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a b s t r a c t

The literature on solutions for claims problems mainly orbits on three canonical rules: The Proportional,
the Constrained Equal Awards and the Constrained Equal Losses. Mixtures of these solutions have
been proposed to design alternative approaches to solve claims problems. We consider piece-wise
and convex mixtures as two relevant tools. Piece-wise mixture guarantees that each agent obtains
a minimal reimbursement, when it is available, while the remaining is distributed according to an
alternative distribution criterion. Convex mixture shares the relevance of each distributive criterion
according to an exogenously given weight. In this framework we explore which properties are
preserved by mixed solutions. Moreover, we propose to design mixed solutions according to the
compromising degree, an endogenous parameter capturing the relative relevance of the rationing that
agents have to share collectively. We characterize the Proportional solution as the piece-wise mixture
of any two solutions. The convex mixture of the Constrained Equal Awards and the Constrained Equal
Losses solutions is explored from a normative point of view.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The analysis of claims problems, and the proposal of ‘equitable’
olutions for them, is one of the most ancient (not yet incontro-
ertibly solved) problem since the homo œconomicus straighten.
t involves a given amount of a (perfectly divisible) good that has
o be distributed among a given group of claimants. The problem
merges whenever the available amount of good is not enough
o cover the aggregate claim, and thus the agents have to be
ationed.

Despite that there are several solutions fulfilling some equity
eatures,1 each of them can be objected by some agents because
they feel damaged related to how (some of) his rivals have been
treated. This allows to consider two kinds of solutions. On the one
hand, what we call canonical solutions, in which it is easily iden-
tifiable which are the agents that are expected to object against
them. On the other hand, compromise solutions, obtained as a
mixture of the canonical ones, which try to reduce the conflict
that agents exhibit. The most prominent examples for the first
category are the Proportional, the Constrained Equal Awards and
the Constrained Equal Losses solutions. For the second category,

✩ This work is partially supported by the Spanish Ministerio de Economía y
ompetitividad, project ECO2016-77200-P.
∗ Corresponding author.

E-mail addresses: jose.alcalde@ua.es (J. Alcalde), peris@ua.es (J.E. Peris).
1 The reader is addressed to the recent book by Thomson (2019), that supplies
nice, complete up-to-date survey of the literature.
ttps://doi.org/10.1016/j.mathsocsci.2021.10.007
165-4896/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
the most prominent example is the Talmud solution (Aumann
and Maschler, 1985).

The aim of this paper is twofold. On the one hand we ex-
plore the properties that a compromise solution inherits from the
canonical ones used to build it. On the other hand, we introduce
an (endogenous) measure of the likelihood to reach a compromise
on the solution to be adopted. This allows us to propose the use
of the compromise convex solution that is highly sensitive to this
measure.

As we illustrate in this Introduction, most of the classic com-
promise solutions provided by the literature can be described as a
composition – or mixture – of two canonical solutions. Then, the
original problem is split into two sub-problems, each one being
solved according to one of these canonical solutions. Therefore,
the solution for the original problem is obtained by adding the
(canonical) solutions for these two sub-problems. To illustrate the
‘mixing’ procedure above, let us derive the Talmud solution as an
accurate mixture of two well-known solutions.

A classical canonical solution for claims problems is the Con-
strained Equal Awards solution (CEA henceforth) suggested by
Maimonides in the 12th Century (Aumann and Maschler, 1985). It
prescribes equal division of the available amount of good among
the agents, with the restriction that none of them is allowed an
amount exceeding his claim. Alternatively, any claims problem
can be analyzed from a dual perspective. This approach considers
that any solution from a claims problem implicitly yields a pre-
scription of how claimants should be rationed or, similarly, how
the shortage associated to this problem should be distributed.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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his allows to describe the Constrained Equal Losses solution,
EL henceforth, which is build so that all the claimants are (in
bsolute terms) equally rationed under the assumption that none
f them is allowed a negative amount of good.2 The Talmud
olution prescribes to solve any claims problem by mixing the
EA and the CEL solutions as follows. Split the initial claims
roblem in two sub-problems in which agents’ claims coincide
and thus each agent’s claim at any problem is equal to one
alf of his initial claim –. Then split the available resource in an
symmetric way. The first part is one half of the aggregate claim –
f such an amount is available – while the second one is precisely
he remaining resource, if any. To compute the Talmud solution
e proceed as follows: (1) solve the first sub-problem according
o the CEA solution; (2) solve the second sub-problem according
o the CEL solution; and (3) add the two sub-solutions above.

The idea of solving claims problems by mixing two well-
ehaved solutions has also been explored by some authors yield-
ng different prescriptions. For instance, Piniles (1861) suggests
o solve claims problems according to the following procedure.
iven a problem, build two sub-problems in a similar way as
he Talmud solution does. Then, apply the CEA solution to the
wo sub-problems and add these sub-solutions. Observe that,
ince no solution for claims problems is additive (Bergantiños and
éndez-Naya, 2001), this differs from the CEA solution. The Re-
erse Talmud solution (Chun et al., 2001) can be introduced as the
almud solution by exchanging the roles of the CEA and the CEL
olutions. Moreno-Ternero and Villar (2006) propose the study of
family of solutions whose central element is the Talmud solu-

ion. They consider that a given share θ of the aggregate claim is
istributed according to the CEA solution whenever it is available,
hile the remaining resource (if any) is distributed according to
he CEL solution. As in the Talmud solution, when determining
ow agents’ claims are associated to each sub-problem, a share θ

of each agent claim is linked to the first sub-problem, while the
remaining share goes to the second sub-problem.

The common features of the above solutions yield to de-
scribe what we call ‘piece-wise’ solutions as follows. Select two
canonical solutions, to be called the primary and the secondary
solutions, respectively. For a given claims problem, divide it in
two sub-problems. Each agent’s claim at the first problem is a
proportion, say θ , of his total claim. His claim for the second
problem is the remaining (1 − θ) share of his total claim. The
allowable amount of resource associated to the first problem
is the aggregate claim for this problem, unless it exceeds the
total available amount of good, while the remaining amount
of resource (if any) is associated to the second problem. Then,
solve the first sub-problem according to the primary solution
prescription, while the second sub-problem is solved following
the secondary solution. Finally, add the solutions for the two
sub-problems.

Note that in the piece-wise mixture of solutions, as above
described, the secondary solution only comes into play when the
available amount of resource is high enough. This contrast with
the alternative mixture of the two canonical solutions proposed
by Thomson and Yeh (2006). These authors suggest that the sec-
ondary solution should always have a relevance even when the
amount of available good is low. This alternative approach yields
to explore mixed solutions obtained by a convex combination of
canonical solutions.

Most of the (mixed) solutions proposed by the literature to
solve claims problems have been conceived to give an (exoge-
nously determined) weight to each canonical solution. In most of
the cases (e.g. the Talmud, or the Piniles solutions) this weight

2 Section 2 provides formal, analytical descriptions for all the solutions
entioned in this section.
79
is θ = 0.5, while other solutions (as the ones belonging to the
TAL-family) are built by using alternative weights. The rigidity
on how these weights are selected allows to find, associated to
each mixed solution, atypical examples helping to criticize any
solution.

In this paper we adopt a different approach on how these
weights should be selected. In our opinion, once the canonical
solutions have been agreed, the weights selected for each spe-
cific problem should be endogenously determined. This helps to
capture the specific characteristics of the problem to be solved. In
particular, we propose to weight the primary solution according
to the ‘compromising degree’ of the problem to be solved.

Within this framework two approaches are studied. In both
cases the CEA solution is the primary solution while the sec-
ondary solution is the CEL. We first found that, under piece-wise
mixing, this Compromise solution coincides with the Proportional
solution. This provides a connection between the aim of equaliz-
ing reimbursements and/or losses in absolute terms (CEA and CEL
solutions) or in relative terms (Proportional solution). Then, we
concentrate on exploring, from a normative perspective, the solu-
tion obtained by a convex mixture of the canonical solutions. This
allows to define the Compromise Convex solution that, among
other properties, fulfills equity, continuity and, for high levels of
compromising degree, incentive compatibility.

