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Highlights

• Efficient kNN search based on feature learning, clustering, and adaptive k values.

• Several proposals to automatically optimize the search parameters.

• Comprehensive experimentation with 10 datasets of different typology and size.

• Results demonstrate that the proposal outperforms state-of-the-art methods.
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Abstract

The k-Nearest Neighbor (kNN) algorithm is widely used in the supervised learning field and, par-

ticularly, in search and classification tasks, owing to its simplicity, competitive performance, and

good statistical properties. However, its inherent inefficiency prevents its use in most modern ap-

plications due to the vast amount of data that the current technological evolution generates, being

thus the optimization of kNN-based search strategies of particular interest. This paper introduces

the caKD+ algorithm, which tackles this limitation by combining the use of feature learning tech-

niques, clustering methods, adaptive search parameters per cluster, and the use of pre-calculated

K-Dimensional Tree structures, and results in a highly efficient search method. This proposal has

been evaluated using 10 datasets and the results show that caKD+ significantly outperforms 16

state-of-the-art efficient search methods while still depicting such an accurate performance as the

one by the exhaustive kNN search.

Keywords: k-Nearest Neighbor, Efficient search, Clustering, Feature learning

1. Introduction

The k-Nearest Neighbor (kNN) rule is one of the most well-known search and classification

algorithms in the supervised Pattern Recognition field [1]. Most of its popularity is due to its

conceptual simplicity and straightforward implementation as it only requires the definition of a

dissimilarity function for comparing and indexing the elements in the training set. Moreover, kNN5

presents excellent statistical properties as its theoretical error is bounded by twice the Bayes error

when considering a sufficient number of samples [2]. Hence, this algorithm has been largely applied

to a wide range of disparate fields, being some recent examples the areas of health [3], industry [4]

or electronics [5].

As a representative example of instance-based supervised method, kNN relies on directly using10

the training samples for performing the search task rather than deriving a model out of them [6]. Such
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principle implies that the algorithm does not create a global target function to deal with the entire

instance space but instead it works on local approximations to that function which only consider

the elements in the neighborhood of the query. Note that this principle is generally considered as

an advantage compared to other learning paradigms, at least when modelling large and complex15

functions [7].

However, the main counterpart of the instance-based paradigm is its inherent inefficiency and

lack of scalability since all the instances of the training corpus must be consulted when a query is

produced [8]. While this limitation may be obviated in situations with a reduced amount of data,

kNN becomes intractable as the size of the corpora to deal with becomes larger and larger. This fact20

may somehow constrain the use of such algorithms in modern applications due to the rapid creation

and growth of information in our modern society [9].

These drawbacks have been extensively studied in the literature, resulting in a wide range of

proposals which aim at reducing the total number of searches and, hence, speeding up the process.

In a broad sense, these approaches work on the premise of either eliminating spurious instances25

without ideally affecting the scheme performance [10], taking advantage of the metrical properties of

the dissimilarity measure considered for avoiding unnecessary distance computations [11] or creating

search structures for fast prototype consulting [12]. Nevertheless, the applicability of some of these

schemes can be severely limited by the dimensionality of the feature space considered [13]: for

example, when considering K-Dimensional Tree (KD Tree) structures [14], if the dimensionality of30

the data is very large, the performance can degrade up to an inefficient scenario as the one of the

exhaustive search of the original kNN algorithm [15].

Recent advances in neural networks in general, and the so-called Deep Neural Networks (DNN)

and Convolutional Neural Networks (CNN) in particular, have meant a great advance in the ability

to learn appropriate features for Pattern Recognition tasks [16]. Instead of using automated heuristic35

processes or human experts in feature extraction, DNNs are trained to learn a suitable representation

for a given task from the raw input data in a process known as feature learning [17]. Such techniques

have dramatically improved the state of the art in various fields and applications, especially when

dealing with unstructured data, as occurs with audio, image, and video recognition tasks [18].

In this sense, it is possible to use the DNN as a feature extractor to obtain a suitable mid-level40

vector representation (also called Neural Codes or NC [19]) that is later used as input to a search

algorithm such as kNN [20]. This is done by feeding the network with the raw data and extracting

the NC from one of the last layers of the network, most commonly the penultimate one [21, 22].

In fact some studies such as the works by Ren et al. [23] and Gallego et al. [24] show that the

combination of NC and kNN as a classifier improves the results obtained by a sole DNN architecture45

even when applied in the same domain. Moreover, this combined approach of DNN and kNN has

several additional advantages: a first one is that the use of kNN instead of the typical fully-connected
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layer in DNN extends the use of these techniques from pure classification scenarios to search cases;

additionally, it improves the representation of the data, resulting in much better performance rates

than if kNN was applied directly to the original data; a third advantage is that it allows adjusting50

the size of the layer from which the NCs are extracted, making it possible to reduce the feature size

of the elements and thus solving the aforementioned dimensionality issue.

This paper takes as starting point the ckNN+ proposal by Gallego et al. [25] for efficient kNN

search and classification and proposes a method called caKD+ which further improves its efficiency

and efficacy by combining the use of DNN with a clustering-based search approach. In general55

lines, caKD+ first uses a clustering algorithm to reduce the search space by assuming that the k-

neighbors of each prototype are in the same cluster. In order to guarantee such premise, a cluster

augmentation technique which basically consists of adding the k-closest prototypes to each sample

within the same cluster they belong to is applied. Moreover, rather than using a global k value for

the entire corpus or a local k value for each prototype as some works propose [26, 10, 27], it applies60

a preprocess to optimize the value of k at the cluster level, thus avoiding over-adaptation problems

and also improving the performance rate. Finally, this method also considers the use of KD Tree

data structures to further speed up the search for centroids and prototypes.

As introduced, the proposed caKD+ method comprises a series of complementary processes for

addressing the efficiency issue in kNN. On the one hand, the use of DNN allows us to learn a good65

internal representation, which improves the clustering process and, therefore, the precision of the

search. On the other, the disadvantages of the approximate search given by the clustering process

are compensated by the good representation of the data as well as by the cluster augmentation

process, an adaptive k value, and the use of KD Tree structures.

The proposed method was evaluated using 10 different datasets, with a distinct number of samples70

(comprising small, medium, and large-scale scenarios) and classes, and including different types of

data, such as images and feature vectors of diverse sizes. In addition, 6 DNN architectures with

distinct numbers of layers, types of layers, and parameters were also evaluated. The results show that

the proposed method improves both the efficiency and the efficacy of ckNN+ and of 16 representative

state-of-the-art methods.75

Another contribution of this work is a method for the automatic selection of the search param-

eters. Since there are two criteria that can be optimized (efficiency and efficacy), which are often

opposed because attempting to optimize the result of one worsens the result of the other, it is nec-

essary to establish a mechanism for their selection. This proposal achieves optimal results without

having to evaluate all possible combinations of parameters, which considerably speeds up training80

time.

In summary, this work presents the following contributions:

• An efficient kNN search method based on clustering, adaptive k values, and pre-calculated
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data structures to perform similarity search and classification. It improves both the efficiency

and efficacy of different state-of-the-art methods considered for the same task.85

• New proposals to automate the selection of the parameters of the method, including the number

of clusters and the k search values per cluster.

• Comprehensive experimentation with 10 diverse-size datasets of different typology and 6 differ-

ent DNN and CNN architectures, with an in-depth analysis of the reported results supported

by statistical significance tests and a comparison with 16 different efficient kNN search state-90

of-the-art approaches.

The remainder of the paper is structured as follows: Section 2 provides a brief review of the

state of the art of efficient search methods for kNN; after that, Section 3 presents the proposed

approach; then, Section 4 shows a description of the datasets, DNN architectures, and metrics used

in the evaluation; Section 5 reports the evaluation results; after that, Section 6 provides a general95

discussion about the insights gathered from the experimentation; finally, our conclusions and future

work are addressed in Section 7.

2. Background on efficient kNN search

As introduced, the kNN rule does not create a model out of the training data but instead it

consults the complete training set every time a new query is produced. This characteristic results in100

both a high memory consumption and low efficiency figures, especially when the size of the corpus

is relatively high. In this regard, several strategies have been posed to palliate this drawback, which

are generally divided into three categories [28]:

• Fast Similarity Search (FSS) [29]: This is a family of methods that uses an auxiliary structure

on the training data to perform quick searches without reducing the overall performance rate.105

• Data Reduction (DR) [10]: These approaches encompass the subset of data preprocessing

techniques whose objective is to reduce the size of the initial training set without significantly

affecting the overall performance.

• Approximated Similarity Search (ASS) [30]: This approach is based on the premise of searching

the training set for prototypes that are sufficiently similar for a given query, rather than110

searching for the closest exact instance. These methods typically also result in a slight decrease

in the overall performance of the scheme.

The FSS family of methods is further divided into indexing algorithms [14] and the subfamily

of Approximating and Eliminating Search Algorithms (AESA) [31]. The indexing algorithms divide

the search space into partitions that are referenced from an auxiliary structure (usually hierarchical)115
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in order to achieve an efficient search. When searching for a new element, certain partitions are

selected or discarded according to various criteria, and an exhaustive search is then made within

the selected partitions. This implies that only a subset of the training set has to be searched to

classify a new instance. Some examples of methods that employ tree-like hierarchical structures are

K-Dimensional Tree (KD-Tree) structures [14], BallTree [32], metric-trees [33] and, more recently,120

the EPBST and RPBST methods, which are based on binary trees [34]. The main problem with

these methods is that they are extremely sensitive to dimensionality [15], in addition to the fact that

they require the input data to be represented as feature vectors. In contrast, AESA-type algorithms

require only a metric space as input, that is, one in which a dissimilarity between pairs of prototypes

can be defined [35, 11]. These strategies generally use the triangle inequality property and pre-125

calculated distances to reject prototypes that cannot be the closest neighbor to a given prototype.

