML code of a Web site (specifying the
Web data source URL), required to satisfy data consumer
needs according to a situational scenario. This data must be
processed (e.g., by programming a Python script in order
to obtain the data by means of web scraping techniques).
We would like to point out that we consider, as input of this
process, Web data sources with no semantic information.
2) Semantic Annotation Process: the input tabular data

(e.g. a CSV file) is annotated using a domain-specific ontol-
ogy, obtaining semantically annotated data. The output of
this process is a CSV file with semantic annotations as RDF
triples.
3) Disposable Web APIs Generation Process: the input

of this process is the previously semantically annotated tabu-
lar data, from which disposable Web APIs are automatically
generated in order to allow the consumption of data in a
situational scenario.
The complete open data consumption process is shown

in Fig. 1, including the inputs and outputs of each process.

FIGURE 1. Open data consumption process for situational scenarios.

The Semantic Annotation of the Structured Open Data
Process (subsection III.A) and the Automatic Generation of
Disposable Web APIs (subsection III.B) are described in the
following subsections.

A. SEMANTIC ANNOTATION OF STRUCTURED OPEN DATA
In this section, we describe the systematic process employed
to generate a semantically annotated dataset from the
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structured open data on the Web. This method makes it pos-
sible to enrich data by adding new semantics.
The process entails the following steps:
Step 1. First, information contained in the data source and

important features of the selected domain must be studied.
It is then necessary to create a glossary of terms concerning
the terminology used in the data source, describing each one,
after which a domain model with which to represent these
terms and their relationships must be defined in a domain
model by using a UML class diagram.
Step 2. Identify the semantics of the information in order

to align them with the terms of a reference vocabulary, that
is, a vocabulary that the developer needs to choose (e.g.
domain-specific ontology). At this point, when necessary,
auxiliary vocabularies can be chosen so as to cover additional
properties. The mappings required in order to establish the
correspondence between different information elements from
the data source (glossary of terms) and the reference vocab-
ulary (domain-specific ontology) are defined by means of a
manual inspection of the input data source. We specifically
identify the subjects, predicates and objects of a CSV input
file and map them onto elements from the reference vocabu-
lary (e.g. a domain-specific ontology, such as MAnto). This
mapping is manually defined and added to a configuration
file. Once all the mappings have been defined, a custom
script is programmed in order to transform the input tabular
source data (CSV file) into the semantically annotated data,
according to the mappings defined in the configuration file.
This data annotation process is described in a detailed manner
by means of a case study shown in our previous work [11].
Step 3. If the alignment is possible, then it is necessary to

use the original data, and semantically annotate them using
the existing terms from the reference vocabulary (domain-
specific ontology) by means of the RDF language using the
previously definedmappings. If the alignment is not possible,
then we should analyze the difference between the original
data and the reference vocabulary in order to extend it and,
in this case, return to the second step.
Step 4. Integrate the semantic dataset with other sources.

This is done by relating elements from the different seman-
tic datasets and discarding duplicated information in the
datasets, when necessary. At this point, it is also possi-
ble to add new properties to the final annotated dataset.
Finally, a single annotated dataset is obtained as the output
of Step 4. It is worth mentioning, in the case of integrating
with non-semantic data sources, that the semantic annota-
tion process from step 1 to step 3 has to be performed
beforehand.
This generic process has been applied to our case study

about the public transport domain, and specifically to Metro
Madrid.
During the Data Input Process, we first selected the open

datasets available in the Madrid Public Transport open data
portal. We then developed a Python script in order to obtain
theMetroMadrid accessibility data bymeans of web scraping
techniques, thus completing our input dataset.

We subsequently semantically annotated the real Metro
Madrid public transport company data (by applying afore-
mentioned steps 1, 2 and 3); in this case, there is no previously
annotated data and we, therefore, omit step 4.
An explanation of each of the steps in the Semantic Anno-

tation Process applied to our case study is provided as follows.
In Step 1 of the semantic annotation of structured open

data, we created a glossary of terms concerning the terminol-
ogy used in the data source, describing each one. We then
defined the domain model using a UML class diagram
with which to represent these terms and their relationships
(see Fig. 2).

FIGURE 2. Domain model of metro Madrid.

In Step 2, we first choose our reference vocabulary,
which is denominated as MAnto [12], [13]. MAnto2 is a
light ontology based on the Identification of Fixed Objects
in the Public Transport (IFOPT) reference data model
(CEN/TC278 2012)[14], included in the European Reference
Data Model for Public Transport Information (Transmodel)
[15]. The reason for using the MAnto ontology as a reference
vocabulary in our case study is twofold: (i) first, we wished
to describe a real scenario, and what is more important,
(ii) we required a well-known ontology with which to con-
duct the experiments in a real setting. We then established
the mappings between the elements of the Metro Madrid
and the chosen reference vocabulary, MAnto. For example,
wemanually identify Sol as a station (mao:StopPlace subject)
and 1, 2 and 3 as lines (mao:Line objects), and there are
three connection links (mao:hasConnectionLink properties)
that relate the subject (Sol) with the objects (lines 1,2 and 3).
In Step 3, we annotated the data semantically using the

terms from our reference vocabulary (MAnto ontology) as
follows: if the alignment is possible: (a) we first extract the
data from the data source by means of a Python scraper;
(b) we semantically annotate them (for example, each quay
belonging to Line 1 of Metro Madrid has been annotated as
?quay mao:ofLine “1”) and (c) we reuse terms from

2https://github.com/vortic3/LinkedUnifiedDataset/blob/master/MAnto_
Lite_ontology.rdf
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other vocabularies only when necessary (for example, if the
name term exists in the schema ontology, we do not create
the same term in MAnto -mao:name metadata-, but use that
which already exists: in the RDF triple ’’43566 sch:name
Sol”, we assign the name of Sol to station 43566 using a
metadata property that already exists in the schema ontology).
The output of the Semantic Annotation Process will be a

CSV file with semantic annotations as RDF triples, which
will be used as input to the Disposable Web APIs Generation
Process.

B. AUTOMATIC GENERATION OF DISPOSABLE WEB APIs
In this section, a complete model-based transformation pro-
cess is proposed in order to achieve the automatic gen-
eration of a disposable Web API from the previously
semantic-annotated data sources (an overview of this process
is shown in Fig. 3). The transformation process includes
(apart from the RDF annotation using the semantic engine,
as explained above), the following steps: (a) a text to model
(T2M) transformation from the annotated data source to a
specific data model (specific to the source format) that we
have defined specifically for tabular data in CSV format; (b) a
model to model (M2M) transformation from this data model
to an OpenAPI model that we have also defined; (c) a model
to text (M2T) transformation from the OpenAPI model to its
OpenAPI specification, and finally, (d) a text to text (T2T)
transformation from the OpenAPI specification to the Web
API that makes it possible to access open data.

FIGURE 3. Automatic API generation process.

1) FROM DATA SOURCE TO DATA MODEL (T2M)
The first stage of the transformation process is a text to model
(T2M) transformation. The data source is converted into the
data model in order to represent the data and proceed with
the model-based transformation approach. This data model is
based on a metamodel based on MOF0F3 (shown in Fig. 4)
which is implemented in the Ecore format from the Eclipse
Modeling Framework (EMF).
The input semantic annotated tabular data in our case study

consists of: (a) the Madrid metro accessibility data source,
which is a CSV file, and (b) the semantic annotations as
RDF triples. Our approach processes the CSV by rows and
columns, injecting the semantic information into the columns
names. The data is analyzed, and a data model with table, row,
and cell objects is created. This generated model (as shown
in Fig. 5) contains an object ‘Table’, in which there is a set

3https://www.omg.org/mof/

FIGURE 4. CSV datafile metamodel.

