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Abstract 

We derive a new equation of state (EOS) for any non-polar, polar or quantum gas and 

any intermolecular potential through an approximation of the radial distribution 

function based on the Ornstein-Zernike equation. Such EOS is applied to estimate the 

virial coefficients B and C using two approaches. On one hand, B and C are directly 

computed from the proposed EOS considering the Mie potential for neon and water 

steam, which leads to values in very good agreement with the experimental data. On the 

other hand, the proposed EOS is applied in the context of a thermodynamic model to 

estimate B and C by fitting the simulated chaotic PvT data at an almost constant 

temperature. Such estimations of B and C are compared with the experimental values, 

which allows elucidating if B and C have a significant contribution on the virial 

equation at the considered pressures and temperatures. This methodology is applied to 

nitrogen and helium4 considering the intermolecular potentials of Mie, Morse, Kihara 

and Buckingham. For the considered gases and intermolecular potentials, the calculated 

values of B and C are in very good agreement with experimental data in a wide range of 

pressures and temperatures. 
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1 Introduction 

 

The interacting theory of real gases based on an intermolecular potential with a hard 

core and a weak attractive region is widely recognized as one of the great successes of 

Statistical Mechanics. Two examples of such intermolecular potentials are the Mie (n,m) 

potential and the Lennard-Jones (12.6) potential (LJ), which can be considered as a 

particular case of the Mie potential [1,2]. These potentials have been used to determine 

thermodynamic quantities of real gases, such as, the virial coefficients, internal energy, 

enthalpy, density, Helmholtz free energy and heat capacity [3,4].  

 

Besides the LJ potential, the Stockmayer potential (ST) has been used for polar 

fluids [5,6] whereas the Morse potential (MO) was initially used to determine the oscillating 

states and energies of a quantum oscillator [7]. In fact, there is a close relationship between 

the LJ and MO potentials as shown in Ref [8]. On the other hand, the Kihara potential 

(KI) modifies the hard core of the LJ potential and can be applied to non-spherical 

molecules that can be treated as convex rigid bodies [8,9]. Nonetheless, the KI potential 

can also be used assuming that the molecules have a spherical nucleus (as it will be 

done in this paper) [10]. Another extension of the LJ potential is the Buckingham 

potential (BU or Exp-6), which has been used with non-polar gases but modifying the 

molecule hard core [10], [11]. 

 

 In the study of intermolecular potentials, it is assumed that the potential energy 

is a pairwise sum, i.e., the potential is equal to the sum of the pair of molecule potentials 

V(rij), being rij the distance between molecules i and j [2], [12]. The radial (or pair) 

distribution function (RDF)  is obtained by dividing the local densities  at 

various distances r of the molecule j by the bulk average density  at a given 

temperature T. The experimental determination of  is rather cumbersome and 

has been achieved from X-ray and neutron scattering experiments [13]. The pairwise 

sum assumption together with the knowledge of  allows to establish the 

equations for the pressure and internal energy, from which all the thermodynamic 

properties of a given gas can be deduced [14,15]. 

 

 In this paper we derive theoretically an approximate RDF to obtain a general 

equation of state (EOS) that can be used with any real gas and intermolecular potential. 
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Such general EOS is applied to estimate the virial coefficients B and C using two 

approaches. On one hand, B and C are directly computed from the proposed EOS for 

neon and water steam considering the Mie potential, which leads to results in very good 

agreement with the experimental data. On the other hand, we consider a thermodynamic 

model aimed to achieve a chaotic gas dynamic to estimate B and C [16], which will be 

applied to nitrogen and helium4 using the Mie, Morse, Kihara and Buckingham 

potentials. The parameters of the thermodynamic model are defined in agreement with 

well stablished commercial or industrial devices [17-19]. The values of B and C 

estimated from the model are compared with the experimental data, which allows 

elucidating if B and C have a significant contribution on the virial equation at the 

considered pressures and temperatures. The estimated values of B and C are in very 

good agreement with experimental data in wide ranges of pressures and temperatures. 

 

The thermodynamic model considers a mechanical subsystem which includes an 

input valve [20-21], a flow controller and pressure probe as well as a thermal subsystem 

formed by another flow controller, a heating-cooling coil and an accumulator vessel. 

The gas flow rate in the input valve is assumed to be isentropic, whereas the density, the 

heat capacity at constant volume and the pressure are calculated from the internal 

energy equations and the proposed equation of state, which depend on V(rij) and the 

RDF [16], [22], [23]. 

 

For the calculation of the second virial coefficient B, the quantum corrections 

will be included for neon and helium4, whereas dipole-dipole and quadrupole-

quadrupole interactions will be considered for water steam and nitrogen respectively 

[24,25]. In addition, the gas polarization will be included by considering an 

approximation of the Axilrod-Teller-Muto potential [26,27] (which accounts three-body 

interactions) in which the molecules are at the vertices of an equilateral triangle. Other 

treatments for the polarization can be found in Refs [2], [15] and [28-30], whereas the 

background of three-body interactions between dipoles and quadrupoles can be found in 

Refs [29], [30] and references contained therein. 

 

The effect of the intermolecular potential in the calculation of C could be also  

analyzed from the perturbation theory by using a hard-sphere system as a reference 

system (unperturbed system) and an additional Lennard-Jones potential (perturbed 
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system) to obtain an equivalent potential formed by a hard-sphere potential with a 

temperature dependent diameter. For details see Ref [31] and the papers cited therein. In 

this paper we use an approximation of the radial distribution function based on the 

Ornstein-Zernike equation [32], which allows using the internal energy and pressure 

equations for the calculation of the third virial coefficient. 

 

 

2 General equation of state relying on an approximate radial distribution function 

 

 Under the assumption of pairwise additivity for the intermolecular potential, the 

thermodynamic properties of a fluid can be determined according to [14], [15]: 
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where U is the variation of the gas internal energy (J), NA and k are the Avogadro 

number (mol-1) and Boltzmann constant (in J/K) respectively, M is the molecular mass, 

u(r,T) is the intermolecular potential (J), m is the gas mass density (kg/m3), P is the gas 

pressure (N/m2) and  is the RDF being m AN M the gas density 

(molecules/m3). It should be noted that the intermolecular potential is independent of 

the temperature for non-polar gases and temperature dependent for polar gases (see Eqs 

(A10)-(A13) of the Appendix). Once the intermolecular potential and the RDF are 

established, Eq (2) becomes an equation of state (EOS) that can be used with any real 

gas and intermolecular potential.  

 

In order to establish a RDF we start from the well-known cluster expansion 

method, according to which the values of B(T) and C(T) at each temperature T for a 

given intermolecular potential uij can be calculated according to [14],[15]: 
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where fij is the Mayer function associated to the interaction of two molecules, whereas 

C123(T) and CM (T) are defined as:
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In Eq (5), the terms C123(T) and CM(T) are respectively the contributions to the 

virial coefficient C due to three-molecule interaction and polarization of the molecules, 

being the latter described by the Axilrod-Teller-Muto potential uM [26], [27], [28]:
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where and I0 are respectively the polarizability (m3) and the first ionization potential 

(J), i ( j and k) is the angle subtended at molecule i (j and k) by the other two 

molecules, rij, rik, rjk are the sides of the atomic triangle and is the non-additive 

coefficient. The latter is related to interactions between three dipoles, which can be 

either induced dipoles for non-polar gases or permanent dipoles for polar gases. 

According to Eq (6), the values for expressed in atomic units for argon, krypton and 

xenon are 457.77, 1439.7 and 6606.1 respectively, which are in agreement with the 

respective values 518.3, 1572 and 5573 used in Refs [29], [30]. In the case of neon, 

water steam, nitrogen and helium4 considered in this paper, the values of expressed in 

atomic units are 13.46, 461.46, 939.60 and 2.23 respectively.

By assuming that the three interacting molecules form an equilateral triangle, we 

consider an approximation of Eq (6) given by:
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where fCM is a variable fitting factor that depends on the considered gas and 

intermolecular potential, and it will be positive to represent a repulsive interaction. For 

each gas and intermolecular potential, a first estimation of fCM is obtained by imposing 

that uM(r =  being  and  the Lennard-Jones potential parameters (see Eq (A2)), 

which leads to the estimate (8/11) 9/(I0
3). Such estimate provides the magnitude order 

for fCM, which will then be fitted to reproduce the experimental values of virial 

coefficients B and C. In particular, the values of fCM will imply that the polarization 

effects will be significant at low temperatures but will become negligible at high 

temperatures. For the gases Ne, H2O, N2 and He4 considered in this paper, the first 

estimates (8/11) 9/(I0
3) of fCM are 19.32, 2.32, 8.84 and 15.82 respectively. The low 

value of 2.32 obtained for water steam is due to its high dipolar moment, and 

consequently uM  will be greater than . 

 

In the low-density limit, the RDF can be expressed as [14]: 

 

,
0,0, lim , , u r T kTg r T g r T e                          (8) 

 

According to Eq (8), the radial distribution function can be expanded in power 

series of the density  as follows: 
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where the first term in the series considers interactions between two molecules and is 

used to obtain the virial coefficient B, the second term considers interactions between 

three molecules and provides the virial coefficient C, and so on. Substituting Eq (9) into 

Eq (2) it is possible to express the equation of state as: 
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where only the function g1(r,T) (which considers interactions between three molecules) 

is considered, since for real gases there are no experimental data for the virial 

coefficients D, E and so on. From Eq (10) it is possible to derive the expressions for the 

virial coefficients B and C taking into account that B only depends on the 

intermolecular potential whereas C also depends on the function g1(r,T) at each 

temperature T. The general expression for g1(r,T) is given by [14], [31], [32]:

13 21

1 12 3, 1 1 du r kT u r kT

V

g r T e e r                              (11)

where rij are the distances between molecules i and j, the integration must be done for 

all possible values of molecule 3 position and the integration volume V extends to 

infinity given that the intermolecular potentials decrease very rapidly.

To simplify Eq (11) to a scalar equation that can be more easily used from a 

computational viewpoint by substituting it in Eq (2), we will deduce an approximation 

based on the Ornstein-Zernike equation, which has been widely used in the theory of 

dense fluids [15]. Such equation is formed by a series of non-linear integral equations 

which consider that the total correlation function 12h r between two molecules is the 

sum of a direct effect named the direct correlation function 12c r plus an indirect effect 

due to the rest of molecules, i.e.:
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where is the number of molecules per unit of volume and 12h r coincides with the 

Mayer function for the two molecules 1 and 2. By expanding Eq (12) to take into 

account the effects of the molecules 3, 4 and so on, it is obtained that:
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In Eq (13), by substituting into the expression of 12h r the expressions of 

23 34,h r h r and so on it follows that:

2
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Next, we assume that the direct correlation functions are given by:
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The substitution of Eqs (15) into Eq (14) leads to an equation that cannot be 

analytically solved. However, we search an approximate RDF which depends only on 

the distance between molecules, density, temperature and polarization effects [2], [15]. 

Hence considering only the interaction between three molecules, the following 

approximation follows from Eqs (9), (14) and (15):

2, , , ,
3, , 1 1 1 d
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To take into account the polarization in an analogous way to that of Eq (5), the 

term , 1u r T kTe  of Eq (16) is substituted by 1Mu r kTe  to approximate the radial 

distribution function as: 

 

2, , ,
3, , 1 1 1 d

Mu r T u r T u r T u r

kT kT kT kTg r T e e e e r          (17) 

 

so that the effects of three-molecule interaction and polarization can be considered 

separately. The previous approximation relies on the idea that the potential uM(r) is 

small and hence the factor 1Mu r kTe  will be very small at high temperatures, at 

which the polarization effect are expected to be negligible. 