The rest of the paper is organized as follows. Section 2 in-
troduces the model and some relevant solutions. Section 3 in-
troduces the notion of mixed solution as a compromise by the
agents on how to distribute the available resource. Addition-
ally, we explore which properties are preserved when mixing
solutions and discuss the notion of duality for mixed solutions.
Finally, Section 4 introduces the compromising degree as a way
to select the right value of the parameter θ for each given prob-
lem. This allows to describe two mixing compromise solutions:
The Compromise Piece-wise Solution which coincides with the
Proportional solution; and the Compromise-Convex solution.

2. Preliminaries

A claims problem involves a set of agentsN = {1, . . . , i, . . . , n}
that have to share an amount E ≥ 0 of a perfectly divisible good,
called the estate.3 Each agent has a claim ci ≥ 0 on this good, and
the aggregate claim C =

∑n
i=1 ci exceeds the available amount of

good; i.e. C ≥ E. A (claims) problem is represented through a pair
(E, c) ∈ R+ × Rn

+
.

A solution for claims problems is a function ϕ associating each
problem a distribution of the estate among the agents so that
no agent is assigned more than his claim (claims boundedness)
nor a negative amount (non-negativity), and the estate is exactly
distributed (efficiency); i.e., ϕ :R+ × Rn

+
→ Rn

+
is such that for

each (E, c), (a) 0 ≤ ϕi (E, c) ≤ ci for each i ∈ N ; and (b)∑n
h=1 ϕh (E, c) = E.
Additionally, and associated to the cooperative approach of

solutions introduced by O’Neill (1982), through this paper we
assume that solutions satisfy the following Limited Responsibility
condition.

Definition 1. We say that solution ϕ satisfies the Limited
Responsibility Condition, LRC thereafter, if for each problem (E, c)
and any 0 ≤ E ′ < E, ϕi (E, c) − ϕi

(
E ′, c

)
≤ E − E ′ for each agent

i ∈ N .

3 In order to avoid technical issues, we include the two degenerate cases, in
hich the estate is null, E = 0, or it equals the aggregate claim E = C . In both

cases, the notion of solution for claims problems determines what each agent
receives.
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emark 1. The Limited Responsibility Condition is a very mild re-
quirement that prevents some agents from increasing their allo-
cation beyond the estate increase (at the expense of other agents
whose allocation is reduced). Note that Resource Monotonicity, a
condition that fulfill most of the rules, implies LRC.

As we mentioned in the Introduction, a solution attracting
uch attention of some authors is the Constrained Equal Awards
olution, denoted as ϕCEA. It distributes equally the estate among
he agents with the only restriction that none of them is assigned
ore than his claim. Therefore, for each problem (E, c), and any
gent i ∈ N , ϕCEA

i (E, c) = min {λ, ci}, where λ is the unique
olution to

∑n
h=1 min {λ, ch} = E.

An alternative approach to solving claims problems comes
rom a dual perspective. We say that solutions ϕα and ϕD(α) are
ual whenever for each problem (E, c),
α (C − E, c) + ϕD(α) (E, c) = c. (1)

Note that for a given problem (E, c), L = C −E can be interpreted
as the rationing that, in aggregate, claimants should bear when
solving the problem (E, c). Therefore, for any agent i ∈ N ,
ϕα
i (C − E, c) = ϕα

i (L, c) determines i’s rationing according to
solution ϕα , and thus ci−ϕα

i (L, c) is the amount allocated to agent
i when he is rationed according to ϕα . Thus, Eq. (1) establishes
an equivalence between solving any given problem according to
solution ϕD(α) and doing it indirectly by determining each agent’s
rationing throughout ϕα .

The CEL solution is dual to the CEA solution. It associates
to each problem (E, c) and any agent i ∈ N , the amount
ϕCEL
i (E, c) = max {0, ci − µ}, where µ is the unique solution to∑n
h=1 max {0, ch − µ} = E.
To conclude, and for completeness purposes, we mention that,

in parallel to the CEA and CEL solutions that equalize awards and
losses in absolute terms, the Proportional solution attributed to
Aristotle, equalizes awards (and losses) in relative terms, so for
each problem (E, c), and any agent i ∈ N , it fits the expression

ϕP
i (E, c) =

E
C
ci. (2)

2.1. CEA, CEL and some mixed solutions

The dual relationship between the CEA and the CEL solutions
as some interpretative implications. In general, as Claim 1 re-
orts, agents with a low claim prefer to be reimbursed according
o the CEA solution, while agents with high claim rather prefer to
e reimbursed according to the CEL solution.

laim 1. For each problem (E, c) and any given agent, say i,

(a) if ϕCEA
i (E, c) > ϕCEL

i (E, c), then ϕCEA
h (E, c) > ϕCEL

h (E, c) for
each h such that 0 < ch ≤ ci; and

(b) if ϕCEA
i (E, c) < ϕCEL

i (E, c), then ϕCEA
j (E, c) < ϕCEL

j (E, c) for
each j such that cj ≥ ci.

Note that condition (a) is only possible if ϕCEL
i (E, c) = 0, or λ >

ci−µ. In both cases, the same is true for each h such that 0 < ch ≤ ci.
Regarding condition (b), it is only possible if ϕCEL

i (E, c) = ci − µ,
ϕCEA
i (E, c) = λ, and λ < ci −µ, which remains valid for each j such

that cj ≥ ci.

The conflict of interests pointed out by the above statement
invites to resort to more neutral solutions, build as a mixture of
the (extreme) CEA and CEL solutions. This is, among others, the
case of the Talmud solution that prioritizes the CEA solution until
each agent is granted one half of his claim, and then distributes
80
the remaining (if any) according to the CEL solution. To be pre-
cise, the Talmud solution associates to each problem (E, c) the
following distribution of the estate

ϕτ (E, c) = ϕCEA
(
min

{
E,

1
2

C
}

,
1
2
c
)

+ ϕCEL
(
max

{
0, E −

1
2

C
}

,
1
2
c
)
. (3)

The Talmud solution is the mixture of the CEA and CEL rules
ost studied in the literature. Nevertheless, it is not the only
ixture of these canonical rules attracting the attention of some

esearchers. The remain of this section is devoted to introduce
ome of these ‘mixing’ solutions.
Chun et al. (2001) suggest the employ of the Reverse Talmud

olution ϕRτ that is described in a similar way as the Talmud rule
by exchanging the (primary/secondary) roles of the CEA and the
CEL rules. It associates to each problem (E, c) the distribution of
the estate

ϕRτ (E, c) = ϕCEL
(
min

{
E,

1
2

C
}

,
1
2
c
)

+ ϕCEA
(
max

{
0, E −

1
2

C
}

,
1
2
c
)
. (4)

The Piniles’ solution ϕπ coincides with the Talmud solution in
problems with a low estate, while it coincides with the reverse
Talmud solution for problems with a high estate. To be precise,
for each given problem (E, c), it distributes the estate according
to the expression

ϕπ (E, c) = ϕCEA
(
min

{
E,

1
2

C
}

,
1
2
c
)

+ ϕCEA
(
max

{
0, E −

1
2

C
}

,
1
2
c
)
. (5)

For completeness we define the Reverse Piniles’ solution ϕRπ ,
hat coincides with the reverse Talmud solution in problems with
low estate, while it coincides with the Talmud solution for
roblems with a high estate:

Rπ (E, c) = ϕCEL
(
min

{
E,

1
2

C
}

,
1
2
c
)

+ ϕCEL
(
max

{
0, E −

1
2

C
}

,
1
2
c
)
. (6)

As to extend the Talmud solution, Moreno-Ternero and Villar
(2006) study a family of solutions, they call the TAL-family, where
(at most) a given share of the aggregate claim is allocated accord-
ing to the CEA solution, while the remaining share of the estate
(if any) is allocated according to the CEL solution. That is, for a
given θ ∈ (0, 1),

ϕθτ (E, c) = ϕCEA (min {E, θ C} , θc)

+ ϕCEL (max {0, E − θ C} , (1 − θ) c) . (7)

Finally, van den Brink et al. (2013) explore the design of a
family of solutions ‘reversing’ the TAL-family. For a given θ ∈

(0, 1), it associates to a problem (E, c) the distribution of the
estate

ϕRθτ (E, c) = ϕCEL (min {E, θ C} , θc)

+ ϕCEA (max {0, E − θ C} , (1 − θ) c) . (8)

3. Compromising through mixed solutions

A deeper analysis of the different solutions explored in the
literature yields to a standard (generic) procedure to solve claims
problems by mixing canonical solutions. It can be described ac-
cording to the following sequential procedure.
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(1) There is a general consensus on assigning a secure share of
each agent’s claim, when the estate is high enough. This
secured claim, that depends on c , is denoted by s, and
satisfies that, for each agent i, si ≤ ci. For each given
problem (E, c), secured claim s allows to split it into two
sub-problems

(
E1, s

)
and

(
E2, c − s

)
.