FIGURE 5. Datafile model in XMI format.

of ‘Rows’ containing many ‘Cells’. Each cell in the model
contains the information regarding each cell from the CSV
file, which is the information concerning metro stations and
their accessibility.

2) FROM DATA MODEL TO OpenAPI MODEL (M2M) AND
SPECIFICATION (M2T)
Once the data model has been populated from the data file,
the second stage involves a model to model (M2M) trans-
formation from the CSV data model to the OpenAPI model,
followed by a model to text (M2T) transformation between
the OpenAPI model and the OpenAPI specification.
First, an M2M transformation defined in ATL lan-

guage [16]–[18] is launched. ATL is one of the most widely
used model transformation languages currently employed,
and is backed by a mature and efficient execution runtime.
A set of transformation rules between the data model and the
OpenAPI model has, therefore, been defined using the ATL
language, as shown in the extract of the code in Fig. 6. The
ATL transformation rules start from the Table object defined
in its Ecore metamodel, and its rows and cells are used to
generate the OpenAPI model and all the different objects
contained in its metamodel.
The OpenAPI model generated is in XMI format, as shown

in Fig. 7.
It is based on its OpenAPI metamodel in Ecore format

(Fig. 8), which has been created by updating an existing
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FIGURE 6. ATL transformation rules.

FIGURE 7. OpenAPI model (XMI).

OpenAPI metamodel2F4 from Swagger 2.0 to OpenAPI
3.0 specification.
The definition and documentation of the Web API are

represented by a JSON file (Fig. 9) in accordance with the
Swagger standards3F,5 because this helps design, build, doc-
ument and test the API. The API specification JSON file
is, therefore, directly generated from the OpenAPI model
in XMI format by using a model to text (M2T) transforma-
tion. It consists of a straightforward transformation, since the

4https://github.com/SOM-Research/APIDiscoverer/tree/master/metamodel
5https://swagger.io

FIGURE 8. OpenAPI metamodel.

FIGURE 9. Extract of OpenAPI JSON file.

OpenAPI model has elements that are equivalent to the API
specification, but in a different structure because a different
format is used. We, therefore, perform this M2T transfor-
mation programmatically from the OpenAPI model in XMI
format to the OpenAPI specification of the API, which is
in JSON format. It is easy to perform the transformation
because we have constructed the OpenAPI model according
to the OpenAPI specification, such that each object from the
model corresponds to a JSON object in the file. For example,
each path of the API is transformed from the ‘‘Path’’ object
in the OpenAPI model to the ‘‘paths’’ object in the JSON
file (e.g., Path /stationName/{stationName} in Figure 7 is
transformed in the element ‘‘/stationName/{stationName}’’
from attribute path in JSON file of Figure 8). The complete
API specification in Swagger 2.0 format is available online.6

3) FROM OpenAPI SPECIFICATION TO WEB API
In this stage, the complete Web API is generated from its
OpenAPI specification. The automatic process creates the

6https://wake.dlsi.ua.es/madrid/api-docs
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API code represented by a server in NodeJS4F,7 a simple
and efficient runtime environment for network applications.
The automatic generation process is accomplished with the
help of the Swagger Codegen tool, which creates the struc-
ture of the server with the files and folders required. It also
manages the calls to the API and redirects them to the cor-
responding method in NodeJS code. The automatic genera-
tor then completes the server with the features required to
return the data requested, which are retrieved from the data
source.
This generated Web API has been published in an online

server, thus allowing open data reusers to query the data with
the parameters desired to filter the information. The queries
to the Web API are specified in the OpenAPI documentation,
whose simplicity makes it possible for them to be executed
by non-experts in query languages in a situational scenario.
The API available online contains a method with which to
query the metro stops filtered by many parameters. When
a user queries this information, the list of metro stops is
returned, including the stops that fulfill the specified query
parameters. For instance, a query that requests the metro
stops that are be accessible via a lift and escalator is:
https://wake.dlsi.ua.es/madrid/metro/?hasLift=TRUE&has
Escalator=TRUE
TheWeb API will respond to this request with the required

information in JSON format, because it is easy for humans
to read and write and it is easy for machines to parse and
generate5F.8 The result obtained from the query example is
the data concerning metro stops that are accessible by lift and
escalator. In this case, many stations fulfill these conditions
and we consequently show only the example of the ‘‘Islas
Filipinas’’ station. The extract of the API output in JSON
format, therefore, contains information regarding the stations
filtered as:
{

“stationName”: “ Islas Filipina ”,
“about”:

“https://www.metromadrid.es//es/
viaja_en_metro/red_de_metro/estaciones/
IslasFilipinas.html”,

“hasEscalator”: “TRUE”,
“hasLift”: “TRUE”,
“hasTravelator”: “FALSE”,
“transfer”: “”,

“lineAbout”:
“https://www.metromadrid.es//es/
viaja_en_metro/red_de_metro/lineas_y
_horarios/linea07.html”,

“lineID”: “N0d6e5c75dec24ce9a67f74
c725894bd0”,
“lineName”: “Línea 7”,
“routeService”: “https://www.
metromadrid.es/es/index.html”}

7https://nodejs.org
8https://www.json.org/

IV. VALIDATION
In order to validate our approach, a controlled experiment was
conducted in which we compared two means of consuming
open data: (i) by using the SPARQL access point of RDFs
or (ii) by using our equivalent generated disposableWeb API.

A. DESCRIPTION OF THE EXPERIMENT
The objective of the experiment was to study whether there
were any differences as regards consuming data via the Web
API vs. via SPARQL queries. In order to conduct the exper-
iment we, therefore, planned to carry out a set of surveys
(concerning Web APIs and SPARQL) with Data Science
Master’s Degree students at the Universidad Rey Juan Carlos
(Madrid, Spain). One group of 15 users was instructed in
the use of APIs, while the other group of 17 students was
instructed in the use of SPARQL, such that each of the groups
would answer the surveys by using the API or SPARQL,
respectively. It is worth noting that all the participants had
similar previous knowledge of the technologies used in the
experiment, and they were also simultaneously instructed in
the use of APIs and SPARQL. Each survey, i.e., that concern-
ing the use of the Web API and the other concerning the use
of SPARQL, had to be answered by the participants using the
correct queries in each case.
The surveys were composed of five data requests (using a

SPARQL endpoint of the corresponding Web API), i.e., the
participants were given five queries and requested to find the
right data. We also made a note of the time it took to answer
each question, in addition to whether the query was correct
and the number of attempts made until the correct query was
attained. These variables helped us assess how difficult it was
for the users to obtain the correct data and whether the Web
API access (generated by using the approach proposed in this
paper) is better than the use of the corresponding SPARQL
endpoint.
The specific queries were related to the Metro Madrid

transport data (i.e., the running example used throughout this
paper):

1. Set of stations on a given subway line (Line 1).
2. Subway lines that pass through a certain station

(‘‘Canal’’).
3. Stations that have correspondence with other means of

transportation.
4. Correspondence of a station (‘‘Plaza de Castilla’’) with

a specific means of transport (‘‘Cercanías Renfe’’).
5. Determining whether a given station had an escalator,

elevator or moving walkway.

All of these questions were marked as having a basic
level of complexity (considered as simple), with the excep-
tion of the last (considered as complex), because, unlike
the others, it was necessary to use the SPARQL FILTER
command to correctly perform the query. These simple and
complex queries allowed us to assess whether our approach
for generating Web APIs improves SPARQL data access in
any particular way.
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FIGURE 10. Time by type and complexity.

FIGURE 11. Attempts by type and complexity.

The analysis was focused on studying the time it took the
participants to answer the query and the number of attempts
needed to find the correct answer. We used a two-factor
ANOVAwith interaction to analyze the effect on the response
time for each type of tool (API/SPARQL) and the complexity
(simple/complex). The time variable was transformed with
the double square root in order to comply with homocedastic-
ity. The number of attempts was analyzed by using Poisson’s
GLM approach, taking into account the type and complexity
factors.