Their main disadvantages are that they focus solely on searching for the closest nearest neighbor

and that they become inefficient with large datasets.

Regarding the DR paradigm, this family is also subdivided into two general approaches: (i)

Prototype Generation, which studies the creation of new artificial prototypes from the original ones130

to subsequently replace them; and (ii) Prototype Selection, which aims at selecting a representative

subset of the original prototypes, being the rest of them discarded [36]. Being the so-called Condensed

Nearest Neighbor (CoNN) [37] one of the first proposals in DR, a large variety of methods may now be

found in literature under the generation [38] and selection paradigms [39]. More recently, it is possible

to find proposals such as the Instance Reduction Algorithm using Hyperrectangle Clustering [40],135

Reduction through Homogeneous Clusters (RHC) [41], or Edited Natural Neighbor [42]. In general,

the main drawback of these methods is that they cause a significant loss of performance precision [10]

and several strategies have, therefore, been proposed to address those deficiencies, such as considering

the boosting schemes [43], the fusion of feature and prototype selection using genetic algorithms [44,

38], or considering the results of the selection or generation algorithms as guidelines in order to focus140

the search exclusively on the most promising classes [8].

In terms of the ASS family of methods, one of the most popular techniques is the use of hashing

approaches to code the nearby prototypes in the training set. Some examples of this technique

are Product Quantization (PQ) [45], Spectral Hashing (SH) [46] or Local Sensitive Hashing (LSH)

forest [47]. Other type of approaches within this family are cluster-based search methods [48, 25]145

or those that consider approximate KD Tree structures for searches, such as the Fast Library for

Approximate Nearest Neighbors [49].

Furthermore, there are proposals that focus only on improving the kNN performance precision.

Traditional algorithms use a global k for the processing of the entire training set. However, the

representation of the data is not homogeneous in the whole space spanned by the training set. For150

this reason, some proposals perform a learning preprocess that selects an optimal k for each sample
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rather than using a generic one [26, 27]. However, these approaches may also have the problem of an

over-adaptation to the training feature space that has to be corrected by, for example, weighting with

the global k or using the average of the optimal k values of the closest samples in an area [10]. These

proposals do not, however, reduce the high computational cost, which is the main disadvantage of155

kNN, but merely help to slightly improve the performance rate.

The proposed caKD+ method could be cataloged within the ASS family, since it performs an

approximate search based on clusters. It also uses techniques focused on improving classification

precision, such as adaptive k and cluster augmentation. In this case, the problem of over-adaptation

to the training set is avoided since k values are calculated per cluster and not per prototype. Fur-160

thermore, this method is also combined with FSS techniques (specifically KD Tree structures) in

order to further accelerate the search for centroids and prototypes within clusters. Overall, the

proposed method improves the results of the state of the art in terms of both efficiency and efficacy.

3. Method

This section presents the proposed caKD+ method for efficient kNN search. This method is165

divided into two phases (see Figure 1): (i) a training stage in which the training data is preprocessed

and prepared to accelerate the search; and (ii) an inference stage in which the data from the training

stage is used to search for new prototypes. The method initially uses an encoder (a particular type

of DNN scheme) to perform the feature learning process and thus improving the results of the

subsequent clustering process. The centroids of these clusters are pre-calculated and a series of170

additional processes for both improving the classification results and speeding up the search process

are applied to them. The following sections explain the different steps of the algorithm in detail. Note

that, while the necessary mathematical definitions are provided in the different sections, Appendix

A also lists this nomenclature for the sake of clarity.

Query

Training
dataset

En
co

de
r

Clustering Adaptive k Cluster
augmentation

Pre-calculated
KD-Trees

Pre-calculated
KD-Tree

k values

IndexerCluster
selectionEncoded 

query

Training stage

Prediction

Encoded
training

data

Clusters   
centers

Clusters

k values

Selected
cluster

Figure 1: Outline of the proposed caKD+ method.
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3.1. Data encoder175

In this step of the algorithm, a DNN is used to transform the feature space of the input data into

a smaller dimensional space that also improves the grouping of the intrinsic features of the data.

This new representation of the elements in the corpus is also known as Neural Codes (NC) [19].

The justification for this proposal can be explained in the following terms. When trained for

supervised classification, the layers of a DNN eventually extract a set of features that are suitable180

for the task at hand, in which the last layer simply learns a linear mapping to provide each possible

category of the classification domain with a probability. Hence, the DNN layers prior to the last

one behave like feature extractors that map the input data onto a new space in which the categories

are expected to be linearly separable. This is particularly interesting in the case of clustering-based

search and classification since the distribution of samples in the space is a key aspect in the creation185

of clusters. Furthermore, since the size of the layers is adjustable, it is also possible to reduce the

dimensionality of the extracted features.

The first step in the proposed algorithm is, therefore, to train a DNN in a supervised fashion

by providing pairs containing the input samples and their labels. Let T = {(xm, ym))}|T |m=1 be the

set of |T | training data where each sample xm drawn from space X ∈ RD has an associated label190

ym from the set of possible labels Y = {Y1, . . . , YL}. The DNN used for encoding (denoted by Enc)

implements the function Enc : X → Y that maps an instance x ∈ X onto a label of Y. The process

of training Enc consists of adjusting the set of network weights using the training set T to minimize

the classification error of the network according to a given loss function L [16].

Once Enc has been trained, it is used to obtain the set of encoded training data. This is done195

by forwarding the samples of set T through this network to extract the feature vectors from a user-

defined feature layer, denoted as EncF . That is, EncF : X → RN maps the D-dimensional instance

x ∈ T onto a new N -dimensional feature space XF ∈ RN representation, which constitutes the

aforementioned NC encoding. Note that in the proposed method we consider the last hidden layer

of the architecture for EncF . Besides, the mapped elements from T are stored in the set T F for its200

further use in the subsequent steps of the algorithm.

3.2. Clustering process

Using clusters to subdivide the search space is an efficient, albeit approximate, strategy to speed

up the search process. This technique consists of grouping the data collection T F in c different

partitions or sets, i.e. C = {C1, . . . , Cc}, in an attempt to minimize certain specific criteria, which205

depends on the particular clustering strategy, being each cluster represented by a single element,

usually its centroid. The search for the k-nearest neighbors of a sample, therefore, consists of locating

the closest cluster using just their respective centroids for then performing the exhaustive search
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within the prototypes of that cluster.1

We propose to perform the clustering process by employing the c-means algorithm [50, 51],

since it is one of the most widely used algorithms for this task.2 Considering the set of data T F ,

this method retrieves a set of cluster centroids Cc = {Cc
1, C

c
2, ..., C

c
c} by performing the following

optimization process:

arg min
C

c∑

i=1

∑

x∈Ci

‖x− Cc
i ‖22 (1)

where Cc
i represents the i-th cluster centroid from set Cc and Ci the set of elements from T F assigned210

to that cluster, i.e., Ci =
{
xj ∈ T F : arg mini d (xj , Ci)

}
with 1 ≤ j ≤ |T F | and 1 ≤ i ≤ |C|.

It must be pointed out that the considered method retrieves a set of disjoint clusters which satisfy
⋃c

i=1 Ci = T F as well as
⋂c

i=1 Ci = ∅. As it will be later studied, since this particularity usually

implies a drop in terms of efficacy for search-based tasks, we will propose a strategy for palliating

this effect by allowing some overlap among the clusters.215

Regarding the initialization of the cluster values for the optimization process, we considered the

c-means++ algorithm proposed by Arthur & Vassilvitskii [52] as it is reported to achieve better

results compared to a random-based initialization. The following subsection discusses how to select

the number of clusters c in order to optimize the result of the algorithm.

Note that, as an approximate-search method, the considered clustering-based search process220

usually entails a decrease in terms of efficacy. This effect is usually due to the fact that the obtained

clusters do not contain all the relevant instances for properly classifying each element within the

cluster. Thus, in order to palliate this issue, a cluster augmentation process which shall be later

explained is introduced in the pipeline of the caKD+ method.

Once the clusters have been calculated, and with the aim of further accelerating the search process225

during the inference stage, our caKD+ proposal introduces the use of KD Tree structures [53] for

constructing efficient search arrangements. These structures are created at two levels: (i) a first

single tree in which only the centroids obtained from the clustering process are considered; and (ii) a

set of trees for efficiently searching within the prototypes of different clusters. These data structures

are pre-calculated during the training stage for its use in the inference stage.230

It is important to highlight that, besides the c-means method, other more sophisticated clustering

policies may report additional benefits to the caKD+ proposal. For instance, the use of efficient

hierarchical clustering techniques [54, 55, 56] could imply the removal of some data search structures

used in this work at the expense of a stratified disposition of the data.