(2) There is a primary solution, say ϕ1, that determines how
agents are rationed when the estate is not enough to al-
low each one his ‘secure claim’. This primary solution ap-
plies to the primary sub-problem

(
E1, s

)
, where E1

=

min
{
E,
∑n

h=1 sh
}
.

(3) There is a secondary solution, say ϕ2, that becomes in-
volved only when the level of estate allows to assign each
agent his secure share si. This secondary solution is applied
to the residual sub-problem

(
E2, c − s

)
=
(
E − E1, c − s

)
.

(4) Finally, for a given problem (E, c), the description of the
mixed solution, say ϕm, is

ϕm (E, c) = ϕ1 (E1, s
)
+ ϕ2 (E − E1, c − s

)
. (9)

For instance, in the case of the Talmud solution, the above
xpression translates into (1) s = c/2, (2) ϕ1

= ϕCEA, and (3)
2

= ϕCEL.
Note that in the above description of how canonical solutions

re mixed along the literature there are two main elements
eserving additional comments. The first one is the determination
f the secured claim s. What it is common in the literature is
o consider a close relation between the original claims vector
and the secured claim s, so that even though the latter is not
xogenously given, its determination is not affected by the estate.
hat the literature points out is that a ‘popular’ approach to

he selection of the secured claims vector s is by resorting to
proportional relation between s and the claims vector c , say
∈ (0, 1). Note that the selection of a given proportion θ not

nly guarantees that, for each agent i, si never surpasses his claim
i, but also ensures that the determination of the secured claims
s done according to an anonymous – and thus equitable – pro-
edure. The second one is that any problem is solved by dividing
t into two sub-problems, each one being treated according to a
pecific criterion.
The ingredients above yield to define the piece-wise combina-

ion of solutions as follows.

efinition 2. For any two solutions for claims problems, say
1 and ϕ2, and each given proportionality factor θ ∈ (0, 1),
e define their piece-wise combination as the solution for claims
roblems ϕω associating to each problem (E, c) the allocation

ω (E, c) = ϕ1 (min {E, θC} , θc) + ϕ2 (max {0, E − θC} , (1 − θ) c) .

(10)

n such a case, to simplify notation, we write ϕω
≡ Ωθ

(
ϕ1, ϕ2

)
.

As an illustrative example, recall that the Talmud solution can
e expressed as ϕτ

≡ Ω1/2
(
ϕCEA, ϕCEL

)
. Similarly, the Piniles’

olution can also be expressed as ϕπ
≡ Ω1/2

(
ϕCEA, ϕCEA

)
.

Thomson and Yeh (2006) argue that the solutions conceived
s piece-wise combinations of canonical solutions exhibit the
nterpretative controversy that the secondary solution is rele-
ated to problems where the estate is high enough.4 According
o the description above on how the original problem is split
nto two sub-problems, each of them being solved according to
ne canonical solution each, we define the solutions conceived
s ‘convex combination’ of two canonical solutions as follows.

4 To be precise, Thomson and Yeh (2006, p. 7) write: ‘‘When two rules
xpress opposite viewpoints on how to solve a claims problem, it is natural
o compromise between them by averaging’’.
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Definition 3. For any two solutions for claims problems, say
ϕ1 and ϕ2, and each given proportionality factor θ ∈ (0, 1),
e define their convex combination as the solution for claims
roblems ϕκ associating to each problem (E, c) the allocation
κ (E, c) = ϕ1 (θE, θc) + ϕ2 ((1 − θ) E, (1 − θ) c) . (11)

n such a case, to simplify notation, we write ϕκ
≡ Kθ

(
ϕ1, ϕ2

)
.

emark 2. Note that our definition for the convex combination
f solutions differs from what Thomson and Yeh (2006) call the
eighted average of rules:

θ
(
ϕ1, ϕ2)

= θϕ1
+ (1 − θ) ϕ2 θ ∈ (0, 1) .

his is because, while these authors study the combination of
he solutions we are concerned on how the original problem
s split in two sub-problems whose solutions are added. Never-
heless, when the canonical solutions are scale invariant5 both
efinitions coincide. As mentioned in Marchant (2008), ‘‘we can
asily construct a scale invariant rule starting from any rule and,
ence, scale invariance is a very weak condition’’. So, we will
ot distinguish between our convex operator and the weighted
verage of rules.

.1. Preserved properties under mixture

According to a large tradition of exploring the properties sat-
sfied by different solutions (see, e.g., Thomson, 2019) we now
oncentrate on the study of which properties are preserved when
ixing solutions.6

We say that operator Θ preserves property Y whenever for
ny two solutions ϕ1 and ϕ2 satisfying such a property and any
calar θ ∈ (0, 1) solution Θθ

(
ϕ1, ϕ2

)
also satisfies property Y .

For the case of their weighted average of solutions Thomson
nd Yeh (2006) find that some important properties are not
reserved. This is summarized in Table 1.
A similar analysis related to the piece-wise operator Ω , sum-

arized in Table 2, is captured by Theorem 1.

heorem 1. Let ϕ1 and ϕ2 two solutions for claims problems, and
∈ (0, 1) a given parameter. Then,

(1) The piece-wise operator Ωθ
(
ϕ1, ϕ2

)
preserves resource mono

tonicity, order preservation, anonymity, continuity, claim
monotonicity, and consistency. Moreover, if ϕ1 and ϕ2 are
resource monotonic, population monotonicity is also pre-
served.

(2) The piece-wise operator Ωθ
(
ϕ1, ϕ2

)
fails to preserve invari-

ance under claims truncation, minimal rights first, self-duality,
composition down and composition up.

emark 3. As mentioned in Thomson (2003, p. 270), ‘‘most of
he rules that have been considered in the literature, and all of
he rules that we have formally defined, are resource monotonic’’.
herefore the last statement in part (1) of Theorem 1 might con-
lude by claiming that population monotonicity is always preserved
or any pair of reasonable solutions.

5 A solution for claims problems, say ϕ, satisfies scale invariance (also known
as homogeneity) if for each problem (E, c) and each λ > 0, ϕ(λE, λc) = λϕ(E, c)..
6 For exposition convenience, we relegate the introduction of these standard

properties to the Appendix.
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Table 1
Convex operator: When applied to scale invariant solutions, if both solutions ϕ1 and ϕ2 satisfy the mentioned property, then for
each given θ , Kθ

(
ϕ1, ϕ2

)
also satisfies this property: true (�), false (×).