FIGURE 12. Histogram for attempts by type.

B. RESULTS
The results obtained from the analysis of the time that the
participants took to respond with the correct answers have
a different pattern according to whether they were attained
using API or SPARQL (Fig. 10). No interaction between
the two factors was detected (F1,118, p-value = 0.8450),
signifying that the pattern observed in both types is the
same: more complex queries take more time, regardless of
the type of approach (SPARQL or Web APIs). However,
both factors separately had significant differences in their
levels. Users spent more response time when using SPARQL
than when using Web APIs for both simple and complex
queries (F1,118, p-value= 0.0018). The complexity was also
significant: the simpler queries required less time than the
complex ones (F1,118, p-value = 0.0324).
The number of attempts was higher when using SPARQL

(p-value = 1.42e-10) (Fig. 11). It was also higher for the
more complex queries (p-value = 0.0001). In the case of
SPARQL, there were up to 20 attempts, the average being
around 4 attempts (Fig. 12). In the case of API, the average
number of attempts was about 2.
It is, therefore, possible to conclude that the use of Web

API attains better results than the use of SPARQL as regards
both the number of attempts and the response time.

C. DISCUSSION
When employing Web APIs, the users generally responded
with correct answers in less time than when employing
SPARQL. If we consider the complexity of the queries,
the more complex the query was, the more time they spent
resolving them by using SPARQL. The response time for
complex queries using SPARQL has greater variance than the
other cases.
With regard to the number of attempts, the pattern is simi-

lar: the more complex the query, the longer it took, regardless
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of using Web APIs or SPARQL. In addition, the number of
attempts almost doubles when using SPARQL, despite the
complexity of the query. This is particularly relevant in the
case of situational scenarios, in which the data lifetime is very
short. We do not normally know the structure of situational
data, signifying that it will be more complex to manage.
The results of the experiment have allowed us to verify our

previous hypothesis: that it is easier and faster in a situational
scenario to use a Web API than the corresponding SPARQL
endpoint in order to consume open data. Using disposable
Web APIs, therefore, makes sense if the data to be consumed
has a short lifespan and the objective is to solving specific
one-time problems. When compared to a SPARQL endpoint,
this could, therefore, be more useful in other more stable
scenarios.

V. CONCLUSION
In this paper, we present an approach whose objective is to
generate disposable Web APIS for open data consumption.
Disposable Web APIs will likely be used to consume sit-
uational data, i.e., those data that have a narrow focus on
a specific area and, often, a short lifespan in order to add
value to data owned (and controlled) by a small group of
consumers with a unique set of needs. This was the case in
our situational scenario, in which a data scientist working at
a real estate company was willing to analyze its internal data
regarding housing rental and incomes in Madrid by adding
open data from the Madrid public transport so as to attain
new insights and make informed decisions in order to provide
adapted solutions to customers with special mobility needs.
Our approach first proposes a process with which to acquire
structured open data. A semantic annotation process is then
carried out to obtain semantically annotated data (i.e., RDF
triples). Finally, this annotated data is used as a starting point
for a model-driven process that automatically generates the
disposable Web API for open data consumption in a situa-
tional scenario.
Our approach makes use of some semantic information,

but we do not rely on SPARQL endpoints. Indeed, we have
also conducted a controlled experiment to show that our Web
APIs approach is more convenient for accessing data than a
SPARQL endpoint.
One piece of immediate future work is that of carrying out

more detailed experimentation in order to consider a wider
range of situational scenarios. Our long-term future work
consists of extending our disposable Web APIs generation
process in order to consider open data consumers’ person-
alization requirements.
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Chapter 8

Conclusions

This chapter includes the conclusions drawn from the whole research presented
previously in this thesis: first, a discussion of the research carried is presented;
and finally, the ongoing and future work we plan to perform are detailed.
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8.1 Discussion

In this thesis, an APIfication approach is proposed in order to solve the prob-
lems related to access open data. This new process allows users to leverage
from the auto-generated Web APIs, which provides access to open data not
only from specific datasets, but also to integrated datasets and situational data.
The APIfication approach arisen during the PhD is exposed in 3 different papers
presented in Part II. These papers have been published in international jour-
nals indexed in the “Journal Citation Reports” (JCR), located within the first
quartiles (two in the first quartil and the other in the fourth quartil). These
publications present the contributions made by our research: an APIfication
approach for open data, integrated data and situational data, with the proper
experiments to analyse their suitability.

In order to evaluate the correctness and performance of the APIfication pro-
cess, as explained in detail in Chapter 5, an experiment was carried out with 20
datasets of different size, generating the corresponding Web API with OpenAPI
documentation and related models. The results obtained show that the auto-
matic generation process barely takes between 9 and 80 seconds, with source
files of up to more than 20 million of rows. Accordingly, the evaluation of the
APIfication approach with different datasets demonstrates that the generator
performs efficiently: it is able to auto-generate successfully a complete Web API
for any dataset from scratch.

Moreover, as presented in Chapter 6, regarding the access to integrated
data, three aspects of the system were evaluated: the word embeddings-based
similarity approach for tabular data integration, with precision values over 0.92;
the automatic generation of Web APIs to access integrated data, with precision
of 0.76 using only the content of the cells and 0.86 precision when using also
the names of the columns; and the execution time performance of the entire
pipeline, taking around 10 seconds to complete the API generation procedure for
tables of more than one million of rows. Consequently, the proposed similarity
measure based on word embeddings achieved high precision values in the task
of retrieving unionable/joinable tables given a query table. Moreover, when
this measure was included in the APIfication pipeline, our approach was able
to automatically and efficiently integrate the tables and generate the expected
functions, which makes the whole pipeline suitable for a production scenario.

Finally, a controlled experiment was conducted, with additional details given
in Chapter 7, in which we compared two means of consuming open data: (i) by
using the SPARQL access point of RDFs or (ii) by using our equivalent generated
disposable Web API. In order to conduct the experiment we, therefore, planned
to carry out a set of surveys (concerning Web APIs and SPARQL) with Data
Science Master’s Degree students. The surveys were composed of five data
requests (using a SPARQL endpoint or the corresponding Web API), i.e., the
participants were given five queries and requested to find the right data. In
this experiment, users spent more response time when using SPARQL than
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when using the Web APIs. When employing Web APIs, the users generally
answered with correct answers in less time than when employing SPARQL. The
results of the experiment have allowed us to verify that it is easier and faster
in a situational scenario to use a Web API than the corresponding SPARQL
endpoint in order to consume open data. Thus, the experiment shows that the
Web API generated by our APIfication approach is more convenient for accessing
data than a SPARQL endpoints for average open data consumers (such as data
scientists or developers).

Therefore, the contributions presented by our APIfication approach ensure
the fulfilment of the objectives regarding the encouragement to include an API
in the publishing process and also helping developers to reuse open data, whose
suitability has been evaluated in detail through the different experiments.
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8.2 Ongoing and future work

On the one hand, regarding the APIfication approach, the transformation pro-
cess is going to be extended to work with different formats of open data. Also, we
are exploring how to integrate directly these APIs in open data Web portals. In
this sense, Web Augmentation techniques open up a new line of research which
we are currently working on to facilitate the access to open data, addressing
also visually impaired users, which can interact with the portal through voice
interfaces. Moreover, the generated Web APIs are being improved also with a
new line of research related to their OpenAPI documentation with the addition
of natural language descriptions.

On the other hand, regarding the integration of open datasets, we plan to
extend our approach by considering more operators in addition to union and
join. Finally, a next step consists of carrying out more detailed experimentation
to consider a wider range of the citizenship and the applicability of the approach
under different conditions, such as in situational scenarios.

