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A B S T R A C T   

Papain is a cysteine protease from papaya, with many applications due to its broad specificity. This paper reviews 
for first time the immobilization of papain on different supports (organic, inorganic or hybrid supports) pre-
senting some of the features of the utilized immobilization strategies (e.g., epoxide, glutaraldehyde, genipin, 
glyoxyl for covalent immobilization). Special focus is placed on the preparation of magnetic biocatalysts, which 
will permit the simple recovery of the biocatalyst even if the medium is a suspension. Problems specific to the 
immobilization of proteases (e.g., steric problems when hydrolyzing large proteins) are also defined. The benefits 
of a proper immobilization (enzyme stabilization, widening of the operation window) are discussed, together 
with some artifacts that may suggest an enzyme stabilization that may be unrelated to enzyme rigidification.   

1. Introduction 

1.1. Enzymes as industrial biocatalysts 

Enzymes are the most efficient catalysts in Nature. They are very 
active, specific and selective under mild conditions enabling their use 
under mild conditions (room temperature and atmospheric pressure, 
saving protection and deprotection steps, focusing on the modification 
of the target substrate, reducing the amount of side-products, etc. [1–5]. 
However, their biological origin results in some of their features not 
being adequate for their industrial implementation: enzymes have 
moderate stability, may be soluble in water, their extraordinary catalytic 
properties are limited to the physiological substrate, etc. [6]. Thus, in 
many instances, enzymes need to be improved before they can be used as 
industrial catalysts. 

There are many different tools at different levels of biocatalyst design 
to improve enzyme features. In most of them, a great leap has been made 
in the last couple of decades. Conventional microbiology may provide 

the researcher with many enzymes, but the development of meta-
genomics tools has opened the access to all present and past enzyme 
biodiversity independently from the fact that it may or may not come 
from a cultivable microorganism [7–9]. Protein designing/engineering 
has permitted to improve enzyme biocatalytic activity [10] and help in 
the understanding of the enzyme catalytic mechanism [11,12], substrate 
specificity [13], and kinetics parameters [14]. Directed evolution 
permitted to mimic natural evolution in a “fast forward” way, focused on 
the targeted enzyme properties [15–18]. The new concepts in enzyme 
chemical modification [19–21] and immobilization [22–25] also permit 
to further improve upon the enzyme features. 

These methodologies to improve enzyme features may be employed 
in a combined or even a synergetic way (e.g., designing enzymes by 
genetic tools that can be better improved by chemical modification or 
immobilization) [26–30]. The combined use of several of these tools 
permits to explore new concepts in enzymes design, that just a couple of 
decades ago were no more than a dream. This way, coupling site- 
directed mutagenesis and enzyme modeling, the researcher may create 
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an enzyme bearing two active centers (the so-called plurizymes) [31] 
and later on, by again using enzyme modeling and organic chemistry, to 
modify only one of them with a specific irreversible inhibitor bearing an 
organometallic catalyst [32]. This way, a final enzyme bearing two very 
different active centers may be generated and used in a cascade reaction. 

In the manipulation of foods, the use of enzymes has further ad-
vantages coupled to traditional chemical routes [33–36]. The use of 
conventional chemistry or catalysis is not advisable in these instances, as 
the production of by-products, in many instances with toxic potential, 
will avoid its consumption. The use of enzymes, thanks to their selec-
tivity, will prevent the production of these toxic by-products. Moreover, 
enzyme specificity permits to modify just the target compounds, without 
modifying other desired components of the food. That way, both enzyme 
features are critical advantages of enzymes in the modification of foods. 
In this context, proteases are one of the enzymes with a higher relevance 
[37–47]. 

1.2. Proteases 

Among the different enzymes, proteases, together with carbohy-
drolases and lipases, are outstanding catalysts for industrial application. 
Proteases encompass about 60% of the total enzyme market and stand 
among the most precious commercial enzymes [48]. Proteases are 
identified as hydrolases, which places them in class 3, and can be more 
specifically located in subclass 3.4., that is, those that hydrolyze peptide 
bonds [49]. However, there is a diversity in catalysis mechanisms, which 
has been used to divide proteases into 13 sub-subclasses. Among the 
different actions of proteases, the same protein chain can be hydrolyzed 
at different points depending on the protease in action, that is, on its 
specificity. In practice, this feature translates into information about 
which peptide bonds can potentially be broken in the substrate protein 
chain. Depending on the process to be developed, a greater or lesser 
specificity, or a more restricted or broader action, may be more or less 
interesting [39,43]. The specificity of these enzymes refers to how their 
protein chains, especially the region of their active sites, interact with 
the substrate. Thanks to the knowledge of this wide range of specific-
ities, it is possible to select the best protease applicable to the specific 
process [39,43]. These forms of interaction between protease and its 
substrates are influenced by the amino acid sequence and conformation 
of its chain. The maintenance of its conformations adequate to the 
protein-protein interactions guarantee the success of its performance 
and can even provide an improved performance under a wider range of 
conditions of the reaction medium of the process in question. 

1.3. Papain 

Papain was the first protein isolated from papaya and the first 
cysteine protease that had its structure revealed by means of a three- 
dimensional X-ray study [50]. Thus, cysteine proteases are identified 
as papain-like proteases and are a large group of important components. 
Recently, much attention has turned to one of these proteases, the 
papain-like protease from the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), which has been shown to play vital roles for the 
virus virulence, such as replication and capacity for immune evasion 
[51]. This is because this type of cysteine protease can be found in many 
living beings, such as viruses, microorganisms, plants or animals. As 
minutely discussed by Liu et al. (2018) [52], the origin of papain-like 
proteases probably occurred before the divergence of the main 
eukaryotic lineages. A striking feature in common is the presence of the 
active-site containing the catalytic triad Cys-His-Asn. Thanks to this 
Cysteine in its active site, these proteases are classified within the sub-
class 3.4.22 (Cysteine endopeptidases). The papaya from Carica papaya 
is classified as EC 3.4.22.2 [53]. 

Although papain represents a very small percentage of the endo-
peptidases of Carica papaya, only in the range of 5 to 8%, its wide ap-
plications placed it in a prominent position in industrial applications. 

Although its applications in food production processes are very promi-
nent, such as meat tenderization, baking or dairy industry, its applica-
tions are wide and varied, including applications in drug production 
processes and even for direct administration, with their pharmacological 
actions and production of bioactive peptides [46,54]. With so many 
interests in this enzyme, its production on a large scale is necessary, and 
different techniques are proposed. Although the expression of recom-
binant papain via different microorganisms is a viable way, its direct 
extraction from papaya fruit tissues is still a way of obtaining it, being 
possible to extract it from latex, peel and other parts [55]. 

An interesting feature of this protease is its broad specificity for 
peptide bonds, allowing a high degree of protein hydrolysis to be ach-
ieved. But this enzyme, like other cysteine proteases, has a preference 
for an amino acid containing a large hydrophobic side chain at position 
P2 and does not accept Val at P1' [53]. Its structure reveals itself as a 
single polypeptide chain, folded into two domains of the same size but 
with conformational differences. This chain is composed of 212 amino 
acids, with a molecular weight of 23,350 Da, with 7 Cys residues, one of 
which (Cys 25) composes the active site, together with residues His159 
and Asn175 [56]. 

Although this enzyme has a better performance in media with 
neutral pH, close to 6.0-7.0, it manages to maintain its activity under a 
wide range of pH and temperature of the medium [57]. This expands its 
applications. However, although it maintains its activity, its stability is 
reduced under more extreme conditions, which can be overcame by 
enzymatic modification and immobilization techniques. As previously 
mentioned, processes that increase the stability of protein chains can 
increase the range of applications of an enzyme, allowing its application 
to be propitiated in more types of feed media. Although papain is a 
fantastically applicable protease in its soluble and native form, its 
immobilized form can have many advantages and even more 
applications. 

2. Enzyme immobilization 

2.1. General considerations on enzyme immobilization 

Enzyme immobilization was initially developed to solve the problem 
of enzyme recovery and reuse, as the initial price of enzymes was pro-
hibitive for just a single use in most applications [58–60]. The produc-
tion of a heterogeneous catalyst permitted the simple recovery of the 
enzyme after each reaction cycle. In order to reuse the enzyme, it is 
necessary for the enzyme activity to be maintained after utilization 
[61–63]. This way, enzyme immobilization and enzyme stability were 
related concepts from the beginning. To have this good biocatalyst 
stability, it is possible to use a very stable enzyme (that permits its reuse 
for many reaction cycles), or to greatly improve the enzyme stability 
after immobilization, if the initial enzyme stability is not high enough. 
However, this improvement of the enzyme stability upon immobiliza-
tion should not be taken for granted [64,65]. Depending on the enzyme 
and the interaction that the support can establish with it, the immobi-
lization can even lead to enzyme destabilization [65,66]. An appropriate 
immobilization system to get a stabilized-immobilized enzyme [67] 
must consider the support (the best ones will be those where there are no 
more groups able to interact with the enzyme than those introduced by 
the researcher, like agarose) [68], the reactive groups (that must be 
abundant, stable, without steric hindrance towards the enzyme support 
reaction) [69] and the protocol (that must pursue an intense but 
controlled enzyme support reaction and have some kind of end point) 
[70], including the used buffers and medium composition [71,72]. 
Glutaraldehyde [73], glyoxyl [74], epoxides [64,75–77] or vinyl sulfone 
[78] activated supports are among the best supports for this objective 
[67]. That way, nowadays an appropriate enzyme immobilization pro-
tocol should maintain or even increase the stability of the enzyme, by 
promoting a significant multipoint covalent or multi-subunit (for mul-
timeric enzymes) immobilization) [24,28,67]. Moreover, enzyme 
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immobilization has proved to be able to improve enzyme activity, 
mainly under harsh conditions, widening the range of operational con-
ditions [79–82]. Moreover, immobilization may tune enzyme selectivity 
or specificity, reduce inhibitions and decrease inactivation by chemicals, 
or it may be coupled to enzyme purification [22–25]. Enzyme immo-
bilization does not avoid the use of any other strategies to improve 
enzyme properties. In fact, immobilization may be beneficial when 
coupled to any other enzyme stabilization technique, such as microbi-
ological, genetic or chemical modification tools [26–30,83–85]. For 
example, the chemical amination of an enzyme with ethylenediamine 
may permit to get an enzyme that can be immobilized using several 
anchoring points at lower pH value and giving a higher intensity of the 
multipoint covalent attachment, enabling a higher stabilization [83,84]. 
This way, immobilization is no longer mainly addressed to the enzyme 
recovery and reuse; it has become a critical point in the development of 
an enzymatic industrial biocatalyst. 

