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Recently, it has been claimed by J. Harada [Phys. Rev. D 103, L121502 (2021) that the Cotton tensor can
describe the effects of gravity beyond general relativity. In this short comment, we show that the Cotton
tensor is already present in general relativity. Moreover, we show that Harada’s proposal is equivalent to
general relativity concerning the equation of motion both for the sources and for the trace-free part of the
curvature. In essence, what remains completely free in Harada’s theory are the field equations relating the
part of the curvature which is locally determined by the energy-momentum distribution.
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Harada has recently obtained [1] the following field
equations for gravity:

Cνρσ ¼ 16πG∇μTμ
νρσ; ð1Þ

where Cνρσ stands for the Cotton tensor, defined as

Cνρσ ¼ ∇ρRνσ −∇σRνρ −
1

6
ðgνσ∇ρR − gνρ∇σRÞ ð2Þ

and

Tμνρσ ≡ 1

2
ðgμνTρσ − gνρTμσ − gμσTνρ þ gνσTμρÞ

−
1

6
ðgμρgνσ − gνρgμσÞT; ð3Þ

where Tμν is the energy-momentum tensor.
As noted by the author, energy-momentum conservation

is guaranteed, as expressed by

gνσCνρσ ¼ ∇μGμ
ρ ¼ 16πG∇μTμ

ρ ¼ 0; ð4Þ

where Gμν stands for the Einstein tensor.
First of all, note that Eq. (1) can be stated as

Cνρσ ¼ 16πG

�
Tν½σ;ρ� −

1

3
gν½σT;ρ�

�
; ð5Þ

by direct substitution of Eq. (3) into Eq. (1).
Let us now turn to general relativity. The well-known

decomposition of the Riemann tensor into its components
that are irreducible with respect to the Lorentz group is

Rμνρσ ¼ Cμνρσ þ Eμνρσ þ
R
12

gμνρσ; ð6Þ

where Cμνρσ is the Weyl tensor, Eμνρσ ≡ gμνλ½ρSλσ�, Sλσ ≡
Rλ

σ − R
4
δλσ and gμνρσ ≡ 2gμ½ρgσ�ν.

If we insert Eq. (6) into the Bianchi identities, written as

∇σ
�R�μνρσ ¼ 0; ð7Þ

(� denotes the Hodge dual), we get

∇σCμνρσ ¼ ∇σEμνρσ −
gμνρσ

12
R;σ: ð8Þ

Finally, using Einstein’s field equations,

Rμν −
R
2
gμν ¼ 8πGTμν; ð9Þ

we arrive to [2]

Cνρσ ¼ 16πG

�
Tν½σ;ρ� −

1

3
gν½σT;ρ�

�
; ð10Þ

which are identical to Harada’s field equations.
At this point, some comments are in order: (i) The

equations of motion for the sources are ∇μTμ
ν ¼ 0 in both

Harada and Einstein’s cases. (ii) The field equations for the
Cotton tensor giving that part of the curvature at a point that
depends on the energy-momentum distribution at other
points are given by Eq. (5) in both Harada and Einstein’s
cases, and importantly, (iii) the part of the curvature which
is locally determined by the energy-momentum distribution
by Einstein’s equations does not have an equivalent in
Harada’s approach. Therefore, there are no equations
relating the part of the curvature which is locally*pedro.bargueno@ua.es
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determined by the energy-momentum distribution in
Harada’s model.
Regarding this last point, we make the following

clarification. In Ref. [1], the author assumes Einstein’s
field equations (without cosmological constant) to be valid.
Specifically, the author states that any solution of the
Einstein equations satisfies the new field equations. Even
more, he states that Eq. (1) has other solutions which are
not solutions of the Einstein equations, and therefore, the
new field equations have more information than general
relativity. We strongly disagree with the author regarding
this last fact. As we have shown before, the new field
equations are identical to that of general relativity with the
exception of the absence of a field equation relating the
curvature which is locally determined by Tμν. Therefore, in
this sense, the new field equations have less information
than those of general relativity.
We would like to conclude highlighting some points:
(i) The emergence of the Cotton tensor is already

present in general relativity. In fact, it can be seen
from Eq. (10) that the nonlocal part of the vacuum
equations of general relativity can be stated as
Cμνρ ¼ 0, as in Harada’s theory. However, Einstein’s
gravity also demands the local vacuum equations,
Rμν ¼ 0, to be satisfied. Therefore, the spherically
symmetric solution reported by Harada in [1] is not
allowed in Einstein’s theory essentially due to the
local vacuum equations (Ricci flatness).

(ii) Although Harada’s attempt of finding some gravi-
tational field equations to be written a la Maxwell is
very elegant, the rhs of Harada’s gravitational field
equations [Eq. (1)] is nonlocal, and consequently, no

Newtonian limit can be rigorously extracted at the
level of the field equations (of course, this can be
done by working with a particular solution, as
worked out in [1]). In fact, the Newtonian limit of
general relativity is reached by using Einstein’s
equations because only Ri

0j0 ¼ ∂i∂jϕ (i ¼ 1, 2, 3
and ϕ is the Newtonian potential) survives in this
limit (contracting these equations, we arrive to
R00 ¼ Δϕ). Therefore, the nonlocal Maxwell-like
equations for the Weyl tensor are not useful to study
the aforementioned limit.

(iii) Concerning the search for Maxwell-like gravita-
tional field equations, it must be noted that Harada’s
equations (which I remark again are exactly the
same as Einstein’s equations for the evolution of the
Weyl or Cotton tensors) can be explicitly written in
Maxwell-like form as

∇σCμνρσ ¼ 16πGJμνρ; ð11Þ
where the current, J, can be formed by using
Eq. (10) (an explicit expression can be found in [3]).

As we have shown, Harada’s theory is equivalent to
general relativity concerning the equation of motion both
for the sources and for the trace-free part of the curvature.
In essence, what remains completely free in Harada’s
theory are the field equations relating the part of the
curvature which is locally determined by the energy-
momentum distribution.

P. B. acknowledges Anaís, Lucía, Inés, and Ana for
continuous support. The author is funded by the Beatriz
Galindo Contract No. BEAGAL 18/00207 (Spain).

[1] J. Harada, Phys. Rev. D 103, L121502 (2021).
[2] W. Kundt and M. Trmper, Republication of: Contributions to

the theory of gravitational radiation fields. Exact solutions of
the field equations of the general theory of relativity V., Gen.
Relativ. Gravit. 48, 44 (2016).

[3] S. W. Hawking and G. F. R. Ellis, in The Large
Scale Structure of Space-Time (Cambridge University
Press, Cambridge, England, 1973), See Eq. 4.28,
pp. 85.

PEDRO BARGUEÑO PHYS. REV. D 104, 088501 (2021)

088501-2

https://doi.org/10.1103/PhysRevD.103.L121502
https://doi.org/10.1007/s10714-015-2009-y
https://doi.org/10.1007/s10714-015-2009-y