Therefore, as there is ongoing work to finish and future work to perform, the
research continues in order to achieve new interesting research to be published
on international journals.
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Appendix A

Resumen

Hoy en día, hay una tendencia a publicar datos en la web, debido a los beneficios
que aporta a la sociedad y a la nueva legislación que fomenta la apertura de
datos. Estos conjuntos de datos suelen ser publicados en portales de datos
abiertos por gobiernos e instituciones de todo el mundo. El objetivo principal de
abrir los datos es hacerlos disponibles en la web de forma gratuita y reutilizable.
El comportamiento habitual suele ser que los publicadores de datos los expongan
como conjuntos individuales de datos tabulares.

Los datos abiertos se consideran muy valiosos porque promueven el uso de la
información pública, lo cual genera beneficios como la transparencia, innovación
y otros aportes sociales, políticos y económicos. Especialmente, esta importan-
cia es también considerable en escenarios situacionales, donde un pequeño grupo
de consumidores (desarrolladores o científicos de datos) con necesidades especí-
ficas requieren datos temáticos para un ciclo de vida corto. Para que estos
consumidores de datos evalúen fácilmente si los datos son adecuados para su
propósito existen diferentes mecanismos. Por ejemplo, los endpoints SPARQL
se han vuelto muy útiles para el consumo de datos abiertos y, en particular, de
Linked Open Data (LOD). Además, para acceder a los datos abiertos de forma
sencilla, las interfaces de programación de aplicaciones (APIs) web son también
una característica muy recomendable de los portales de datos abiertos.

Sin embargo, acceder a estos datos abiertos es una tarea difícil, ya que las
actuales plataformas de datos abiertos no suelen ofrecer estrategias adecuadas
para acceder a sus datos. Por un lado, acceder a los datos abiertos a través de
endpoints SPARQL es una tarea difícil porque requiere conocimientos en dife-
rentes tecnologías, lo que supone un reto especialmente para los desarrolladores
novatos. Además, los LOD no suelen estar disponibles, siendo los formatos más
utilizados en los portales gubernamentales de datos abiertos los tabulares. Por
otra parte, aunque la provisión de APIs web facilitaría a los desarrolladores el
acceso a los datos abiertos para su reutilización, existe una falta de APIs web
adecuadas en los portales de datos abiertos. Además, en la mayoría de los ca-
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sos, las APIs disponibles actualmente solo permiten acceder a los metadatos del
catálogo o descargar conjuntos de datos completos (es decir, acceso de grano
grueso a los datos), lo que dificulta la reutilización de los datos. Además, como
los datos abiertos suelen publicarse individualmente sin tener en cuenta las posi-
bles relaciones con otros conjuntos de datos, la reutilización en grupo de varios
conjuntos de datos abiertos no es una tarea trivial, por lo que se necesitan
mecanismos que permitan a los consumidores de datos integrar y acceder a los
datos abiertos tabulares publicados en la web. Por lo tanto, todo el potencial
de los datos abiertos no se está aprovechando debido a su difícil acceso.

Dado que el acceso a los datos abiertos sigue siendo limitado para los usua-
rios finales, especialmente para aquellos que no tienen conocimientos de progra-
mación, proponemos un enfoque basado en modelos para generar automática-
mente APIs web a partir de datos abiertos. Este enfoque, al que hemos llamado
"APIficación", facilita el acceso a los datos abiertos, teniendo en cuenta el acceso
a múltiples conjuntos de datos tabulares integrados y el consumo de datos en es-
cenarios situacionales. En primer lugar, nos centramos en los datos que pueden
integrarse al estar estrechamente relacionados. A continuación, acuñamos el
término APIs web desechables como mecanismo alternativo para el consumo
de datos abiertos en escenarios situacionales. Estas APIs web desechables se
crean sobre la marcha para ser utilizadas temporalmente por un usuario para
consumir datos abiertos específicos.

En consecuencia, el objetivo principal es proporcionar mecanismos adecua-
dos para acceder y reutilizar fácilmente los datos abiertos sobre la marcha y de
forma integrada, resolviendo el problema de la dificultad de acceso a través de
endpoints SPARQL para la mayoría de los consumidores de datos, y la falta
de APIs web adecuadas con acceso sencillo a los datos abiertos. Con este en-
foque, nos dirigimos tanto a los publicadores como a los consumidores de datos
abiertos, así pues, los publicadores podrán incluir una API web junto con sus
datos, y los consumidores o reutilizadores de datos se verán beneficiados en
aquellos casos en los que falte una API web que apunte a los datos abiertos.
Los resultados de los experimentos realizados nos han llevado a concluir que
los usuarios consideran que nuestras APIs web generadas automáticamente son
fáciles de usar y proporcionan los datos abiertos deseados, aunque provengan
de diferentes conjuntos de datos y especialmente en escenarios situacionales.

102



APPENDIX B. INTRODUCCIÓN

Appendix B

Introducción

En este capítulo se presenta, en primer lugar, el contexto de toda la investi-
gación realizada durante el doctorado. Este contexto incluye la tendencia de
apertura de datos por parte de los gobiernos mundiales, los beneficios que los
datos abiertos aportan a la sociedad, la disponibilidad de los datos abiertos y su
acceso a través de las APIs web o de tecnologías de la web semántica. Además
del contexto, se presentan los problemas relacionados con el acceso a los datos
abiertos. Estos problemas se detallan para señalar la falta de APIs web, la difi-
cultad en el uso de las tecnologías de la web semántica, la baja disponibilidad de
endpoints SPARQL en los portales de datos abiertos, la escasez de mecanismos
para acceder a los datos integrados y el problema específico en los escenarios
situacionales.
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B.1 Contexto

Hoy en día, los gobiernos y las organizaciones de todo el mundo ponen sus datos
en línea [5, 8]. Estos datos abiertos se publican en portales web para que sean
libremente accesibles y reutilizables [11], ya que se consideran de gran valor
y existe una gran concienciación en la mayoría de los países sobre los datos
abiertos [36, 6].

La adopción de iniciativas de datos abiertos fomenta el uso de la información
pública, lo que conlleva principalmente importantes beneficios económicos según
varios estudios [43, 38, 44]. Además de estos beneficios económicos, la apertura
de datos también produce transparencia, innovación y otros beneficios sociales
y políticos [27]. El aumento de las iniciativas de datos abiertos también está
motivado por la creciente presión impuesta por los gobiernos [42] con nuevas
legislaciones [1] que obligan a las administraciones públicas a ofrecer sus datos
a los ciudadanos. Los potenciales beneficiarios de los datos abiertos son los
ciudadanos, a los que se les facilitan grandes cantidades de datos, pero también
los reutilizadores de datos (particulares y empresas) que reutilizan los datos para
crear aplicaciones útiles, fomentando la economía y beneficiando a la ciudadanía
[46, 38].

Para publicar datos abiertos hay dos formas principales: (i) en portales de
datos abiertos que ofrecen una plataforma web con un catálogo de datos en su
mayoría de forma tabular, y (ii) como Linked Open Data (LOD) generalmente
disponible a través de endpoints SPARQL. Por un lado, respecto a los portales
de datos abiertos, data.gov.uk y data.gov se encuentran entre los repositorios
de datos abiertos más populares, que ofrecen un catálogo de recursos de datos
de los gobiernos del Reino Unido y de los Estados Unidos; y el Portal de Datos
Europeos1 que combina varios catálogos de datos de la Comisión Europea. Por
otro lado, la nube LOD2 incluye los conjuntos de datos que han sido publicados
en el formato Linked Data (datos enlazados que están disponibles en su totalidad
a través del volcado consultable “LOD-a-lot” [21]); y la plataforma DBpedia, que
ofrece datos estructurados de Wikipedia mediante un endpoint SPARQL3.