 

In addition, it is assumed that at each temperature T the integrand of Eq (17) is 

approximately constant for a given temperature in a volume Vf(T) around three 

interacting molecules, so that the approximate RDF can be expressed as: 
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where f is an adjustable parameter close to the unity for the calculation of C. The first 

term in the right-hand side of Eq (18) accounts for interactions between two molecules, 

whereas the second and third terms approximate the interactions between three 

molecules considering polarization. The volume Vf(T) is defined as: 
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where  is the parameter of the Lennard-Jones potential (Eq (A2)), uPOI(r) denotes any 

intermolecular potential, uM(r) is given by Eq (7) and fg(T) is a variable factor that 

depends on temperature and can be calculated once the intermolecular potential is 

chosen.  
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The integrand of Eq (19) is similar to the square of the Mayer function given in 

Eq (12). It should be noted that if the polarization effect is not considered (i.e. uM(r) = 0 

case of two-molecule interaction), by hypothesis when r < rc the potential uPOI(r) will be 

infinite, and consequently the value of 
2

1POIu r kTe  will be the unit for values of r < 

rc where rc is the value for which the intermolecular potential uPOI(r) is zero [15]. 

According to Eqs (18) and (19), the approximate RDF can be expressed as a function of 

the mass density m as: 
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where Ng(T) is defined in accordance with Eqs (19) and (20) as: 
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Eqs (2), (20) and (21) altogether constitute a general equation of state (EOS) that 

can be used with any intermolecular potential. Substituting Eq (21) into Eq (20) and 

expressing the resulting equation as a compressibility factor, the equations for the 

second (B) and third (C) virial coefficients are obtained as: 
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where B(T) and C(T) are expressed in (cm3/gr) in (cm3/gr)2 respectively, and eu is the 

total averaged electrostatic potential for polar gases (see Appendix). 
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It should be noted that, with the previous approximations, the virial coefficient 

C(T) in Eq (22) has the same form as the cluster expansion given by Eqs (4) and (5). 

However, the adjustable parameter fCM of Eq (7) has different values depending on 

whether C(T) is calculated from Eqs (5) or Eqs (22), although it must be fulfilled that: 

 

123 1 2MC T C T C T C T                                   (23) 

 

In addition, in Eq (22) it is necessary to consider a translational motion quantum 

correction BQ that must be added up to B to account for quantum effects (especially 

significant in gases, such as, He4, H2, D2, He3), which is given by [15]:  
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where h NA is the Avogadro number and m is the molecule 

mass (Eq (24) can be applied to all rigid molecules except to asymmetric tops). The 

quantum contributions for the rotational and Coriolis effects are small [15] and will not 

be considered in this paper. It is interesting to remark that the quantum corrections are 

small for non-polar and polar molecules, but they become significant in quantum gases, 

such as, He4, as it will be discussed later. 

 

The values of B(T) and C(T) can be calculated analytically or numerically 

depending on the considered intermolecular potential. An important advantage of the 

approximation given by Eqs (20) and (21) is that they are scalar equations, whereas Eq 

(6) is a multidimensional vector expression whose substitution in the pressure equation 

(2) is cumbersome. This advantage will be used in section 6 to estimate B(T) and C(T) 

from chaotic PvT data obtained from a thermodynamic model in which Eq (2) and the 

approximate RDF of Eqs (20) and (21) are used altogether as an equation of state. 

Another important aspect of the approximate RDF is that it allows to estimate the heat 

capacity at constant volume cv as follows: 
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where cp0(T) is the heat capacity at low pressure when the gas can be considered as ideal 

and the coefficients A, B, C, D, E are tabulated for each gas [33]. Once the heat capacity 

at constant volume cv is known, the heat capacity at constant pressure cp is calculated 

from Eqs (20), (21) and (25) according to: 
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where and are the isobaric expansion coefficient and the isothermal compressibility 

coefficient respectively. Eq (2) allows to obtain and  as: 
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As it will be discussed in section 6, the calculation of heat capacities cv and cp 

are necessary for the simulation of the real gases with the proposed general equation of 

state given by Eqs (2), (20) and (21). 

 

3 Virial coefficients for neon and water steam using Mie potential and the general 

EOS  

 

The results of the previous section will be applied to neon as a non-polar gas and 

water steam as a polar one by using the Mie potential (Eq (A1)) and including the 

electrostatic potential due to dipole-dipole interactions (Eq (A13)) for the water steam. 
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For this purpose, B(T) and C(T) will be obtained through Eqs (22) and (24) (being the 

latter to consider quantum effects in B(T)) and compared with the values obtained from 

the Cluster expansion method by using Eqs (3)-(5). The integrals of Eqs (3), (5) and 

(22) will be carried out numerically (the Monte Carlo method will be used in Eqs (3) 

and (5)). In addition, B(T) will be also calculated through an analytical equation 

developed by Jones [1], [34], [35] that is given by: 
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where  is the gamma function,  and  are the Lennard-Jones parameters for the 

considered gas, n is the exponent of Mie potential and m = 6. 

 

The values of B and C calculated from Eq (22) will be denoted by BMie and CMie 

respectively, whereas those calculated through the cluster expansion method using Eqs 

(3)-(5) will be denoted by BCluster and CCluster respectively. Furthermore, the values of B 

calculated from Eq (29) will be denoted by BAnalytic and the experimental values of B and 

C taken from Ref [4] (at the same temperatures as the calculated values for B and C) 

will be displayed with asterisks. 

 

3.1 Results for neon 

The estimations of B and C for Ne are carried out by using the Mie potential u = 

uMie given in Eq (A1). Fig 1 shows the results for B considering that the Mie potential 

parameters are n = 11,  = 2.749 Å and  = 32.3 K [37]. The values of BMie + BQ, 

BCluster and BAnalytic are in very good agreement at all temperatures above the critical one 

(Tc = 44.4 K) and in turn very close to the experimental data, as shown in the zoomed 

region between 200 and 280 K. The quantum effects BQ calculated with Eq (24) can be 

considered small, and the experimental data (denoted by Exp. Data with asterisks) are 

taken from Ref [4]. 
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Fig 1. Results for the virial coefficient B for Ne, where BMie + BQ is calculated through Eq (22) 
considering the quantum effects given by Eq (24), whereas BCluster and BAnalytic are calculated from Eqs (3) 
and (29) respectively. The asterisks (Exp. Data) are the experimental data for B. 
 

 The values of BMie + BQ, BQ, BMie, BCluster, BAnalytic and the experimental ones Bexp 

are shown in table 1, whose last column contains the deviation (%) between BMie + BQ 

and Bexp. It can be observed that the maximum deviation appears at low temperatures, 

especially around the Boyle temperature, although the values of BAnalytic obtained 

through Eq (29) are closer to the experimental values at low temperatures. For high 

temperatures, the deviation is around 1 %, and the difference between BMie, BCluster, 

BAnalytic and Bexp is small at all temperatures. On the other hand, the small differences 

between the values of BCluster and BAnalytic are due to the numerical errors associated to 

the calculation of the integral in Eq (22) and Monte Carlo method. 

 

To investigate the consistency of the Mie parameters  we consider a 

similar procedure to that of Ref [16] carried out through the following steps: 

 

i) We consider a set of values for the parameter n from n = 8 to n = 40. 

ii) For each temperature T and the values of n considered in step i), BMie(T) is calculated 

from Eq (22). Among the considered values for n, we define the best fitting value n(T) 
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as that for which BMie(T) is closest to the experimental value BExp(T) of B for each 

temperature T. 

 
Table 1 
Virial coefficients B for Ne with Mie Potential 

 
TExp = Experimental temperatures for B from Ref [4] 
BMie = Calculated with Mie potential [15], [34], [36], [37]: 
n = 11;  = 2.749·10-10 m;  = 32.3 K 
BQ = Quantum correction of B [2], [15] 
BCluster = Calculated with the cluster expansion [2], [15] 
BAnalytic = Calculated with the gamma series expand [1], [34] 
BExp ± BExp = Recommended experimental data from Ref [4]  
De (%) = Deviation between BMie + BQ and BExp 

 
TExp  
K 
 

BMie 

cm3/mol 
 

BQ 
cm3/mol 

 

BMie+BQ  
cm3/mol 

 

BCluster 
cm3/mol 

 

BAnalytic 
cm3/mol 

 

BExp± BExp 

cm3/mol 
 

De 
 % 

 
46.00 -40.515 1.869 -38.645 -40.713 -40.858 -42.20±1.5 8.42 
50.00 -34.544 1.581 -32.962 -34.748 -34.859 -35.40±1.4 6.88 
60.00 -23.664 1.116 -22.547 -23.872 -23.927 -24.90±1.3 9.45 
65.25 -19.493 0.958 -18.534 -19.701 -19.735 -21.00±1.0 11.74 
70.00 -16.340 0.846 -15.494 -16.547 -16.566 -17.10±1.2 9.39 
90.65 -6.947 0.547 -6.400 -7.145 -7.121 -7.20±1.0 11.11 
123.15 0.791 0.339 1.131 0.604 0.663 1.00±1.0 11.59 
173.15 6.450 0.207 6.657 6.284 6.359 6.50±1.0 2.36 
223.15 9.260 0.146 9.406 9.107 9.189 9.10±1.0 3.26 
295.00 11.365 0.101 11.446 11.223 11.311 11.20±2.0 2.32 
398.15 12.779 0.068 12.847 12.648 12.739 12.90±1.0 0.40 
400.00 12.693 0.068 12.761 12.666 12.756 12.70±2.0 0.48 
450.00 13.162 0.058 13.221 13.035 13.127 13.20±2.5 0.52 
573.15 13.659 0.043 13.703 13.538 13.631 13.80±1.0 0.70 
673.15 13.832 0.035 13.868 13.715 13.809 13.70±1.0 1.22 
773.15 13.899 0.030 13.930 13.785 13.879 13.90±1.0 0.22 
873.15 13.904 0.026 13.931 13.792 13.886 14.00±1.0 0.49 
 

iii)  A constant reference temperature T1 and a constant  = 32.3 K [37] are set. For 

such constants and the value n(T) obtained in step ii) at each temperature T, the ratio 

BMie(T)/BMie(T1) is obtained for different values of the parameter . Among the values 

considered for , we define the best fitting value  as that for which the ratio 

BMie(T)/BMie(T1) is closest to the ratio BExp(T)/BExp(T1) between the experimental values 

of B. 

iv) Step iii) is repeated with the only difference that now  = 2.749 Å [37] is kept 

constant and different values for the parameter  are considered. Among the values 

considered for , we define the best fitting value  as that for which the ratio 
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BMie(T)/BMie(T1) is closest to the ratio BExp(T)/BExp(T1) between the experimental values 

for B. 

v) The values of  are plotted versus  to obtain the zones of the plane defined 

by  which best fit to the experimental data. 

 
Fig 2. Virial coefficient BMie for Ne calculated from Eq (22) for the values of n indicated at the legend 
taking  = 2.749 Å and  = 32.3 K (continuous lines). The experimental values of B are marked with 
asterisks. The upper inset shows the best fitting values of n, whereas the lower inset shows the best fitting 
values of  plotted versus the best fitting values of . 
 
 
 Fig 2 shows the results for BMie for different values of parameter n as well as the 

best fitting values of n and  for Ne. It is corroborated that the values of n which best 

fit to the experimental data are very close to n = 11 for all temperatures. In addition, the 

variation range of  is very small and  varies in a larger range, which is in total 

agreement with the results of Fig 2 in Ref [36]. 

 

 Fig 3 shows the values of C1, C2 and CMie = C1 + C2 based on the approximate 

RDF and calculated through Eq (22), as well as the values of CCluster calculated through 

Eqs (3)-(5). The agreement between CMie, CCluster and the experimental values of C is 

acceptable but worse than for the case of B, as shown in Fig 1 and Table 1. This is 

expectable since the expressions for B(T) in Eqs (4) and (22) are equivalent [15] and the 

precision of the experimental data for C(T) is much lower than for B(T) (depending on 
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the experimental method, the uncertainty in B can be around 2 cm3/mol whereas that for 

C can be around 50 (cm3/mol)2 [2], [4]). Furthermore, there are no experimental data for 

the virial coefficient C above 400 K.  