1Since in some particular cases the number of instances resulting in a cluster may be lower than the k search

parameter, our implementation limits the value of this parameter to the size of the cluster.
2This method is also known in the literature as k-means but could, in this text, lead to confusion with the parameter

k for the calculation of the k-nearest neighbor.
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Finally, it should be highlighted that the application of the clustering method on the mapped235

T F set yields to better performance rates than if applied to the original space representation T .

More precisely, as it will be shown in the experimental section of the work, the partitions obtained

in this alternative representation allow obtaining very efficient search structures which can be easily

exploited by the rest of the stages in the method.

3.2.1. Selection of the number of clusters240

The number of clusters (parameter c) is critical for the performance of the algorithm, both in

terms of efficacy — measured as the search accuracy — and efficiency of the scheme. The ckNN+

method [25] does not provide any indication on how to select this parameter automatically, but it

only evaluates the effect of different cluster sizes on the two criteria mentioned. Thus, a proposal

with which to automate the selection of this parameter is of particular interest.245

However, note that it is not possible to optimize both criteria — efficacy and efficiency — at

the same time as they generally constitute opposite objectives: reducing the number of pairwise

distances to compute between the query and the training data may imply some performance loss

whereas, if higher precision is pursued, it will be necessary to calculate a greater number of distances.

In this sense, we now present our two proposals for optimizing each of the aforementioned success250

criteria for a cluster-based efficient kNN search scheme:

Optimize search efficiency. Regarding the efficiency of the algorithm, it is important to remark

that the total number of computed distances does not always decrease as the number of clusters

increases. When performing a search, first the closest centroid is retrieved (from among the c possible

centroids), after which the algorithm searches within the prototypes of the corresponding cluster,

which have an average of m/c samples, being m the size of the training set. Thus, for a given query,

the average number of calculated distances in a cluster-based efficient kNN scheme is given by the

following expression:

d(c) = c +
m

c
. (2)

Since m is a fixed parameter, the number of computed distances depends only on the number

of clusters c, signifying that c =
√
m clusters would have to be created to minimize the expected

number of operations, case in which an average of d(c =
√
m) = 2

√
m distances are calculated.

Finally, note that as the c parameter moves away from the c =
√
m optimal point, the efficiency255

value of the cluster-based scheme degenerates. The limit cases are those in which the c is set to

either the unit (one single cluster) or m (as many clusters as data instances), computing in both

cases a number of pairwise distances of d(c = 1) = d(c = m) = m+1, which equals to the exhaustive

kNN search.
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Optimize search efficacy. With regard to the efficacy optimization of the caKD+ algorithm, the260

Elbow method [57] is proposed to discover the appropriate amount of clusters. This is a heuristic

method that performs clustering using the c-means algorithm for each c value and which analyzes

the percentage of variance explained by the clusters against the number of clusters. The optimal

value of c is selected when the marginal gain decreases by adding a new partition (it creates an angle

on the graph, hence its name).265

While the main counterpart of this method is its reported inefficiency as it exhaustively assesses

each clustering value c until the optimum is found, in the current proposal this does not suppose

any inconvenience as this step is done during the training stage, thus not affecting the inference

phase. Other alternative optimization methods such as the one by Chowdhury et al. [58] perform

this search in a more efficient manner, but we discarded them since they either lead to sub-optimal270

solutions or require an additional set of parameters.

3.3. Adaptive k values

When considering any kNN-based retrieval task, it is necessary to determine the appropriate

value of k as it directly influences the precision of the result. One possible solution is to determine

this parameter by performing cross validation on the training set. However, it is quite likely that275

the same value of k would not be optimal for the whole space spanned by the training set. That is,

different regions of the feature space may require different values of k.

As indicated in the introduction section, there are various approaches in literature with which to

calculate local k values for each prototype [26, 27]. However, this level of detail or over-adaptation

usually leads to problems for which there are only partial solutions as, for instance, smoothing (that280

is, weighting local k values by employing a global k).

Since in our case the space is subdivided into clusters, we propose the use of values of k adapted

for each cluster. In our experimentation, this approach obtained better results than the use of global

and local k values, perhaps because it is an intermediate solution that prevents the over-adaptation

problem. Note that such solution differs from the one for the ckNN+ method [25] since that work285

only assessed the effect of applying different values of k.

The leave-p-out cross-validation (LpOCV) estimation method is proposed to calculate the value

of k adapted for each cluster. In general, it is recommended to consider a low value of p to obtain

a more accurate result. However, if the number of elements in the corpus is very large or in cases

in which the training time is critical, a higher value of p can be used. In our experimentation, since290

training time is not a critical parameter in this case, a value of p = 1 was used.

For each cluster, the value of k that obtains the best average result is selected using the LpOCV

method. It should be remarked that, when the different k values achieve the same success rate,

the lowest k parameter is selected to reduce the computational load during the inference stage.
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Finally, note that all these processes are pre-calculated during the training stage and stored in a set295

Kc = {k1, k2, ..., kc} of adaptive k values for each of the c clusters in the training set for their use

during the inference phase.

3.4. Clustering augmentation

The use of a cluster-based search approach generally entails a noticeable increase in terms of

search efficiency paired with a decrease in the performance figures as it performs an approximate300

search. While mechanisms such as the commented feature transformation or the use of adaptive k

values may somehow palliate this effect, in the cases in which the search prototype is located among

two or more clusters, the search process may lead to search and classification errors. Thus, with

the idea of improving the performance of the scheme at the expense of marginally decreasing the

efficiency, we propose to slightly increase the individual size of the disjoint clusters C = {C1, . . . , Cc},305

so that some overlapping occurs among their borders, hence retrieving set Ca = {Ca
1 , . . . , C

a
c } of

augmented clusters.

The gist behind this process is that, for each prototype x ∈ T F of a certain cluster Ci ∈ C,
the procedure searches for its closest neighbors in the entire set T F considering the corresponding

ki ∈ Kc adaptive k value of the cluster. Mathematically, considering a d : X ×X → R+
0 dissimilarity

metric, the i-th cluster Ci is augmented using the following expression:

Ca
i = Ci ∪ arg min

p∈T F
ki
{d (x, p)} ∀x ∈ Ci (3)

where the procedure retrieves the ki closest elements in set T F for each element x ∈ Ci which,

together with the members of Ci, constitute the augmented set Ca
i . This process is repeated for all

groups in C, hence obtaining the collection Ca of augmented clusters.310

Finally, note that, in opposition to initial set C, the clusters in Ca may not be disjoint, i.e.,
⋂c

i=1 C
a
i 6= ∅. We will later study the implications that this process entails on the overall success of

the proposed method.

3.5. Training stage

Algorithm 1 shows the formalization of the entire training process described in the previous315

sections. The algorithm receives the training set T and the encoder network topology as input,

and returns the trained encoder as output, along with the set Kc of adapted k values, and sets

KDtc and KDta of KD Tree structures for performing the efficient centroids and prototypes search,

respectively.

First, the DNN topology used as an encoder, i.e. Enc, is trained (line 1). The prototypes of the320

set T are then forwarded through the encoder (line 2) in order to extract their NC representation

by using the feature layer EncF , and they are stored in the set T F . The number of clusters c is then

selected (line 3), by using either one of the methods proposed in Section 3.2.1 or setting this value
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manually. The clustering process is subsequently performed on T F using the number of clusters c

(line 4), the result of which is the sets of centroids Cc and clusters C. These data are then employed325

to construct the KD Tree structure KDtc that will be used to perform the centroid search (line

5), after which it iterates through all the clusters (line 6) applying the adaptive k (line 7) and the

cluster augmentation (lines 8-11) processes. Finally, the KD Tree structure KDtai that will be used

to search for prototypes in that cluster is constructed for each augmented cluster Ca
i (line 12).

Algorithm 1: caKD+ training stage

Input : T ← {(xm, ym)}|T |m=1

Enc← Deep Neural Network topology

Output: Enc,Kc,KDtc,KDta

1 Enc← Fit Enc with T
2 T F ← EncF (T ) . Section 3.1

3 c← cluster size criteria(T F ) . Section 3.2.1

4 Cc, C ← Clustering(T F , c) . Section 3.2

5 KDtc ← BuildKDTree(Cc)
6 foreach i ∈ [1, . . . , c] do

7 ki ← AdaptiveK(Ci) . Section 3.3

8 Ca
i ← Ci . Section 3.4

9 foreach x ∈ Di do

10 Ca
i ← Ca

i ∪ arg min
p∈T ki

{d (x, p)}

11 end foreach

12 KDtai ← BuildKDTree(Ca
i )

13 end foreach

Note that this algorithm only requires the training set T , signifying that it can be performed as330

a preprocess before the inference stage. It does not, therefore, affect the efficiency of the search, but

rather the opposite, thus allowing a much faster search.

In the remainder of the paper, we shall refer to this strategy as caKD+, where the letter “c”

refers to the clustering process and “a” to the adaptive k, while the symbol “+” refers to the

cluster augmentation process. During the experimentation, the different steps of the method will335

be evaluated separately and, following the commented notation, we shall indicate caKD the case in

which the cluster augmentation is deactivated (avoiding lines 8 to 11 of the algorithm) and cKD

when the adaptive k process is not considered either (line 7). It is important to mention that, since

the comparison of a hybrid approach DNN-kNN against the individual kNN or DNN-based classifiers

has already been addressed in some previous works [24, 59, 60], we shall skip this question to focus340
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on the mentioned experiments to properly assess the efficient search scheme proposed.