Para aprovechar las ventajas de los datos abiertos, el mayor número posible
de personas debe poder acceder fácilmente a estos datos. Entre los enfoques
más adoptados para acceder a los datos abiertos están las APIs web [13], ya que
son una característica importante y recomendada de las plataformas de datos
abiertos, permitiendo a los desarrolladores hacer que los datos abiertos sean
accesibles a los ciudadanos [11] construyendo sus propias aplicaciones basadas
en estos datos abiertos [30]. En cuanto a LOD, permite a los usuarios acceder
del mismo modo que se utiliza un sistema de gestión de bases de datos, pero
mediante lenguajes de consulta como SPARQL [17]. Estas interfaces de consulta
de datos en la web implican potentes capacidades, como los endpoints SPARQL
o la descarga directa de datos en formato RDF (volcados de datos).
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B.2 Problemas a resolver

Sin embargo, existe una gran brecha entre los datos abiertos y su acceso por
parte de la sociedad. Aunque varios estudios [40, 12] sugieren la creación de
APIs web para llenar este vacío, todavía hay una falta de APIs adecuadas para
acceder a los datos de las plataformas de datos abiertos en todo el mundo [22].
De hecho, solo alrededor del 6,6% de los conjuntos de datos incluyen una API
con acceso directo a los datos abiertos, es decir, una API a nivel de consulta
que permita acceder directamente a los datos. En la mayoría de los casos, las
plataformas incluyen una API, como las APIs basadas en CKAN que siguen el
estándar DCAT, que solamente proporciona los metadatos del catálogo de datos
o un enlace de descarga para el conjunto de datos (acceso de grano grueso a los
datos). Una API de nivel de consulta con acceso de grano fino a los datos facilita
a los desarrolladores la provisión de datos específicos según las necesidades de los
usuarios [11], mejorando el proceso de reutilización de los datos. Además, para
promover el uso de estas APIs para acceder a los datos abiertos, un factor clave es
proporcionar una documentación relevante y útil [41, 14], siguiendo estándares
populares, como OpenAPI, que permiten entender y reutilizar fácilmente los
datos abiertos [18]. Sin embargo, las APIs existentes no suelen incluir una
documentación adecuada ni una especificación precisa de la funcionalidad y de
los datos que ofrecen [28, 4]. Por lo tanto, entender cómo utilizar estas APIs y,
en consecuencia, reutilizar los datos resulta una tarea compleja.

Además, la exploración de LOD mediante lenguajes de consulta estructura-
dos como SPARQL puede ser desafiante y propensa a errores, especialmente
para los desarrolladores y usuarios finales novatos [24]. Por lo tanto, los reuti-
lizadores de datos suelen estar más familiarizados con las APIs de tipo REST
que con SPARQL [13]. Los consumidores habituales de datos abiertos carecen
principalmente de los conocimientos necesarios para realizar consultas SPARQL
y acerca del modelo de datos RDF (Resource Description Framework) subya-
cente, ya que ambos tienen una pronunciada curva de aprendizaje [13].

Además, otro problema relacionado con el uso de SPARQL es que los datos
en formato LOD no suelen estar disponibles en los portales de datos abiertos,
representando solamente un 0,5% del total [34]. En realidad, tal y como se
destaca en recientes y relevantes estudios [20, 37], estos portales se preocupan
más por los formatos tabulares, siendo el formato más utilizado con una repre-
sentación del 46,4%.

Por contra, la mayoría de los publicadores exponen sus datos tabulares como
conjuntos de datos separados, es decir, sin tener en cuenta las posibles relaciones
con otros conjuntos de datos abiertos [23]. Este escenario provoca que los re-
utilizadores de datos tengan que hacer un esfuerzo adicional para integrarlos.
En consecuencia, existe una gran necesidad de un mecanismo que permita a los
consumidores de datos integrar y acceder a los datos abiertos disponibles.

También hay escenarios concretos en los que un acceso rápido y fácil a los
datos abiertos es especialmente importante. Este es el caso de los datos situa-
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cionales, que consisten en datos temáticos requeridos durante un ciclo de vida
corto por un grupo reducido de consumidores con necesidades específicas [3].
En consecuencia, en un escenario situacional, son necesarios mecanismos alter-
nativos para proporcionar acceso a los datos abiertos para los reutilizadores de
datos, sin requerir ningún conocimiento de las tecnologías de la web semántica
[9, 29]. Así, es más fácil disponer de una API web con acceso sencillo a los datos
abiertos, sin perder tiempo procesando fuentes de datos tabulares o aprendiendo
a consultar un endpoint SPARQL [15].
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B.3 Trabajos relacionados

Existe una gran variedad de investigaciones relacionadas con el tema de los
datos abiertos, LOD y la simplificación de su acceso para los desarrolladores. En
primer lugar, para resolver los problemas de acceso y reutilización de los datos,
teniendo en cuenta la dificultad de acceso a los endpoints SPARQL, se propone
la creación de APIs web. Sin embargo, trabajos como [40, 26, 35] proponen,
en general, la creación manual de APIs para acceder a plataformas específicas
de datos abiertos y enlazados, lo cual supone mucho tiempo y no es escalable.
También se aborda la generación automática de APIs [39, 19], pero no se con-
sidera el acceso de grano fino a las plataformas de datos abiertos, requiriendo
artefactos específicos que no están comúnmente disponibles y sin proporcionar
una documentación adecuada para entender dichas APIs y promover su uso.

Además, hasta donde sabemos, no existe ninguna solución que aborde los
escenarios situacionales en los que los datos abiertos temáticos se utilizan tempo-
ralmente para necesidades específicas. Las investigaciones [45, 32] que abordan
la exploración de Linked Open Data facilitan su acceso a través de diferentes
interfaces, pero generalmente requieren conocimientos en tecnologías RDF o
SPARQL, o solo proporcionan acceso a endpoints específicos lo cual también
requiere de mucho tiempo y persiste el problema de escalabilidad.

En cuanto a la integración de datos, aunque los retos de la integración de
datos se han investigado durante años con importantes avances [25], los esfuer-
zos se han centrado únicamente en resolver problemas específicos. Sin embargo,
según Abadi et al. [2] se necesita más trabajo para investigar cómo canalizar la
integración de datos para cubrir todo el camino desde los propios datos hasta
el resultado deseado por el usuario final. Por ejemplo, se necesitan metadatos
adicionales para que los desarrolladores sepan cómo se pueden relacionar los con-
juntos de datos entre sí. Aunque varios enfoques recientes han propuesto añadir
este tipo de metadatos a los conjuntos de datos tabulares mediante anotaciones,
esta metodología no ha sido ampliamente adoptada por los publicadores de
datos.

En consecuencia, aunque los trabajos relacionados ayudan a los reutilizadores
de datos a superar los diferentes problemas para acceder a los datos abiertos,
no consideramos que ofrezcan una solución flexible y completa que realmente
facilite a los desarrolladores la obtención de datos abiertos de diferentes fuentes
para mejorar el proceso de reutilización de dichos datos.
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Appendix C

Propuestas

Una de las prácticas más adoptadas para facilitar el acceso a los datos abiertos
es el despliegue de APIs web sobre portales de datos abiertos y fuentes de Linked
Data [31]. En este sentido, esta tesis está enfocada en garantizar el acceso a los
datos abiertos a nivel de consulta (es decir, el acceso de grano fino), incluyendo
el acceso a datos integrados y en escenarios situacionales. Nuestra propuesta
se centra, por tanto, en facilitar el acceso a los datos abiertos considerando
también un proceso de integración de datos junto con la generación de APIs
para simplificar el consumo de datos abiertos de diferentes conjuntos de datos en
escenarios particulares. Las APIs web que proponemos se crean sobre la marcha
para ser utilizadas temporalmente por los usuarios para consumir datos abiertos
como datos situacionales. Estas APIs han sido denominadas como APIs web
desechables porque se crean sobre la marcha para permitir a los consumidores
de datos evaluar si los datos son adecuados para su propósito, evitando así la
complejidad y la curva de aprendizaje de SPARQL y el esfuerzo de procesar
manualmente los datos.