 

The polarization effect is mainly given by the term C2 considering the 

polarization intermolecular potential of Eq (7). As expected, C2 is very small at high 

temperatures, at which the effects of thermal agitation are greater than those of 

molecular aggregation due to polarization. On the contrary, at low temperatures the 

polarization effects and the contribution of C2 to C are significant. 

 
Fig 3. Results for the virial coefficient C for Ne, where C1, C2 and CMie = C1 + C2 are obtained from Eq 
(22) relying on the approximate RDF, CCluster is obtained from Eqs (3)-(5) and the experimental values of 
C are marked with asterisks. 
  

Table 2 shows the numerical results for the third virial coefficient C for neon. As 

it follows from the comparison with the results of table 1, the deviation between the 

calculated and experimental values for C are much higher than for B. This result is 

logical given that the uncertainty in the values of C is much larger than in the values of 

B. In general, the uncertainties of B are around 2 cm3/mol whereas those for C are 

around 50 cm6/mol2 (although the uncertainties depend on the type of gas, temperature 

range and experimental method used in the determination of B and C). 
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Table 2 
Virial coefficients C for Ne with Mie Potential 
 
TExp = Experimental temperatures for C from Ref [4] 
CMie = C1 + C2 calculated with Mie potential [2],[15], [34], [36] 
n = 11;  = 2.749·10-10 m;  = 32.3 K 
C1 = Approximation of the three interaction molecules 
C2 = Approximation of the polarization effect 
CCluster = Calculated with the cluster expansion [2],[15] 
CExp± CExp = Recommended experimental data from Ref [4] 
f = 1; fCM =10;  = 3.81·10-31 m3; I0 = 3.4543·10-18 J 
De (%) = Deviation between CMie and CExp 

 
TExp  
(K) 

 

C1 
(cm3/mol)2 

C2 
(cm3/mol)2 

CMie 
(cm3/mol)2 

CCluster 
(cm3/mol)2 

CExp± CExp 

(cm3/mol)2 
De 
(%) 

44.00 -146.8142 757.9907 611.1765 1050.128 610±36 0.192 
46.00     6.1804 653.2872 659.4676     992.180 556±34 15.689 
50.00  189.5507 502.2768 691.8275     891.650 475±30 31.341 
60.00  345.0180 301.8679 646.8859     711.863 463±29 28.426 
60.08  345.4869 300.8373 646.3242     710.745 483±30 25.269 
65.06  364.0658 246.9924 611.0582     648.648 534±30 12.610 
65.25  364.4536 245.2786 609.7321     646.544 563±50 7.664 
70.00  369.3749 208.4716 577.8465     599.187 396±26 31.469 
73.08  369.1518 189.5898 558.7416     573.155 523±30 6.396 
90.56  350.2227 123.7310 473.9537     471.355 510±30 7.067 
90.65  350.0999 123.5063 473.6062     471.097 442±50 6.673 

123.15  309.7811 74.4809 384.2620     381.470 309±50 19.586 
173.15  268.7283 46.7138 315.4421     322.860 299±50 5.212 
223.15  242.2109 34.4639 276.6747     292.571 228±50 17.592 
273.15  223.0915 27.5512 250.6426     272.454 256±30 2.092 
298.15  215.2775 25.1066 240.3841     264.417 233±50 3.071 
323.15  208.3177 23.0939 231.4117     257.289 224±10 3.202 
348.15  202.0573 21.4064 223.4638     250.877 224±10 0.239 
373.15  196.3794 19.9700 216.3494     245.044 224±10 3.415 
398.15  191.1936 18.7316 209.9251     239.691 217±10 3.260 
423.15  186.4287 17.6521 204.0808     234.745 208±10 1.884 
 

3.2 Results for water steam 

 

The estimations of B and C for water steam will be carried out by using the 

potential u = uMie + u , where uMie is the Mie potential with parameters n = 40,  = 

2.6410 Å,  = 809.1 K and u  is the electrostatic dipolar potential given by Eq (A13). 

Fig 4 shows that the values of BMie and BCluster are both very close to the 

experimental data, as it can be observed in the inset for temperatures between 370 K and 

430 K. However, the values of BAnalytic obtained from Eq (29) differ from the 
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experimental ones and from those of BMie and BCluster. Such discrepancy is due to the 

fact that Eq (29) does not take into account the dipole-dipole interaction (u ), which in 

this case is significant due to the polar nature of water steam.  

 
Fig 4. Results for virial coefficient B for water steam, where BMie and BCluster are obtained from Eqs (22) 
and (3)-(5) respectively, whereas BAnalytic is obtained through Eq (29) and the asterisks denote the 
experimental data for B. 
 
 

Fig 5 a) shows the values of C1, C2 and CMie = C1 + C2 calculated through Eq 

(22), whereas Fig 5 b) shows the values of C123, CM and CCluster = C123 + CM calculated 

through Eqs (3)-(5). The values of CMie based on the approximate RDF are in very good 

agreement with the experimental data for C. In addition, the values of C123 and CM are 

respectively different to those of C1 and C2. This is because C1 and C2 derived from the 

approximate RDF are not respectively equivalent to C123 and CM in the cluster 

expansion method. However, in Figs 5 a) and b) it can be observed that CMie = C1 + C2 

is approximately equal to CCluster = C123 + CM in accordance with Eq (23). As expected, 

the values of C2 and CM are very small at high temperatures, at which the polarization 

effects become negligible. 
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Fig 5. Results for virial coefficient C for water steam. a) Values of C1 and C2 and CMie = C1 + C2 obtained 
through Eq (22) relying on the approximate RDF. b) Values of C123, CM and CCluster = C123 + CM obtained 
through Eqs (3)-(5). The experimental data for C are marked with asterisks. 
 

Table 3 shows the values of BMie, CMie and their deviations with respect to the 

respective experimental values. The deviations of B are found to be acceptable at all 

temperatures for which experimental data are available. The deviations of C are larger, 

which is expectable given the worse precision of the experimental data for C.  

 

However, it is important to remark that the experimental data for C range 

between negative values of around -105 to positive values of approximately 7·102, and 

in such wide range of values the Mie potential corrected by the dipole-dipole interaction 

describes the trend of C(T). More accurate results for C(T) can be obtained with 

empirical equations of state with more than forty parameters [38]. 
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Table 3 
Virial coefficients B and C for water steam 

 
TBExp, TCExp = Experimental temperatures from Ref [4] 
BMie = Calculated with Mie potential [3], [8], [15], [36], [37] 
n = 40;  = 2.749·10-10 m;  = 809.1 K 
CMie = Calculated with Mie potential [8], [15], [36] 
BExp ± BExp, CExp ± CExp = Recommended experimental data from Ref [4]  
DeB(%) = Deviation between BMie and Bexp 
DeC(%) = Deviation between CMie and Cexp 

Tc = 674.13 K;  = 1.48·10-30 m3; I0 = 2.0203·10-18 J; f = 1; fCM = 68 
 

TBExp  
K 

BMie 

cm3/mol 
 

BExp± BExp 

cm3/mol 
 

DeB  
(%) 

 

TCExp 

K 

 

CMie·103 

cm6/mol2 

 

103(CExp± CExp) 

cm6/mol2 

 

DeC 
 (%) 

 
348.15 -553.64 -590.3±15 6.21 348.15 -281.17 -439±90 35.95 
360.65 -503.03 -515.0±10 2.32 360.65 -238.21 -342±64 30.34 
373.15 -455.40 -451.0±40 0.97 373.15 -198.20 -270±45 26.59 
385.65 -428.90 -374.0±80 1.28 385.65 -163.01 -217±32 24.88 
398.15 -411.50 -400.9±6.7 2.58 398.15 -133.15 -183±25 27.23 
392.34 -371.66 -350.3±80 5.74 410.65 -108.38 -132±16 17.89 
398.15 -371.65 -356.8±38 4.00 423.15 -88.12 -101±15 12.74 
410.65 -335.65 -320.9±4.4 4.45 435.65 -71.69 -77.4±8 7.369 
423.15 -303.85 -301.7±35 0.71 460.65 -47.75 -41.8±4 12.46 
460.65 -227.83 -220.3±1.8 3.30 473.15 -39.14 -31.8±6 18.75 
485.65 -175.42 -188.1±1.9 6.74 485.65 -32.19 -21.5±2 33.21 
523.15 -148.47 -151.8±1.3 2.19 498.15 -26.55 -18.3±1.7 31.07 
573.15 -110.44 -115.6±0.3 4.46 523.15 -18.27 -10.2±0.6 44.22 
598.15 -96.576 -102.0±0.3 5.31 923.15 0.583 0.82±0.2 28.90 
623.15 -85.153 -91.7±0.7 7.13 1023.15 0.714 0.62±0.2 13.16 
723.15 -55.103 -60.1±0.1 8.31 1073.2 0.737 0.55±0.2 25.47 
773.15 -45.799 -49.8±0.2 8.03 1173.2 0.746 0.44±0.2 41.07 
 

 

3.3 Nomenclature for the variables and units used in the proposed EOS 

 

Table 4 shows the nomenclature for the variables and units used in sections 2 

and 3. 

 

 

 

 

 

 



 22 

Table 4  
Variables used in the formulation of the EOS 
 
Variable Description 

 
Units 

U Variation of the gas internal energy J 
NA Avogadro number (6.02214·1023) mol-1 

k Boltzmann constant (1.38066·10-23) J·K-1 

P Pressure of the EOS N·m-2 

M Molecular mass of the gas kg·mol-1 

 Gas density m-3 

m Gas mass density kg·m-3 

r Distance between atoms m 
T Gas temperature K 

 Radial distribution function RDF  

B(T) Second virial coefficient cm3·mol-1 
BQ(T) Quantum effects in the second virial coefficient cm3·mol-1 

h Planck constant (6.626·10-34) J·s 
C(T) Third virial coefficient cm6·mol-2 

C123(T) Contribution to three-molecule interactions cm6·mol-2 
CM(T)  Contribution due to the polarization effect cm6·mol-2 
uij Interaction potential between molecules i and j J 
fij Mayer function  
Ve Integration volume for determining  m3 

uM ijk,rij) Intermolecular potential due to the polarization J 
uPOI(r) Any intermolecular potential of Appendix J 
uM(r) Approximation of uM ijk,rij) J 
u(r) Intermolecular potential uPOI(r) + uM(r) J 
fCM Variable factor in the calculation of uM(r)  
fM Mayer function associated to the potential uM(r)  

 Polarizability of the gas m3 

I0 First ionization potential of the gas J 
h(rij) Correlation function between molecules i and j  
c(rij) Direct correlation function for molecules i and j  
f  Factor to approximate the RDF  
gi(r,T)  Interaction of three (i=1) and four (i=2) molecules    
fg(T) Parameter to approximate   
Vf(T) Integration volume to approximate  m3 

Ng(T) Parameter to approximate   

C1(T) Part of C(T) due to three-molecule interactions cm6·mol-2 
C2(T) Part of C(T) due to the polarization effect  cm6·mol-2 
 Lennard-Jones parameter m 
 Lennard-Jones parameter  J 
 Gamma function  

y Parameter in the B(T) expansion  
F(y) Function of the parameter y  
 Isobaric expansion coefficient K-1 

 Isothermal compressibility coefficient (N/m2)-1 

cp0(T) Heat capacity of the gas considered as ideal J/(kg·K) 
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4 Thermodynamic model to obtain PvT chaotic data by using the general EOS 

 

 As it was discussed in section 2, Eq (2) and the approximate radial distribution 

function (RDF) given by Eqs (20) and (21) altogether define a general equation of state 

(EOS) that can be used with any real gas and intermolecular potential. In this section, 

such general EOS is applied in the context of the thermodynamic model shown in Fig 6, 

which is ultimately aimed to achieve a chaotic behavior of the pressure P and specific 

volume v while keeping an almost constant temperature T. With such behavior, the 

virial coefficients B(T) and C(T) can be estimated from the simulated PvT values, since 

the chaotic behavior collects the dynamical properties of each considered gas [16]. By 

comparing the values of B and C estimated from chaotic PvT data with the experimental 

values of B and C it is possible to elucidate the pressure and temperature ranges at 

which B(T) and C(T) have a significant contribution on the virial equation given by [4], 

[14], [15]: 

 

2
1 ....  ;   1

B T C T C TPv Pv
z v B T

RT v v RT v
              (30) 

 

where T is the temperature, P is the pressure, v = 1  is the specific volume (being  the 

density) and only B(T) and C(T) will be considered since the experimental data for the 

rest of virial coefficients are inaccurate or unknown. For instance, at very low pressures 

the specific volume v is very large and hence B(T) and C(T) do not have an appreciable 

effect in Eq (30), i.e., z the gas can be regarded as approximately ideal. 