3.6. Inference stage

The inference process for a given query comprises a series of steps which uses the data and

structures prepared during training (see Figure 1). This process is formally described in Algorithm

2. The query sample q is initially forwarded through the learned encoder Enc to extract its feature345

vector qF (line 1); after that, the pre-calculated KD Tree KDtc is used to find the index i of the

closest cluster, i.e., Ca
i (line 2); finally, the KD Tree KDtai is used to search within Ca

i using the

corresponding ki ∈ Kc of adapted k values, retrieving the set of elements Nq ⊆ Ca
i (line 3).

Algorithm 2: caKD+ inference stage

Input : q, Enc,Kc,KDtc,KDta

Output: Nq

1 qF ← EncF (q)

2 i← SearchKDTree(qF ,KDtc, 1)

3 Nq ← SearchKDTree(qF ,KDtai , ki)

4. Experimental setup

This section describes the different corpora, network architectures, and evaluation metrics used350

for assessing the proposed strategy.

4.1. Assessment corpora and preprocessing

We evaluated the proposed method using a set of 10 different corpora of feature vectors and im-

ages with different number of samples, classes, and features. Note that, to validate the applicability

of our proposal in several set-size scenarios, the choice of these corpora was meant to exemplify the355

different levels — small, medium, and large — established by Garcia et al. [39].3 In the particular

case of image datasets, pixel values were used as input features of the system. These datasets are

now described as well as summarized in Table 1:

• Landsat [61]: Satellite images analyzed in four spectral bands in image neighborhoods of 3x3

pixels.360

• Gisette [61]: Dataset of isolated handwritten digits that focuses on exclusively separating digits

4 and 9. 5000 features are generated for each digit by combining randomly selected pixels,

higher-order features, and also adding a number of distractor features.

3Garcia et al. [39] proposed a taxonomy for data corpora based on their size, being small up to 2,000 prototypes,

medium up to 20,000 elements, and large as any corpus above that.
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• United States Postal Service (USPS) [62]: Images of single handwritten digits.

• Pendigits [61]: Compilation of handwritten isolated digits. The features of this dataset repre-365

sent a sequence of 8 points (x, y) regularly spaced along the stroke made to draw the digit.

• Handwritten Online Musical Symbol (HOMUS) [63]: Image corpus of isolated handwritten

music symbols.

• Letter [61]: Collection of handwritten examples of capital letters from the English language.

The dataset features represent primitive numeric attributes extracted from each image, such370

as pixel counts, correlations, statistical moments, or edge counts.

• NIST Special Database (NIST) [64]: Image corpus of upper case handwritten letters.

• German Traffic Sign Recognition Benchmark (GTSRB) [65]: Collection of traffic sign images

obtained from the real world in different sizes, positions, and lighting conditions.

• Math symbols dataset (Math) [66]: Corpus of images with isolated handwritten mathematical375

symbols.

• MNIST [67]: Dataset containing images of isolated handwritten digits.

Table 1: Summary of the different corpora used for the evaluation of the proposed method. For each dataset, the

number of samples, classes, and features are shown, as well as their data type and size category according to the

taxonomy by Garcia et al. [39]. In the case of the image datasets, (c×w× h) denotes the image size in pixels, where

c is the number of channels, w the width, and h the height.

Corpus
Description

Type Samples Size category Classes Features

Landsat [61] Image 6,435 Small/medium 6 36 (4×3×3)

Gisette [61] Feature vector 7,000 Small/medium 2 5000

USPS [62] Image 9,298 Small/medium 10 256 (1×16×16)

Pendigits [61] Feature vector 10,992 Medium 10 16

HOMUS [63] Image 15,200 Medium 32 1600 (1×40×40)

Letter [61] Feature vector 20,000 Medium 26 16

NIST [64] Image 44,951 Large 26 1024 (1×32×32)

GTSRB [65] Image 51,839 Large 43 4800 (3×40×40)

Math [66] Image 56,000 Large 56 2025 (1×45×45)

MNIST [67] Image 70,000 Large 10 784 (1×28×28)
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Regarding the preprocessing of the input data, the pixel values of the MNIST, NIST, HOMUS,

GTSRB, and Math images were divided by 255 for normalization, while the Gisette, Letter, Pendig-

its, Landsat, and USPS data were used without preprocessing since they are already normalized at380

their origin.

4.2. DNN architectures for feature learning

A total of 6 DNN architectures with different number of layers, types of layers, and parameters

were used for the encoding stage. While these architectures were determined empirically for each

dataset, they are based on proposed topologies for similar tasks from the literature. However, the385

goal is not to outperform the state of the art, but to obtain a network with similar classification

results. As previously stated, these networks are used to transform the feature space of the input

data into a smaller dimensional space that also improves the grouping of the data.

Table 2 shows the details of the specific network configurations used to process each of the

datasets. Note that, although these architectures differ as regards the type of layers and the num-390

ber of parameters, they all share two final fully-connected layers: FC(N) from which the NCs of

dimension N are extracted (this allows us to adjust the dimension representation), and a final layer

FC(L) with which to classify the L possible classes of each particular corpus.

Finally, these architectures were trained by means of standard backpropagation using Stochastic

Gradient Descent [70] and considering the adaptive learning rate method proposed by Zeiler [71]. In395

the backpropagation algorithm, categorical crossentropy was used as the loss function between the

DNN output and the expected result. The training stage lasted a maximum of 300 epochs with a

mini-batch size of 32 samples.

4.3. Evaluation protocol and metrics

We used an n-fold cross validation (with n = 5) in all the experiments, since it yields a better400

Monte-Carlo estimate than when performing the tests solely with a single random partition [72].

The datasets were consequently divided into n mutually exclusive folds. For each fold, we used one

partition for test (with 20 % of the samples) and the rest for training (80 %). A validation subset

with 10 % of the training samples was additionally used for the adjustment of the hyperparameters.

The training and testing processes were repeated n = 5 times, using the different partitions of the405

dataset, and finally, the average result was calculated.

The proposed method was evaluated by measuring both efficacy —in terms of the classification

performance— and efficiency. Since the number of samples per class for some of the datasets used

is not uniformly balanced, the metric used to evaluate the performance was the weighted average

of the F1 score obtained for each class. Taking one class of the corpus as positive and the rest as410

negative, F1 is defined as:
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Table 2: DNN network configurations considered for the mapping of the initial data features of the datasets onto

their respective NC representations. Notation: Conv(f, w× h) stands for a layer with f convolution operators of size

w × h pixels, FC(n) represents a fully-connected layer of n neurons, MaxPool(w × h) stands for the max-pooling

operator of dimensions w × h pixels, Drop(d) implements a dropout stage with a value of d %, and BatchNorm()

applies a Batch Normalization layer [68]. ReLU [69] was used as the activation function for all layers except for the

output layer, for which the Softmax activation function was used. NCs are extracted from the next-to-last layer with

size N . The parameter L of the last layer stands for the number of classes in the dataset.

Dataset CNN configuration

MNIST

USPS
Conv(32,3×3)

Conv(32,3×3)

MaxPool(2×2)

Drop(0.25)

FC(N)

Drop(0.5)
FC(L)

HOMUS

NIST

Conv(256,3×3)

MaxPool(2×2)

Drop(0.2)

Conv(128,3×3)

MaxPool(2×2)

Drop(0.2)

Conv(128,3×3)

Drop(0.2)

Conv(64,3×3)

Drop(0.2)

FC(512)

Drop(0.1)

FC(256)

Drop(0.1)

FC(N)

Drop(0.1)
FC(L)

Letter

Pendigits

FC(512)

BatchNorm()

FC(512)

BatchNorm()

FC(256)

BatchNorm()

FC(N)

BatchNorm()
FC(L)

Gisette
FC(256)

Drop(0.1)

FC(256)

Drop(0.1)

FC(N)

Drop(0.1)
FC(L)

Landsat

Conv(256,3×3)

UpSamp(2×2)

Drop(0.4)

Conv(128,5×5)

UpSamp(2×2)

Drop(0.4)

Conv(64,7×7)

MaxPool(2×2)

Drop(0.4)

FC(N)

Drop(0.4)
FC(L)

GTSRB

Math

Conv(96,5×5)

MaxPool(2×2)

Conv(128,3×3)

MaxPool(2×2)

Conv(256,5×5)

MaxPool(2×2)

FC(512)

Drop(0.2)

FC(N)

Drop(0.2)
FC(L)

F1 =
2 · TP

2 · TP + FN + FP

where TP , FP , and FN denote the number of true positives, false positives, and false negatives,

respectively.

In order to assess the efficiency of the proposal, we discarded the runtime since this metric de-

pends on factors that are not related to the method itself but on the programming language, the415

libraries used for the implementation, or the hardware settings, among others. Thus, as efficiency

metric we considered the algorithmic cost O(D), where D stands for the number of pairwise com-

puted distances. In terms of dissimilarity metric, we have resorted to the Euclidean distance since,

as described above, the NC vector obtained from the feature learning step are numerical feature

representations. While other dissimilarity functions could also be considered, like Manhattan or420

Mahalanobis [73], the original implementation of some of efficient search methods is based on the

Euclidean metric. Finally, in order to facilitate comparison, in our experiments the cost is calculated

as a percentage normalized to the highest cost, which is obtained when considering the exhaustive

kNN search.