El objetivo principal es doble: (i) animar a los publicadores de datos abier-
tos a incluir una API junto con los datos que se van a abrir y (ii) ayudar a los
desarrolladores a crear valor a partir de los datos abiertos, es decir, facilitar la
reutilización de dichos datos y promover así su acceso por los ciudadanos. Para
cumplir estos objetivos, vamos a explicar las diferentes propuestas por sepa-
rado: primero se introduce el enfoque de APIficación a partir de datos abiertos
tabulares; después, se amplía este enfoque de APIficación con la propuesta de
integrar los datos abiertos y acceder a ellos de forma conjunta; y, por último,
se aplica al enfoque de APIficación la propuesta de aprovechar la información
semántica para generar APIs web desechables en escenarios situacionales.
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C.1 APIficación

En primer lugar, proponemos un enfoque de APIficación basado en modelos para
lograr la generación automática de APIs web a nivel de consulta con acceso de
grano fino a los datos. Estas APIs web ayudan a los desarrolladores a acceder
y reutilizar los datos abiertos, promoviendo así el uso de los dichos datos por
parte de la ciudadanía.

Este proceso de APIficación [47] consiste en un conjunto de transformaciones
para autogenerar APIs web con acceso a los conjuntos de datos abiertos. El
proceso se basa en mecanismos automáticos, genéricos y estandarizados para
generar APIs web con documentación procesable por ordenador siguiendo el
estándar de código abierto más popular: OpenAPI 3.0. Seguir este estándar
ayuda a los usuarios a entender el funcionamiento de la API y a trabajar con ella
como interfaz web. Además, los mecanismos dirigidos por modelos [10] permiten
hacer frente a la heterogeneidad de las fuentes de datos abiertas existentes,
integrando la API y su documentación en procesos de desarrollo dirigido por
modelos para estandarizar la forma de crear y definir las APIs.

El proceso de transformación para la generación automática de APIs web
comienza con una fuente de datos abiertos. Estas APIs web ayudan a los usua-
rios a acceder y reutilizar unos datos iniciales seleccionados de una fuente de
datos. Además, el proceso también crea la documentación OpenAPI para ayu-
dar a los usuarios de la API web, y un modelo de los datos y de la documentación
con el fin de aprovechar el gran número de herramientas de modelado existentes
para la integración de estos artefactos en los procesos de desarrollo dirigidos por
modelos. Todo el proceso de transformación de la fuente de datos a la API web
- que se muestra en la figura 4.1 - se pone en marcha mediante el programa gene-
rador automático, incluyendo los siguientes pasos: una transformación de texto
a modelo (T2M) desde la fuente de datos al modelo de datos, una transforma-
ción de modelo a modelo (M2M) desde el modelo de datos al modelo OpenAPI,
una transformación de modelo a texto (M2T) desde el modelo OpenAPI a su
documentación OpenAPI, y finalmente una transformación de texto a texto
(T2T) desde la documentación OpenAPI a la API web. Una vez finalizado el
proceso, los usuarios pueden consultar los datos a través de la API web gene-
rada, de forma que la API accede a los datos desde la fuente y los devuelve a
los usuarios. Por tanto, partiendo de un conjunto de datos que contiene filas y
celdas, el sistema realiza una transformación directa para construir un objeto
de modelo de datos con objetos de fila y celda. A continuación, el modelo de
datos se transforma automáticamente en un modelo OpenAPI utilizando cada
celda de la primera fila como un componente de la API (método, parámetro y
propiedad), convirtiendo este objeto del modelo OpenAPI en un formato están-
dar para la documentación de la API. Por último, la API web completa se crea
automáticamente incluyendo los métodos, parámetros y propiedades detallados
en su documentación.

Con este enfoque, los usuarios son capaces de obtener una API web de
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cualquier fuente de datos abierta para acceder fácilmente al conjunto de datos
con la documentación OpenAPI adecuada. Se presentan más detalles en el
capítulo 5.
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C.2 Integración

Además del enfoque de APIficación presentado anteriormente, cabe destacar que
puede haber un paso previo en este proceso de APIficación en caso de que sea
necesario integrar datos. Este nuevo paso consiste en integrar datos similares
para que la API web generada sea capaz de acceder a los datos abiertos de forma
integrada.

El proceso que considera ambos pasos (integración y APIficación) se mues-
tra en la figura 4.2. El primer paso implica la detección de conjuntos de datos
tabulares unibles utilizando técnicas de “word embeddings” [33] para identificar
qué columnas de diferentes conjuntos de datos tabulares de entrada tienen más
probabilidades de integrarse. El siguiente paso consiste en integrar los conjun-
tos de datos aplicando operaciones de “union” o “join”. Finalmente, a partir
del conjunto de datos previamente integrado, se genera una API web para ac-
ceder a estos datos mediante las transformaciones de APIficación anteriormente
explicadas.

Los operadores considerados para la integración de los datos abiertos son
“union” y “join” del álgebra relacional que funcionan de la siguiente forma:

• El operador “union” tiene como objetivo obtener un único conjunto de
datos a partir de dos conjuntos de datos tabulares (A y B), conteniendo
filas que estén en A o en B. Para ello, A y B deben compartir columnas
que se refieran al mismo concepto.

• El operador “join” también tiene como objetivo obtener un único conjunto
de datos a partir de dos conjuntos de datos tabulares (A y B), pero que
incluya todas las columnas de A y B y que contenga filas que cumplan
una condición.

La operación se elige entre “union” y “join” en función de la similitud encon-
trada entre los conjuntos de datos a integrar. Por ejemplo, si dos conjuntos de
datos son muy similares solo en un subconjunto de columnas, es probable que
se integren mediante una operación “join”. Sin embargo, si dos conjuntos de
datos son similares en casi todas las columnas, es más probable que se integren
mediante una operación de unión. En el capítulo 6 se presentan más detalles.
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C.3 Enfoque semántico

Por último, en el enfoque de APIficación se puede añadir también un proceso
previo para aprovechar la información semántica de las fuentes de datos. El
objetivo principal es el de generar automáticamente APIs web desechables y
fáciles de usar, las cuales pueden utilizarse para acceder a datos abiertos en
escenarios situacionales.

El proceso propuesto para el consumo de datos abiertos mediante el uso de
APIs web desechables generadas automáticamente comprende tres etapas:

1. Proceso de entrada de datos: en esta etapa se seleccionan los datos web
para satisfacer las necesidades de los consumidores de datos en un esce-
nario situacional.

2. Proceso de anotación semántica: los datos de entrada se anotan utilizando
una ontología específica del dominio, obteniendo datos anotados semánti-
camente.

3. Proceso de generación de APIs web desechables: la entrada de este proceso
son los datos tabulares previamente anotados semánticamente, a partir de
los cuales se generan automáticamente APIs web desechables para permitir
el consumo de datos en un escenario situacional.