However, as the pressure increases and v decreases, B(T) and C(T) gain relevance in Eq 

(30). 

 

To estimate the virial coefficients from the PvT values, the thermodynamic 

model is numerically simulated using the general EOS of Eqs (2), (20) and (21) in a 

chaotic regime for P and v while keeping an almost constant temperature T. In this 

regime, B(T) and C(T) are obtained as the values that best fit to the linear equation y = 

B(T) + C(T)x being y = v[Pv/(RT)-1] and x = 1/v, which is carried out by using the least 

square method. The comparison of B(T) and C(T) estimated from the PvT values with 

the experimental data for B(T) and C(T) also allows elucidating to what extent a given 

intermolecular potential reproduces the behavior of a gas in a certain range of 
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temperatures and pressures. This provides a procedure to analyze different 

intermolecular potentials for different gases at different temperature and pressure ranges 

with the proposed general EOS, and hence without the need to resort to empirical EOS.

The thermodynamic model of Fig 6 includes an input and output gas flow and 

two proportional plus integral action controllers PI1 and PI2, whose tuning parameters 

are constant [17-20]. The accumulation vessel has a coil that supplies the heating-

cooling heat flow Q(t) to maintain a constant gas temperature so that Eq (30) can be 

used to estimate B(T) and C(T) from the PvT values. In addition, it is assumed that the 

coil is designed so that the heat flow is proportional to the flow rate Fv(t). When the 

servo-valve CV2 is closed the gas temperature in the vessel varies in accordance with 

the inlet pressure P(t) and the inlet mass flow rate dm t , which can be modified by 

means of the valve V2.

It is assumed that the sensors of temperature ST, pressure SP and the transmitters

PT and TT provide information on the gas pressure P(t) and temperature T(t), whereas

the flow rates 2 2 2( )F t m t t and ( )s sF t m t t are measured at each 

instant. From this information and the EOS of Eqs (2), (20) and (21), the device 

generates the electric signal f(t) that opens or closes the servo-valve CV2 to obtain an 

adequate heating-cooling flow rate Fv(t). Furthermore, a pressure probe is used to 

measure the output pressure P2(t) of the servo-valve CV1, which is connected to a 

reservoir to expel the gas. 

The desired set pressure Pd and the output pressure of the control valve P2(t) are 

transformed into adequate electric currents is and i(t) through the converter Kt, which in 

turn generates the force F(t) in the servo-valve CV1 [17-20]. Next, we shall define the 

equations of the mechanical subsystem formed by the servo-valve CV1 and the 

controller PI1 [16].

i) Model of valve CV1 and controller PI1

The valve plug is modeled as a mass m with a damping coefficient ( 0 1),

a nonlinear spring and a nonlinear term that represents the nonlinearities associated to 
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the valve deformation and non-modeled dynamics. The dimensionless plug 

displacement x(t) is expressed as a fraction of the maximum displacement xmax and 

hence 0 1x t . The undamped natural frequency is given by n and it is assumed 

that the force F(t) applied on the valve plug is related to the current iPI(t) in the electro-

valve-solenoid through the constant Ka expressed in N/mA. The global equations can be 

defined as [16]: 

1 2
2 3

3 2 2
2 3 2 1 2

0 1 1 2

d d
                             ;  

d d
d

2
d

                               

NL
n n t d

i

x t x t
x t x t

t t
x t K

x t x t K P P t x t x t
t

x t b x t b x t

         (31) 

 

The parameters b0, and b1 and the proportional constant of the controller Kc are defined 

as: 

0 1
0 1

max max

100
  ;    ;  a c a c

c
I

K K K K K K
b b K

mx mx PB
                            (32) 

 

where Kc is the proportional constant of the PI controller defined from its proportional 

band PB as 100cK PB , K1 and K0 are respectively adjustable dimensionless constants 

for the proportional and integral actions, i is the reset time, Kt (mA·m2/N) is the 

transmitter constant (the current is measured in milliamps), Pd is the desired pressure for 

the PI1 controller and P2(t) is the measurement of the pressure probe (see Fig 6).  

 

The values and units of the parameters indicated in Eq (32) are m = 5·10-2 kg, 

xmax = 0.01 m, Ka = 0.3125 N/mA, PB = 50 and i = 300 s [17-19], for which it is 

obtained that b0 = 4.1667·K0 (1/mA·s3) and b1 = 1250·K1 (1/mA·s3). The dimensionless 

parameters K0 and K1 are chosen so that b0 >> b1. In particular, K0  and K1 

6.5·10-5 can be considered as admissible values for the numerical simulations. 

 

As it will be discussed later, the values of KNL in Eq (31) are chosen to obtain 

self-oscillation conditions according to: 

 

4 3 8 8   ;   8.4146 10   1 mA .    ;   1 10NL I NLd KNL I NLd KNLK K f K s f    (33) 
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where fKNL is a constant factor whose value will allow to obtain different dynamical 

behaviors and KNLd is a convenient reference value.

i

t
0

PI c 1 d 2 s 2
0

Ki t = K K -P t + -PtK P P

Fig 6. Thermodynamic model which includes controllers PI1 and PI2, servo-valves CV1 and CV2, 
pressure probe P, temperature and pressure sensors ST and SP, transmitters of temperature TT and 
pressure PT, converters of pressure Kt and current Ka, pipes, auxiliary valves, an accumulation vessel and 
a heating-cooling coil. The force F(t) produces the movement of the servo-valve CV1 whereas the force 
f(t) generates the plug movement of the servo-valve CV2 (EOS refers to the proposed general equation of 
state).
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ii) Flow rate in the servo-valve CV1 

The model of the flow rate relies on the assumption of isentropic flow [21]. The 

mass flow rate 2m t (kg/s) is related to the flow rate F2(t) (m3/s) according to:

0
2 1 2

2 0

1
2 2

2
2 1 1

1 1 1
0 1

2 10

2

2
0.97+0.0636 0.528 ; for 

1

2 2
  ;  for  

1 1

f

k k

ch

k k k k
f ch

C A f x t
P t P P t

R t T

m t P t P
F t

t P P k

C A f x t PP
k

t k P kRT

   (34)

In Eq. (34), is the so called expansion coefficient, Cf is the valve discharge 

coefficient ranging between 0.68 and 0.9, A0 =4·10-6 m2 is a characteristic area of the 

valve, T0 is the inlet gas temperature and k = cp(T)/cv(T), where cp(T) and cv(T) are 

respectively the heat capacity at constant pressure and volume calculated with Eqs (2), 

(20), (21) and (25)-(28). In addition, R is the gas constant, P1 and P2(t) are the

respective input and output pressures and Pch is the critical pressure at which the flow is 

choked when P2 ch, i.e., 2 2 2m t F t t remains constant for 

1

12 1
k k

chP k P . This means that if the downstream pressure is below Pch then the 

gas velocity is sonic and the pressure P2(t) has no influence on the mass flow of the gas.

In addition, the value of the plug position x(t) and f[x(t)] for a linear valve are given by

[20-25]:

0 1 1 2f x t x t b x t b x t                                   (35)

iii) Model of the pressure probe and servo-valve

The output pressure P2(t) of the servo-valve CV1 is assumed to fulfill the first 

order differential equation given by:
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2
2 2

d

dm m

P t
T P t K F t

t
                                          (36)

where Tm is a time constant with admissible values between 5 and 10 seconds and Km

(N·m-2)/(m3·s-1) is a constant parameter defined in terms of the input pressure P1 as:

  
8

1
5

2 10
  ;  1 4

10m Km
Km

P
K f

f
                                         (37)

where it is assumed that a pressure P1 = 105 N/m2 corresponds to Km = 2·108 (N·m-

2)/(m3·s-1) if fKm = 1, where fKm is a factor that can take values between 1 and 4.

iv) Model of the thermal subsystem

Considering the scheme of Fig 6 and assuming that the gas density in the output 

pipe is equal to the gas density within the vessel, the mass balance in the accumulator 

vessel can be written as:

2 2 2
2

d
 ; 

d
m

s
s s m

m t F t tt
V m t m t

m t F t tt
                         (38)

where V is the vessel volume, m(t) (kg/m3) is the density of the gas within the vessel 

and 2m t and sm t (kg/s) are the mass flow rates in the input and output pipes 

respectively. On the other hand, assuming that the heat losses and the stored heat in the 

vessel walls are both negligible and recalling that Fv(t) is a heating-cooling flow rate in 

the servo-valve CV2, the energy balance for the gas in the vessel is given by:

2 2 0d

d
p v m s p v s v

v m

t F t c T T c T T t t F t T t c T c T K F tT t

t Vc T t

        (39)
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where Ks is a constant that depends on the heating-cooling coil design. Besides Eqs (38) 

and (39), it is necessary to consider the following mass balance at the output of the 

valve CV1 (see Fig 6):

2 2 2 2d s d m sm t m t m t t F t t F t t F t             (40)

where Fd(t) is the gas flow rate to the vessel regarded as positive when the gas enters the 

vessel and negative when the gas leaves the vessel, whereas the densities 2(t) and 

are obtained from the EOS of Eqs (2), (20) and (21). The flow rate Fd(t) is modeled as:

2 2

2 2

  if 

  if 

d

d

d

K P t P t P t P t
F t

K P t P t P t P t
                              (41)

where Kd can be considered as a discharge coefficient of the valve V2 that ranges from 

10-7 to 9·10-7 (m3/s)/(N/m2)0.5. It will be assumed that valve CV2 remains closed (i.e.,

Fv(t) = 0) until it is opened at an arbitrary time t = tC with a flow rate Fv(t) defined as:

2 2 0

2
0 0

0

( )

                          + 2 d

s v p v m s p v

t

v m T nT nT

K F t t F t c T T c T T t t F t T t c T c T

Vc T t T T t T T
          

(42)       

where 2(t) is obtained from P1 and T0 by means of the proposed general EOS and the 

gas pressure P2(t) is measured by the pressure probe. The temperature T(t) and pressure 

P(t) of the gas in the vessel are measured by the sensors ST and SP, so the gas density in 

the vessel can be calculated from the general EOS. The parameters T and nT are 

chosen to obtain the desired gas temperature T0 in the vessel. For this purpose,

substituting Eq (42) into Eq (39) and differentiating with respect to time we obtain a 

second order linear differential equation whose general solution for 0 1T is given 

by [21]:
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that depends on the initial conditions. It is clear that the 

gas temperature T t  tends to 0T  as t  with a rapidity that depends on the chosen 

values for T and nT. Consequently, the energy balance can be defined as: 
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                          2   for 

d d

m s
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c T T c T T t c T c T t t

t Vc t Vc t

T t T t
T t T t t

t t
       (44) 

 

Eqs (38)-(44) altogether constitute the model of the thermal subsystem.  