17

                  



5. Experiments425

In this section, the proposed method is evaluated using the corpora and network topologies

described in the previous section. In order to comprehensively assess the proposal, we first study

the performance according to the dimension of the NC to select an appropriate feature size value;

then, we assess the influence of the cluster augmentation and adaptive k values stages on the overall

performance of the system; after that we compare our proposal with the ckNN+ method; finally, a430

comparison against 16 state-of-the-art efficient kNN search methods is presented.

All the experiments were carried out using the Python programming language with the Ten-

sorFlow (v. 1.14) and Scikit-learn (v. 0.20) libraries. The machine used consists of an Intel(R)

Core(TM) i7-8700 CPU @ 3.20GHz with 24 GB RAM, a Nvidia GeForce GTX 1080 GPU with the

cuDNN library. Also note that, for the sake of reproducibility, all processes involved (clustering,435

network training, search structures...) consider a common fixed seed.

5.1. Evaluation of the NC dimensionality

One of the first parameters to select is the size of the intermediate representation of the data, that

is, the dimensionality of the NC, which is determined by the parameter N of the DNN architecture

used (see Table 2). We evaluated the influence of this parameter by performing an experiment in440

which we measured both classification rate as F1 and efficiency/cost as the parameter N increases.

Figure 2 shows the results of this experiment, in which each point represents the average obtained

after carrying out the cross-validation process with the 10 datasets considered. The horizontal axis

represents the NC size from 1 to 4096 (on a logarithmic scale), while the vertical axis shows both

F1 and cost. Note that cost is obtained as a percentage referred to its maximum value given by445

N = 4096.
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Figure 2: Performance in terms of both accuracy (F1) and efficiency (cost) with respect to the size of the NC.

Assessing the results obtained, it may be checked that classification performance in terms of
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the F1 metric stabilizes from size N = 128 while cost continues to increase exponentially. For this

reason, an NC dimension of N = 128 will be used in the remaining experiments.

5.2. Effect of cluster augmentation and adaptive k450

This section analyzes the influence of the cluster augmentation (marked with the “+” symbol

in the name of the proposal, caKD+) and the adaptive k (denoted by the letter “a” in caKD+)

processes in the overall performance. For performing such analysis we shall examine the different

configurations obtained when activating and deactivating these processes separately.

Table 3 shows the results of this experiment (in terms of F1 and distance computations) for455

cluster sizes c in the range [10, 1000]. Distance calculations are shown as percentages with respect

to the exhaustive kNN search. Moreover, in order to facilitate the identification of whether each

process is applied, they are marked using the following symbols: N and M indicate whether or not the

cluster augmentation process is applied, respectively, while  and # denote whether the adaptive k

process is applied or not, respectively.460

Table 3: Comparison of the improvement obtained by applying the cluster augmentation and the adaptive k processes.

For this, the result obtained by applying these processes is compared with that obtained if they are not applied. To

facilitate the identification of whether each process is applied, they are marked using the following symbols: N and M
respectively indicate whether or not the cluster augmentation process is applied, while  and # respectively indicate

whether or not the adaptive k process is applied. The best results obtained on average and by cluster size are marked

in bold type (when the result is the same, that which also optimizes the other metric, F1 or number of computed

distances, is marked).

c

F1 (%) Distances (%)

cKD cKD+ caKD caKD+ cKD cKD+ caKD caKD+

M# N# M N M# N# M N 

10 95.83 96.27 96.12 96.31 0.45 0.49 0.22 0.24

15 95.83 96.29 96.14 96.31 0.46 0.47 0.22 0.23

20 95.70 96.14 95.97 96.18 0.43 0.48 0.20 0.22

25 95.65 96.12 95.95 96.16 0.40 0.46 0.18 0.20

30 95.63 96.08 95.90 96.13 0.39 0.45 0.18 0.19

100 95.67 95.99 95.85 96.00 0.30 0.38 0.14 0.16

500 95.76 95.99 95.88 95.99 0.20 0.28 0.13 0.14

1000 95.94 96.12 96.06 96.15 0.18 0.26 0.14 0.14

Average 95.75 96.12 95.98 96.15 0.35 0.41 0.18 0.19

As it can be observed in this table, the cluster augmentation process slightly improves the

classification rate in terms of the F1 metric. As previously indicated, note that the result obtained

by the exhaustive kNN search (i.e., calculating all possible pairwise distances) is 96.94 %, being thus
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the results achieved quite close to the maximum achievable rate and, therefore, the improvement

margin is remarkably narrow. This process specifically improves the F1 score by 0.37 % when the465

adaptive k process is not applied (that is, the combination cKD M# → cKD+ N#), and 0.17 %

when it is applied (for combination caKD M → caKD+ N ).

The adaptive k process also improves the average F1 score by 0.23 % when the cluster augmen-

tation process is not applied (combination cKD M# → caKD M ) and 0.03 % when it is applied

(combination cKD+ N# → caKD+ N ). In the latter case, note that the cluster augmentation470

has already been applied, which already improves the result by 0.17 %.

When analyzing both processes together, it can be seen that, on average, they improve the result

by 0.4 %, and up to 0.5 % in the case of c = 15. The best result obtained by caKD+ is only 0.63 %

worse than the best possible result obtained with the exhaustive kNN search. However, the proposed

method only requires a 0.23 % of the maximum number of possible pairwise distances.475

With regard to the number of distances, as expected, the cluster augmentation process produces

a slight increase in the number of distances: 0.06 % when the adaptive k process is not applied and

0.01 % when it is applied. Furthermore, the adaptive k process reduces the number of distances,

specifically 0.18 % less when clustering augmentation is not applied (combination cKD M#→ caKD

M ) and 0.22 % less when it is applied (combination cKD+ N# → caKD+ N ). This reduction480

is due to the fact that, on average, this method requires a lower value of k, as will be discussed in

the following section.

In order to rigorously assess the improvements attained when employing these processes, we

resorted to the Wilcoxon test signed-rank test [74]. More precisely, the idea was to assess whether

the improvement observed in terms of both the F1 score and the number of distances computed after485

applying these methods was statistically significant in comparison to the results obtained when not

considering them. Table 4 shows the results of this comparison, considering all possible combinations

of applying and not applying each process. The symbol X indicates that the method specified in the

row is significantly better than that indicated in the column for all the datasets, folds, and cluster

sizes evaluated, considering p < 0.05 as statistical significance threshold.490

Focusing on the classification rate results (first four columns of the table), it can be observed that

the application of the cluster augmentation and adaptive k processes, both separately and combined,

report significant improvements in the results with respect to not being applied. It can also be seen

that the use of cluster augmentation (marked as N) usually entails a superior improvement than

that of the adaptive k process (highlighted with  ), and that the combination of both processes495

yield to better results than when they are applied separately.

Regarding the efficiency analysis (last four columns of the table), note that the cases in which

the adaptive k stage is considered (last two rows of the table) consistently outperform those in

which the process is elided. In contrast, the test also shows that the cluster augmentation process
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Table 4: Results of the Wilcoxon signed-rank test comparing the improvement obtained for both classification rate

and number of distances computed when applying the cluster augmentation and the adaptive k processes. The symbol

X indicates that the method specified in the row is significantly better (when considering a statistical significance

threshold of p < 0.05) than that indicated in the column for all the corpora, folds, and cluster sizes evaluated.

Accuracy (F1) Efficiency (Distances)

cKD

M#
cKD+

N#
caKD

M 
caKD+

N 
cKD

M#
cKD+

N#
caKD

M 
caKD+

N 
cKD M# – – X
cKD+ N# X – X –

caKD M X – X X – X
caKD+ N X X X – X X –

(denoted as N) does not report any statistical improvement in terms of the reduction in the number500

of distances computed with respect to not considering it. It must be remarked that such conclusions

constitute a rather expected result given that the cluster augmentation process entails an increase

in the reference set size. In this sense, while one might argue the usefulness of this augmentation

process in the overall pipeline, note that its relevance is justified due to its reported significant

improvement in the classification rate of the scheme.505

Finally, the reader may have noticed that classification performance and efficiency generally

constitute two conflicting goals in which the improvement in one of them implies the deterioration

of the other. Since one may prioritize one of these goals depending on the actual context of use,

it is thus not possible to depict a single optimal configuration. Related literature addresses this

issue considering a Multi-Objective Problem framework, which basically retrieves a set of possible510

solutions to the task without any particular preference among them [8, 28, 75]. Section 5.5.1 of this

work provides the analysis of the caKD+ proposal considering that particular framework for further

providing additional insights about the method.

5.3. Adaptive k process evaluation

One interesting parameter to analyze is the value of k calculated using the adaptive k method.515

When calculating k without using the adaptive process, an average of k = 4.9 is obtained for all the

datasets considered. This value is used by cKD and cKD+ for all cluster sizes since these methods

use a general k, regardless of the cluster sizes.

When applying the adaptive k process, an average of k = 1.5 is obtained for all the cluster sizes

and datasets considered. Specifically, the following values of k = {1.9, 1.7, 1.6, 1.6, 1.5, 1.3, 1.1, 1.1}520

are obtained for cluster sizes c = {10, 15, 20, 25, 30, 100, 1000}, respectively. Hence, the adaptive k

process obtains a lower value of k, on average.