2.2. Protease immobilization 

In the case of proteases, their immobilization may have special 
positive effects, but also some special problems [39,43]. One of the most 
relevant uses of proteases is in the modification of foods, where other 
proteins are present in the substrate matrix [39,43]. That means that the 
enzyme, if used in free form, will be incorporated to the food, and this 
may not be desired, as some allergic reactions may be produced, even for 
a minimal percentage of the population, and this prevents partial and 
controlled modifications. In many instances, the control of the reaction 
is critical to reach the desired degree of protein hydrolysis, and this is 
much simpler using immobilized enzymes [38,86–88]. Together with 
the general advantages of using immobilized enzymes described above, 
the immobilization of proteases will prevent autolysis (at least if per-
formed in pre-existing or ex novo porous biocatalysts), simplifying the 
protease storage and application [25]. This should improve the opera-
tional stability of the proteases, but also makes a direct comparison to 
the stability of the free and immobilized proteases troublesome, as some 
artifacts may arise, deriving from the fact that this inactivation cause is 
prevented by immobilization even if the enzyme rigidity is not improved 
[39]. The use of immobilized enzymes also offers cleaner results when 
used to give proteolytic maps, as it is the case of the tryptic maps per-
formed using trypsin used in some instances [89–91]. 

On the other hand, protease immobilization, when the biocatalyst is 
going to be used to hydrolyze proteins, presents a specific problem. Due 
to the large size of the substrate, only properly oriented enzyme mole-
cules may be active by steric hindrances, as the protein molecules will be 
unable to access those enzyme molecules whose active center is oriented 
towards the support surface (Fig. 1) [39]. Moreover, a further problem is 
that no fully properly oriented proteases may give a response to the 
increase in the enzyme loading of the support quite unexpectedly. Using 
low enzyme loading, when the immobilization rate is slow and the 
immobilized enzyme molecules are sufficiently distanced between one 
another, the active centers of the proteases will be able to hydrolyze 

proteins (Fig. 2A). Using full enzyme loading, the steric hindrances will 
promote the actual blocking of the active centers of the proteases for 
large proteins, which will be active only versus small substrates (Fig. 2B) 
[80]. Similarly, the results of immobilizing the protease on a support 
under conditions where a rapid immobilization or a slow one are ob-
tained, should provide a fully different result even using moderate 
enzyme loadings (Fig. 3). We have not found any references in the 
literature discussing this. However, using conditions where a low 
immobilization rate is obtained, the enzyme can diffuse in the particle 
pores before being immobilized (Fig. 3A). This way, it will be distributed 
on the support surface and will provide a higher percentage of active 
molecules than if the enzyme is immobilized so quickly that the enzyme 
molecules are packed together forming a crown at the beginning of the 
support pores (Fig. 3B) [92–97]. In some cases, some unexpected effects 
of the enzyme loading may be found, as is the case of ficin immobili-
zation in the production of milk clotting, where the optimal results were 
obtained using a fully loaded biocatalyst even though the caseinolytic 
activity decreased [87]. 

Another problem is the possible very large size of the substrate 
proteins. If we are using a protein extract as substrate, it is likely that 
some of the protein reactants may be really large, and this makes using 
supports bearing large pore diameters to immobilize proteases neces-
sary, choosing the size not only by the protease size, but considering the 
size of the larger component of the planned substrate extract (Fig. 4A). 
This problem may be turned into an advantage if we do not wish to 
modify some very large proteins (e.g., IgG in milk), as the enzyme will be 
only able to act versus moderately small protein molecules (Fig. 4B). 
Again we have not found any bibliography in this regard. 

The situation is even more complex if the substrate is a solid, like 
protein aggregates after oil extraction or using the proteases in textile 
products. In the first case, the use of chaotropic agents can permit the re- 
solubilization of the substrate proteins, but this makes having a protease 
stable enough under these drastic conditions compulsory [79,98] and 
this may complicate the downstream process. In the case of solids that 
cannot be re-solubilized, the only way is to use immobilized enzymes 
that can act versus a solid, that reduces the possibilities towards the 
immobilization of proteases to the use of nanoparticles [39,99–104] or 
smart-polymers [105,106] (Fig. 5). Nanoparticles permit enzyme sta-
bilization via multipoint covalent immobilization, but they do not pre-
vent enzyme inactivation by autolysis or interaction with interfaces 
[107] (Fig. 6). Magnetic nanoparticles may permit the recovery of the 
biocatalyst even in a suspension product formulation, as it is the case in 
many foods (also magnetic porous macro-supports may take advantage 
of the magnetic features) [108]. Smart polymers should have scarce 
effects on enzyme stability, enabling just the reuse of the enzymes, as 
long as the final product is a solution and not a suspension [105,106]. 

That way, papain immobilization is a subject of special relevance to 
utilize the enzyme in food technology [46]. This is the first review in 
literature on this subject, as far as we know. 

Op�mal enzyme orienta�on Good enzyme orienta�on Bad enzyme orienta�on

Fig. 1. Effect of the enzyme orientating regarding the support on its activity versus large substrates. If the enzyme active center is oriented towards the support 
surface, the generation of steric hindrances by the support surface will fully inactivate the immobilized enzyme. Other orientations may result in high levels 
of activity. 
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3. Immobilization of papain 

3.1. Immobilization of papain in organic natural supports 

3.1.1. Immobilization of papain in agarose beads 
Agarose beads matrix is a support utilized by many researchers due 

to their good properties: it is commercially available at different and 
very well defined pore sizes. It is also possible to find it in different 
particle sizes, it is a highly inert support (in fact, it is used in the size 
exclusion chromatography where any protein-support interaction will 
be negative [109,110]), it is very flexible and compatible with me-
chanical stirring, and there are methods for its activation with very 
different active groups [68]. It is also transparent, making it possible to 
study the enzyme fluorescence or UV absorption spectra [68]. That way, 
it is a very popular support to immobilize enzymes, as it permits full 
control of the events occurring between enzyme and support: the only 
groups present are those introduced by the researcher [66]. Thus, this 
support has been used for immobilizing papain for a long time. 

First, we will present the results of immobilization of papain by co-
valent methods. The first report in that sense that we have found is from 
1977. The authors used agarose 4B activated with cyanogen bromide. 
This reagent was very popular to immobilize enzymes in the past, 
involving mainly the non-protonated primary amino groups in the 
immobilization. However, although it is very efficient in immobilizing 
enzymes under mild conditions [111,112], actual enzyme intense 
rigidification caused by the enzyme immobilization itself is not ex-
pected, as this reagent is used at neutral pH due to the moiety stability 
problems, and Lys residues are not very reactive under those conditions. 

This makes getting an intense multipoint covalent immobilization 
complex, but if properly performed, some enzyme stabilization may be 
achieved [113]. However, most of the examples of immobilization of 
papain on agarose that we have found used this activation method. Thus, 
the protease was immobilized on agarose 4B activated with cyanogen 
bromide [114]. The loading of the support was 17 mg proteins/g dry 
agarose. The KM of the immobilized enzyme was very similar to that of 
the free enzyme, while the storage stability greatly increased (the ac-
tivity remained unaltered after 240 days at pH 7.5 and 4 ◦C). The 
immobilized enzyme retained its activity unaltered after 4.5 h of incu-
bation in 6 M urea, conditions that decreased the activity of the free 
enzyme to less than 20%. The authors did not investigate the percentage 
of improvement due to real enzyme rigidification and due to prevention 
of autolysis [114,115]. Later, the same activation protocol but using 
agarose 6B support was utilized to investigate the effect of Cys during 
enzyme immobilization on the residual activity of the immobilized 
papain [116]. Cys improved the recovered activity, with a maximum 
effect when using 200 mM. While the kinetic parameters remained un-
altered, the new biocatalyst was more thermostable than the free 
enzyme and also became more stable at extreme pH values. The optimal 
temperature for the immobilized enzyme improved from 60 to 80 ◦C, 
enlarging the window of enzyme operational conditions also when 
compared to the enzyme immobilized in absence of Cys [116]. In a 
further research effort, the authors showed that the enzyme resistance to 
the inhibition caused by various bivalent metals was increased on the 
immobilized enzyme, also showing a shift in the optimal pH from 6.5 to 
8.0 [117].Papain was also immobilized using glyoxyl groups, that are 
more adequate to get an intense multipoint immobilization [67,74,118]. 

A B

Biocatalysts with low enzyme
loading can hydrolyze big substrates

Biocatalysts with high enzyme loading
can only hydrolyze small substrates

Fig. 2. Effect of protease loading on the 
activity versus large substrates when the 
orientation is not the correct one. Using low 
loadings, even enzyme molecules with 
active centers not fully oriented towards 
the medium may be fully active versus large 
proteins. However, using high loadings, 
with the enzyme molecules packed 
together, the generation of steric hin-
drances by the proximity of other protease 
molecules can seriously decrease or even 
supress enzyme activity versus large 
substrates.   