 

v) Self-oscillating and chaotic behaviors 

 

The equilibrium points of the system are necessary to obtain the self-oscillating 

and chaotic behavior, which in turn is required to obtain the virial coefficients of the 

gas. Assuming that Fv(t) = 0 (i.e., the heating-cooling system is off) and taking into 

account that the derivatives of the variables x1(t), x2(t), x3(t), P2 m(t) and T(t) are 

zero at equilibrium, from Eqs (31), (39) and (44) it is deduced that: 

 

0 2 0 1 1 1 02   ;  d m f e e e d d e e eP K R C A x T P P P f x x x b        (45) 

 

where Pd is the desired pressure and 2e is the gas density at equilibrium determined 

from the general EOS given by Eqs (2), (20) and (21). It should be noted that once Pd is 

fixed, Eq (45) allows to obtain the dimensionless plug valve position x1e = xe. 

 

The previously derived mathematical model for Fig 6 implies a one-way 

coupling from the mechanical subsystem to the thermal one. This means that the 
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mechanical system influences the thermal one, but the latter has no influence on the 

former, so the self-oscillating conditions can be considered for the mechanical 

subsystem only. For this purpose, the system equations can be expressed in deviation 

variables as detailed in Ref [16]. The characteristic polynomial of the matrix of the 

linear part of the system around the equilibrium point is a fourth order polynomial of 

that can be written as: 

 

4 3 2
3 2 1 0
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(46) 

where the sub index e means equilibrium. 

 

The self-oscillation condition is sought by imposing the condition that the 

characteristic polynomial P(s) has two complex conjugate roots (weak focuses) [39], 

[40], [41] and the other two roots have a negative real part, so it is obtained that: 

 

2 2
1 2 3 1 0 3a a a a a a                                                  (47) 

 

The next step is to determine the values of KNL which provide weak focuses 

associated to the self-oscillating behavior. For this purpose, we observe that the values 

of a0 and a3 in Eqs (47) are independent of KNL, so the self-oscillating condition can be 

written as a second-degree polynomial in terms of a32 according to: 
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   (48)  

 

Eqs (48) allows to obtain the positive root PR[P(a23)] of P(a23), for which the 

value KNL = KNLos in Eq (33) to obtain a weak focus is given by: 
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where n
2 must be chosen so that 2

23 0nPR P a .  

 

Once the weak focuses are determined, the simulation values of KNL are 

calculated by taking a set of values for a dimensionless constant fKNLos so that KNL = 

KNLos = fKNLos·KNLd (Eq (49)).  

 

The self-oscillating behavior provides a route to obtain the desired PvT chaotic 

oscillations. It is well known that a harmonic disturbance in a system parameter can lead 

to chaotic dynamics [39], [40] when the matrix of the linearized system at the 

equilibrium point has a weak focus. Such harmonic disturbance will be introduced by 

varying harmonically the time constant of the pressure probe Tm according to: 

 

sinm ma m TmT t T AT t                                           (50) 

 

where ATm and Tm are the amplitude and the angular frequency respectively, and in 

addition it must be fulfilled that Tma > ATm. 

 

5 Simulation of the thermodynamic model for the estimation of B and C 
 

To estimate the virial coefficients B and C by means of Eq (30) using the PvT 

values obtained from the numerical simulation of the thermodynamic model of Fig 6, 

two conditions must be met. On one hand, the simulated PvT values must have a high 

enough variability so that their adjustment with the least square method is reliable. On 

the other hand, Eq (30) is valid at each constant temperature T, so each estimation of B 

and C must be done at an approximately constant temperature. 

 

The first step in the simulation of the model of Fig 6 consists of setting a 

pressure P1 and a temperature T0 at the device inlet for the considered gas without 

entering the biphasic zone. Once P1 and T0 have been set, a desired pressure Pd (Pd < 

P1) is defined so that the controller PI1 gives rise to a system equilibrium point at the 

pressure Pd and at the gas input temperature T0. In equilibrium it must be fulfilled that 
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P2 d, so from Eqs (45) it follows that x2e = 0, x3e = 0 and in addition 

2 sm t m t as per Eqs (38). On the other hand, from Eqs (40) and (41) it follows that 

( ) 0 0d dm t F t , so the gas pressure in the accumulator vessel must be d. 

Since in equilibrium it must be fulfilled that dT(t)/dt = 0, Eqs (39) and (42) 

imply that 0, and from Eqs (39) and (45) the equilibrium values e for the gas 

density and x1e for the variable x1(t) can be obtained. With the equilibrium point Pe(x1e, 

e, Pd, T0), the dynamical behavior of the system depends on the values of Fv(t), 

KNLos and Tm(t) given by Eqs (42), (49) and (50) respectively, which allows to 

distinguish the following operation regimes:

i) The constant KNLos does not fulfill Eq (49). In this case two dynamical behaviors may 

take place. On one hand, if all the roots of the characteristic polynomial given by Eq 

(46) have negative real part then the system is stable and will reach the equilibrium 

point Pe. On the other hand, if any of the roots of the characteristic polynomial of Eq 

(46) has positive real part then the system is unstable. None of the two previous 

behaviors is suitable for our purpose, since none of them can provide the desired 

variability for the PvT data while keeping an approximately constant temperature.

ii) The constant KNLos fulfills Eq (49), Tm(t) is constant with time in Eq (50) (ATm = 0) 

and the heating-cooling system is disconnected so that Fv(t) = 0 (Eq (42)). In this case, 

the characteristic polynomial given by Eq (46) has a pair of conjugate pure imaginary 

roots (weak focus) and other two roots with negative real part. Consequently, the system 

reaches a self-oscillating behavior in which the gas pressure will oscillate around Pd. 

This behavior is not suitable for our purpose since the temperature will not be constant 

and there will not be enough variability in the PvT data, but it offers a route to a chaotic 

behavior in which the desired variability in the PvT data can be achieved.

iii) The constant KNLos fulfills Eq (49) and the flow rate is Fv(t) = 0 (as in case ii)), but 

now Tm(t) varies harmonically with time according to Eq (50). In this case the PvT 

simulated values can become chaotic thus achieving the desired variability. However, 

the chaos itself implies that the temperature will have a high variability, which is 

undesired for the estimation of B and C through Eq (30). This justifies the need of a 
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cooling-heating system that maintains the temperature of the gas in the vessel almost 

constant while the pressure and density of the gas oscillate chaotically. 

iv) The constant KNLos fulfills Eq (49) and Tm(t) varies harmonically with time so that 

chaotic behavior is obtained (as in case iii)), but now Fv(t) is given by Eq (42) (instead 

of being zero). In this case the gas temperature in the vessel remains almost constant, 

since substituting the flow rate of Eq (42) into Eq (39) the solution of Eq (43) for 

0 1T  fulfills that 0lim
t

T t T . In this context, Eq (44) represents the situation 

in which no cooling-heating flow rate is applied (Fv(t) = 0) for t < tC, whereas for t > tC 

the applied flow rate is given by Eq (42). 

 

Consequently, the aimed operation of the model corresponds to the previous case 

iv), i.e., chaotic behavior with an almost constant temperature achieved with the 

heating-cooling system. The input data and the required parameters for the 

computational calculations can be summarized as follows: 

 

1) A real gas is considered by specifying its critical constants Pc, Tc, c, its 

corresponding ionization potential, polarizability and dipole/quadrupole moments. 

2) The input pressure P1 and the desired pressure Pd in the accumulator vessel are set 

so that Pd < P1. 

3) The input temperatures T0 for which B and C will be estimated are set. 

4) If some input temperature T0 is below the critical one, the corresponding saturation 

pressure Psat is calculated by using the Antoine equation given by: 

 

2
10 10log logsat

B
P A C T DT ET

T
                              (51) 

 

and the values of P1 and Pd are modified so that Pd < P1 < Psat, thus avoiding the 

biphasic zone of the gas. Although the model can handle pressures and temperatures 

below the critical ones, in such cases the pressure will be so low that the effect of C 

or B and C can become negligible in Eq (30). 

5) The vessel volume V, the parameters , n, Kt, Kd, Kc, I, KNLd, b0, b1 and Km (Eqs 

(31)-(33)) as well as the servo valve parameters Cf and A0 (Eq (34)) are set. 
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Table 5  
Variables and parameters used in the Thermodynamic Model 
 
Variable Description for the Mechanical subsystem 

 
Value 

x1(t) State variable of mechanical subsystem (mA·s3)  
x1e Equilibrium value of x1(t) (mA·s3)  
x2(t) State variable of mechanical subsystem (mA·s2)  
x3(t) State variable of mechanical subsystem (mA·s)  

n Natural frequency of control valve (rad/s) 0.69 
 Damping coefficient of control valve 0.26 

b0 Parameter of valve plug position (1/mA·s3) 0.01- 10 
b1 Parameter of the valve plug velocity (1/mA·s2) b0/10 
x(t) Dimensionless valve displacement b0x1(t)+b1x2(t)  
xe Equilibrium value of x(t). x1e = xe/b0  
Kt Transmitter constant (16/(2.5·P1)) (1/N/m2) 3·10-5 to 3.2·10-6 
KNL Constant of nonlinear term (1/mA3·s6) 8·10-4 to 8 

I Integral time of the PI controller (min) 1-900 (300 s) 
KNL I Defined as KNLd·fKNL I = 8.4146·10-4·fKNL I 1 < fKNL < 108 
KNLos Value of KNL in self-oscillating behavior 8·104 to 8·108 
Cf Coefficient of the control valve 0.75 
A0 Area of the gas throughout control valve (m2) 4·10-4 

 Control valve expansion factor  
Ka Force constant (F(t) = Ka·iPI(t)) (N/mA) 0.3125 
Tm(t) Time constant defined as Tma + ATmsin( Tmt) (s) 5-10 

Tm Frequency for time variation of Tm (rad/s) 0.8 
Km Parameter defined as 2·108P1/105fkm 1 < fkm < 4 (2) 

 
Variable Description for the Thermal subsystem 

 
Value 

P1 Constant line pressure (N/m2) 2·105 to 8·106 
Pd Pressure set point (N/m2) < P1  
Pdi Initial value of Pd for initial conditions (N/m2) 0.98 to 0.95 of Pd 

P2(t) Pressure in the control valve (State variable) (N/m2) 1·105 to 7·106 

2(t) Inlet gas density (kg/m3) 1 to 15 
T0 Inlet gas temperature (K) 5-900 
T(t) Gas temperature in the vessel (K) (State variable) 5-900 

 Gas density in the vessel (kg/m3) (State variable) 0.9 to 14 
P(t) Pressure in the vessel (N/m2) (Calculated with EOS) P2(t) 
V Volume of the vessel (m3) 0.001-1 (0.001) 
F2(t) Gas inlet flow rate in CV1 valve (m3/s) 5·10-5 to 2.5·10-4 
Fd(t) Gas flow rate to the vessel (m3/s) < F2(t) 
Fs(t) Gas outlet flow rate to the reservoir (m3/s) 5·10-5- 2.5·10-4 
Kd Constant of the flow rate Fd(t) (m3/s)/(N/m2)0.5 1·107 
Fv(t) Heating-cooling flow rate in CV2 valve  

nT Natural frequency associated to coil (rad/s) 0.7 

T Damping coefficient associated to heating coil   0.7-0.9 
tC Time instant at which valve CV2 opens (s) 40-50 
cp(T) Gas heat capacity at constant pressure (J·kg-1·mol-1)  
cv(T) Gas heat capacity at constant volume (J·kg-1·mol-1)  
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6) An intermolecular potential is set (see Appendix), with which the radial distribution 

function as a function of the mass density m given by Eqs (20) and (21) is 

calculated. In this paper, the parameter values for the considered intermolecular 

potentials are taken from references [3], [5-11], [15], [23] and [30-32]. 

7) The pressure, the radial distribution function and the heat capacities are calculated 

by using Eqs (2), (20), (21) and (25)-(28). 

8) The fourth order Runge-Kutta integration method is used to solve numerically the 

system equations with a simulation step between 0.005 and 0.05 seconds and 

simulation time of 200 seconds. 