Also note that this k value decreases as the number of clusters c increases. This is because many

clusters are well grouped and consequently employ k = 1, and although there are some clusters with

21

                  



a higher value of k, the overall average drops considerably. This reduction in the value of k also525

leads to a reduction in the number of computed distances, as seen in the previous section.

5.4. Cluster size analysis

As the results presented in the previous sections show, the cluster size c affects both the F1 and

the number of pairwise distances to compute. Gallego et al. [25] do not indicate how to select this

size for ckNN+, but rather evaluate different cluster sizes by applying a grid-search technique [76]530

to select the value of c that optimizes the criterion of interest (efficiency or efficacy). However, the

proposed caKD+ method does specify how to automatically select this value based on the criteria

to be optimized (see Section 3.2.1).

Table 5 shows a comparison of the result obtained with caKD+ when using the proposed auto-

matic selection method versus the best result previously obtained when evaluating cluster sizes from535

10 to 1000 (see Table 3).

Table 5: Comparison of the results obtained with caKD+ when applying the method proposed to automatically

calculate the number of clusters based on the metric to be optimized (F1 or distances) against the ones obtained from

a grid-search process. The results from the latter process may be checked in Table 3. The best results for F1 and

distances are marked in bold type (when the result is the same, that which also optimizes the other metric, F1 or

distance, is marked).

Cluster size c F1 (%) Distances (%)

Optimize F1

Grid search

(c=15)
96.31 0.23

c = Elbowc 96.31 0.20

Optimize distances

Grid search

(c=500)
95.99 0.14

c =
√
m 95.96 0.13

As it can be seen, the proposed optimization approaches yield to better results for both metrics:

on the one hand, in the case of the efficiency optimization, the proposal improves a 0.1 % with

respect to the grid-search process; on the other hand, in the case of the F1 optimization, while

the results obtained by both the Elbow and the grid-search process match, note that our proposal540

calculates a smaller number of distances. Finally, while it may be argued that the difference in the

results may be negligible, it is important to remark that the optimization strategy proposed avoids

the exploration of the entire solution space that a grid-search process requires, thus considerably

reducing the burden of the training stage.
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5.5. Comparison with ckNN+545

Having thoroughly analyzed the proposed caKD+ on its own, we shall now compare it with the

ckNN+ method by Gallego et al. [25] as it constitutes the starting point of the presented method.

Table 6 shows the result of this comparison in terms of F1 and distances for values of c in the range

[10, 1000]. In addition, in order to compare these results with those that would be obtained by

using an exhaustive and non-approximate search technique (such as kNN), the value of c = 1 —i.e.,550

classifying with a single cluster— is also included. The value of k was selected for both methods

using a validation partition with 10 % of the training samples and analyzing values in the range

k ∈ [1, 15]. Also note that the average (last row of the table) was calculated discarding the value of

c = 1 to avoid skewing the data (mainly the number of distances).

Table 6: Comparison of caKD+ and ckNN+ methods in terms of F1 and total number of distances for different

cluster sizes. Each result represents the average obtained when employing the cross validation process with all the

datasets considered. The best results obtained on average and by cluster size are marked in bold type (when the

result is the same, that which also optimizes the other metric, F1 or distance, is marked).

F1 (%) Distances (%)

c ckNN+ caKD+ ckNN+ caKD+

1 96.94 96.94 100.00 11.85

10 96.29 96.31 14.92 0.24

15 96.29 96.31 10.80 0.23

20 96.15 96.18 8.75 0.22

25 96.12 96.16 7.10 0.20

30 96.08 96.13 6.02 0.19

100 95.99 96.00 3.14 0.16

500 95.99 95.99 4.98 0.14

1000 96.12 96.15 8.99 0.14

Average 96.13 96.15 8.09 0.19

An initial remark to begin with is that, when considering the case of c = 1, the ckNN+ method555

is equivalent to applying kNN, reason why it calculates 100 % of the distances. However, in the case

of caKD+, c = 1 is equivalent to considering a KD Tree structure of the entire training set, which

reduces the number of distance computations to a value of 11.85 % with respect to the exhaustive

search.

When considering cluster values higher than the unit, it can be checked that the proposed560

caKD+ method consistently improves ckNN+ in both F1 and distance computations. While the

classification rate in terms of F1 improves by an average of only 0.02 % and 0.06 % in the case of

c = 30, it must be considered that this result is very close to the best possible theoretical result
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given by the exhaustive kNN search (F1 = 96.94 %), being thus the improvement margin quite

narrow. Nonetheless, a much more remarkable improvement is obtained in the number of computed565

distances, since caKD+ calculates only 0.19 % of distances (7.90 % less than ckNN+), yet still

improving the classification rate.

In order to statistically assess the improvement depicted by both the classification rate and

reduction in the number of distanced computed, we considered the non-parametric Wilcoxon signed-

rank test as in previous experiments in this manuscript. More precisely, the idea was to assess570

whether the results obtained by the caKD+ method consistently improved those by the ckNN+

approach for all corpora, folds, and cluster sizes. Note that we consider a significance threshold of

p < 0.05 for this analysis.

When assessing the classification rate figures with the proposed strategy, a p-value of 0.0377 was

obtained. On the other hand, when considering the reduction in the number of distances, a p < 10−6575

figure was retrieved. Hence, attending to the aforementioned significance threshold, this test reflects

that the caKD+ proposal significantly outperforms the ckNN+ method in terms of both efficacy

and efficiency.

5.5.1. Multi-objective optimization problem

The metrics considered for the assessment of this problem (F1 and the number of distances) are,580

quite often, opposite, since an improvement on one of them usually entails a deterioration in the

other one. From this point of view, this task can be seen as a Multi-objective Optimization Problem

(MOP) in which two functions are meant to be optimized simultaneously.

The most common means of tackling such problems is resorting to the concept of non-dominance:

one solution is said to dominate another if, and only if, it is better or equal in each objective function585

and, at least, strictly better in one of them. The best solutions (there may be more than one) are,

therefore, those that are non-dominated. In the MOP framework, the strategies within this set define

the so-called Pareto frontier and can be considered the best without any particular order among

them [77].

Assuming this MOP scenario, Figure 3 shows the results obtained using the caKD+ and ckNN+590

methods in which each point is a 2-dimensional value defined by its F1 and calculated distances

obtained from averaging all folds and corpora for the corresponding algorithm configuration. Note

that in this case we are not considering any of the alternative caKD+ methods which result when

certain steps of the algorithm are deactivated.

As it can be checked, the best results for both criteria are obtained by the proposed caKD+595

method as they consistently achieve either a higher classification performance or a lower number

of computed distances than the ckNN+ approach. Regarding the actual MOP analysis, note that

the Pareto frontier is defined exclusively by different configurations of the caKD+ proposal. Ob-

viating the case of c = 1 which is equivalent to a KD Tree applied to the entire training set, the
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Figure 3: Analysis of F1 and efficiency as a Multi-objective Optimization Problem (MOP). Non-dominated elements

are highlighted.

non-dominated configurations that define the frontier are: c =
√
m with the minimum number of600

calculated distances, c = Elbow with the best F1, and c = 1000 with an intermediate result for

both metrics. It is worth remarking that two of the non-dominated solutions are obtained when

considering the proposed methods to automate the calculation of the number of clusters in terms of

either the classification performance or the optimization of the number of distances.

5.6. Comparison with state-of-the-art efficient kNN search algorithms605

This section presents a benchmark comparison of the proposed caKD+ method against 16 differ-

ent state-of-the-art efficient kNN search approaches. Since many works deal with this task, we have

selected a representative collection of each of the FSS, DR, and ASS families (detailed in Section 2)

for the comparison. Table 7 summarizes the different strategies compared, including the parameters

used in each case.610

Figure 4 shows the results of this comparison when considering the same evaluation methodology

in terms of cross-validation, metrics, and datasets as in the previous sections. The result obtained

by the conventional exhaustive kNN search is also included to provide a reference for the improve-

ment obtained after applying these methods. The results are shown in different colors and shapes

depending on the type of approach used. Furthermore, for each efficient-search family, the Pareto615

frontier is marked separately, along with its non-dominated results.

As it can be seen, the proposed caKD+ method achieves the best F1 results for the different

parameter configurations evaluated (i.e., different number of clusters c), for which it maintains quite
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Table 7: Summary of the different efficient kNN search strategies compared. The identifier, algorithmic family, and

set of parameters evaluated for each method are indicated.