Invariance under Claims Truncation � Order Preservation � Anonymity �
Continuity � Claim Monotonicity � Resource Monotonic �
Minimal Rights First � Composition Down × Composition Up ×

Self Duality � Population Monotonic � Consistency ×
Table 2
Piece-wise operator: If both solutions ϕ1 and ϕ2 satisfy the mentioned property, then for each given θ , Ωθ

(
ϕ1, ϕ2

)
also satisfies

this property: true (�), false (×).
Invariance under Claims Truncation × Order Preservation � Anonymity �
Continuity � Claim Monotonicity � Resource Monotonic �
Minimal Rights First × Composition Down × Composition Up ×

Self Duality × Population Monotonic � Consistency �
)

Proof.

(1) It is obvious that equal treatment of equals, order preser-
vation and anonymity are preserved. On the other hand,
as mentioned, the piece-wise operator has been defined in
a continuous way, so that if two solutions are continuous,
their piece-wise combination is continuous too.
To see that the piece-wise operator preserves resource
monotonicity, let us consider two resource monotonic so-
lutions ϕ1 and ϕ2. For a given claims vector c , and thus
aggregate claim C , consider two different levels of estate E
and E ′ such that 0 ≤ E < E ′

≤ C . We consider the following
three cases, that exhaust all the possibilities.

(i) θ is such that E ′
≤ θC . Then, solution ϕω

=

Ωθ
(
ϕ1, ϕ2

)
satisfies that for each agent i ∈ N ,

ϕω
i (E, c) = ϕ1

i (E, θc) ≤ ϕ1
i

(
E ′, θc

)
= ϕω

i

(
E ′, c

)
;

(ii) θ is such that E ≥ θC . Then, solution ϕω
= Ωθ(

ϕ1, ϕ2
)
satisfies that for each agent i ∈ N ,

ϕω
i (E, c) = θci + ϕ2

i (E − θC, (1 − θ) c) ≤

≤ θci + ϕ2
i

(
E ′

− θC, (1 − θ) c
)

= ϕω
i

(
E ′, c

)
;

(iii) θ is such that E < θC < E ′. Then, solution ϕω
=

Ωθ
(
ϕ1, ϕ2

)
satisfies that for each agent i ∈ N ,

ϕω
i (E, c) = ϕ1

i (E, θc) ≤ θci ≤ θci
+ ϕ2

i

(
E ′

− θC, (1 − θ) c
)

= ϕω
i

(
E ′, c

)
.

To explore claim monotonicity, let us consider two given
problems differing only in agent i’s claim. That is these
problems are (E, c) and

(
E, c ′

)
, where c ′

i > ci, and c ′

j =

cj for all j ̸= i. Assume that solutions ϕ1 and ϕ2 are
claim monotonic. Consider the following three cases, that
exhaust all the possibilities.

(i) θ is such that E ≤ θC . Then solution ϕω
= Ωθ

(
ϕ1, ϕ2

fulfills that for agent i,

ϕω
i (E, c) = ϕ1

i (E, θc) ≤ ϕ1
i

(
E, θc ′

)
= ϕω

i

(
E, c ′

)
.

(ii) θ is such that θC < E < θC ′. Define c ′′

i =

1
θ

(
E −

∑
j̸=i θcj

)
, and denote by c ′′ the claims vector

whose ith component is c ′′

i , while c ′′

j = cj for j ̸= i.
Note that θC ′′

= E and for any solution, say ϕ,
ϕ
(
E, θc ′′

)
= θc ′′. Then solution ϕω

= Ωθ
(
ϕ1, ϕ2

)
satisfies that for agent i,

ϕω
i (E, c) = θci + ϕ2

i (E − θC, (1 − θ) c) ≤ θci + (E − θC) =

= θc ′′

i = ϕ1
i

(
E, θc ′′

)
≤ ϕ1

i

(
E, θc ′

)
= ϕω

i

(
E, c ′

)
.

82
(iii) θ is such that E ≥ θC ′. Then, for agent i, solution
ϕω

= Ωθ
(
ϕ1, ϕ2

)
satisfies that

ϕω
i (E, c) = θci + ϕ2

i (E − θC, (1 − θ) c) .

By LRC we have that

θci+ϕ2
i (E − θC, (1 − θ) c) ≤ θc ′

i +ϕ2
i

(
E − θC ′, (1 − θ) c

)
.

Since ϕ2 is claim monotonic,

θc ′

i +ϕ2
i

(
E − θC ′, (1 − θ) c

)
≤ θc ′

i +ϕ2
i

(
E − θC ′, (1 − θ) c ′

)
,

and thus ϕω
i (E, c) ≤ ϕω

i

(
E, c ′

)
.

We now deal with the analysis of population monotonicity.
Given a set of agents N , and a problem for them (E, c),
consider an external agent i /∈ N , a claim for such an
agent ci and the problem

(
E, c ′

)
obtained from embodying

i in problem (E, c). Note that the aggregate claim in the
two problems is C =

∑
j∈N cj when i is not taken into

account and C ′
= C + ci otherwise. Consider two resource

monotonic and population monotonic solutions, ϕ1 and ϕ2,
a parameter 0 < θ < 1, and solution ϕω

= Ωθ
(
ϕ1, ϕ2

)
.

Consider the following three cases, that exhaust all the
possibilities.

(i) E ≤ θC . Then, for each h ∈ N ,

ϕω
h (E, c) = ϕ1

h (E, c) ≥ ϕ1
h

(
E, c ′

)
= ϕω

h

(
E, c ′

)
.

(ii) θ is such that θC < E < θC ′. Then, for each h ∈ N ,

ϕω
h

(
E, c ′

)
= ϕ1

h

(
E, c ′

)
≤ θch ≤ θch

+ ϕ2
h (E − θC, (1 − θ) C)

= ϕω
h (E, c) .

(iii) θC ′
≤ E. Then, for each agent h ∈ N ,

ϕω
h (E, c) − ϕω

h

(
E, c ′

)
= ϕ2

h (E − θC, (1 − θ) c)

− ϕ2
h

(
E − θC ′, (1 − θ) c ′

)
.

Since ϕ2 is population monotonic,

ϕω
h (E, c) − ϕω

h

(
E, c ′

)
≥ ϕ2

h

(
E − θC, (1 − θ) c ′

)
− ϕ2

h

(
E − θC ′, (1 − θ) c ′

)
≥ 0,

where the last inequality follows because ϕ2 is re-
source monotonic.

To conclude, we show that the piece-wise operator pre-
serves consistency. Let us consider two consistent solu-
tions, say ϕ1 and ϕ2, and a given parameter θ . Let ϕω

=

Ωθ
(
ϕ1, ϕ2

)
denote the piece-wise combination of the so-

lutions above. For a given coalition ∅ ̸= S ⊂ N and
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any problem (E, c), let denote ES
=
∑

i∈S ϕω
i (E, c), and

CS
=
∑

i∈S ci. First, it is important to note that ES
≤ θCS

if and only if E ≤ θC . Consider the following cases, that
exhaust all the possibilities.

(i) E ≤ θC . Then, ϕω (E, c) = ϕ1 (E, θc). Therefore
consistency is immediately derived from consistency
of ϕ1.

(ii) E ≥ θC . Then, ϕω (E, c) = θc+ϕ2 (E − θC, (1 − θ) c)
and thus consistency is immediately derived from
consistency of ϕ2.

(2) To prove that the piece-wise operator fails to preserve
invariance under claims truncation, minimal rights first,
self-duality, composition down and composition up, let us
consider the following counterexamples.

(i) Invariance under Claims Truncation. Assume ϕ1
=

ϕ2
= ϕCEA, and θ =

1
2 so ϕω

= Ω
1
2
(
ϕCEA, ϕCEA

)
. Con-

sider the three-agent problem (E, c) = (202, (60,
100, 220)). Then, ϕω (E, c) = (34, 54, 114).
On the other hand, c̄ = (60, 100, 202) and then
ϕω (E, c̄) = (37, 57, 108), so invariance under claims
truncation is not preserved.

