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Abstract: This paper reports sophistication levels in third grade children’s understanding of polygon
concept and polygon classes. We consider how children endow mathematical meaning to parts of
figures and reason to identify relationships between polygons. We describe four levels of sophis-
tication in children’s thinking as they consider a figure as an example of a polygon class through
spatial structuring (the mental operation of building an organization for a set of figures). These levels
are: (i) partial structuring of polygon concept; (ii) global structuring of polygon concept; (iii) partial
structuring of polygon classes; and (iv) global structuring of polygon classes. These levels detail
how cognitive apprehensions, dimensional deconstruction, and the use of mathematical language
intervene in the mental process of spatial structuring in the understanding of the classes of polygons.

Keywords: geometrical thinking; levels of sophistication; polygon concept; polygon classes; elemen-
tary education

1. Introduction

Understanding relationships between polygons implies recognizing relevant attributes
and identifying similarities and differences between polygons [1,2]. Developing this under-
standing is a gradual process that begins with considering figures as a whole to reasoning
about their attributes for identifying perceptually different figures as examples of the same
class of polygons. Battista [1] indicated that students initially give informal descriptions
and then move on to reason about the figure’s properties, using a combination of formal
and informal terms. This development is based on a progressive cognitive structuring of
the information generated from geometric figures: it involves recognizing parts of figures
and endow those mathematical meaning using increasingly precise geometry terms. This
progressive cognitive structuring of information implies making the geometric proper-
ties compatible with the figures’ perceptual characteristics, bringing together the double
nature—figural and conceptual—of geometric figures [3,4], which is a key aspect in the
development of geometrical thinking in primary education.

The process by which students eventually master the perceptual characteristics by
endowing them mathematical meaning is a form of abstraction that allows students to
identify some aspects of the figures and to relate them. Battista et al. [5] called this mental
process—in which students select and organize information of parts of geometric figures in
order to understand them—spatial structuring. In this process, the transition from the ability
to consider a figure’s attributes to that of generating a certain structure between these
attributes is linked to the ability to identify similarities and differences between polygons.
This transition is an example of how students structure their knowledge of geometric
figures, provide them mathematical meaning and allowing them to establish relationships
between perceptually different figures. That is, spatial structuring allows associating a
mathematical meaning to a set of representations of that meaning [6]. For example, students
recognize the symmetry in a figure, and they are able to identify symmetry in a set of
perceptually different figures.
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This process of assigning the same mathematical meaning to a group of figures that
are perceptually different underlies the ability to understand classes of figures and their
classification [7]. This would be the case when students identify a common attribute in
two perceptually different figures and differentiate these two figures from a third figure.
For example, having an interior angle above 180◦ is a criterion that allows grouping
perceptually different polygons and differentiating them from other figures. However, this
process of structuring the polygons’ information, which leads to the emergence of the idea
of a class of polygons, is still not well understood in primary education.

Van Hiele [8] characterized sequential and hierarchical levels of geometrical think-
ing to describe how students move from identifying shapes (Level 1) to attend to their
properties (Level 2) and classifying and define shapes (Level 3). Some researchers have
reformulated some of these levels [1,9,10]. These authors suggested the need to consider
some intermediate levels: Pre-recognition level [9] in which students attend only to visual
characteristics of a shape and cannot identify common shapes or distinguish between
shapes of the same kind; Syncretic level, characterized by a synthesis of verbal declarative and
imaginary knowledge [10] (p. 206); and Descriptive/Analytic level in which students recognize
and can characterize shapes by their properties; they reason with the set of properties they
associate with shapes, but they do not make inclusive classifications; and Abstract/Relational
level where students can form abstract definitions, distinguishing between a set of neces-
sary and sufficient conditions for a concept, and understand, and in some cases provide
logical arguments. Also, students can make inclusive classifications. This last level indi-
cates that students can justify that a figure belongs to a class of polygons identifying the
attribute that defines the class. Identifying the attribute that defines a class of polygons is
a process that provides evidence of how students endow mathematical meaning to parts
of figures.