9) The chaotic data for the pressure P and specific volume v with an almost constant 

temperature T in the accumulator vessel are used to estimate B(T) and C(T) by 

applying the least square method in Eq (30). Such values for B(T) and C(T) 

estimated from the simulation of the thermodynamic model are compared with the 

experimental data for B(T) and C(T). 

10) An agreement of the values of B(T) and C(T) estimated from chaotic PvT data with 

the experimental values indicates that the contributions of both B(T) and C(T) are 

significant in Eq (30) and hence the gas is far from the ideal gas behavior. A 

discrepancy of the values of C(T) estimated from chaotic PvT data with the 

experimental values means that C(T) is not significant in Eq (30) for the considered 

temperature and pressure. And if both B(T) and C(T) estimated from chaotic PvT 

data are not in agreement with the experimental data then both are not significant in 

Eq (30) and hence the gas can be regarded as approximately ideal (i.e., 

compressibility coefficient z  at the considered pressure and temperature. 

 

The previous steps constitute a general algorithm that can be potentially 

implemented in a software package using as inputs the gas parameters as well as the 

intermolecular potential and the desired ranges of pressures and temperatures. 

 

6.  Discussion of the results obtained from the thermodynamic model simulation 

 

The procedure described in section 5 will be applied to nitrogen and helium 4. 

 

6.1 Results for nitrogen 
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The parameter values of the thermodynamic model by using nitrogen taking 

different input temperatures T0 are shown in table 6 for the intermolecular potentials 

considered in the Appendix. It should be noted that the nitrogen is a non-polar gas with 

quadrupolar moment  = - 5·10-40 C·m2, i.e. the electric charge distribution of the 

molecule is approximated by an oblate symmetric top. Consequently, the averaged 

electrostatic potential given by Eq (A14) is nonzero and the total intermolecular 

potential depends on the temperature. The equilibrium points x1e of the state variable 

x1(t) (Eq (45)) are also shown in table 6 at each input temperature T0. 

 

Fig 7 a) shows the plot of the RDF given by Eqs (20) and (21) using the Mie 

potential at three fixed temperatures and densities for which the empirical high precision 

EOS with 12 parameters of Refs [42], [43] provides a pressure of 8·106 N/m2. Figs 7 b) 

and c) show the heat capacities at constant volume cv and pressure cp calculated using 

the Mie potential and Eqs (25)-(28) through two different procedures. On one hand, 

cvMie and cpMie are the respective heat capacities at fixed temperatures and densities for 

which the general EOS of Eqs (2), (20) and (21) provides a pressure of 8·106 N/m2. 

 
Fig 7. a) Radial distribution function given by Eqs (20) and (21) for N2 using the Mie potential for a 
pressure of 8·106 N/m2 and the EOS of Refs [42], [43]. b) Heat capacities at constant volume obtained 
through Eqs (25)-(28) using the Mie potential for a pressure of 8·106 N/m2 and the EOS of Eqs (2), (20), 
(21) (cvMie) as well as the EOS of Refs [42], [43] (cvHP). c) Same as figure b) but for the heat capacities at 
constant pressure (cpMie and cpHP). 
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On the other hand, cvHP and cpHP are the respective heat capacities at fixed 

temperatures and densities for which the high precision EOS of Refs [42], [43] provides 

a pressure of 8·106 N/m2. The heat capacities calculated by both methods are in very 

good agreement. 

 

Fig 8 shows the PvT chaotic data using the Mie potential for nine different 

temperatures T0. Fig 8 a) shows the pressure P2 at the output of the servo-valve CV1 as 

well as the choked pressures Pch, whose irregular behavior constitutes a clear indicator 

of chaotic behavior. In Fig 8 b), the pressure P2 at the output of the servo-valve CV1 

and the pressure P inside the vessel are plotted showing that their values remain very 

close as a result of an adequate selection of the discharge coefficient Kd of the valve V2 

(see Eq (41)). Figs 8 c) and d) respectively show the densities and the temperatures of 

the gas inside the vessel.  

 

 
Fig 8. Chaotic behavior for N2 using the Mie potential for nine input temperatures T0: 200, 250, 300, 350, 
400, 450, 500, 550 and 600 K. a) Chaotic oscillations of the gas pressure P2 at the output of the valve 
CV1 and choked pressures Pch. b) Pressure P2 at the output of the valve CV1 and pressure P inside the 
vessel for Kd = 6·10-7. c) Chaotic oscillations of the gas mass density m inside the vessel for each 
temperature. d) Temperature chaotic oscillations inside the vessel for t < tC = 50 s and steady-state 
temperature approximately equal to T0 for C. 
 
 

It should be noted that the servo-valve CV2 is open for t > tC = 50 s and thus the 

gas temperature is described by Eqs (44) until it will eventually reach the desired 

constant temperature T0. It is interesting to note that the simulation values for the 
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choked pressures and densities shown in Fig 8 a) are very close to those obtained in the 

generalized compressibility charts [46], [47].  

 
 
Table 6   
Simulation parameters values and intermolecular potentials for N2 
 
Parameter values of the mechanical and thermal subsystem. Nomenclature in table 5 
 = 0.26; n = 0.69 rad/s; Kt = 6.4·10-7 mA·m2/N; Kd = 4.8·10-7 (m3/s)/(N/m2)0.5; BP = 

50; Kc = 100/BP; I = 300 (s); P1 = 107 N/m2; Pd = 8·106 N/m2 nT = 0.8 rad/s; T = 0.7; 
V = 1·10-3 m3; KNLd = 8.4146·10-4 (1/mA2·s6); Km = 4.8140·1010 N/m2 
Dipole, quadrupole moments, ionization potential and polarizability 

µ = 0;  = -5·10-40 C·m2; I0 = 2.5314·10-18 J;  = 1.74·10-30 m3 
 

 Mie Potential (MIE) [2], [3], [4], [8], [15], [36]: 
 n = 9;  = 3.7980·10-10 m;  = 9.8579·10-22 J 

Simulation parameters: f = 0.5; fCM = 10; b0 = 1 (1/mA·s3); b1 = 0.1 (1/mA·s2) 
T0 (K) 200 300 400 500 600 
Tma (s) 5 6.25 7.5 8.75 10 
ATm (s) 4.1667 4.6296 5.000 5.3030 5.5556 

x1e (mA·s3) 0.0312 0.0227 0.0224 0.0218 0.0208 
KNLos mA-2·s-6 5.5760·106 4.8852·106 5.5390·106 6.2845·106 7.0576·106 

 
 Morse potential (MO) [7], [8] 

D = 1.2895·10-21 J;  = 1.1660·1010 (Å)-1; re = 4.43·10-10 Å 
Simulation parameters: f = 0.5; fCM = 10; b0 = 1 (1/mA·s3); b1 = 0.1 (1/mA·s2) 

T0 (K) 200 300 400 500 600 
Tma (s) 5 6.25 7.5 8.75 10 
ATm (s) 4.1667 4.6296 5.000 5.3030 5.5556 

x1e (mA·s3) 0.0286 0.0264 0.0237 0.0214 0.0195 
KNLos mA-2·s-6 5.3662·106 5.3528·106 5.8715·106 6.5437·106 7.2754·106 

 
 Kihara potential (KI) [9], [10] 

 = 1.9219·10-21 J;  = 3.5260·10-10 m; aK = 7.2219·10-11 m   
Simulation parameters: f = 0.5; fCM = 10; b0 = 1 (1/mA·s3); b1 = 0.1 (1/mA·s2) 

T0 (K) 200 300 400 500 600 
Tma (s) 5 6.25 7.5 8.75 10 
ATm (s) 4.1667 4.6296 5.000 5.3030 5.5556 

x1e (mA·s3) 0.0286 0.0264 0.0237 0.0214 0.0195 
KNLos mA-2·s-6 5.2488·106 5.3202·106 5.8599·106 6.5288·106 7.2550·106 

 
 Exp-6 potential (BU) [11], [23] 

P = 1.9409·10-14 J;  = 2.3594·10-11; µB = 8.9917·10-78 J·m6 
Simulation parameters: f = 0.5; fCM = 8.8; b0 = 1 (1/mA·s3); b1 = 0.1 (1/mA·s2)  
T0 (K) 200 309.09 418.18 527.27 600 
Tma (s) 5 6.3636 7.7273 9.0909 10 
ATm (s) 4.1667 4.6667 5.0595 5.3763 5.5556 

x1e (mA·s3) 0.3008 0.2677 0.2351 0.2099 0.1965 
KNLos mA-2·s-6 1.4080·104 1.4790·104 1.6563·104 1.8498·104 1.9798·104 
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Figs 9 a) and b) show the virial coefficients B and C for nitrogen estimated from 

chaotic pressures and densities with the intermolecular potentials of Mie (MIE), Morse 

(MO), Kihara (KI) and Buckingham (BU) using the parameters of table 6. Such 

potentials are used with the general EOS defined by Eqs (2), (20) and (21). In addition, 

the desired pressure in the accumulator vessel Pd = 8·106 N/m2 is above the critical one 

Pc = 3.439·106 N/m2. The estimations of B and C are accurate for all the potentials at 

high temperatures, although the MIE and MO potentials lead to better results at low 

temperatures. 

 

 
Fig 9. Virial coefficients B (plot a)) and C (plot b)) for N2 estimated from the chaotic simulated PvT data 
taking Pd = 8·106 N/m2 for the intermolecular potentials MIE, MO, KI, BU with the EOS of Eqs (2), (20) 
and (21). The experimental values (Exp) are marked with asterisks. 
 

The results of figs 8 and 9 have been obtained by simulating the thermodynamic 

model at nine input temperatures T0 equally spaced between 200 and 600 K (twelve 

temperatures have been taken for the Exp-6 potential). However, the experimental 

values for B and C are available at the temperatures TBExp and TCExp [4] indicated in 

table 7, at which B and C have also been estimated by simulating the thermodynamic 

model (which can be done at any temperature) for each intermolecular potential. 
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Table 7   
Values of B and C obtained with the simulation parameters of table 6 for N2 
 
TBExp, TCExp = Experimental temperatures for B and C from Ref [4] 
BMIE, CMIE = Values of B and C obtained with the Mie potential 
BMO, CMO = Values of B and C obtained with the Morse potential 
BKI, CKI = Values of B and C obtained with the Kihara potential 
BBU, CBU = Values of B and C obtained with the Exp-6 (BU) potential 
BExp± BExp = Experimental values of B from Ref [4] 
CExp± CExp = Experimental values of C from Ref [4] 
DeB(MIE) (%) = Deviation between BMIE and BExp 

DeC(MIE) (%) = Deviation between CMIE and CExp 
 
T0 TBExp 

K 
BMIE 

cm3/mol 
BMO 

cm3/mol 
BKI 

cm3/mol 
BBU 

cm3/mol 
BExp± BExp 

cm3/mol 
DeB(MIE) 

% 
 

222.89 -24.434 -26.047 -25.659 -26.121 -24.8±1 1.475 
242.00 -18.093 -19.183 -18.838 -19.328 -19.0±2 4.773 
262.00 -12.578 -13.262 -12.964 -13.449 -13.0±2 3.246 
273.15 -9.897 -10.406 -10.132 -10.606 -9.7±0.5 1.990 
289.64 -6.364 -6.659 -6.415 -6.864 -5.9±0.6 7.291 
295.00 -5.339 -5.551 -5.317 -5.753 -5.7±1.5 6.333 
303.20 -3.791 -3.937 -3.715 -4.139 -4.0±2 5.225 
320.00 -0.987 -0.955 -0.740 -1.139 -1.2±0.1 17.750 
348.15 3.113 3.285 3.495 3.147 3.2±1 2.718 
365.00 5.203 5.450 5.667 5.349 5.2±1.5 5.765 
398.15 8.723 9.070 9.319 9.055 9.0±1 3.077 
423.15 10.950 11.349 11.637 11.410 11.4±1 3.947 

 
T0 TCExp 

K 
CMIE 

cm6/mol2 
CMO 

cm6/mol2 
CKI 

cm6/mol2 
CBU 

cm6/mol2 
CExp± CExp 

cm6/mol2 
DeC(MIE) 

% 
 

234.05 1702.9 1736.4 2037.2 1805.0 1680±200 1.344 
263.08 1520.5 1508.0 1739.6 1557.3 1590±200 4.371 
276.94 1450.9 1421.4 1630.9 1465.9 1500±200 3.273 
293.15 1380.2 1334.0 1524.2 1374.8 1429±75 3.415 
310.00 1316.4 1256.0 1430.8 1294.8 1360±100 3.205 
320.00 1282.6 1214.8 1382.2 1253.3 1435±50 10.620 
330.00 1251.0 1176.3 1338.0 1214.8 1320±100 5.227 
348.15 1199.2 1114.0 1267.3 1153.1 1257±50 4.598 
350.00 1194.0 1108.1 1260.7 1147.2 1220±100 2.131 
373.15 1137.2 1040.7 1185.8 1081.7 1079±50 5.117 
423.15 1037.5 924.6 1062.2 970.9 1036±60 1.445 
473.15 959.86 836.0 972.9 889.0 1028±30 6.628 
573.15 843.58 707.3 852.3 773.9 883±30 4.464 

 

As it can be observed in table 7, the deviations of the values of B and C obtained 

with the Mie potential are somewhat better than those obtained with other potentials. It 
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should be noted that the temperatures TBExp and TCExp for the experimental values of B 

and C do not coincide, so the simulations must be carried out separately for B and C. 