(ii) Minimal Rights First. Assume ϕ1
= ϕ2

= ϕCEL,
and θ =

1
2 so ϕω

= Ω
1
2
(
ϕCEL, ϕCEL

)
. Consider

the three-agent problem (E, c) = (42, (12, 24, 54)).
Note that the minimal right for agents is m (E, c) =

(0, 0, 6). Since E < θC , ϕω (E, c) = ϕ1 (E, c/2) =

ϕCEL (42, (6, 12, 27)) = (5, 11, 26).
On the other hand, m (E, c) + ϕω

(
E −

∑
i mi (E, c) ,

c − m (E, c)) = (0, 0, 6) + ϕCEL (36, (6, 12, 24)) =

(0, 0, 6) + (4, 10, 22) = (4, 10, 28) ̸= ϕω (E, c), and
thus minimal rights first is not preserved.

(iii) Self-duality. Assume that ϕ1
= ϕ2

= ϕτ , and θ =
1
3 so ϕω

= Ω
1
3 (ϕτ , ϕτ ). Consider the three-agent

problem (E, c) = (36, (12, 24, 36)). Then,

ϕω (E, c) = ϕτ (24, (4, 8, 12)) + ϕτ (12, (8, 16, 24)) =

= (4, 8, 12) + (4, 4, 4) = (8, 12, 16) .

The problem dual to (E, c) is (E, c)d = (C − E, c) =

(36, (12, 24, 36)). Self-duality of ϕω implies that c −

ϕω (C − E, c) = ϕω (E, c). Nevertheless,

c − ϕω (C − E, c) = (12, 24, 36) − (8, 12, 16)
= (4, 12, 20) ̸= (8, 12, 16)
= ϕω (E, c) .

(iv) Composition Up and Composition Down. As Thom-
son (2003) reports, solutions ϕCEA and ϕCEL satisfy
Composition Down and Composition Up. Neverthe-
less ϕτ

= Ω
1
2
(
ϕCEA, ϕCEL

)
does not fulfill these

properties. ■

Remark 4. Note that when comparing both operators, the
piece-wise operator fails to preserve minimal rights first and
self-duality, that are preserved by the convex operator. On the
contrary, consistency is preserved by the piece-wise operator
while it is not preserved by the convex operator. None of them
preserves composition up or down.

3.2. Duality under mixture

A property that has particularly worried to some authors is to
prescribe solutions satisfying self-duality. This is because under
these solutions, the distribution of the estate and the aggregate
83
loss is conducted according to a common criterion. As mentioned
in Thomson (2003) ‘‘the problem of dividing ‘what is available’
and the problem of dividing ‘what is missing’ should be treated
symmetrically’’. The aim of this section is to seed some light about
how our approach of mixing solutions could help to build self-
dual solutions. Here we propose two general results – each one
related to any of the mixtures explored in this paper – allowing
to describe two mixing procedures yielding self-dual solutions.

Related to the convex operator, the next result points out that
it commutes with the dual operator.

Proposition 1. Let ϕ1 and ϕ2 two solutions, and 0 < θ < 1 a
given proportionality factor. Define ϕκ

= Kθ
(
ϕ1, ϕ2

)
. Then

ϕD(κ)
= Kθ

(
ϕD(1), ϕD(2)) .

Proof. Note that, for each given problem (E, c),

ϕD(κ) (E, c) = c − ϕκ (C − E, c) =

= c − ϕ1 (θ (C − E) , θc)
−ϕ2 ((1 − θ) (C − E) , (1 − θ) c) =

=
[
θc − ϕ1 (θ (C − E) , θc)

]
+ [(1 − θ) c

−ϕ2 ((1 − θ) (C − E) , (1 − θ) c)
]

=

= ϕD(1) (θE, θc) + ϕD(2) ((1 − θ) E, (1 − θ) c) =

= Kθ
(
ϕD(1), ϕD(2)

)
(E, c) . ■

Corollary 1. For each solution ϕ1 the convex combination
K1/2

(
ϕ1, ϕD(1)

)
is self-dual.

A parallel analysis for the piece-wise operator yields the fol-
lowing result.

Proposition 2. Let ϕ1 and ϕ2 two solutions, and 0 < θ < 1 a
given proportionality factor. Define ϕω

= Ωθ
(
ϕ1, ϕ2

)
. Then

ϕD(ω)
= Ω1−θ

(
ϕD(2), ϕD(1)) .

Proof. Note that, for any given problem (E, c), ϕD(ω) (E, c) =

c − ϕω (C − E, c). Let us consider the following two cases, that
exhaust all the possibilities.

(i) C − E ≤ θC . Then,

ϕD(ω) (E, c) = c − ϕω (C − E, c) = c − ϕ1 (C − E, θc) .

Since ϕ1 (C − E, θc) = θc − ϕD(1) (E − (1 − θ) C, θc), it
follows that

ϕD(ω) (E, c) = (1 − θ) c + ϕD(1) (E − (1 − θ) C, θc) =

= ϕD(2) ((1 − θ) C, (1 − θ) c) + ϕD(1) (E − (1 − θ) C, θc) .

(ii) C − E > θC . Then,

ϕD(ω) (E, c) = c − ϕω (C − E, c) =

= c −
[
θc + ϕ2 ((1 − θ) C − E, (1 − θ) c)

]
=

= (1 − θ) c − ϕ2 ((1 − θ) C − E, (1 − θ) c) =

= ϕD(2) (E, (1 − θ) c) . ■

orollary 2. For each solution ϕ1, the piece-wise combination
1/2
(
ϕ1, ϕD(1)

)
satisfies self-duality.

emark 5. Proposition 2 is useful to compute the dual solution for
ach one belonging to the TAL family (Moreno-Ternero and Villar,
006). Since ϕD(CEA) = ϕCEL and ϕD(CEL) = ϕCEA, for each 0 < θ < 1,
D(θτ ) = ϕ(1−θ)τ . Note that, in particular, this implies that the
nique self-dual solution belonging to the TAL family is the Talmud
olution.
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. An accurate selection of θ and two solutions

The analysis performed in Section 3 assumes that the mixing
arameter θ is exogenously determined. Nevertheless, when the
election of a specific solution is influenced by the claimants’
pinion, a conflict of interest often occurs. Note that, for a given
roblem, agents with a low claim prefer the adoption of the
EA rather than the CEL solution. On the contrary, agents with
he highest claim prefer to be rationed according to the CEL
ather than adopting the CEA as a way to solve the problem.
his suggests that the selection of θ , when mixing these two
anonical solutions, needs to be related to the specific problem
o be solved. This is why we propose a solution obtained by
ixing the CEA and its dual solution, the CEL. In this mixture the
eight associated to the CEA solution, for each given problem,

s its compromising degree, which is very related to the relative
evel of rationing that agents should suffer.

efinition 4. For a given problem P = (E, c) we define its
compromising degree as the ratio

θ (E, c) ≡ θP
=

E
C
.

Note that for each given problem P = (E, c), 0 ≤ θP
≤ 1.

The lower conflict appears the higher E is. In addition the ability
to reach an agents’ compromise to accept a solution is higher for
low levels of conflict. The mixture of two solutions according to
the compromising degree yields the description of the following
compromise composition.

Definition 5. The Compromise Piece-wise Composition of
two solutions, say ϕ1 and ϕ2, is the solution for claim problems
associating to each problem P = (E, c) the awards distribution

ΩP (ϕ1, ϕ2) (E, c) = ϕ1 (min
{
E, θPC

}
, θPc

)
+ ϕ2 (max

{
0, E − θPC

}
,
(
1 − θP) c) .

efinition 6. The Compromise Convex Composition of two
olutions, say ϕ1 and ϕ2, is the solution for claim problems
ssociating to each problem P = (E, c) the awards distribution
P (ϕ1, ϕ2) (E, c) = ϕ1 (θPE, θPc

)
+ ϕ2 ((1 − θP) E,

(
1 − θP) c) .

emark 6. The difference regarding the piece-wise and convex
ompositions is that the parameter θ depends on each particular
roblem. Then, for problems with low conflict, θP

≈ 1, the
roposal made by ϕ1 has the main effect in the compromise
olution, whereas for problems with high conflict, θP

≈ 0, the
mportant proposal is the one made by ϕ2. It is clear that an
lternative to the use of θP is to measure the relative losses in
problem; that is, to define

(E, c) ≡ σ P
=

C − E
C

.

his reverses the effect of ϕ1 and ϕ2 in low and high conflict
problems. Most of the results we obtain here can be replicated
by replacing θP by σ P.