B

High immobiliza�on rate

A

Low immobiliza�on rate

Fig. 3. Effect of the immobilization rate on the enzyme distribution on the pore of a support: A: immobilization rate is much slower than enzyme diffusion rate. This 
enables a homogenous enzyme distribution along the whole support pores B: immobilization rate is must higher than the enzyme diffusion rate. This will form a 
crown of enzyme molecules in the outer part of the pores of the support, while the other will be void. This kind of immobilized enzymes will suffer the same problems 
described in Fig. 2. 
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That way, papain was immobilized on 6BCL glyoxyl-agarose and utilized 
in the hydrolysis of casein and β-lactoglobulin with poor results [119] 
However, after a preliminary hydrolytic treatment of the substrates 
employing immobilized trypsin, the immobilized papain yielded the 
maximum degree of hydrolysis in a shorter time than the free enzyme. 

There are not many papers dealing with agarose to immobilize en-
zymes by physical events [120]. A likely explanation could be that, if the 
support is not fully coated with the protease, the protein substrate could 
become adsorbed on the support, making any study complex. The 
example that we have found is the immobilization of papain on agarose 
beads activated with immobilized metal chelates. This method is based 

mainly on the interaction between His (but also amino acids with a 
lower intensity), and immobilized transition metals. This nowadays is a 
common support to purify poly-His tagged proteins [121]. Thus, this 
support was utilized to reversibly immobilize papain [122]. The 
immobilization permitted to maintain the enzyme activity while 
improving its thermal stability. The support could be reused after 
enzyme reuse and utilized in the immobilization of a fresh batch of 
papain, obtaining a biocatalyst with similar performance [122]. 

3.1.2. Immobilization of papain on cellulose beads 
Cellulose is the most abundant biological polymer in Nature, and the 

beads produced from it have been used in many instances for enzyme 
immobilization. It has been performed in the form of non-porous 
nanoparticles [123] or macroporous particles [124,125]. They have 
been also produced in magnetic formulations, adding ferrite during the 
bead building [126,127]. These magnetic supports may have some 
special interest when used in diverse situations, as it has been recently 
reviewed [108]. And papain has been frequently immobilized on cel-
lulose beads. 

One of the support activation methods utilized to immobilize en-
zymes on cellulose is the direct oxidation of the support with sodium 
periodate, that produces a di-aldehyde, able to react with primary amino 
groups of proteins [128–130]. In a first paper, wood chip was oxidized 
with sodium periodate and used to immobilize papain, with a high 
retention of enzyme activity [131]. The optimal temperature of the 
enzyme increased after immobilization by 7 ◦C. The immobilized 
enzyme was then used to reduce beer turbidity caused by large peptides. 
After 28 days of usage, the initial activity was maintained [131].In 
another research effort, agarose beads were incubated in 1-butyl-3- 
methyl imidazolium (a ionic liquid) and oxidized with NaIO4, and this 
support was utilized to immobilize papain, with high activity recovery 
(stability was not analyzed) [132]. Later, this research group utilized a 
similarly treated cellulose in different configurations, including pow-
ders, membranes and beads [133]. Membranes had the higher papain 
loading capacity papain loading and immobilized enzyme activity. In an 
interesting paper, the authors went from cellulose production to the use 
of the immobilized enzyme on beads formed by this cellulose [134]. 
First, bacterial cellulose was produced using Komagataeibacter hansenii, 
purified and oxidized with NaIO4 to produce aldehyde groups. This 
home-made support was used to immobilize papain after surface 
response methodology optimization (with an optimal immobilization 
yield over 50% at 45 ◦C and pH 7.0 and a expressed activity of almost 
95%). As the paper did not use higher pH values during immobilization, 
it is hard to know if these are really the best conditions for papain 

B

Narrow pore size, only proteins
similar in size to the enzyme can

be hydrolyzed

A

Wide pore size, most proteins
can be hydrolyzed

Fig. 4. Effect of the support pore size on the activity of immobilized enzymes 
versus large and small substrates. If the pore diameter is large, (A), proteins of 
most sizes can go inside the biocatalysts and the immobilized enzyme will be 
active versus substrates of all sizes. If the pore of the support is small enough 
(B), only proteins able to enter the pore will become substrates for the enzyme, 
and even that may be submitted to high diffusional limitations. 

Employing nanopar�cles there is
autolysis between par�cles

Using porous supports
autolysis is avoided

A B

Fig. 5. Prevention of autolysis via immobilization. Enzyme molecules immobilized on non-porous supports can interact with the enzyme molecules located in other 
particles and produce autolysis, but not with enzyme molecules located in the same particle. (A). When using porous supports, the immobilized enzymes are fully 
protected from proteolysis from enzyme molecules located in the same or in other particles (B). 
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immobilization on aldehyde activated cellulose, at this pH only terminal 
amino groups will be reactive (but if the papain suffers autolysis, it may 
be that each enzyme molecule has more than one of these groups). 
Immobilization on non-oxidized supports gave a lower immobilization 
yield, based just on ion exchange. The covalently immobilized enzyme 
was successfully used in debrided chronic wounds [134]. 

Many other examples of immobilization of papain in cellulose use 
glutaraldehyde to covalently immobilize the enzyme to the support. 
Unfortunately, none of them exploits the versatility of this immobili-
zation strategy. That way the potential of the strategy is under-utilized 
[73]. The exact mechanism of the covalent enzyme- glutaraldehyde- 
support linkage is not fully solved [135,136], but the method is very 
popular. The versatility of glutaraldehyde is based on the heterofunc-
tional character of this support [69], bearing a cationic group (the amino 
groups in the support), a hydrophobic moiety (the glutaraldehyde cy-
cles) and a chemically reactive group. That way, it is possible to obtain 
different biocatalysts of the same enzyme using the same support by 
selecting conditions where one or the other immobilization mechanism 
is favored as first cause for enzyme immobilization, giving biocatalysts 
with different stabilities and activities [79,81,137–140]. Moreover, it is 
possible to use preactivated supports [141] or to treat with glutaralde-
hyde enzymes that have been previously ionically exchanged on the 
support [142]. That way, in many instances, glutaraldehyde based 
immobilization offers very good stabilization results [67] although if the 
studies are not properly performed, it is not simple to ensure that even a 
single enzyme-support covalent bond has been formed, the enzyme may 
be just physically adsorbed on the support. In one interesting paper 
using glutaraldehyde to immobilize papain, this enzyme was immobi-
lized on microcrystalline cellulose in a 3 step modification. First, the 
cellulose beads were modified with p-toluenesulfonyl chloride. Then, 
this group was utilized to attach ethylenediamine to the support, and 
finally the support was activated using glutaraldehyde [143]. The 
immobilized enzyme kept high levels of activity and its stability was 
significantly improved. Another example shows that cellulose beads 
were incubated in 1-butyl-3-methyl imidazolium chloride, an ionic 
liquid and modified silane [144]. Then, papain was immobilized 
following two different protocols: first immobilization by ion exchange 
and after treatment with glutaraldehyde, or activate the support with 
glutaraldehyde and then immobilize the enzyme. The best results were 
obtained using the crosslinking of the previously ionically exchanged 
enzyme [144]. In a further effort, this research group studied the 
immobilization of papain in membranes obtained from microcrystalline 

cellulose Avicel, activated with glutaraldehyde as described above 
[145]. The enzyme was immobilized on both sides of the membranes 
and utilized in the modification of wool fiber, but acting only on the 
external surface of the textile. In another paper, magnetic nanocrystal-
line cellulose was coated with chitosan and finally activated with 
glutaraldehyde. The support was used to immobilize papain [146]. This 
biocatalyst was utilized to produce the dipeptide N-(benzylox-
ycarbonyl)-alanyl-histidine in deep eutectic solvents [147–151] 
following a kinetically controlled strategy [152–154]. As this strategy 
gives a transient maximum yield that depends on the enzyme properties 
[155–158], results using the immobilized enzyme were higher than 
those obtained using the free enzyme. After studying the reaction, a 
dipeptide yield next to 70% was achieved [146]. The biocatalyst could 
be recovered and reused thanks to its magnetic properties. 

3.1.2.1. Immobilization of papain on cotton fabric. A special kind of 
cellulose is the one derived from cotton fibers. Cotton has been 
frequently utilized to immobilize enzymes [159–161], and papain has 
been one of the examples. In a first paper, cotton fiber was oxidized with 
sodium periodate and used to immobilize papain, with a high retention 
of enzyme activity [131]. The optimal temperature increased by 7 ◦C 
after immobilization. The immobilized enzyme could be used to reduce 
beer turbidity for 28 days [131]. Researchers used pieces of cotton cloth 
to incubate them in a sol-gel solution including papain, that way the sol- 
gel solidified in the cotton textile involving the enzyme [162]. Immo-
bilization increased the pH window of enzyme operation. The bio-
catalysts could be reused six times maintaining 30% of the initial 
activity [162]. Later, this biocatalyst was applied to design a cotton 
cloth bioreactor, used in the hydrolysis of chitosan [163]. The authors 
did not provide clear evidences that this promiscuous activity is really a 
reaction catalyzed by papain and not for other components of the 
extract. 