 

6.2 Results for helium 4 

 

 Helium 4 is a non-polar gas in which quantum effects for B are especially 

relevant especially at low temperatures. In this case only the Mie potential will be 

considered, since both the Morse and Kihara potentials can be assimilated to this one 

[8], [9], [10], [11] and the Buckingham potential is less utilized. We will focus on the 

quantum effects and the advantages that can be obtained from the thermodynamic 

model. 

 
Table 8  
Simulation parameter values and Mie potential for He4 

 
Parameters values of the mechanical and thermal subsystem. Nomenclature in table 5 
 = 0.26; n = 0.69 rad/s; Kt = 8·10-7 (mA·m2/N); Kd = 3.75·10-7 (m3/s)/(N/m2)0.5 

Cf = 0.75; A0 = 4·10-6 m2; BP = 50; Kc = 100/BP; I = 300 s; P1 = 8·106 N/m2 
Pd = 5.7·106 N/m2; nT = 0.8 rad/s; T = 0.7; V = 1·10-3 m3 
Critical Pressure Pc = 2.28·105 N/m2 
KNLd = 8.4146·10-4 (1/mA2·s6); Km = 3.8512·1010 N/m2;  
Dipole, quadrupole moments, ionization potential and polarizability  
µ = 0;  = 0; I0 = 3.9573·10-18 J;  = 2.00·10-29 m3 
 

 Mie potential (MI) [3], [4], [6], [15], [36] 
 = 3.7980·10-10 m;  = 9.8579·10-22 J; n = 12.4 

Simulation parameters: f = 1.3; fCM = 13; b0 = 1 (1/mA·s3); b1 = 0.1 (1/mA·s2)  
T0 (K) 80 285.7143 491.4286 697.1429 800 
Tma (s) 5 6.0526 7.3684 8.6842 10 
ATm (s) 4.1667 4.5699 5.0000 5.3419 5.5556 

x1e (mA·s3) 0.1747 0.0962 0.0689 0.0565 0.0505 
KNLos mA-2·s-6 0.9230·105 2.4542·105 3.9583·105 5.1308·105 5.8871·105 
 

The thermodynamic model of Fig 6 has been simulated with the parameters 

indicated in table 8. Fig 10 shows the heat capacities cp and cv calculated through Eqs 

(2), (20), (21) and (25)-(28) by using the chaotically varying simulated PvT data during 

200 s as well as at a constant pressure P1 = 8·106 N/m2 as shown in the insets. It can be 

observed that the values of the heat capacities calculated by both methods are close. 

Furthermore, the averaged values of cp and cv obtained from chaotic PvT data coincide 

very approximately with the respective values at constant pressure P1 = 8·106 N/m2, 



 43 

which constitutes an indirect verification that the model is consistent with the proposed 

RDF and EOS. 

 
Fig 10. Heat capacities cp and cv for He4 calculated through Eqs (2), (20), (21) and (25)-(28) using 
chaotic PvT data as a function of time t as well as at a constant pressure P1 = 8·106 N/m2 in the insets. 
 

 
Fig 11. a) Compressibility coefficient z for He4 at seventeen temperatures T0 as a function of time. b) 
Three zones of chaotic values in the P-v plane at the temperatures of 420 K, 610 K and 800 K. 

 

Fig 11 a) shows the chaotic variation of the compressibility coefficient z given 

by Eq (30) as a function of time for each input temperature T0. Seventeen equally 
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spaced values for T0 between 40 and 800 K have been chosen, i.e. 40, 87.5, 135, 182.5, 

230, 277.5, 325, 372.5, 420, 467.5, 515, 562.5, 610, 657.5, 705, 752.5 and 800 K. The 

values of z deviate from unity, so the behavior of He4 is far from that of an ideal gas at 

the considered pressures and temperatures. Fig 11 b) shows three sets of chaotic data in 

the P-v plane obtained at the constant temperatures of 420 K, 610 K and 800 K. The 

chaotic nature of the PvT data is necessary to achieve an accurate estimation of B and C 

by collecting the gas dynamic properties (if such PvT data had not been chaotic, the 

estimations of B and C would have been much more inaccurate). 

 

Fig 12 shows the results for the second virial coefficient, where BCMie is the 

estimation from the chaotic PvT data, BQ is the quantum correction of Eq (24), BMie is 

the calculated value through Eq (22) and the experimental values are marked with 

asterisks. The simulation is carried out with the values of table 8 applying the heating-

cooling flow at t = 40 s and with a desired pressure in the accumulator vessel Pd = 

5.7·106 N/m2, which is much above the critical one Pc = 2.28·105 N/m2. In this case, the 

estimations BCMie obtained from the chaotic PvT data do not agree with the experimental 

values, especially at low temperatures at which the quantum effects BQ are significant as 

it can be appreciated in the inset of Fig 12. However, the values of BCMie + BQ are in 

much better agreement with the experimental data and in turn almost coincident with 

the values of BMie + BQ at all temperatures.  

 

 
Fig 12. Results for the second virial coefficient for He4 for Pd = 5.7·106 N/m2 (table 8) considering 
chaotic PvT data (BCMie), quantum effects (BQ) and the estimation BMie by using Eq (22). 
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Table 9 shows the numerical results for BCMie + BQ, BMie+ BQ for helium4 and 

their relative deviations respect to the experimental data Bexp at their corresponding 

experimental temperatures TBExp [4]. It can be observed that the deviations are small and 

that the calculated values are within or near the margin error of the experimental values. 

 

Table 9   
Virial coefficients B for He4 with Mie Potential 

 
BCMie = Calculated with chaotic data by using the Mie potential (table 8) 
BMie = Calculated with Mie potential and Eq (20) 
BQ = Quantum correction of B [2], [15] 
BExp ± BExp = Recommended experimental data [4], [48] 
TBExp = Experimental temperatures for B [4] 
De (%) = Deviation between BCMie + BQ and BExp 

 
TBExp  

K 
 

BMie 

cm3/mol 
 

BCMie 

cm3/mol 
BQ  

cm3/mol 
 

BCMie+BQ 

cm3/mol 
 

BMie+BQ 

cm3/mol 
BExp± BExp 

cm3/mol 
 

De 
 % 

 
40.09 2.639 2.642 5.169 7.811 7.808 6.57±0.50 15.8 
83.80 9.077 9.084 1.861 10.945 10.938 11.13±0.20 1.662 

133.15 10.655 10.667 1.032 11.700 11.687 11.97±0.50 2.255 
183.15 11.125 11.141 0.698 11.840 11.823 12.09±0.50 2.067 
222.13 11.240 11.259 0.553 11.813 11.793 11.93±1.0 0.980 
273.15 11.254 11.277 0.433 11.711 11.687 11.80±0.30 0.754 
330.00 11.188 11.216 0.347 11.563 11.535 11.75±0.20 1.591 
373.55 11.112 11.143 0.300 11.443 11.412 10.90±0.50 4.745 
423.25 11.012 11.047 0.259 11.307 11.271 10.36±0.50 8.375 
473.15 10.907 10.945 0.228 11.174 11.135 11.07±0.03 0.930 
523.20 10.800 10.842 0.203 11.045 11.003 10.69±0.07 3.214 
673.15 10.493 10.548 0.152 10.700 10.645 10.45±0.08 2.336 
773.15 10.306 10.368 0.130 10.498 10.436 10.26±0.07 2.267 
 

 

Fig 13 compares the virial coefficient CMie calculated with Eqs (2), (20), (21) as 

well as CCMie calculated through the adjustment of chaotic Pv simulated data at constant 

temperature in Eq (30). For the calculation of CCMie, the data of table 8 are used in two 

cases: i) For the inlet pressure P1 = 8·106 N/m2 and Pd = 5.7·106 N/m2 at seventeen 

input temperatures T0 between 80 K and 800 K; ii) for P1 = 12·106 N/m2 and Pd = 

9.5·106 N/m2 at seventeen input temperatures T0 between 80 K and 800 K. The 

temperature range is different in each case since at very high pressures the minimum 

temperature must be increased so that the equilibrium point defined by Eqs (46) is 

stable. 
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It is interesting to remark that when the simulation pressure increases the values 

of CCMie tends to the CMie values at all temperatures, as it can be observed in Fig 13. 

This result is in accordance with the idea that a good estimation of C from chaotic PvT 

data requires high pressures, as it was discussed in point 4) of section 5. On the other 

hand, the values of C1 and C2 (three-molecule interaction and the polarization effect 

respectively) have been also plotted in Fig 13. As expected, at high temperatures the 

values of C1 tend to those of C whereas the polarization effect C2 tends to zero. 

 

 
Fig 13. Results for the third virial coefficient for He4. The values of C1, C2 and CMie = C1 + C2 (inset) are 
obtained through Eq (22) whereas the values of CCMie are obtained through the chaotic PvT simulated data 
for two input pressures in the thermodynamic model: P1 = 8·106 N/m2 (Pd = 5.7·106 N/m2) and P1 = 
12·106 N/m2 (Pd = 9.5·106 N/m2). 
 
 

Figs 14 a) and b) show the estimations BCMie + BQ and CCMie of the second and 

third virial coefficients respectively for He4 at seventeen temperatures setting Pd = 

2.45·105 N/m2, which unlike in the previous cases is slightly above the critical pressure 

Pc = 2.28·105 N/m2. In this case, the estimations of B and C do not fit the experimental 

data because B and C have little contribution in the virial equation (30) with such a low 

pressure Pd, i.e. He4 behaves approximately as an ideal gas with z 

estimation of B and C through the chaotic PvT data is not accurate for very low 
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pressures at which the gas behavior is nearly ideal and B and C are not significant in Eq 

(30). Consequently, whilst Eq (22) allows to calculate B and C for any intermolecular 

potential regardless the pressure, the estimation from chaotic PvT data allows to 

elucidate if the coefficients B and C are significant in Eq (30) for a considered range of 

pressures and temperatures. 

 

 

Fig 14. Results for the virial coefficients for He4 with Pd = 2.45·105 N/m2. a) Estimation BCMie + BQ of the 
second virial coefficient from chaotic PvT data including quantum effects. b) Estimation CCMie of the third 
virial coefficient from chaotic PvT data. c) Compressibility factor z as a function of time t for the 
temperatures at which B and C are shown in plots a) and b). c) Heat capacity cp at constant pressure as a 
function of time t obtained from chaotic PvT data. 