Just for illustrative purposes, Example 1 describes the estate
distribution for two related problems, according to some relevant
solutions, when we consider ϕ1

= ϕCEA and ϕ2
= ϕCEL.

Example 1. Consider two four-agent instances differing only in
the estate to be distributed. Agents’ claims are c =

750, 1500, 2250, 3000), and thus C = 7500. The first problem
refers to the case where E = 5400 and thus it exhibits a high
value of θP

= 0.72. The second one corresponds to situations
84
Table 3
Comparison of solutions.
(a) High θP (low conflict).

ϕCEA ϕCEL ϕτ ΩP
(
ϕCEA, ϕCEL

)
KP
(
ϕCEA, ϕCEL

)
ϕ1 750 225 375 540 603
ϕ2 1500 975 925 1080 1353
ϕ3 1575 1725 1675 1620 1617
ϕ4 1575 2475 2425 2160 1827

(b) Low θP (high conflict).

ϕCEA ϕCEL ϕτ ΩP
(
ϕCEA, ϕCEL

)
KP
(
ϕCEA, ϕCEL

)
ϕ1 525 0 375 210 147
ϕ2 525 0 575 420 147
ϕ3 525 675 575 630 633
ϕ4 525 1425 575 840 1173

with strong rationing needed. We assume that the estate is
E ′

= 2100, and thus θP′

= 0.28. Table 3 describes, for each of
the above problems, its CEA, CEL, Talmud, ΩP

(
ϕCEA, ϕCEL

)
and

KP
(
ϕCEA, ϕCEL

)
solutions.

If we observe the results in Example 1, in both cases the pro-
posal made by the Compromise Piece-wise Composition,
ΩP

(
ϕCEA, ϕCEL

)
, coincides with the celebrated Proportional solu-

tion described in Eq. (2). Our next result shows that this is always
true, for any pair of solutions we combine.

Proposition 3. Let ϕ1 and ϕ2 two solutions for claims problems.
Then, for each problem P = (E, c),

ΩP (ϕ1, ϕ2) (E, c) = ϕP (E, c) .

Proof. Note that, by construction, for each problem P = (E, c),
its compromising degree θP satisfies that E =

∑
i∈N θPci. This

implies that for each problem (E, c),

ΩP
(
ϕ1, ϕ2

)
(E, c) = ϕ1

(
min

{
E, θPC

}
, θPc

)
+ϕ2

(
max

{
0, E − θPC

}
,
(
1 − θP

)
c
)

=

= ϕ1
(
θPC, θPc

)
+ ϕ2

(
0,
(
1 − θP

)
c
)

= θPc = ϕP (E, c) . ■

The description above is useful to provide a new interpre-
tation of the Proportional solution as a compromising solution
for claims problems. For the sake of completeness we introduce
the following table extracted from Thomson (2019) summarizing
how the ΩP

(
ϕ1, ϕ2

)
solution behaves related to the properties

highlighted in Section 3 (see Table 4).

Remark 7. Note that the conclusions of Proposition 3 are not still
valid when we remplace θP by parameter σ P. In this case, we
obtain

Υ P (ϕ1, ϕ2)
= ϕ1 (min

{
E, σ PC

}
, σ Pc

)
+ ϕ2 (max

{
0, E − σ PC

}
,
(
1 − σ P) c) =

=

⎧⎨⎩
ϕ1
(
E, σ Pc

)
if E ≤

C
2

σ Pc + ϕ2
(
2E − C,

(
1 − σ P

)
c
)

if E ≥
C
2

When applied to CEA and CEL solutions, this proposal has the
flavor of the Talmud solution.

The convex mixture of the CEA and CEL solutions according to
the compromising degree yields the description of the following
compromise solution.
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Table 4
Properties satisfied by the ΩP

(
ϕ1, ϕ2

)
solution: true (�), false (×).

Invariance under Claims Truncation × Order Preservation � Anonymity �
Continuity � Claim Monotonicity � Resource Monotonic �
Minimal Rights First × Composition Down � Composition Up �
Self Duality � Population Monotonic � Consistency �
λ

θ

c
a
h

T

ϕ

w

2
w
p
ϕ

w
1

Definition 7. The Compromise Convex Solution, CC in short, is
he solution for claim problems ϕCC associating to each problem
P = (E, c) the awards distribution

ϕCC (E, c) = ϕCEA (θPE, θPc
)
+ ϕCEL ((1 − θP) E,

(
1 − θP) c) . (12)

The remainder of this section is devoted to explore how the
CC solution behaves from a normative viewpoint.

4.1. The compromise convex solution and its reverse

We now concentrate on the analysis of which, among the
standard properties, are fulfilled by the CC solution. Note that
some of the properties satisfied by both the CEA and CEL solutions
might not be preserved because θ is endogenously determined.
This affects particularly to claim monotonicity. The two canonical
solutions (i.e., CEA and CEL) are claim monotonic. Nevertheless,
when comparing two problems differing uniquely in the claim
of an agent, it might be the case that such an agent is worse
off when his claim is high, in comparison with the case where
it was lower. This only happens in problems P = (E, c) whose
ssociated parameter θP is low, and thus a collective compromise

is hardly reachable.
Table 5 summarizes the statement of Theorem 2 that explores

which properties are satisfied by the CC solution.

Theorem 2. The Compromise Convex solution ϕCC fulfills the
following properties: Order preservation, anonymity, continuity,
resource monotonicity, self-duality and population monotonicity.
For problems P = (E, c) such that θP > 0.5, this solution is claim
onotonic too. Invariance under claims truncation, minimal rights

irst, composition down, composition up and consistency are not
ulfilled by ϕCC . Finally, for problems P = (E, c) such that θP < 0.5,
this solution fails to fulfill claim monotonicity.

Proof. First, note that both the CEA and CEL solutions fulfill
order preservation, anonymity and continuity, and the parameter
θ continuously varies with E and c. Therefore ϕCC also satisfies
the three properties above.

To explore the behavior of ϕCC , let λ be the unique value
satisfying

∑
h∈N min {λ, ch} = E. Note that such λ is essential to

compute, for each agent i, ϕCEA
i (E, c) = min {λ, ci}. Similarly, let

µ be the unique value for which
∑

h∈N max {0, ch − µ} = E. In
this case, parameter µ is essential to compute, for each agent i,
ϕCEL
i (E, c) = max {0, ci − µ}. Then,

(a) For θP > 0.5, by Theorem 1 in Alcalde and Peris (2017), λ >
µ, which determines the explicit form of the CC solution:

ϕCC
i (E, c)

=

⎧⎪⎨⎪⎩
θPci if ci ≤ µ

θPci +
[
1 − θP

]
(ci − µ) = ci −

[
1 − θP

]
µ if µ < ci <

θPλ +
[
1 − θP

]
(ci − µ) if λ ≤ ci

(b) If θP < 0.5, by Theorem 2 in Alcalde and Peris (2017), λ < µ,
and in this case:

ϕCC
i (E, c) =

⎧⎪⎨⎪⎩
θPci if ci ≤ λ

θPλ if λ < ci < µ

θPλ +
[
1 − θP

]
(ci − µ) if µ ≤ ci
85
(c) Finally, if θP
= 0.5, by Theorem 3 in Alcalde and Peris

(2017), λ = µ, and in this case ϕCC
i (E, c) =

1
2 ci, for all i ∈ N .