Three papers show the advantages of integrating chemical modifi-
cation and enzyme immobilization. The papers used a cotton fiber 
submitted to alkaline treatment and incubation with p-toluenesulfonyl 
chloride, followed by ethylenediamine treatment and activation with 
glutaraldehyde. In the first paper, papain was modified with pyro-
mellitic acids [164]. The optimal pH was moved from 7.0 to 9.0, with a 
significant improvement in enzyme stability compared to the immobi-
lized and not modified enzyme. In the second paper, papain was 
modified by using succinic anhydride and then immobilized on the 
treated cotton fiber [165]. The optimal temperature increased to 80 ◦C 

The enzyme can reach and hydrolyze the solid substrate The substrate is not accessible to the enzyme

A B

Fig. 6. Hydrolysis of solid substrates by immobilized enzymes. The solid may be hydrolyzed by proteases immobilized on non-porous supports (A), while protease 
molecules immobilized on porous supports will not have access to the substrate (B). 
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and the optimal pH was shifted to pH 9.0. The modified and immobilized 
enzyme maintained 40% of the activity in the presence of 20 mg/mL of 
sodium dodecyl sulfate. Stability of the modified and immobilized 
enzyme improved compared to the unmodified and immobilized one 
[166]. In the last one, papain was modified using different anhydrides of 
1,2,4-benzenetricarboxylic and pyromellitic acids before the modifica-
tion on the treated cotton fiber. The optimal pH for the immobilized 
enzyme activity became 9.0 (from an initial value of 6.0 of the free 
enzyme). The non-modified and immobilized enzyme was less stable at 
high temperature, alkaline pH values or in the presence of detergents. 

3.1.3. Immobilization of papain on chitosan 
Chitosan is a polysaccharide derived from chitin, that forms the 

exoskeleton of arthropods and is also present in some other living beings 
[167,168]. It is produced by the partial deacetylation of 2-acetyl-glucose 
amine [169–172]. Chitosan is rich is hydroxyl groups and glucosamine. 
This makes it a weak anion exchanger, due to the low pK of the amino 
group. However, it is easy to activate this primary amino group with a 
variety of activating agents to get a covalent enzyme immobilization, 
such as glutaraldehyde, epichlorohydrin, divinylsulfone, genipin, etc. 
[173–180]. The hydroxyl groups make it also possible to use other 
activating techniques, like oxidation with sodium periodate to form 
dialdehyde groups. That way, this support provides a wide variety of 
possibilities to immobilize enzymes [181], and it has been frequently 
used in papain immobilization. The use of the natural crosslinking re-
agent genipin [182] to activate the support has special interest, as that 
way the support will be fully natural and generally recognized as safe 
(GRAS) by the FAD [178,183–187]. However, we have not found any 
example of papain immobilization following this strategy. The effect of 
the spacer arm in the activity versus small and large substrates of 
covalently immobilized papain in chitosan beads modified with di-
amines of different lengths was studied, using N-hydroxy succinamide as 
activation method [188]. It was found that the activity versus N-benzyl- 
l-arginine ethyl ester was similar independently of the spacer arm, but 
when casein was used as substrate, higher activity was found using 
longer spacer arms. Enzyme stability was also improved after immobi-
lization. In this case, the spacer arm length had a negative effect on the 
final enzyme stability [188].In another paper, the authors immobilized 
papain on chitosan using glutaraldehyde [189]. The optimal tempera-
ture of the immobilized enzymes was increased to 80 ◦C. The immobi-
lized enzymes retained 95% of their initial activity after 1 h of 
incubation at 90 ◦C [189]. In another research effort, papain was 
immobilized on this support using glutaraldehyde and used to produce 
chitosan oligomers, a function quite far from the natural function of a 
protease [190]. The depolymerization efficiency of the papain extract 
increased after immobilization. However, we cannot rule out that this 
activity may be associated to other components of papaya latex not 
detected by the authors of this paper, as the mechanism of this pro-
miscuous activity was not investigated. Another research work shows 
the immobilization of papain purified using an aqueous two phase sys-
tem [191–193] just by adding the chitosan particles to the PEG phase, 
that was the phase where the enzyme was accumulated [194]. The ion 
exchange of the papain on the chitosan particles gave 90% of immobi-
lization yields and 40% of expressed activity. Another paper shows that 
papain immobilized on chitosan particles using a glycine buffer via 
anion exchange had a 90% of expressed activity (only 30% of immobi-
lization yield), and this biocatalyst was successfully utilized as an anti- 
biofilm agent and also as a bactericide versus bacteria in biofilms 
[195]. The immobilized enzymes were more stable than the free one, by 
a 6 -7 factor (perhaps just by preventing enzyme autolysis). The enzyme 
could release from the support, but this fact was utilized to use the 
material in wound-dressing materials, decreasing the cytotoxicity of free 
papain [195]. 

Papain immobilized on chitin and chitosan was utilized to prevent 
the problem of Saccharomyces cerevisiae flocculation during ethanol 
production [196]. The modification with polyethyleneimine and 

glutaraldehyde presented a negative effect on enzyme activity, while the 
best results were found using tripolyphosphate. However, the results 
were not satisfactory, and the authors finally proposed the use of free 
enzyme, recovering the enzyme by centrifugation. Papain sensitivity to 
UV radiation was compared to that of ficin and bromelain in free and 
immobilized forms [197]. Papain activity decreased at UV intensity of 
453 J⋅m− 2, and its globule size increased using 755 J⋅m− 2. Immobili-
zation on chitosan matrix of the three proteases leads to the increase in 
the UV stability, suggesting that the chitosan matrix behaves as photo-
protector of the enzymes [197]. 

3.1.4. Immobilization of papain on alginate 
Sodium alginate is utilized in many instances to immobilize cells by 

the trapping technique [198,199]. To immobilize enzymes, the pores of 
the sodium alginate beads need to be very small, and for that reason, 
they are not often utilized to immobilize free enzymes, although some 
examples may be found [199–202]. However, as this is a sulfhydryl 
protease that can be affected by metal ions, and alginate can capture 
them [203–205], protecting the enzyme from the deleterious effects. 
This immobilization strategy has been used in several cases. Thus, the 
adsorption of mercury [206], lead [207], and cadmium [208] on papain 
immobilized on alginate beads has been analyzed, showing how the 
alginate protects the enzyme from the inactivation promoted by these 
agents. In another paper, this method of enzyme immobilization was 
used to produce a wound dressing product [209]. Alginate has some 
positive effects as wound healing material, and papain produces 
debridement of necrotic or devitalized tissues. In this case, the 
controlled papain release from the alginate beads may be an advantage. 
The development of dressing based on alginate and papain aggregates 
showed that over 64% of the enzyme was released after 24 h using the 
Franz cell study [209]. 

3.2. Immobilization of papain on synthetic organic supports 

Synthetic polymeric supports have some advantages compared to the 
natural polymers in enzyme immobilization [64,210–214]. Using these 
supports, the chemical structure of the matrix may be designed by the 
researcher. However, it is difficult that a synthetic polymer may end up 
with properties as “ideal” as agarose as a matrix for enzyme immobili-
zation [68]. 

3.2.1. Immobilization of papain on synthetic organic supports beads 
This kind of polymeric beads has been frequently utilized to immo-

bilized papain. In 1979, 1.5 mg of papain/g of support were immobilized 
on nylon grafted with polyacrylamide and activated with glutaralde-
hyde [215]. Later, papain was immobilized on matrixes formed by ra-
diation induced polymerization of different monomers at low 
temperatures [216]. Using monofunctional acrylate or methacrylate 
supports, the activity was higher than that observed when immobilizing 
the enzyme on supports produced from bifunctional bismethacrylate. 
Using polyoxyethylene dimethacrylate, the activity of the immobilized 
papain increased when the number of oxyethylene units was increased. 
The thermal stability of the immobilized enzyme increased with the 
hydrophilicity of the monomers and with the monomer concentration 
[216]. 