 

Fig 14 c) shows the compressibility coefficient z as a function of time for each of 

the seventeen temperatures at which B(T) and C(T) have been estimated in plots a) and 

b). As expected, z oscillates chaotically with values that are very close to unity, that is, 

He4 behaves approximately as an ideal gas. Fig 14 d) shows the heat capacity cp as a 

function of time for each temperature at which B(T) and C(T) have been estimated. It is 

observed that the oscillation remains chaotic even though at the instant t = tc = 40 s the 

heating-cooling flow rate Fv(t) has been applied to stabilize the temperature. It should 

be remarked that the proposed methodology allows determining heat capacities, 

densities, and compressibility coefficients for a given intermolecular potential in a very 

wide range of pressures and temperatures. 
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 Table 10 shows the numerical results of C for He4 at the temperatures TCExp at 

which the experimental values for C are available [4] including the calculation of CMie 

through Eq (22) (as it was done in section 3 for Ne and water steam). 

 

Table 10   
Virial coefficient C for He4 with Mie Potential 

 
CMie = Calculated with Mie potential and Eq (20) 
CCMie = Calculated with chaotic data by using the Mie potential (table 8) at different 
input pressures: P1 = 3·105 N/m2 ; P1 = 8·106 N/m2 ; P1 = 12·106 N/m2 and desired 
pressures in the vessel: Pd = 2.5·105 N/m2 ; Pd = 6·106 N/m2 ; Pd = 10·106 N/m2 

CExp± CExp = Recommended experimental data [4], [48] 
TCExp = Experimental temperatures for C [4] 
De (%) = Deviation between CCMie at Pd = 10·106 N/m2

 and CExp 
Pc = 2.28·105 N/m2 < Pd;  = 2·10-31 m3; I0 = 3.9574·10-18 J; f = 1.3; fCM = 13 

 
TCExp 

K 
 

CMie 

cm6/mol2 
 

CCMie 

cm6/mol2 
Pd = 2.5·105 

N/m2 

CCMie 

cm6/mol2 
Pd = 6·106 

N/m2 

CCMie 

cm6/mol2 
Pd = 10·106 

N/m2 

CExp± CExp 

cm6/mol2 
 

De 
% 

83.15 223.091 -11.79 218.27 218.56 190±10 13.06 
133.15 178.102 -405.30 173.21 173.99 182±10 4.40 
183.15 153.835 -919.68 148.53 149.97 150±10 0.02 
223.15 140.641 -1435.0 134.72 136.74 134±4 2.00 
273.15 128.302 -2303.1 121.38 124.20 130±30 4.46 
330.00 117.758 -3547.9 109.06 113.35 74±100 34.71 
373.15 111.365 -4562.4 101.35 106.32 115±6 7.54 
423.15 105.171 -5535.5 92.81 99.44 100±10 0.56 
473.15 99.948 -6959.7 85.01 93.27 94±7 0.77 
523.15 95.463 -8508.8 77.91 87.84 100±10 12.16 
673.15 85.035 -14853 57.37 74.14 100±10 25.86 
773.15 79.776 -19683 44.32 65.77 100±10 34.23 
 

In table 10, it is interesting to note that at very low pressures (Pd = 2.5·105 N/m2) 

the estimation of C is very bad since He4 behaves as an almost ideal gas and thus C 

does not influence in Eq (30) (the same occurs with B as shown in fig 14 a)). As the 

pressure in the accumulator vessel is increased (Pd = 6·105 N/m2 and Pd = 10·105 N/m2) 

the estimation of C improves. Nonetheless, it should be noted that the pressure increase 

will be limited for physical reasons and numerical limitations in the thermodynamic 

model simulation. The last column of table 10 shows the relative deviations between the 

values of CCMie calculated for Pd = 10·105 N/m2 and the experimental values CExp, which 

can be regarded as admissible given the large variability of experimental data for C. 
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7 Conclusions 

 

A new general equation of state (EOS) that can be used with any real gas and 

intermolecular potential has been derived through an approximation of the radial 

distribution function (RDF) based on the Ornstein-Zernike equation. Such general EOS 

has been applied to estimate the virial coefficients B and C using two approaches. On 

one hand, B and C have been directly computed from the proposed EOS for neon and 

water steam considering the Mie potential and including quantum corrections for Ne as 

well as dipole-dipole interactions in the Mie potential for water steam. On the other 

hand, the general EOS has been applied in the context of a thermodynamic model to 

estimate B and C for nitrogen and helium 4 by adjusting the chaotic Pv data at an almost 

constant temperature and comparing the estimated values with the experimental ones. 

 

The thermodynamic model includes two servo-valves, a pressure probe, piping 

connections, a coil of heating-cooling an accumulator vessel and two controllers to 

regulate the flow rate and temperature. This model has been applied by considering the 

Mie, Morse, Kihara and Buckingham potentials, including the quantum correction for B 

in the case of He4 and the quadrupole moments in the Mie potential for nitrogen. 

 

The direct calculation of B and C from the proposed EOS using the Mie 

potential has allowed to obtain values of B and C in very good agreement with the 

experimental data for Ne and water steam. In addition, it has been corroborated that the 

calculations of B are in very good agreement with its general analytical expression for 

Ne in the absence of dipolar interactions, which however must be considered for water 

steam. 

 

On the other hand, the estimations of B and C for nitrogen and helium 4 from the 

chaotic PvT data obtained through the thermodynamic model agree with the 

experimental data in wide ranges of pressures and temperatures. However, it has been 

demonstrated that the estimations of B and C through chaotic PvT data are not accurate 

for very low pressures at which the gas behavior is approximately ideal and hence B and 

C are not significant in the virial equation. Consequently, the estimation of B and C by 

using chaotic PvT data allows elucidating if the coefficients B and C are significant in 

the virial equation for a considered range of pressures and temperatures. 
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The advantages of the virial coefficient estimation from chaotic PvT data can be 

summarized as follows. Firstly, it can be used with any intermolecular potentials 

including dipole and/or quadrupole moments as well as quantum effects. Secondly, it 

allows to know the pressure and temperature ranges for which both virial coefficients B 

and C are significant in the virial equation. Thirdly, it can be easily extended to analyze 

the intermolecular potentials in gas mixtures. And finally, it can be applied for any real 

gas, thus allowing to determine heat capacities, densities, and compressibility 

coefficients without the need of resorting to empirical equations of state. 

 

A Appendix 

 

A.1 Intermolecular potentials for non-polar gases. 

 

ular potential (MI) is defined as [2]: 

 

1 n mn m n mn m
u r

n m r r
                                   (A1) 

 

where n and m are positive constants with n > m, r is the separation between centers of 

molecules,  and  are parameters which depend of the gas considered. Eq (A1) has a 

minimum umin at a certain distance rmin, where -umin and  is the intermolecular 

separation when u = 0. The value n = 12 is widely accepted for analytical calculations 

[1], [3], [8], [34], [36] which leads to the Lennard-Jones potential (LJ) given by: 

 

12 6

4u r
r r

                                              (A2) 

 

ii) The Morse potential (MO) has the advantage that its parameters can be either 

estimated from experimental data for the second virial coefficient or deduced from the 

Lennard-Jones potential. In addition, many problems in Quantum Mechanics can be 

solved analytically by using the MO potential [7], [44], [45], which is defined as: 
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exp 2 2expe eu r D r r r r (A3)

 

The potentials u(r) given in Eqs (A2) and (A3) can be regarded as equivalent 

when the parameters  and re are given by [8], [44], [45]: 

1 12

1 12

ln 2
4   ;    ;  

4 1
er D                                    (A4)  

 

v) Kihara potential (KI) [9], [10]. Whereas the Lennard-Jones potential assumes that 

electronic clouds are soft and therefore penetrable (thus allowing molecule 

overlapping), the Kihara potential assumes a hard core with a soft electronic cloud and 

it is defined as: 

12 6

 for 2

2 2
4  for 2

2 2

K

K K
K

K K

r a

u r a a
r a

r a r a

                        (A5) 

 

where aK is the radius of the hard core. 

 

vi) Buckingham (BU) or the Exp(6)-  potential. This potential can be considered as an 

extension of the Sutherland potential substituting the hard core by an exponential term, 

which leads to [11]: 

6
ru r Pe

r
                                                   (A6) 

 

where P,  and µ are parameters which were originally estimated for He4, Ne and Ar 

[28,29].  Eq (A6) will be used in the form:  

 

6
6

6
mr r mre

u r e
r

                                     (A7) 

 

where  is the slope of the exponential term and  is the minimum of the potential 

energy. From Eqs (A6) and (A7) it is follows that: 
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66
  ;    ;  

6 6
m

m

re e
P r (A8) 

 

Eqs (A8) will be used to calculate the values of P,  and µ from the experimental 

values of ,  and rm [11-23]. 

 

A.2 Intermolecular potentials for polar gases. 

 

 For molecules with a permanent dipolar moment, the Stockmayer potential 

consists of the Lennard-Jones potential plus a term that accounts for the potential energy 

due to dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions [5]. In 

this case, the potential energy u(r,T) depends on the intermolecular distance r and on the 

temperature T due to the molecular orientation, i.e.: 

 

12 6

1 2 1 2 1 2 1 2, , , , 4 , , ,LJ e eu r T u u r u r
r r

       (A9) 

 

where eu  is an averaged electrostatic potential that depends on the dipole orientation 

angles 1 2 and the angles 1, 2 which define the relative spin of the dipoles with 

respect to the axis passing through their centers. The values of the non-averaged 

potential ue for pure gases in SI units is given by: 

2

1 2 1 2 1 23
0

1 2 1 2 1 2

2 14
0 1 2

2 2 2 22
1 2 1

5
0

2cos cos sin sin cos
4

3cos cos 2sin sin cos3
cos cos

8                  cos cos

1 5cos 5cos 15cos cos3

16

e

u r
r

u u r
r

u r
r

2

2

1 2 1 2 1 22 sin sin cos 4cos cos

   

(A10) 

where uµµ, u  and u  are the dipole-dipole, dipole-quadrupole and quadrupole-

quadrupole interaction potentials, µ and  are the dipolar and quadrupolar moments and 

0 is the vacuum dielectric constant. The potentials must be averaged for all possible 

orientations [2], i.e.: 



 53 

 

1 2 1 2 1 2

d
ln   ;  d sin sin d d d   ;  

d

eu kT

e

e
u kT          (A11) 

 

where d  is a differential solid angle, 1 2 ,  and therefore 

d 8 . Considering the dipole-dipole interaction, denoting by 2 3
04a r and 

expanding the exponential of Eq (A11) it is deduced that: 

 

2 4 6

2 2 4 4 6 6

d 1 3 1421
ln ln 1 .....

3 75 540225d

eu kTe a a a
u kT kT

k T k T k T
     (A12) 

 

Since 2 3ln 1 2 3 ...x x x x , Eq (A12) can be approximated as: 

 

4 8

2 4 3 36 12
0 0

1 1 7 1

3 4504 4
u

kT k Tr r
                       (A13) 

 

Similarly, the dipole-quadrupole and quadrupole-quadrupole interactions can be 

approximated up to the first term as: 

 

2 2 4

2 28 10
0 0

1 1 7 1
   ;   

2 54 4
u u

kT kTr r
                    (A14) 

 

As per Eqs (A10)-(A13), the total averaged electrostatic potential can be 

approximated as: 

 

4 2 2 4 8

2 2 2 4 3 36 8 10 12
0 0 0 0

1 1 1 1 7 1 7 1

3 2 5 4504 4 4 4
eu

kT kT kT k Tr r r r
 

(A15) 
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It should be noted that the Lennard-Jones potential in Eq (A9) may be 

substituted by the MO, KI or the BU potentials to investigate their effect in the 

calculation of virial coefficients of a given gas. Values of the dipole moments for 

different gases can be found in Refs [24], [25]. 
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