Algorithm Identifier Family Parameters evaluated

k-Nearest Neighbor kNN - k ∈ {1, 3, 5, 7, 9}
KDTree [14] KDTree FSS leaf ∈ {10, 20, 30, 40}
BallTree [32] BallTree FSS leaf ∈ {10, 20, 30, 40}
Local Sensitive Hashing [47] LSH ASS trees ∈ {10, 20, 30, 40}
Spectral Hashing [46] SH ASS nbits ∈ {40, 80, 100, 120}
Product Quantization [45] PQ ASS nsubq ∈ {1, 2, 4, 8}
Clustering-based k-Nearest Neighbor [25] ckNN+ ASS c ∈ {10, 15, 20, 25, 30, 100, 500, 1000}
Reduction through Homogeneous Clusters [41] RHC DR –

Condensing Nearest Neighbor [8, 37] CoNN DR k ∈ {1, 3, 5, 7, 9}, c ∈ {1, 2, 3}
Editing Condensing Nearest Neighbor [8, 78] ECNN DR k ∈ {1, 3, 5, 7, 9}, c ∈ {1, 2, 3}
Fast Condensing Nearest Neighbor [8, 79] FCNN DR k ∈ {1, 3, 5, 7, 9}, c ∈ {1, 2, 3}
Farther Neighbor [8, 80] FN DR k ∈ {1, 3, 5, 7, 9}, c ∈ {1, 2, 3}, r = 0.1

Nearest to Enemy [8, 80] EN DR k ∈ {1, 3, 5, 7, 9}, c ∈ {1, 2, 3}, r = 0.1

Instance Rank based on Borders [8, 81] IRB DR k ∈ {1, 3, 5, 7, 9}, c ∈ {1, 2, 3}, r = 0.1

Decremental Reduction Optimization

Procedure 3 [8, 82]
DROP3 DR k ∈ {1, 3, 5, 7, 9}, c ∈ {1, 2, 3}

Iterative Case Filtering [8, 83] ICF DR k ∈ {1, 3, 5, 7, 9}, c ∈ {1, 2, 3}

stable results. As expected from the analysis in previous sections, the next best-performing method

concerning F1 is the ckNN+ one. After that, in general terms, the FSS family of algorithms prove620

to be the more competitive algorithms with a quite steady performance. Finally, methods belonging

to the ASS and DR families show a great variability in terms of classification rate depending on the

type of approach and parameterization considered.

Regarding to the number of computed distances, note that the proposed caKD+ method and

some of the methods in the DR family (specifically IRB [8]) obtain similar reduction results. However,625

the DR family methods are not competitive in terms of F1 score, since the reduced number of

calculated distances is achieved at the cost of obtaining a very poor classification precision (62 %

worse than the proposed method). After caKD+ and DR, the next method that computes fewer

number of distances is ckNN+, followed by the ASS family of methods and finally FSS. In general,

it is observed that caKD+ obtains the best results for both metrics and remains much more stable630

to changes in its parameters.

5.6.1. Comparison considering Neural Codes representation

In order to further study the capabilities of the proposed caKD+ method, we now present an

additional study which assesses the influence of the NC representation on the overall success of the

task. More precisely, this experiment extends the previous comparison against the different state-of-635
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Figure 4: Comparison of the proposed caKD+ method with the considered efficient-search strategies for kNN in terms

of F1 and number of distances computed. Non-dominated elements are highlighted in each case.

the-art efficient search methods by considering the NC representation as input of those algorithms.

It must be noted that the feature learning process that retrieves the NC representation is one of

the different processes in the pipeline of the proposed caKD+ method while in the rest of the efficient-

search algorithms considered this process is additionally included to perform the aforementioned

assessment. The analysis of the results obtained shall provide additional insights about the benefits640

of considering such compact representation in other schemes.

Having introduced the aim of the experiment, Figure 5 graphically shows the results obtained

with the different efficient-search algorithms when considering the NC representation as input to the

methods. These results may be directly comparable with the ones in Figure 4 as the only difference

is the general use of the NC representation for the data.645

As it can be observed, the performance of all schemes is generally improved, both in terms of

efficiency and efficacy. More precisely, the minimum classification score is now located close to

F1 = 80% for a DR strategy while this score was around F1 = 60% when not considering NC

representations. In a similar sense, the maximum number of distances computed is obtained by a

FSS scheme with a value around a 40% of the maximum while in the raw data representation this650

value was close to a 60% of the maximum number of distances to compute. These results support the

idea that a NC representation obtained with the proper feature learning process does produce a more

compact data representation which eventually benefits the subsequent stages of the efficient-search

scheme.
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of F1 and number of distances computed when considering the Neural Codes representation as input. Non-dominated

elements are highlighted in each case.

However, while all the considered schemes do report a benefit in their performance with this655

NC-based representation, still the results obtained by the different configurations of the proposed

caKD+ method stand out as the ones achieving the best compromise between efficiency and efficacy

since none of the alternative methods dominate them in the graph.

6. Discussion

Having presented the experiments for both performing an in-depth analysis of the caKD+ pro-660

posal and its comparative assessment with various state-of-the-art methods for efficient search, this

section provides an additional discussion about the degree of contribution of the different stages of

caKD+ to the overall success of the task.

As presented, the proposed caKD+ method aims at improving the efficiency issue inherent to the

kNN search algorithm. For that, our proposal comprises a set of stages which can be summarized665

in the use of a feature learning process, a clustering stage, the computation of a set of KD-Tree

structures for fast prototype indexing, and the optimization of the k value for the eventual search.

The use of the feature learning allows the scheme to both reduce the dimensionality of the data

and retrieve a suitable representation for the task at issue. This stage is crucial for the success of the

scheme, at least for most high-dimensional corpora, since the subsequent stages of the proposal, and670

28

                  



particularly the KD-Tree indexing structures, severely degenerate its performance as the number of

dimensions grows. Additionally, the representation obtained is usually more compact than the raw

one from the original data, which improves the clustering stage since, in this new space, instances

belonging to the same class are expected to be located close to each other and far from the dissimilar

ones. This is due to, as stated in Section 3.1, the DNN schemes responsible for this space mapping675

are meant to produce an alternative representation in which the different categories involved in the

task are expected to be linearly separable. This fact has been assessed in Section 5.6.1 in which

different efficient-search algorithm, along with caKD+, have been fed with the learned representation

from the encoder used in the work and all of them improved both their efficiency and efficacy figures

with respect to directly considering the raw data. As a last point to comment in this regard,680

Gallego et al. [25] quantitatively studied the quality of data clusters in both a DNN-based learned

representation with respect to that of the original space using a set of metrics from the clustering-

related literature, namely Silhouette Coefficient, Calinski–Harabaz Index, Homogeneity Score, and

Completeness Score. This study concluded that the feature learning was significantly beneficial for

the clustering process, being thus of remarkable applicability its use in efficient-based kNN search685

proposals.

Regarding the clustering process, this stage groups the existing instances into c different sets

according to their proximity in the dimensional space obtained in the feature learning stage. When

queried, this grouping allows a faster while approximate search than that of the exhaustive case.

Nevertheless, as stated in Section 3.2.1, not all c values report a benefit in the overall performance,690

but some particular values optimize the process in terms of distance computations. This effect

has been experimentally assessed in Section 5.4 in which the postulated theoretical optimal points

match the ones obtained with an exhaustive grid-search optimization. Note that in the case of the

classification performance optimization, while still computationally complex, the considered Elbow

method reduces the computation time with respect to the commented exhaustive search. This695

assertion is based on the fact that, while the former strategy stops the process once the optimal

point is reached [57], the latter case requires examining the entire solution space.

Additionally, in order to palliate the commented efficacy decrease due to the use of the cluster-

based search strategy, caKD+ introduces a cluster augmentation process which allows some over-

lapping among them with the aim of compensating such loss. The effect of such stage has been700

quantitatively analyzed in Section 5.2, concluding that such overlap does always report an improve-

ment in the efficacy of the scheme at the expense of marginally increasing the number of computed

distances.

The use of KD-Tree structures for both indexing the different clusters and the instances inside

clusters also implies a remarkable improvement in the efficiency of the scheme against the exhaustive705

search. As observed in Section 5.5, even if considering a cluster size c = 1 (i.e., not applying any
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clustering), the number of computed distances is reduced to a 11.85% of the total. While it might be

argued that such efficiency figures may be sufficient and thus it would not be necessary to introduce

the aforementioned clustering process, the experimentation presented proves that combining such

clustering with a stack of KD Tree structures instead of a single general one further improves the710

efficiency figures to values several orders of magnitude lower than the exhaustive case.

Finally, the use of adaptive k values inside each cluster reduces the number of comparisons to be

performed for a given new query and improves the general efficiency of the scheme, as quantitatively

proved in Section 5.3. Besides, this process also matches the local approximation principle of the

kNN-based search which, as stated in the Introduction, is one of the benefits of such instance-based715

algorithm.

6.1. Comparison of runtime cost

We now include an additional benchmark which compares the search cost, measured in execution

time, of five of the considered situations in the Experimentation section: the exhaustive kNN search,

the FSS-based methods BallTree [14] and KD-Tree [32], the ckNN+ method [25], and the proposed720

caKD+ strategy. These calculations have been done for all corpora considered in the present work as

well as for an supplementary one, the ImageNet collection [84], which we considered due to its large

number of elements and hence assess the performance of those methods in a much extensive database

than the ones considered. This latter corpus is a generic-purpose dataset for object classification used

in the Large Scale Visual Recognition Challenge (ILSVRC) which comprises a total of 1, 331, 167725

color images of 224×224 pixels of 1, 000 different classes. Note that in this particular image collection

the NC representation was extracted resorting to the MobileNet v2 architecture [85] initialized with

the pre-trained weights from the ILSVRC dataset and performing an additional fine-tuning process

for adapting its output to our NC layer size.