Glutaraldehyde has also been utilized in many instances in this kind 
of supports. For example, after being anion exchanged in an aminated 
resin, the immobilized papain was treated with glutaraldehyde [217]. 
The immobilized enzyme activity increase up to 85 ◦C, and then slightly 
decreased at 95 ◦C. Immobilized enzyme stability was increased using 
Cys solutions or nitrogen purging during inactivations. The enzyme was 
used for 30 h in a continuous-flow stirred-tank using both nitrogen 
purging and 0.01 M cysteine in 2 mM EDTA at 51 ◦C [217]. In another 
research effort, papain was ionically exchanged in Dowex MWA-1 (mesh 
20–50) and then treated with glutaraldehyde [218]. The presence of 80 
mM Cys and 2 mM EDTA maintained more than 95% of the biocatalyst 
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initial activity for 2 months at 5 ◦C. Moreover, a macroporous bead 
formed by N-aminoethyl acrylamide and vinyl alcohol units was utilized 
to immobilize papain using glutaraldehyde [219]. The papain activity 
reached a value of 48% - 58%, becoming more stable than the free 
enzyme. The same research group produced other papain biocatalysts 
using a support containing primary amino groups prepared using nitri-
lon fiber and diethylenetriamine, also using the glutaraldehyde chem-
istry [220]. The recovered activity was around 50%, with a substantial 
stabilization. In another research, aminated methyl methacrylate- 
divinylbenzene copolymer beads were utilized to immobilized papain 
by the glutaraldehyde chemistry [221]. The casein lytic activity of the 
immobilized enzyme remained over 60% while stability was improved. 
This immobilization also produced an enzyme less susceptible to inhi-
bition while the optimal temperature reached 70–90 ◦C [222]. More-
over, the immobilized enzyme could be used in the pH range between 5 
and 10, while the free enzyme could be used only at neutral pHs values. 
The immobilized enzyme maintained almost 100% of the activity after 
one month at 4 ◦C [222]. Later, the same research group, using N-alpha- 
benzoyl-L-arginine amide hydrochloride as substrate studied the intra- 
particles localization of the immobilized enzyme using X-ray micro-
analysis [223]. The released NH3 was captured by FeCl3, which formed a 
precipitate. This was utilized to pinpoint active immobilized papain 
molecules. The experiment revealed that the enzyme is uniformly 
distributed on the biocatalyst particle [223]. In another research, 
immobilized papain was used to avoid the bacteria contamination of 
polyurethane-based ureteral stent, using the glutaraldehyde chemistry 
[224]. The immobilized enzyme retained 85% of its activity, and was 
able to reduce the growth of Staphylococcus aureus and Escherichia coli, 
reducing also the carbohydrate and protein content in biofilms. This 
coating also decreased the deposition of magnesium and calcium salts. 
Moreover, the authors claimed the low cytotoxicity of this coating 
[224]. In another paper, the enzyme was immobilized on poly(vinyl 
alcohol) nanofibers prepared by electrospinning, using the glutaralde-
hyde chemistry [225]. Optimal loading in terms of activity was found 
when 130 mg/ g of monomer was utilized. The expressed activity was 
almost 90%. The immobilized biocatalysts maintained its catalytic ac-
tivity after six reuses [225]. In other publications, papain was immo-
bilized in two epoxy activated supports, Eupergit C and VA Biosynth 
[226]. Epoxy supports are among the most utilized ones in enzyme 
immobilization, as they are prepared directly in an activated form, can 
be stored for long time periods and can react with very different moieties 
of the enzyme [64,76,227,228]. The enzyme immobilization on these 
supports, due to the low reactivity of the epoxy groups, follows a two- 
step mechanism (the enzyme is usually first immobilized to the sup-
port by an interaction different from the enzyme-epoxy groups reaction 
[69,229,230]), except if the enzyme has some Cys residues on the sur-
face [231]). In this first example of papain immobilization using the 
epoxy chemistry, high levels of activity were maintained, being the 
stability higher when using VA Biosynth [226]. Papain immobilized on 
porous poly(glycidyl methacrylate) beads were used in the production of 
antioxidant peptides by hydrolysis of yeast proteins [232]. The prepared 
biocatalyst had an enzyme loading of 66.5 mg/g, with an expressed 
activity of over 60%. 35% of the biocatalyst initial activity was observed 
after 20 reuses. The enzyme was also immobilized on poly(hydroxyethyl 
methacrylate-ethylene glycol dimethylacrylate) particles and decorated 
with fibrous poly(glycidyl methacrylate) to give to the support epoxy 
groups [233]. Under these conditions, 18.7 mg of papain per g of this 
support could be immobilized. The Vmax slightly decreased after 
immobilization (around a 20%) while KM increased by over a 50% 
[233]. Papain was also immobilized on poly(hydroxyethyl methacry-
late-co-glycidyl methacrylate) cryogel-based, and this biocatalyst was 
successfully utilized in the fragmentation of immunoglobulins [234]. 
The biocatalyst presented optimal activities at 70 ◦C and pH 7.0, while 
the kinetic constants of the enzyme remained almost unmodified after 
immobilization. 

In all these papers using epoxy supports, the immobilized enzyme 

was not incubated to increase the enzyme-support multipoint covalent 
attachment nor was the support blocked as a reaction end point. That 
way the full prospects for this immobilization protocol have not been 
fully exploited [228]. 

Papain has also been covalently immobilized on poly-L-lactic acid 
polymeric beads using the carbodiimide route, and its anti- Clostridioides 
difficile activity was verified [235]. 

Physical immobilization of papain on polymeric supports has also 
been studied. The immobilization of papain in hydrophobic Amberlite 
XAD-8 permitted to increase the performance of the enzyme in the 
ethanol esterification of some N-benzyloxycarbonyl (Z)-dipeptides 
[236]. The breakage of the peptide bonds during the esterification was 
not appreciated. Later, papain was covalently immobilized on low 
density polyethylene, high density polyethylene, linear low density 
polyethylene or polycaprolactam beads and used to prevent food 
contamination [237]. Support immobilized curcumin was utilized as 
photocrosslinker [237]. The immobilized enzyme became more stable 
than the free one. The best anti- Staphylococcus aureus NCIM 5021 and 
anti-Acinetobacter sp. KC119137.1 activities were obtained using the 
enzyme immobilized in linear low density polyethylene [237].In 
another paper, reactive Green 19 dye modified poly(acrylamide-methyl 
methilacrylate) cryogels were utilized to immobilize papain. Maximum 
loading was 40.66 mg/g of support g at pH 5.5 and 25 ◦C [238]. 

One recurrent subject of study employing these polymeric supports 
to immobilize papain is the role of the spacer arm. The spacer arm may 
play several roles. First, the longer the spacer arm, the higher the 
prospects of getting an intense multipoint covalent immobilization, but 
also the lower rigidification per each new bond attained [239]. It should 
be considered that the reactivity of all groups may not be identical when 
the length increased, e.g., using a diamine to activate the support, the pK 
of the primary amino groups will be higher when the diamine is larger, 
and therefore its reactivity will be lower [71]. Moreover, as these groups 
coat the support surface, they may alter the physical properties of the 
support and that way tune the possibilities of enzyme-support in-
teractions [66]. The enzyme mobility will be higher when a long spacer 
arm is used, mainly if one or just some few points of the enzyme react 
with the support, enabling the action of the immobilized enzymes with 
large molecules [240].Thus, the importance of the spacer arms in the 
recovered activity in the covalent papain immobilization was studied 
using a crosslinked polystyrene or polyacrylamide supports [241]. Re-
sults showed that a longer spacer arm enabled a higher immobilization 
yield and activity in the support. The employment of polyethylene glycol 
gave the highest activity. The most hydrophilic polyacrylamide support 
gave a higher activity than the hydrophobic polystyrene one [241]. 
Later, these biocatalysts were utilized to produce peptides in aqueous- 
organic solvent mixtures [242]. Among the many studied biocatalysts, 
papain immobilized on tetraethyleneglycol-crosslinked polystyrene or 
polystyrene-PEG supports were the most effective catalysts for this re-
action [242]. 

Papain has also been covalently immobilized on poly(λ-methyl L- 
glutamate)beads, to study the effect of the spacer arms again [243]. 
Using the azide method to immobilize the enzyme, the activity was good 
versus the small N-benzyl L-arginine ethyl ester, KM was increased after 
immobilization while VM was decreased and the thermal stability was 
increased. Immobilized enzyme activity remained unaltered during 
storage or when used in batch reactions [243]. In another paper, poly-
ethylene and glass surfaces were modified under dichlorosilane-RF-cold- 
plasma environments, and activated with spacer arms of different 
lengths [244]. Again, the longer the spacer arm, the longer the activity 
recovery. In another research, an aminated-polystyrene (0.4–6.0 mmol 
NH2⋅g-1) was utilized to immobilize papain using a flexible spacer arm, 
aldehyde dextran [245] doubling the activity achieved when the 
enzyme was directly immobilized in the support [246]. 

In some instances, several organic materials are utilized to prepare a 
support with improved features. For example, Roy et al. reported the 
stabilization of papain (chemically modified using succinic anhydride) 
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by entrapping it in alginate/starch beads. The immobilized papain 
retained its activity even after six cycles of hydrolysis, and its storage 
stability was also increased [247]. In another work, chitosan and di- 
aldehyde starch support were synthesized by coupling flexible di- 
aldehyde starch chain onto the surface of chitosan support, and this 
was used for papain immobilization. The flexibility of the spacer arm 
improved the recovery of immobilized enzyme activity over traditional 
spacer arms [248]. In another interesting study, papain immobilized on 
fibrous polymer-modified composite beads (poly(methacrylic acid)- 
grafted chitosan/clay), were used for mercury elimination. The 
maximum removal capacity of the composite beads has been found to be 
4.88 ± 0.21 mg Hg/g when the initial metal concentration and weight of 
polymer-modified composite beads were 50 mg/L and 0.04 g at pH 7.0, 
respectively [248]. Papain enzyme was also covalently immobilized 
onto an interpenetrating network obtained by cryogelation of N,N′- 
methylenebisacrylamide cross-linked 2-hydroxyethyl methacrylate and 
glutaraldehyde cross-linked chitosan. It was found that immobilization 
enhanced the stability of papain compared to free form, and improved 
reusability and storage stability [249]. Finally, papain immobilized on 
choline chloride- lactic acid (ChCl-Lac) deep eutectic solvents-treated 
chitosan exhibited excellent thermostability as compared to the free 
enzyme. The results also showed that Deep eutectic solvents could 
control the active group content, thus achieving the appropriate 
microporous structure of immobilized enzyme, and better catalytic 
microenvironment [250]. 