To show that ϕCC fulfills claim monotonicity for problems with
P > 0.5, consider a given problem P = (E, c) and let θP be its
ompromising degree. If P′

=
(
E, c ′

)
is such that c ′

i = ci + εi > ci
nd c ′

j = cj, for all j ∈ N , j ̸= i, only one of the following situations
olds7:

(i) ci ≤ µ. Then,

ϕCC
i (E, c) = θPci =

E
C
ci ≤

E
C + εi

(ci + εi) = θP′

c ′

i ≤ ϕCC
i

(
E, c ′

)
.

(ii) µ < ci < λ. Then,

ϕCC
i (E, c) = ci −

[
1 − θP]µ ≤ (ci + εi) −

[
1 − θP′

]
(µ + εi)

≤ ϕCC
i

(
E, c ′

)
.

(iii) λ ≤ ci. Then,

ϕCC
i (E, c) = θPλ +

[
1 − θP] (ci − µ) ≤

≤ θP′

λ +

[
1 − θP′

]
((ci + εi) − (µ + εi)) ≤ ϕCC

i

(
E, c ′

)
.

So, in any case, the convex compromise solution ϕCC fulfills claim
monotonicity for problems such that θP > 0.5.

The intuition why, for low values of θP, claim monotonicity
fails can be explained as follows. For θP

≤ 0.5, according to
Theorem 2 in Alcalde and Peris (2017), λ ≤ µ. Then, for some
problem there should be an agent i such that λ < ci ≤ µ. This
agent would prefer to have a claim c ′

i such that λ ≤ c ′

i < ci ≤ µ.
his is because
CEA
i (E, c) = ϕCEA

i

(
E, c ′

)
= λ > 0, ϕCEL

i (E, c) = ϕCEL
i

(
E, c ′

)
= 0,

hile θP < θP′

.
To illustrate the above situation, reconsider the ‘‘low compro-

mising degree’’ instance described in Example 1, in which E =

100 and c = (750, 1500, 2250, 3000). In this case λ = 525,
hile µ = 1575. Now consider that c2 drops to c ′

2 = 1000. For
roblem

(
E, c ′

)
= (2100, (7500, 1500, 2250, 3000)) we have that

CEA
2

(
E, c ′

)
= ϕCEA

2 (E, c) = 525, ϕCEL
2

(
E, c ′

)
= ϕCEL

2

(
E, c ′

)
= 0,

hile θP′

= 0.3 > 0.28 = θP. Therefore, ϕCC
2

(
E, c ′

)
= 157.5 >

47 = ϕCC
2 (E, c).

To prove resource monotonicity note that the Compromise
Convex solution can be rewritten as:

ϕCC
i (E, c) = θP min {ci, λ} +

(
1 − θP)max {0, ci − µ} . (13)

Given two claims problems P = (E, c) and P′
=
(
E ′, c

)
, E < E ′

≤

C , it is clear that λ < λ′, whereas µ > µ′. Now, for each agent
i ∈ N , we consider the following situations, that exhaust all the
possibilities.

(1) θP
≥ 0.5

We know that in this case λ ≥ µ and then, if

(i) ci ≤ µ ≤ λ, ϕCC
i (E, c) = θPci ≤ θP′

ci ≤ ϕCC
i (E ′, c).

7 Note that, regarding problems P and P′ , the values defining ϕCEA and ϕCEL

fulfill λ = λ′ and µ < µ′ .
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Table 5
Properties fulfilled by ϕCC : true (�), false (×), only for problems P = (E, c) with θP > 0.5 (⊕).
Invariance under Claims Truncation × Order Preservation � Anonymity �
Continuity � Claim Monotonicity ⊕ Resource Monotonic �
Minimal Rights First × Composition Down × Composition Up ×

Self Duality � Population Monotonic � Consistency ×
.

(ii) µ < ci ≤ λ, ϕCC
i (E, c) = θPci +

(
1 − θP

)
(ci − µ) =

= ci −
(
1 − θP

)
µ ≤ ci −

(
1 − θP′

)
µ′

≤ ϕCC
i (E ′, c).

(iii) µ ≤ λ < ci, ϕCC
i (E, c) = θPλ +

(
1 − θP′

)
(ci − µ) ≤

≤ θP′

λ′
+
(
1 − θP

) (
ci − µ′

)
≤ ϕCC

i (E ′, c).

(2) θP < 0.5
We know that in this case λ < µ and by using an analogous
reasoning as in case (1) we obtain the required result.

To prove that ϕCC is self-dual, let ϕD(CC) the solution dual to
CC . Then, for each problem (E, c), ϕD(CC) (E, c) = c − ϕCC (L, c).
aking into account that for each problem P = (E, c), θP

=

− θPd , where Pd
=
(∑n

h=1 ch − E, c
)

= (L, c),

D(CC) (E, c) = c − ϕCC (L, c) = c − θPdϕCEA (L, c) −

[
1 − θPd

]
ϕCEL (L, c) =

= θPd
[
c − ϕCEA (L, c)

]
+

[
1 − θPd

] [
c − ϕCEL (L, c)

]
=

=
[
1 − θP

] [
c − ϕCEA (L, c)

]
+ θP

[
c − ϕCEL (L, c)

]
=

=
[
1 − θP

]
ϕCEL (E, c) + θPϕCEA (E, c) = ϕCC (E, c) ,

nd thus ϕCC is self-dual.
To prove that ϕCC is population monotonic consider a given

et of agents N and a problem P = (E, c) for this population.
ow assume that N is enlarged by incorporating an additional
gent i /∈ N with claim ci > 0. This allows to study the ‘‘enlarged
roblem’’ involving agents in N+

= N ∪ {i} facing the problem
+

=
(
E, c+

)
= (E, (c, ci)). Note that for E = 0, population

onotonicity is trivially fulfilled. Thus, assume E > 0, which
mplies that

P+

=
E∑

j∈N+ cj
<

E∑
j∈N cj

= θP. (14)

et µ+ be the unique solution to
∑

j∈N+ max
{
0, cj − µ+

}
= E,

hile λ+ denotes the unique solution to
∑

j∈N+ min
{
cj, λ+

}
= E.

Let us fix agent j ∈ N . Note again that when cj = 0,
ϕCC
j (E, c) = ϕCC

j

(
E, c+

)
= 0. Therefore we concentrate on the

case where cj > 0. Assume that θP+

≥ 0.5. Then, by (14), θP >

θP+

≥ 0.5. Moreover it is also fulfilled that µ ≤ µ+
≤ λ+

≤ λ.
Consider the following cases, that exhaust all the possibilities.

(a) cj ≤ µ. Then, ϕCC
j (E, c) = θPcj > θP+

cj = ϕCC
j

(
E, c+

)
.

(b) µ < cj ≤ µ+. Then ϕCC
j

(
E, c+

)
= θP+

cj < θPcj ≤

θPcj +
[
1 − θP

] (
cj − µ

)
= ϕCC

j (E, c).

(c) µ+ < cj ≤ λ+. Then ϕCC
j

(
E, c+

)
= cj −

[
1 − θP+

]
µ+ <

cj −
[
1 − θP

]
µ = ϕCC

j (E, c).
(d) λ+ < cj ≤ λ. Then, ϕCC

j

(
E, c+

)
= θP+

λ+
+[

1 − θP+
] (

cj − µ+
)

= cj−
[
1 − θP+

]
µ+

+
(
λ+

− cj
)
θP+

<

cj −
[
1 − θP+

]
µ+

≤ cj −
[
1 − θP

]
µ = ϕCC

j (E, c).

(e) λ < cj. Then, ϕCC
j

(
E, c+

)
= θP+

λ+
+

[
1 − θP+

] (
cj − µ+

)
<

θPλ +
[
1 − θP

] (
cj − µ

)
= ϕCC

j (E, c).

ow, if we assume that θP
≤ 0.5, we obtain that µ ≥ µ+

≥ λ+
≥

λ. Therefore we can consider again the five cases above yielding

the desired result.
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Finally assume that θP+

< 0.5 < θP. In this case we have four
possible configurations for the values of µ, µ+, λ and λ+:

(i) µ ≤ λ+ < µ+
≤ λ

(ii) µ ≤ λ+ < λ < µ+

(iii) λ+ < µ < µ+
≤ λ

(iv) λ+ < µ < λ < µ+

For each of this configurations we can consider again the five
possible cases for the position of cj, yielding the desired result.