El proceso completo de consumo de datos abiertos se muestra en la figura
4.3, incluyendo las entradas y salidas de cada proceso. En cuanto al enfoque
de APIficación, se añade el nuevo paso de anotar previamente los datos para
mejorar la calidad de los datos disponibles. Este paso comienza por estudiar
la información contenida en la fuente de datos y las características importantes
del dominio seleccionado. A continuación, es necesario crear un glosario de tér-
minos relativos a la terminología utilizada en la fuente de datos, describiendo
cada uno de ellos, tras lo cual se debe definir un modelo de dominio con el
que representar estos términos y sus relaciones mediante un diagrama de clases
UML. Después, es importante identificar la semántica de la información para
alinearla con los términos de un vocabulario de referencia, es decir, un vocabu-
lario que el desarrollador debe elegir (por ejemplo, una ontología específica del
dominio). Los mapeos necesarios para establecer la correspondencia entre los
distintos elementos de información de la fuente de datos (glosario de términos)
y el vocabulario de referencia (ontología específica del dominio) se definen me-
diante una inspección manual de la fuente de datos de entrada. En concreto,
identificamos los sujetos, predicados y objetos de un archivo de entrada tabular
y los asignamos a elementos del vocabulario de referencia. Este mapeo se define
manualmente y se añade a un archivo de configuración. Una vez definidos to-
dos los mapeos, se programa un script personalizado para transformar los datos
tabulares de entrada en los datos anotados semánticamente, de acuerdo con los
mapeos definidos en el archivo de configuración. A continuación, si la alineación
es posible, es necesario utilizar los datos originales, y anotarlos semánticamente
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utilizando los términos existentes del vocabulario de referencia (ontología especí-
fica del dominio) mediante el lenguaje RDF, utilizando los mapeos previamente
definidos. Si la alineación no es posible, hay que analizar la diferencia entre
los datos originales y el vocabulario de referencia para ampliarlo. Finalmente,
el último paso consiste en integrar el conjunto de datos semánticos con otras
fuentes. Esto se hace relacionando elementos de los distintos conjuntos de datos
semánticos y descartando la información duplicada en los conjuntos de datos,
cuando sea necesario.

En el capítulo 7 se presentan más detalles.
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C.4 Contribuciones

Para reducir la brecha entre los datos abiertos y su acceso por parte de los
usuarios, hemos propuesto un enfoque de APIficación con los mecanismos ade-
cuados para considerar los datos abiertos, la integración de datos y los datos
situacionales.

Entre las aportaciones de este enfoque de APIficación se encuentran:

• La creación de un proceso genérico, automático y basado en modelos para
la generación de APIs web. El enfoque pretende así simplificar directa-
mente el proceso de reutilización de datos abiertos, lo que aportará benefi-
cios, no solo económicos, para los desarrolladores y el sector infomediario.

• La implementación de este proceso automático de generación de APIs web,
que está disponible en línea en GitHub6.

• La posibilidad de que los desarrolladores creen fácilmente APIs web por
su cuenta, liberando a éstos de la gestión sobre cómo proporcionar datos
a la ciudadanía, como por ejemplo creando aplicaciones móviles que ac-
cedan a los datos abiertos a través de las APIs generadas automáticamente.
Aunque tengan que publicar la API en un servidor, tienen el control tanto
de los datos como de su acceso, lo que también tiene sus ventajas. Por
ejemplo, estas API pueden ser fácilmente personalizadas por los desarro-
lladores, si es necesario, para mejorar la experiencia de obtención de datos.

• La puesta a disposición de la documentación de las APIs web siguiendo
estándares populares (OpenAPI), lo que facilita la comprensión de estas
APIs y, en consecuencia, la promoción de su uso.

• La definición de una medida de similitud entre conjuntos de datos tabu-
lares basada en “word embeddings”. Esta medida permite identificar los
datos abiertos tabulares unibles con el fin de facilitar el proceso de inte-
gración de los datos a los que se accede de forma conjunta.

• La implementación de los procesos de integración y generación de la API
web de forma sucesiva, que está disponible en línea en GitHub7.

• Un proceso para la anotación semántica de fuentes de datos tabulares de
la web.

• Un enfoque basado en modelos que se emplea para incorporar nuestro
proceso de anotación semántica y luego generar APIs web desechables
para acceder a las fuentes de datos.

• La evaluación de nuestro enfoque con desarrolladores y datos abiertos
tabulares reales, generando las APIs web adecuadas para acceder a datos
específicos, comparando su uso con el acceso mediante tecnologías de la
web semántica como SPARQL.
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Appendix D

Trabajos publicados

En este capítulo se presenta el título y resumen breve de los trabajos que se han
publicado a lo largo de todo el programa de doctorado (el contenido completo
de las publicaciones se muestra en la parte II de esta tesis):

• Generación de interfaces de programación de aplicaciones web basada en
modelos para acceder a datos abiertos (“Model-based Generation of Web
Application Programming Interfaces to Access Open Data” [22]).

• Desarrollo de APIs web basado en modelos para acceder de forma in-
tegrada a datos abiertos tabulares (“Model-Driven Development of Web
APIs to Access Integrated Tabular Open Data” [23]).

• Consumo de datos abiertos mediante la generación de APIs web desecha-
bles (“Open Data Consumption Through the Generation of Disposable
Web APIs” [15]).
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D.1 Generación de interfaces de programación de
aplicaciones web basada en modelos para ac-
ceder a datos abiertos

Para facilitar la reutilización de los datos abiertos de los catálogos de las platafor-
mas de datos abiertos, las interfaces de programación de aplicaciones (APIs)
web son un mecanismo importante para los reutilizadores. Sin embargo, fal-
tan APIs web adecuadas para acceder a los datos de las plataformas de datos
abiertos. Además, en la mayoría de los casos, las APIs disponibles actualmente
solo permiten acceder a los metadatos del catálogo o descargar recursos de datos
completos (es decir, acceso de grano grueso a los datos), lo que dificulta la reuti-
lización de los datos. Por ello, proponemos un enfoque basado en modelos para
generar automáticamente APIs web a partir de datos abiertos. Nuestras APIs
web generadas facilitan el acceso y la reutilización de datos específicos (es decir,
proporcionan un acceso de grano fino o de nivel de consulta a los datos), lo que
dará lugar a importantes beneficios sociales y económicos, como la transparen-
cia y la innovación. Con este enfoque nos dirigimos a los publicadores de datos
abiertos que podrán incluir una API web junto con sus datos, pero también
a los reutilizadores de datos abiertos en caso de que falten dichas APIs. Este
proceso de APIficación, que supone la creación de APIs para cada conjunto de
datos disponible, se basa en mecanismos de generación automáticos, genéricos y
estandarizados. El rendimiento y funcionamiento de este enfoque se ha validado
con diferentes conjuntos de datos, generando con éxito APIs web que facilitan
la reutilización de los datos.
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D.2 Desarrollo de APIs web basado en mode-
los para acceder de forma integrada a datos
abiertos tabulares

Cada vez son más los gobiernos de todo el mundo que publican datos abiertos,
principalmente en formatos tabulares como CSV o XLS(X). Estos conjuntos de
datos se publican en su mayoría de forma individual, es decir, cada publicador
expone sus datos en la web sin tener en cuenta las posibles relaciones con otros
conjuntos de datos (propios o de terceros). En consecuencia, la reutilización
en grupo de varios conjuntos de datos abiertos no es una tarea trivial, por lo
que se requieren mecanismos que permitan a los consumidores de datos (como
desarrolladores de software o científicos de datos) integrar y acceder a los datos
abiertos tabulares publicados en la web. En este trabajo, proponemos un en-
foque basado en modelos para generar automáticamente APIs web que accedan
de forma homogénea a múltiples conjuntos de datos abiertos tabulares e inte-
grados. Este trabajo se centra en los datos que pueden integrarse mediante
operaciones de “union” y “join”. Como primer paso, nuestro enfoque detecta los
datos abiertos tabulares que se pueden unir mediante una medida de similitud
de tablas basada en la técnica “word embeddings”. A continuación, se desarrolla
un proceso de APIficación para crear APIs que accedan a los conjuntos de datos
previamente integrados a través de un único punto de acceso. A lo largo del
artículo se presenta un ejemplo de funcionamiento, así como un conjunto de
experimentos para la evaluación del rendimiento que demuestran la viabilidad
de nuestro enfoque.
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D.3 Consumo de datos abiertos mediante la ge-
neración de APIs web desechables