3.2.2. Immobilization of papain in polymeric membranes 
The immobilization of enzymes in membranes may be adequate for 

some specific applications (e.g., in pharmaceutics, wastewater treat-
ment, biorefinery, biomedicine, food processing) or reactor conforma-
tions [251–254]. Thus, there are some examples of immobilization of 
papain in this kind of supports. In a first example, papain was covalently 
attached via the glutaraldehyde chemistry to a membrane formed by 
vinyl alcohol/vinyl butyral copolymer [255]. The biocatalyst was stable 
under storage conditions, and the stability improved compared to that of 
the free enzyme in stress thermal inactivation at different pH values. KM 
increased after immobilization, although this increase could be dimin-
ished when increasing the spacer arm length [255]. Papain has also been 
immobilized in a fully hydrated polysulfone membrane. Immobilization 
altered the conformation of the active site of the enzyme, and there are 
two main enzyme populations [256]. One subpopulation seemed to have 
a more open active-site cleft than the other subpopulation. This last 
subpopulation is less sensitive to the pH of the bulk solution the other 
subpopulation, which had a response to changes in the pH similar to the 
free enzyme [256]. The addition of guanidine or urea, or the incubation 
at high temperature, converted the enzymes with the more open active- 
site cleft on the other subpopulation. This seems to be the active fraction 
of the immobilized molecules. That way, KM is higher and Vmax is lower 
than those of the free enzyme. This immobilized papain has good storage 
and operational stabilities, being also more resistant to the presence of 
guanidine [256].Later, this group immobilized papain on hydroxyethyl 
cellulose coated polyethersulfone hollow fibers and flat-sheet modified 
polysulfone membranes [257]. The hollow fiber retained double of the 
activity of the membrane (25%), and the activity on the membrane 
biocatalysts decreased when the enzyme loading increased. Immobili-
zation on both supports decreased both KM and Vmax. They confirmed 
the existence of two enzyme subpopulations, one inactive and one 
active. In a new research effort, this research group immobilized papain 
on poly(ether)sulfone membrane using the avidin-biotin immobilization 
strategy [258]. This immobilization strategy is based on the strong af-
finity between avidin and biotin, and requires the modification of the 
papain [259–262]. The immobilization via the avidin-biotin strategy 
gave better activity than the direct immobilization on the support [258]. 
In fact, KM decreased and Vmax increased upon immobilization in this 
new example. The authors claimed an increased enzyme stability [258]. 
Other research groups also immobilized papain in polymeric 

membranes. For example, papain immobilized in a membrane was uti-
lized to analyze the non-linear dynamic performance of a diffusion- 
reaction, generating external oscillations of pH or substrate [263]. In a 
last paper on this subject, nylon membranes were acid hydrolyzed and 
coated with chitosan that was activated with glutaraldehyde, and finally 
used to immobilize papain [264]. The immobilized enzyme was suc-
cessfully utilized to purify cystatin from potato juice. 

3.2.3. Immobilization of papain using smart polymers 
Smart polymers are polymers that change the solubility/insolubility 

status depending on the reaction conditions (e.g., pH or temperature). If 
enzymes are attached to these polymeric molecules, the enzyme may be 
in a soluble status during operation, and by changing the conditions, its 
precipitation may be achieved and that way the enzyme may be easily 
recovered and reused [105,265–272]. Although they should have 
moderate stabilization potential (as they are flexible structures), they 
may be a good solution to design recyclable biocatalysis to be used 
versus large substrates, like proteins. This way, there are some examples 
of immobilization of papain in this kind of polymers. For example, 
papain was immobilized on poly(methyl methacrylate/N- 
isopropylacrylamide/methacrylic acid) and poly(styrene/N- 
isopropylacrylamide/methacrylic acid) latex beads by the carbodii-
mide method [273]. The immobilized enzyme could be recovered by 
thermos-flocculation, dispersed by lowering temperature and reused. 
The biocatalyst prepared in poly(methyl methacrylate/N- 
isopropylacrylamide/methacrylic acid) was very active versus casein 
and can be submitted to several cycles of thermal precipitation without 
decreasing its activity [273]. Papain was later immobilized using the N- 
hydroxysuccinimide strategy [274–277] in poly (N-iso-
propylacrylamide) [278]. The optimal pH of the immobilized enzyme 
was 7.5, optimal temperature was 65 ◦C. After 24 cycles of thermal 
flocculation, more than 85% of the enzyme activity was maintained. 
After storage at 4 ◦C for two months, the immobilized enzyme main-
tained more than 70% of the initial activity. Stability was improved at 
different pH values. The biocatalyst was successfully utilized in the 
hydrolysis of HCG monoclonal antibody [278]. 

3.3. Immobilization of papain on inorganic supports 

Inorganic materials with pore sizes between 2 and 50 nm are clas-
sified as mesoporous materials, and may have very special properties 
such as uniform vertical pore channels, large pore volume (1.5 cm3/g), 
adjustable pore size, thermal, mechanical and chemical stability, high 
specific surface area (as high as 1500 m2/g), modulable mesopore 
inwalls and the possibility of surface modification [279,280]. These 
properties make them very versatile materials, being attractive for a 
wide variety of applications such as electronics, separation, energy 
storage, photocatalytic hydrogen production, solar cells, battery com-
ponents, environmental rehabilitation, drug delivery, biosensors, clin-
ical treatment and catalysis [279,280]. In the case of biocatalysis, these 
materials have been widely used in enzyme immobilization, mainly 
because the properties of the support can be tailored to the bio-
molecules, making it possible to obtain matrixes with the desired pore 
structure [281]. In this way, enzymes like lipase from Candida antarctica 
[282] or Candida rugosa [283], tyrosinase [284] and many others, have 
been immobilized by encapsulation, covalent bonding, physical 
adsorption, and cross-linking in mesoporous materials such as metal 
oxides, zeolites, carbon structures, hybrid materials, silica and others 
shaped in different particle morphologies such as spheres, hollow 
spheres, fibers, rods, etc. [279,281,285]. Papain has been immobilized 
on activated charcoal by physical adsorption for the removal of mercury. 
The immobilized papain (papain concentration 40.0 g/L, activated 
charcoal amount 0.5 g and pH 7) shows a maximum removal reached in 
the batch study of 99.4%, when initial metal concentration and weight 
of biocatalyst were 20.0 mg/L and 0.03 g respectively [286]. Papain 
activated with N-hydroxysuccinimide and N-ethyl-N'-(3-dimethyl 
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aminopropyl)carbodiimide was immobilized on an amine-modified gold 
surface and was used to build a Surface Plasmon Resonance Imaging 
sensor for specific determination of cystatin. The sensor's dynamic 
response range is between 0 and 0.6 μg.mL-1, and the detection limit is 
0.09 μg.mL-1. In addition, the sensor produced results in agreement with 
data reported in the literature with respect to cystatin C determination 
in blood plasma, urine and saliva [287]. Papain was also immobilized 
(by hydrofluoric acid etching method) onto Ti3C2 MXene nanosheets by 
physical adsorption and physical adsorption combined with covalent 
crosslinking with glutaraldehyde. The immobilized papain exhibited 
enhanced pH and temperature endurances, immobilized papain also 
showed improved storage stability (39.25% and 65.57% after 20 days of 
storage at 4 ◦C) and reusability [288]. The production of enzyme-metal 
salt nanoflowers is becoming an increasingly popular strategy to 
immobilize enzymes, usually with very good results in terms of recov-
ered activity and enzyme stability [289–293]. It is based on the bio-
mineralization of the enzyme by the metal salt using some enzyme sites 
as nucleation point [294]. We have been able to find just one example of 
the use of this technique for papain, Flower-like papain/Zn3(PO4)2 
hybrid materials, it was found that the catalytic properties of papain 
immobilized on hybrid nanoflowers are enhanced compared with that of 
free papain, and that hybrid nanoflowers exhibited excellent reusability, 
high thermo stability and long storage life [295].However silicates and 
inorganic oxide supports are the most frequently used inorganic support 
to immobilize papain. 

3.3.1. Immobilization of papain in mesoporous silicates 
Mesoporous silicates are excellent candidates for enzyme immobili-

zation as they meet many of the enzyme support requirements such as 
well-defined pore geometry, narrow pore size distribution, large surface 
area, thermal and mechanical stability, good dispersion in water, etc., 
besides the fact that it can also be modified on other materials (for 
example, graphene and magnetic nanoparticles) [280,296,297]. In 
addition, the presence of abundant hydroxyl groups on its surface fa-
cilitates the binding of enzymes and makes its functionalization through 
surface modifying agents (mainly trimetoxy-derivatives) feasible [281]. 
In this sense, the immobilization of papain on mesoporous silicates has 
also been studied, and has made it possible to take advantage of the 
excellent characteristics of these materials. The first report that we have 
found on this regard was from 1978. In this study, papain was immo-
bilized on Spherosil, a porous silica, by two methods: activation with 
glutaraldehyde and direct bonding to acetal groups, both of them via 
silane coupling [298]. The second method gave the best results, and the 
biocatalyst was used on a 1-L packed bed reactor for the continuous 
processing of beer, finding that the papain reactor was effective for on- 
line beer chill proofing [298]. Later, papain was immobilized by amino- 
organosilica activated by cyanuric chloride. Immobilized papain 
reached 40% of enzyme activity retention and, after immobilization, the 
optimum pH and pH profile of the immobilized papain remained un-
changeable [299]. In another publication, papain was crosslinked using 
glutaraldehyde to a solid dendrimer with silica gel core, and the enzy-
matic activity of the immobilized papain kept almost unchanged after 
fifteen cycles of use [300]. In another research effort, it was found that 
papain immobilized on porous silica beads by cross-linking with 
glutaraldehyde presented thermal activation in aqueous system at a 
temperature range from 50 to 90 ◦C, and the higher the temperature, the 
more active the immobilized papain. In addition, the durability of the 
immobilized papain on heating was greatly improved [301]. Sun et al., 
reported the papain immobilization on aminopropylsilica gel activated 
with cyanuric chloride. Results showed that the immobilized enzyme 
had a better pH and thermal stability than the free enzyme, and good 
operational stability. Additionally, lyophilized immobilized enzyme 
exhibited much better stability when stored at room temperature for 60 
days [302]. In 2004, SiO2 particles containing amine groups were syn-
thesized by synchronous hydrolysis of tetraethylorthosilicate and N-(2- 
aminoethyl)-3-aminopropyltrimethoxysilane in Water/Oil 