We now show that ϕCC does not satisfy invariance under
claims truncation. Let us consider the claims problem (E, c) =

(600, (480, 720, 1200)). Then, ϕCC (E, c) = (50, 95, 455). Never-
theless, as in the truncated claims problem (E, c̄) =

(600, (480, 600, 600)) agents 2 and 3 have the same claim, they
are allocated the same amount, which differs from the proposal
for the initial problem.

To see that ϕCC does not satisfy minimal rights first, let us con-
sider the claims problem (E, c) = (5100, (750, 1500, 2250, 3000))
In this case m (E, c) = (0, 0, 0, 600). Therefore, ϕCC (E, c) =

(558, 1274, 1514, 1754), which differs from

m (E, c) + ϕCC
(
E −

∑
i∈N mi (E, c) , c − m (E, c)

)
=

(0, 0, 0, 600) + (541.3, 1128.3, 1389.1, 1441.3)
= (541.3, 1128.3, 1389.1, 2041.3) .

To show that ϕCC does not meet neither composition down
nor composition up, we consider the ‘‘high compromising degree’’
instance described in Example 1, in which E = 2100 and c =

(750, 1500, 2250, 3000). Assume a drop in the estate from the
initial E = 2100 to E ′

= 1800. Composition down implies that
ϕCC

(
E ′, c

)
= ϕCC

(
E ′, ϕCC (E, c)

)
. Nevertheless, as ϕCC (E, c) =

(147, 147, 633, 1173),

ϕCC
(
E ′, c

)
= ϕCC (1800, (750, 1500, 2250, 3000))
= (108, 108, 507, 1077) ̸=

̸= (136.3, 136.3, 622.3, 905.1)
= ϕCC (1800, (147, 147, 633, 1173))
= ϕCC

(
E ′, ϕCC (E, c)

)
.

Now, suppose that the estate increases from the initial E =

2100 to E ′′
= 2400. Composition up implies that ϕCC

(
E ′′, c

)
=

ϕCC (E, c) + ϕCC
(
E ′′

− E, c − ϕCC (E, c)
)
. Nevertheless,

ϕCC
(
E ′′, c

)
= ϕCC (2400, (750, 1500, 2250, 3000))
= (192, 226, 736, 1246) ̸=

̸= (147, 147, 633, 1173)
+ (4.16, 4.16, 46.66, 245) =

= ϕCC (2100, (750, 1500, 2250, 3000))
+ϕCC (300, (603, 1353, 1617, 1827)) .

To conclude this proof we show that ϕCC fails to be consistent.
Reconsider the instance described in Example 1, in which E =

2100 and c = (750, 1500, 2250, 3000). In this case ϕCC (E, c) =

(147, 147, 633, 1173). Note that ϕCC
1 (E, c) + ϕCC

4 (E, c) = 1320.
Now consider the two-agent problem

(
E ′, c ′

)
= (1320, (750,

3000)) involving creditors 1 and 4. Consistency implies that
{ } CC CC

(
′ ′

)

for each i ∈ 1, 4 , ϕi (E, c) = ϕi E , c . Nevertheless,
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ϕ
CC
1 (E, c) ̸= 232.32 = ϕCC

1

(
E ′, c ′

)
; and ϕCC

4 (E, c) ̸= 1087.68 =

ϕCC
4

(
E ′, c ′

)
. ■

For the sake of completeness, one might be interested in
exploring the solution reversing the roles of the CEA and the CEL
in the Compromise Convex solution. In such a case we obtain a
new solution that is described as

ϕRCC (E, c) = ϕCEL (θPE, θPc
)
+ ϕCEA ((1 − θP) E,

(
1 − θP) c) .

In this case, it is immediate that by using σ P instead of θP in the
CC solution, we obtain the same proposal; that is,

ϕRCC (E, c) = ϕCEA (σ PE, σ Pc
)
+ ϕCEL ((1 − σ P) E,

(
1 − σ P) c) .

The normative analysis of this Reverse Compromise Convex so-
lution runs in an analogous way as the one we did with the CC
solution.

5. Concluding remarks

Several solutions for claims problems share a common prim-
itive description. Any given problem is split into two different
subproblems, named the main and the secondary problems re-
spectively. Then, each subproblem is solved according to some
equity guidelines, and the solution to the initial problem comes
from the addition of the solutions to the two subproblems.

A common oversight exhibited by all these solutions comes
from the fact that the way in which the two subproblems are
generated follows a rigid formula, and thus it is not sensitive
enough to the specific data of the problem. Our approach comes
from considering an endogenous way to split the initial problem
so that the magnitude of each subproblem captures the difficulty
of finding a consensus about how to split the available amount
of resource among the agents. This approach allows to provide
a new interpretation to the Proportional solution as an agents’
compromise from piece-wise mixing solutions.

An alternative solution we propose is the Compromise Convex
solution providing an equitable distribution of the resources,
which is sensitive to the characteristics of the particular problem
being solved.

Appendix. Standard properties of solutions for claims prob-
lems

For the sake of completeness, this appendix is devoted to
describe the main properties used along the literature to justify
the adoption of certain solutions. These properties appear in
alphabetical order.

Let us consider a given solution for claims problem, say ϕ.
Solution ϕ satisfies:

(a) Anonymity if for each problem (E, c), agent i and any
permutation π :N → N , ϕi (E, c) = ϕπ(i) (E, π (c)), where
π (c) =

(
cπ(1), . . . , cπ(i), . . . , cπ(n)

)
.

(b) Claim Monotonicity if for any two problems (E, c) and(
E, c ′

)
such that ci < c ′

i , whereas cj = c ′

j for each j ̸= i,
ϕi (E, c) ≤ ϕi

(
E, c ′

)
.
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(c) Composition Down if for each problem (E, c), and any
positive scalar 0 ≤ E ′ < E, ϕ

(
E ′, c

)
= ϕ

(
E ′, ϕ (E, c)

)
.

(d) Composition Up if for any two problems (E, c) and
(
E ′, c

)
with E < E ′, ϕ

(
E ′, c

)
= ϕ (E, c) + ϕ

(
E ′

− E, c − ϕ (E, c)
)
.

(e) Consistency if for each problem (E, c) and any subset of
agents S ⊆ N ,

(ϕ (E, c))S = ϕ

(∑
i∈S

ϕi (E, c) , cS

)
.

(f) Continuity if for any converging succession of problems{(
Et , ct

)}
→ (E, c), the succession of solutions

{
ϕ
(
Et , ct

)}
converges to ϕ (E, c).

(g) Invariance under Claims Truncation if for each problem
(E, c), ϕ (E, c) = ϕ (E, c̄), where c̄i = min {ci, E}.

(h) Minimal Rights First if for each problem (E, c) and any
agent i, ϕi (E, c) = mi (E, c) + ϕi

(
E −

∑n
j=1 mj (E, c) , c−

m (E, c)), where for each agent i, his minimal right is
defined as mi (E, c) = max

{
0, E −

∑
j̸=i cj

}
.

(i) Order Preservation if for each problem (E, c) and any two
agents, say i and j, ci ≤ cj implies that ϕi (E, c) ≤ ϕj (E, c).

(j) Population Monotonicity if for any set of agents N , agent
i /∈ N and problems (E, c) and

(
E, c+

)
, where c+

= (c, ci),
ϕj
(
E, c+

)
≤ ϕj (E, c) for all j ∈ N .

(k) Resource Monotonicity if for any two problems (E, c) and(
E ′, c

)
such that E < E ′, ϕi (E, c) ≤ ϕi

(
E ′, c

)
for each agent

i.
(l) Self-duality if for each problem (E, c), ϕ (E, c) = c −

ϕ (C − E, c).
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