La creciente cantidad de información en el mundo actual ha llevado a la publi-
cación de cada vez más datos abiertos, que son aquellos que están disponibles
de forma gratuita y reutilizable en la web. Los datos abiertos se consideran muy
valiosos en escenarios situacionales, en los que los datos temáticos son requeridos
para un ciclo de vida corto por un pequeño grupo de consumidores con necesi-
dades específicas. En este contexto, los consumidores de datos (desarrolladores
o científicos de datos) necesitan mecanismos con los que evaluar fácilmente si
los datos son adecuados para su propósito. Los endpoints SPARQL resultan
muy útiles para el consumo de datos abiertos, pero argumentamos que su pro-
nunciada curva de aprendizaje dificulta la reutilización de los datos abiertos en
escenarios situacionales. Para superar este problema, en este artículo acuñamos
el término APIs web desechables como mecanismo alternativo para el consumo
de datos abiertos en escenarios situacionales. Las APIs web desechables se crean
sobre la marcha para que un usuario las utilice temporalmente para consumir
datos abiertos. En este trabajo describimos específicamente un enfoque con el
que aprovechar la información semántica de las fuentes de datos para generar
automáticamente APIs web desechables fáciles de usar que permitan acceder
a datos abiertos en un escenario situacional, evitando así la complejidad y la
curva de aprendizaje de SPARQL y el esfuerzo de procesar manualmente los
datos. Hemos llevado a cabo varios experimentos para descubrir si a los usua-
rios no experimentados les resulta más fácil utilizar nuestra API web desechable
o un endpoint SPARQL para acceder a los datos abiertos. Los resultados de
los experimentos nos han llevado a concluir que, en un escenario situacional, es
más fácil y rápido utilizar la API web que el correspondiente endpoint SPARQL
para consumir datos abiertos.
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Appendix E

Conclusiones

En este capítulo se recogen las conclusiones extraídas de toda la investigación
presentada anteriormente en esta tesis: en primer lugar, una discusión sobre la
investigación y la tesis; y por último, el trabajo en curso y futuro que tenemos
previsto realizar de aquí en adelante.

121



APPENDIX E. CONCLUSIONES

E.1 Discusión

En esta tesis se propone un enfoque de APIficación para resolver los proble-
mas relacionados con el acceso a datos abiertos. Este nuevo proceso permite
a los usuarios aprovechar las APIs web autogeneradas, lo que proporciona ac-
ceso a los datos abiertos no solamente a conjuntos de datos específicos, sino
también a conjuntos de datos integrados y datos situacionales. El enfoque de
la APIficación surgido durante el doctorado se expone en 3 artículos diferentes
presentados en la Parte II. Estos trabajos han sido publicados en revistas inter-
nacionales indexadas en el “Journal Citation Reports” (JCR), situadas dentro
de los primeros cuartiles (dos en el primer cuartil y el otro en el cuarto cuartil).
Estas publicaciones presentan las aportaciones de nuestra investigación: un en-
foque de APIficación para datos abiertos, datos integrados y datos situacionales,
con los experimentos adecuados para analizar su idoneidad.

Para evaluar la corrección y el rendimiento del proceso de APIficación, como
se presenta en el capítulo 5, se realizó un experimento con 20 conjuntos de
datos de diferente tamaño, generando la correspondiente API web con la do-
cumentación OpenAPI y los modelos relacionados. Los resultados obtenidos
muestran que el proceso de generación automática apenas tarda entre 9 y 80
segundos, con archivos fuente de hasta más de 20 millones de filas. En conse-
cuencia, la evaluación del enfoque de APIficación con diferentes conjuntos de
datos demuestra que el generador se comporta de forma eficiente: es capaz de
generar automáticamente y con éxito una API web completa para cualquier
conjunto de datos desde cero.

Además, en lo que respecta al acceso a los datos integrados y tal y como
hemos visto en el capítulo 6, se evaluaron tres aspectos del sistema: el enfoque
de similitud basado en “word embeddings” para la integración de datos tabulares,
con valores de precisión superiores a 0,92; la generación automática de APIs web
para acceder a los datos integrados, con una precisión de 0,76 utilizando solo el
contenido de las celdas y de 0,86 cuando se utilizan también los nombres de las
columnas; y el rendimiento del tiempo de ejecución de todo el proceso, que tarda
unos 10 segundos en completar la generación de la API para tablas de más de
un millón de filas. En consecuencia, la medida de similitud propuesta basada en
“word embeddings” alcanzó altos valores de precisión en la tarea de recuperación
de tablas unibles dada una tabla de consulta. Además, cuando esta medida se
incluyó en el proceso de APIficación, nuestro enfoque fue capaz de integrar
automática y eficientemente las tablas y generar las funciones esperadas, lo que
hace que todo el proceso sea adecuado para un escenario de producción.

Por último, se llevó a cabo un experimento (presentado en detalle en el
capítulo 7) en el que comparamos dos formas de consumir datos abiertos (i) uti-
lizando el punto de acceso SPARQL o (ii) utilizando nuestra API web desechable
generada de forma automática. Para llevar a cabo el experimento, planeamos
realizar un conjunto de encuestas (relativas a las APIs web y a SPARQL) con
estudiantes de un Máster de Ciencia de los Datos. Las encuestas se componían
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de cinco peticiones de datos (utilizando un endpoint SPARQL o la correspon-
diente API web), es decir, se les daba a los participantes cinco consultas y se
les pedía que encontraran los datos adecuados. En este experimento, los usua-
rios emplearon más tiempo de respuesta cuando utilizaron SPARQL que cuando
utilizaron las APIs web. Al emplear las APIs, los usuarios respondieron gene-
ralmente con respuestas correctas en menos tiempo que al emplear SPARQL.
Los resultados del experimento nos han permitido comprobar que es más fá-
cil y rápido en un escenario situacional utilizar una API web que un endpoint
SPARQL para consumir datos abiertos. Así, el experimento muestra que la
API web generada por nuestro enfoque de APIficación es más conveniente para
acceder a los datos que un endpoint SPARQL para los consumidores habituales
de datos abiertos.

Por lo tanto, las contribuciones presentadas por nuestro enfoque de APIfi-
cación garantizan el cumplimiento de los objetivos en cuanto al fomento de la
inclusión de una API en el proceso de publicación y también ayudando a los
desarrolladores a reutilizar los datos abiertos, cuya idoneidad ha sido evaluada
en detalle a través de los diferentes experimentos.
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E.2 Trabajo en curso y futuro

Por un lado, en cuanto al enfoque de la APIficación, se va a ampliar el pro-
ceso de transformación para trabajar con diferentes formatos de datos abiertos.
Además, estamos explorando cómo integrar directamente estas APIs en por-
tales web de datos abiertos. En este sentido, las técnicas de aumento de la
web (“Web Augmentation”) abren una nueva línea de investigación en la que
estamos trabajando actualmente para facilitar el acceso a los datos abiertos,
dirigiéndose también a los usuarios con discapacidad visual, que pueden inte-
ractuar con el portal a través de interfaces de voz que proponemos. Además, las
APIs web generadas se están mejorando también con una nueva línea de investi-
gación relacionada con su documentación OpenAPI, incorporando descripciones
en lenguaje natural.

Por otro lado, en lo que respecta a la integración de conjuntos de datos abier-
tos, tenemos previsto ampliar nuestro enfoque considerando más operadores
además de “union” y “join”. Por último, un próximo paso consiste en llevar a
cabo una experimentación más detallada con el fin de considerar una gama más
amplia de la ciudadanía y la aplicabilidad del enfoque en diferentes escenarios
como los escenarios situacionales.

Por lo tanto, como hay trabajo en curso para terminar y trabajo futuro para
realizar, la investigación continúa con el fin de lograr nuevas investigaciones
interesantes para ser publicadas en revistas internacionales.
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