microemulsion stabilized in Triton X-100/cyclohexane/ammonium hy-
droxide system [303]. They immobilized papain on the particles which 
were treated by glutaraldehyde, and found that, compared with tradi-
tional porous silica beads, these particles contain many more amine 
groups and their amine group content can be easily tuned in the process 
of synthesis [303]. Later, papain was immobilized on the mesocellular 
siliceous foams by macromolecular crowding under microwave irradi-
ation. It was observed that the immobilized enzyme exhibited the 
highest catalytic activity when papain was co-immobilized on meso-
cellular siliceous foams with bovine serum albumin and the ratio of 
enzyme to support at 0.4 [304]. In another investigation, siliceous 
mesocellular foam was employed as carriers in the immobilization of 
papain. The results showed that pH, thermal, operational, and storage 
stabilities of the immobilized enzyme were improved due to the large 
pore microenvironment and the shield of the mesopores of siliceous 
mesocellular foam [305]. In 2005 Xiao et al. immobilized papain in on 
the mesoporous molecular sieve MCM-41 under optimal immobilization 
conditions of the 20 mg/g of concentration of enzyme solution, 0.75% of 
concentration of glutaraldehyde to activate the support, 2 h, 10–20 ◦C 
and pH 7.0, had an activity yield (%) of 55%, and showed a good 
continually operational stability and its half-life up to 26 days [306]. 
Later, the same research group carried out the preparation of a nano-
porous material from the mesoporous material MCM-41 modified with 
mesitylene, on which papain was then immobilized using glutaralde-
hyde chemistry [307]. The synthesized material exhibited a highly or-
dered arrangement of uniform nanopores with dimensions of around 
6.3 nm (under dried conditions, that may be quite different to that under 
wet conditions), and under the same optimal immobilization conditions, 
the activity yield (%) of the immobilized papain was around 55% [307]. 
In another study, papain was immobilized on the mesoporous molecular 
sieve MCM-48 (with a pore size of 6.2 nm in diameter under dried 
conditions) using glutaraldehyde as coupling agent. Under optimal 
immobilization conditions, (20 mg native enzyme/g of the MCM-48 and 
0.75% glutaraldehyde, 2 h of immobilization time at 10–20 ◦C and pH 
7.0), immobilized papain was more resistant to extreme pH values and 
temperatures than the free enzyme, and showed good operational and 
storage stability, with a half-life up to 2500 min, significantly higher 
than that of the free enzyme (about 80 min) [308]. In another research 
effort, Solís et al. used mesoporous silica at 4 ◦C and pH values between 
3.0 and 11.0 to adsorb papain. The best results were observed for papain 
adsorption at pH 5.0, which led to the enzyme desorption of <5% [309]. 
On the other hand, a room temperature ionic liquid-decorated meso-
porous SBA-15 (RTIL-SBA-15) was synthesized for papain immobiliza-
tion. It was found that the interaction between the carrier and papain 
was stronger after ionic liquid [Simim +][Cl-] modification of the sup-
port, and that the activity of the immobilized papain was improved that 
way [310]. He et al., reported the immobilization of papain on single- 
crystal-like, nanoporous silica particle which possesses a high adsorp-
tion capacity for the immobilization of papain. They observed that after 
initial binding to the silica, the papain optimized its conformation to 
allow more atoms to contact with the surface, and papain global struc-
ture was preserved in the course of adsorption [311]. H2SO4 treatment 
plays a key role in the synthesis of carboxyl-modified mesoporous ma-
terials, which are efficient carriers for immobilizing enzymes [312]. In 
this regard, Bian et al., compared the ability of immobilizing papain 
between SBA-15 and the support after H2SO4 treatment. They found that 
the H2SO4 treatment increased the immobilizing ability of SBA-15, and 
that carboxyl groups made a great contribution to inducing the favor-
able conformation change of papain, improving the catalytic efficiency, 
specific activity, and binding affinity of the immobilized enzyme when 
combined with the substrate [312]. Finally, in another interesting study, 
papain was immobilized on cage-shape macroporous/mesoporous 
three-dimensional- ordered material (3DOM) SiO2 which was prepared 
using polystyrene colloidal crystal (PS) as template and TEOS as silica 
source. Results showed that, compared with the free papain, the 
immobilized papain exhibited higher activity and thermal and pH 
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stability [313]. Sun et al. immobilized papain on carboxyl-activated 
silica nanoparticles [314]. They found that the immobilized papain 
had not only higher activity, but also better pH and thermal stability, 
reusability and environmental adaptability. However, reusability was 
complex due to the small size of the particles. 

3.3.2. Immobilization of papain on inorganic oxide supports 
Inorganic oxide-based materials such as titanium, aluminium, and 

zirconium oxides are the preferred materials for their use as a support in 
enzyme immobilization [315]. This is due to their high stability, high 
mechanical strength, good sorption capacity, high hydrophilicity, and 
because they are inert under various reaction conditions [281,315]. At 
this regard, papain was covalently coupled to ZrO2-coated porous glass 
by several different methods. It was found that immobilized papain 
presented a 35 day operational half-life [316]. In another study, two 
different alumina supports, termed C1 and CPC, were used for the 
immobilization of papain. Results showed that protein binding was 
enhanced when the carboxyl groups of the support were activated with 
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, and the level of 
papain immobilization was dependent upon the length of the linker used 
and the mass of protein utilized in the immobilization [317]. Later, the 
same research group derivatized alumina C1 and CPC using organic 
phosphate linkers to create free carboxyl groups using a two-step process 
[318]. Papain binding to these derivatized alumina supports was per-
formed using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (a water 
soluble carbodiimide). The immobilized protein showed similar kinetic 
constants when compared to the solution protein, and pH dependence 
and thermal stability were essentially identical [318]. Finally, in 
another interesting study, papain and pancreatin immobilized on 
alumina were used to obtain whey hydrolysates with low phenylalanine 
content. It was found that the use of papain immobilized on alumina was 
more advantageous (smaller final Phe content in the peptides) than 
pancreatin [319]. 

3.4. Immobilization of papain in hybrid materials 

The combination of inorganic-organic or inorganic-inorganic (e.g., 
silicate and metals) materials may offer on some instances some addi-
tional advantages [281,320,321]. The hybrid materials have been used 
to immobilize a variety of enzymes (oxidoreductases, hydrolases, lyases, 
etc.) and permit a more accurate adjustment of the mechanical and 
resistance properties of the biocatalysts to the reactor requirements 
[281,322,323].In the case of papain, silica spheres with silver nano-
particles deposited on their surface were used in the immobilization of 
papain. The highest activity recovery rate was obtained using carriers 
prepared with 0.68% silver nanoparticles. This enabled an increase of 
188% in the final activity compared to the use of just silica. Immobilized 
papain was more thermostable than the free enzyme, and maintained 
43% activity after 20 reuses [324]. The same group used a similar 
support and the glutaraldehyde chemistry, the use of the composite 
increased by 131% the immobilized activity compared with the carrier 
without silver nanoparticles [325,326]. Hybrid inorganic/organic gel 
(with a size of about 0.444 μm) with immobilized papain enzyme was 
prepared by absorption-flocculation co-immobilization method. After 
optimization, the maximum enzyme loading efficiency was 91.38%. 
More than 50% of the initial activity remained after five reuses [327]. 
Papain was immobilized on chitosan beads prepared by using a cross- 
linking agent Cu(II) and Zn(II) metal ions. The results showed that 
immobilized papain had optimum pH 8.0 and optimum temperature 
85 ◦C, very different from free enzyme (pH 6.5 and 55 ◦C). In addition, in 
comparison to free enzyme, thermal stability of the immobilized papain 
was markedly increased, and its residual activity was about 25% after 
12 cycles of batch operation [328]. On the other hand, hydrogel com-
posites based on pineapple peel carboxymethyl cellulose, polyvinyl 
alcohol and mesoporous silica SBA-15 were used to immobilize papain. 
It showed that in comparison with the free papain, the immobilized 

papain revealed enhanced pH, thermal and storage stability [329]. 
Continuing with this topic, Soares et al., immobilized papain on a hybrid 
bionanomaterial composed of zinc oxide nanoparticles (ZnO NPs) and 
chitosan for biomedical applications. The prepared bionanomaterial 
maintained the proteolytic activity of papain and exhibited a nano-
triangular structure with a size of 150 nm. In addition, the immobilized 
papain system decreased the activation of phagocytic cells but did not 
induce toxicity in an in vitro analysis [330]. Benucci et al., found that 
papain covalently immobilized on chitosan–clay nanocomposite films 
using a food-grade activated montmorillonite (Optigel). The biocatalyst 
was applied for the protein stabilization of two different unfined white 
wines, and it efficiently reduced both the haze potential and the protein 
content [331]. 

3.5. Immobilization of papain in magnetic particles 

We will seclude this section of the standard classification, as in this 
case the main point to classify the supports is its magnetic character 
(usually using ferrite), that in most cases may be considered hybrid 
materials (silica/metal, organic/metal) [108,126,332–335]. 