Regarding the actual configuration of the search methods, we considered the parameters which730

optimized the performance of these schemes in the previous experimentation. More precisely, for

the ckNN+ and caKD+ cases we fixed the number of clusters c to the value that minimizes the

number of distances computed by the cluster-based scheme, i.e. c =
√
m. In the case of the BallTree

and KD-Tree methods a leaf value of 10 was used as it represents the particular configuration which

achieves the non-dominated solutions for both strategies.735

Table 8 shows, for each of the corpora considered, the average time per query obtained as the

mean of the time consumed by all the queries to the system, considering the same train/test parti-

tions and 5-fold cross validation divisions described in Section 4. The machines and programming

languages are the same as the ones used in the rest of the work, which are described at the beginning

of Section 5.740

As it can be observed, the efficiency of the exhaustive kNN case degrades as the size of the corpus

increases. This is a rather expected behavior since such algorithm requires the examination of the
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Table 8: Comparative of the average search time, in milliseconds, obtained by the exhaustive kNN, and compared to

that of the KDTree, BallTree, ckNN+, and caKD+ methods for the different corpora considered.

ms. / query

Corpus Training set size kNN BallTree KD-Tree ckNN+ caKD+

Landsat 5,151 43.23 23.73 20.89 5.06 2.80

Gisette 5,600 45.29 27.14 24.14 8.03 1.78

USPS 7,444 60.21 35.03 32.25 4.87 3.05

Pendigits 8,797 71.89 40.97 39.04 3.96 2.10

HOMUS 12,160 98.02 57.12 49.70 5.00 3.19

Letter 16,012 130.70 79.82 68.74 5.52 3.17

NIST 35,972 311.02 172.11 159.11 4.17 2.56

GTSRB 41,471 344.96 197.86 181.16 5.49 1.00

Math 44,800 376.46 214.27 201.15 5.78 0.85

MNIST 56,004 492.26 285.80 243.41 5.52 0.80

ImageNet 1,281,167 11,368.47 6,213.12 5,131.92 119.27 14.27

entire corpus to perform the search task, being thus its performance completely related to the size

of the collection.

Regarding the BallTree and KD-Tree schemes, the efficiency trend they depict with respect to745

the size of the training data is similar to that of the exhaustive kNN method. As it can be observed,

the average search time progressively increases as the corpus set size grows. However, note that both

FSS-based methods depict much more efficient figures than those of the kNN strategy, performing

the same search task in, approximately, half of the computation time.

In the cases of both ckNN+ and caKD+ the degeneration in terms of query execution time is not750

that noticeable as in the previous cases. This is a reasonable behavior since both strategies derive a

series of structures and comprise different processes to optimize the search process. In the sole case

of ImageNet the search time severely increases up to an order of magnitude higher than the rest of

the considered corpora, being still the search times retrieved remarkably lower than the exhaustive

search case.755

Finally, note that the proposed caKD+ method consistently achieves the lowest search time of

the considered cases. This fact, together with the conclusions gathered from the experimentation

and analysis in the rest of the work, proves the validity and usefulness of caKD+ as a new and

competitive strategy for performing efficient search tasks in the context of the kNN rule.

31

                  



6.2. Computational cost related to set size760

In relation to the previous study about execution time, we provide an additional experiment

to further analyze the caKD+ proposal. More precisely, we aim at assessing the relation of both

the computational cost and search performance of the caKD+ method with the train set size of

the corpus. For that, we consider the ImageNet collection and evaluate the two commented figures

of merit as the amount of training data is progressively increased up to the point of considering765

the complete canonical train partition, i.e., the 1,281,167 prototypes. Note that we selected this

particular corpus as it contains the largest amount of data among the corpora used in the work.

Figure 6 provides the results of this study, being the computational cost deemed as the invested

time per input query and the search performance as the classification rate in terms of the F1 metric.
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Figure 6: Analysis of the computational cost and search performance (measured as search time per input query and

classification rate in terms of the F1 metric, respectively) related to the size of the training partition of the ImageNet

collection. Note that the different sizes evaluated have been simulated by reducing the canonical train partition of

the corpus.

Attending to the results obtained, it can be observed that the classification accuracy achieved by770

the scheme does not remarkably differ as the size of the training partition increases. More precisely,

this rate improves from an initial figure of, roughly, F1 = 69% to a value of F1 = 70.1%, which

supposes an absolute improvement of 1.1%. This is no strange since, as commented in Section 3.1,

the feature learning stage maximizes the separation among the different classes of the corpus, inde-

pendently of the amount of data. Thus, the use of larger amounts of data results in more populated775

clusters, without a remarkable performance improvement.

Regarding the computation cost, the experimental results prove that training set size and search

time generally depict a lineal relation, thus validating the proposed pipeline of the caKD+ method.
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This analysis also reports that, when considering small set sizes, this cost does not follow such trend,

most likely due to the cost of the different data structures considered. In any case, while this training780

set size and search time may not be linearly related in every single case, the different analyses and

experiments in this work have proved the caKD+ method as a significantly efficient, yet accurate,

alternative for kNN search.

7. Conclusions and future work

The k-Nearest Neighbor (kNN) rule stands as one of the main supervised learning algorithms for785

both its simplicity and reported good results in terms of search and classification tasks. Nevertheless,

this algorithm exhibits an inherent issue in terms of scalability since it does not derive a model out

of the training data but it relies on exhaustively consulting it every time a new query is produced. In

this regard, due to its relevance in the Pattern Recognition field, a large number of approaches have

been historically proposed to palliate the commented efficient issue of the kNN search algorithm.790

This work presents a new method for efficient kNN search based on clustering and feature space

transformation based on the previously proposed ckNN+ algorithm [25]. This new proposal in-

troduces a set of complementary processes that reduce the search time and improve classification

results, such as using adaptive k values per cluster or pre-calculated KD Tree structures. A further

contribution of this paper is a proposal that can be employed to automate the calculation of the795

cluster size based on the metric to be optimized — the efficacy or the efficiency. This proposal

obtains optimal results for the selected metric without having to carry out a grid-search process,

thus considerably speeding up the training time.

The proposed method, called caKD+, has been validated using 10 datasets with different num-

ber of samples, classes and features, including images, and feature vectors. For the feature space800

transformation, 6 different topologies with a varied number of layers, types of layers, and parameters

has been assessed to optimize this step.

The results show that caKD+ considerably reduces the number of distances calculated compared

to the previously proposed ckNN+ approach while also improving the classification result. These

figures were validated by means of statistical tests in order to both demonstrate the significance805

of the improvement and validate the contribution of applying the different stages of the caKD+

method. Furthermore, a lineal relation between the size of the corpora and the computational cost

was experimentally assessed, proving its validity for scenarios differing in the size of the corpus.

Additionally, the proposed scheme was compared to 16 state-of-the-art strategies for efficient kNN

search, attaining the best overall results in the compromise between efficiency and efficacy while810

also proving to be a much more stable method as regards changes in its configuration parameters.

Only a technique based on data reduction (IRB [8]) calculates a smaller number of distances, but at

the cost of considerably reducing the efficacy of the scheme (62 % worse), while caKD+ calculates a
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similar number of distances but obtains the best classification results of all the methods compared

and is only 0.63 % worse than the best theoretically possible result, i.e., the one obtained with the815

exhaustive kNN rule.

As future work, we aim at studying more advanced network architectures that improve the

clustering process, such as employing specialized loss functions. Another avenue of this proposal

that could be explored in greater depth is that of evaluating the system with time-evolving corpora

as, for example, varying the number of samples or classes. As a last promising line of work, we820

consider the study of more sophisticated clustering policies, such as a hierarchical methods, as they

could not only improve the search performance of the scheme but also avoid some of the currently

necessary tree-based indexing structures.
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Appendix A. Nomenclature and mathematical definitions

For the sake of conciseness, this appendix gathers and lists the mathematical symbols and defi-830

nitions used in the manuscript:

• X : Initial D-dimensional feature space of the data.

• xm: Single element from space X , i.e., xm ∈ X .

• Y: Set of possible target labels., i.e., Y = {Y1, . . . , YL}.

• ym: Single label from space Y, i.e., ym ∈ Y.835

• T : Corpus of labeled data comprising a set of duples {(xm ∈ X , ym ∈ Y)}|T |m=1.

• Enc: Deep Neural Network trained for performing the mapping Enc : X → Y.

• EncF : Subnetwork extracted from Enc used for mapping data in the initial space X to XF ,

i.e., EncF : X → XF .

• L: Loss function considered for training the Enc neural scheme.840

• XF : Target N -dimensional space which D-dimensional space X is projected to.

• xF
m: Single element from space XF , i.e., xF

m ∈ XF .

• T F : Equivalent to labeled corpus T in the projected space by EncF . Mathematically, this is

defined as T F = {(xF
m ∈ XF , ym ∈ Y)}|T

F |
m=1 = {(EncF (xm ∈ X ) , ym ∈ Y)}|T |m=1.
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• c: Number of clusters considered for the method.845

• C: Initial set of c data groups {C1, . . . , Cc} obtained by applying the clustering method to T F .

• Ca: Set of overlapping data clusters {Ca
1 , . . . , C

a
c } obtained by applying a cluster augmentation

process to initial set C.

• Cc: Set of c centroids {Cc
1, . . . , C

c
c} of the different clusters in C.

• Kc: Collection {k1, . . . , kc} of adaptive k values for each of the clusters in set Ca.850

• KDtc: K-Dimensional Tree structure obtained with the Cc set of centroids for the efficient

cluster selection.

• KDta: Set of K-Dimensional Trees for each of the augmented clusters in Ca for the efficient

search within the cluster.

• Nq: Subset of elements Nq ⊆ T retrieved by the search method in response to query q.855
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