3.5.1. Immobilization of papain on micro-magnetic porous particles 
The ease of handling of a biocatalyst depends on its particle size, as 

most of the reactors utilize filters to recover the biocatalyst. That way, a 
large particle size enables an easy handling and recovery of the bio-
catalyst, but a large particle of the biocatalysts leads to high substrate 
diffusional limitations [336]. To overcome this drawback, smaller bio-
catalyst particles may be preferred. However, the recovery for its later 
reuse becomes more complicated. Faced with this situation, magnetic 
particles (having the dimension in the micro scale), which can be easily 
recovered through a magnetic field, emerged as an excellent alternative 
not only for enzymatic immobilization [108,336,337], but also for the 
binding of proteins and drugs, and isolation and purification of different 
biomolecules [338,339]. A magnetic character of the porous micro- 
particle may also present advantages to recover the biocatalysts when 
used in a suspension (many foods have some solids in suspension), 
where filtration is no longer feasible [108,340,341]. Moreover, the hy-
perthermia that can be generated by the ferrite particles may be utilized 
in this kind of biocatalysts to improve its performance [342–345]. In this 
context, papain was immobilized by covalent binding on the surface 
magnetic composite microspheres containing carboxyl groups which 
was activated by thionylchloride to produce reactive chloride groups 
which have the capability to react with the free amino groups of enzyme 
to give amide bonds [346]. The immobilized biocatalysts presented a 
higher pH, thermal and storage stabilities as well as environmental 
adaptability and reusability when compared to the soluble one, the 
being the biocatalyst capture and reuse simpler by its magnetic char-
acter [346]. In another research effort, papain was successfully immo-
bilized on magnetic agarose carriers using Cu2+ immobilized as a 
chelate in iminodiacetate (IDA), able to interact with the histidine group 
of papain surface (His-81). The recovered activity of the immobilized 
enzyme was 68.4%. The carrier was recovered and reused, and after 5 
times, the re-immobilization of papain on the regenerated matrix was 
79.71% effective compared to the first cycle and retained maximum 
enzyme activity [347]. Novel magnetic cellulose nanocrystals (cellulose 
nanocrystals combined with cationic polyethyleneimine modified Fe3O4 
nanoparticles) were prepared via electrostatic self-assembly approach 
and were used as magnetic carriers for efficient immobilization of 
papain [348]. At an enzyme concentration of 0.4 mg.mL− 1 and pH of 
6.0, the resultant immobilized enzyme exhibited the highest enzymatic 
activity about 227 μg.min− 1.g− 1, and showed enhanced tolerability to n- 
butyl alcohol, n-hexane and [Cnpy][NTf2], and better pH and thermo 
stabilities than those of the free papain [348]. In another example, 
papain was immobilized on a new type of magnetic metal chelating 
carrier prepared using chitosan as raw material, nano Fe3O4 as magnetic 
material, SiO2 as porogen, iminodiacetic acid (IDA) as a chelating 
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ligand, and binding with transition metal ion (Cu2
+) [349]. The 

immobilized papain presented enhanced enzyme activity, good opera-
tional stability and reusability [349]. In another interesting study, 
papain was immobilized via cross-linking method on magnetic porous 
polymer microspheres which were prepared using sodium alginate, 
magnetic Fe3O4 particles and polyethylene glycol as a pore-forming 
agent [350]. Results showed that the immobilized papain exhibited 
shifted the optimal pH to more alkaline values, higher thermal stability 
and activity in casein hydrolysis than free papain. In addition, the 
immobilized papain retained nearly 72% of residual activity after seven 
reuses in casein hydrolysis reaction [350]. 

3.5.2. Immobilization of papain on magnetic nanoparticles 
The use of nanoparticles, usually non-porous ones, is a good alter-

native to immobilize proteases that are going to act versus very large or 
even solid substrates [39]. In these instances, the loading capacity of the 
support is determined by the diameter of the particles, the smallest 
diameter, the higher specific area and, that way, the higher loading 
capacity [107]. However, very small nanoparticles cannot be easily 
handled. This drawback has been solved using magnetic nanoparticles, 
with superparamagnetic properties (that is, they do not generate a 
magnetic field, but can respond to one, e.g., in the presence of a magnet) 
[351,352]. This way, they can be recovered by using a potent enough 
magnet such as an electromagnet for industrial purposes. Magnetic 
nanoparticles commonly consist of magnetic elements such as cobalt, 
iron and nickel and their chemical compounds; however, in the food 
area, the most frequently used magnetic nanoparticles are iron oxides, 
mainly the superparamagnetic nanoparticles of Fe3O4, since they do not 
have toxicity, have good biocompatibility and do not retain residual 
magnetism after elimination of the external magnetic field [353]. 
However, the use of this kind of support has some limitations [107,108]: 

- All enzymes are on the surface (that is also the advantage), that is, 
the enzyme is subject to all inactivation causes related to interaction 
with external interfaces, may suffer proteolysis,  

- Small particles will have moderate geometrical congruence with the 
enzyme, this will decrease the possibilities of stabilizing the enzyme 
due to multipoint covalent immobilization.  

- The loading may be similar to appropriate porous supports in the 
best case (e.g., agarose 10B can immobilize over 100 mg of enzyme/ 
wet gram of support).  

- Prices tend to be much higher than those of commercial macro- 
particles supports.  

- In many instances, during handling or enzyme immobilization, the 
nanoparticles aggregate, losing the advantages of using 
nanoparticles. 

The advantages are that the enzymes (if properly oriented) [30] may 
attack any substrate (even a solid) [39,107]. Moreover, substrate or pH 
gradients are prevented (although in some instances this may not be an 
advantage). Only if the advantages overcome the drawbacks, this will be 
recommended. 

Papain has been immobilized on these materials in some instances. 
For instance, magnetic poly(HEMA-GMA) nanoparticles were synthe-
sized by using emulsion polymerization technique, functionalized with, 
Cibacron Blue F3GA (a dye with high affinity for some proteins) and 
then evaluated in the papain immobilization [354]. Maximum papain 
adsorption onto the nanoparticles was found to be 764.0 mg/g polymer 
in pH 7.0 HEPES buffer. Immobilized papain was much more stable than 
the free form, and among casein, BSA, IgG and cytochrome C as sub-
strates, the highest catalytic efficiency was achieved with IgG [354]. In 
another publication, antibacterial non-toxic Ag/CuFe2O4 magnetic 
nanoparticles were solvothermally synthesized and used as an efficient 
magnetic precursor for papain immobilization. All prepared samples 
exhibited stronger antibacterial properties against Staphyloccocus aureus 
than versus Escherichia coli. Moreover, the antibacterial activity of the 

enzyme increased by papain immobilization [355]. In another research 
effort, papain was immobilized by covalent bonding onto biocompatible 
Fe3O4/SF nanoparticles under optimal immobilization conditions (pH 
6.0, 60 min of hydrolysis time and an enzyme/support ratio of 10.0 mg/ 
g) [356]. In comparison with free papain, the immobilized papain ex-
hibits a higher effective activity, broader working pH and temperature, 
and retained 70% and 85% of initial activity after eight consecutive 
operations and storage of 28 days, respectively [356]. Later, covalent 
immobilization of papain through glutaraldehyde treatment on cysteine 
functionalized iron oxide nanoparticle coated glass beads was investi-
gated. Immobilized papain showed thermal and pH stabilization, high 
activity, the possibility of reuse for 5 times retaining of 81% of its initial 
activity, and the possibility of storage for 6 months without loss of ac-
tivity [357]. In addition, in another research effort, it was found that 
papain immobilized on gold nanoparticles largely preserved its activity 
and enhanced the stability, allowing the reuse of the linked enzyme 
many times without any significant loss of its catalytic performance 
[358].In another publication the use of magnetic gold nanocomposites 
for papain immobilization was reported. The loading amount of papain 
on these nanocomposites was 54 mg/g of support. The Michaelis- 
Menten kinetic constant and maximum reaction velocity for immobi-
lized papain were 0.308 × 105 g.mL-1 and 5.4 g.mL-1.s-1 respectively, 
while the activity recovery of the immobilized papain reached to 47 
(±5) % compared to native papain [359]. Other example shows the 
preparation of immobilized papain prepared by magnetic Fe3O4/P 
(GMA-EDGMA-St) composite carrier had an average particle size of 196 
nm. Compared with the free enzyme, the magnetically immobilized 
papain indicated higher acid-base tolerance and thermal stability, pH 
tolerance increased from 7.0 to 8.0, and temperature tolerance increased 
from 60 ◦C to 65 ◦C [360]. 

4. Future developments 

The use of some supports and activation methods (e.g., genipin) that 
have been approved for use in human and products consumed by 
humans will expand the use of immobilized papain biocatalyst in the 
next future. However, immobilization nowadays should not just be 
justified by the possibility of enzyme reuse (in food manipulation, to 
prevent the food contamination by the protease or to improve the con-
trol of the reaction may be additional justification of the use of immo-
bilized papain). That way, immobilization should compensate the 
expenses of the immobilization process, which means that immobiliza-
tion should be accompanied by significant improvements in enzyme 
features, e.g., stability via multipoint covalent immobilization (that 
permit the use of the enzyme under much more drastic conditions), 
tailoring enzyme specificity (using steric or diffusion limitation to 
selectively hydrolyze target proteins while not hydrolyzing other ones), 
etc. Immobilization of proteases in general and of papain in particular 
should pursue a complete control of the enzyme orientation to permit 
the full activity of the immobilized enzyme molecules even versus very 
large substrates (e.g., coupling site-directed mutagenesis and tailor- 
made supports). Magnetic nanoparticles seem a good option as sup-
ports to immobilize papain when it is going to be used in the hydrolysis 
of a substrate in the form of a suspension (because the proteins are 
aggregated, or the medium contains other solids), but it is not required 
in other uses (e.g., peptide synthesis). It seems obvious that papain 
immobilization has the same shortcomings and expectations than the 
immobilization of any enzyme. The use of an immobilized biocatalyst 
may be justified only when the gains are higher than the costs, and to be 
able to compensate this, papain immobilization should be performed 
using optimized protocols to take the maximum profit of immobilization 
in improving enzyme features. 
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[25] C. Garcia-Galan, Á. Berenguer-Murcia, R. Fernandez-Lafuente, R.C. Rodrigues, 
Potential of different enzyme immobilization strategies to improve enzyme 
performance, Adv. Synth. Catal. 353 (2011) 2885–2904, https://doi.org/ 
10.1002/adsc.201100534. 
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