Recent studies about the development of the students’ understanding of shapes have
allowed us to learn about the processes through which students endow mathematical
meaning to parts of figures at various ages: in preschool students [11–13], in primary
education [14,15], and in secondary education [7,16–18], but less is known in primary
education [19,20]. Specifically, research on the geometric thinking of primary school
students suggests that conceptual development in geometry involves multiple skills and
mental constructs that build upon one another [21], and that primary school students
have a limited ability to recognize figures through analysis [22]. However, if students are
shown a wide range of examples and non-examples of geometric figures, they were able
to recognize and establish relationships between the parts of geometric shapes [23] and
shifting from informal to more formal descriptions of attributes [14]. Nevertheless, a more
detailed description of the information structuring process that enables primary school
students to understand the polygon concept and polygon classes is needed. Hence, this
study aims to comprehend how primary students understand the polygon concept and the
polygon classes.

2. Theoretical Framework

The transition from seeing figures as a whole to reason about their attributes is based
on the process by which students assign a mathematical meaning to parts of figures and
reason about this meaning using increasingly specific geometrical terms. The process
of endowing mathematical meaning to geometric objects has been a focus of notable
interest in research on the development of geometric thinking allowing refining general
levels of development [1,5]. On the other hand, Duval’s approach attends to the interplay
between the verbal and the visual forms of communications and offers some potentially
productive avenues for the design of learning sequences [19]. Whereas the van Hiele
model targets the role of the visual in its first two levels, Duval’s takes the perception
of the figures and the language to stating and deducing properties as a fundamental
component of geometrical thinking. Duval [24,25] indicates that this process is supported
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by the dimensional deconstruction of the figure and the coordination of different forms of
apprehensions.

Dimensional deconstruction allows us to focus on parts of figures to endow them with
mathematical meaning. For example, this process leads us to identify common attributes
in figures that are perceptually different and is present in any process in which we define
and reason about geometric figures [25]. This process is known as categorization [26] and
allows the concept formation (e.g., [27,28]) when from different experiences with some
objects we abstract certain invariant properties [29] (p. 10). For example, when, faced with
an isosceles right triangle and a scalene right triangle, which are perceptually different,
students can identify the fact of having a right angle as a common attribute. To support the
dimensional deconstruction, Duval [30] proposes construction as a recommended point of
entry in geometrical teaching. The construction process enables discursive procedures in
geometry (e.g., statement of properties or definitions) because, during the construction of a
geometrical figure, the properties of the concept to be constructed are affirmed and, besides
making possible the discursive procedures as a way of providing information about the
interplay between the verbal and spatial elements of geometric thinking [19].

On the other hand, cognitive apprehensions allow to associate parts of figures with
mathematical statements or properties, for example, justifying why a triangle is an isosceles
triangle (discursive apprehension); modify a figure such as modifying a non-example of a
polygon to transform it into a polygon (operative apprehension); and to construct or draw
a figure that fulfils a condition, as drawing a concave quadrilateral (sequential apprehen-
sion) [24].

Dimensional deconstruction and cognitive apprehensions lie at the heart of how
students identify a common attribute in two perceptually different figures indicating that
another figure does not possess this attribute. For example, identify six sides as a common
attribute shared by two polygons to differentiate them from another polygon that does not
have six sides.

Furthermore, endowing mathematical meaning to parts of a shape is linked to the
development of mathematical language [31–34]. Language development starts from what
Gee [31] called primary discourse, mathematical language informally used in the family
and social contexts whereas the language linked to a secondary discourse is used in formal
practices in institutions such as schools. In the case of polygon concept and polygon classes,
a primary discourse uses non-standardized terms such as: lines instead of sides, peaks
instead of vertices, and inward peaks, instead of concavities, while a secondary discourse
makes use of standardized geometric terms such as parallelism, axes of symmetry or having
six sides. In this sense, secondary discourse favors reasoning about the parts of figures
through the coordination of cognitive apprehensions, which makes it possible to construct
the polygon concept and polygons classes.

Objective of the Present Study

The objective of this research was to characterize sophistication levels in third grade
children’s understanding of polygon concept and polygon classes. For this, we assumed
that the ability to endow mathematical meaning to figure parts—which allows identifying
the attribute that defines a class of polygons and recognizing a polygon as an example
of that class—reveals itself during the dimensional deconstruction process through the
coordination of apprehensions and forms of discourse. Based on Clements and Sarama [35],
we define levels of sophistication as benchmarks of complex growth that represent distinct
ways of thinking. Sophistication levels can be informed by both the shifts observed in
students’ thinking during a specific intervention and a type of thinking that may be
regarded as more sophisticated from a disciplinary perspective [36–38].
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3. Materials and Methods
3.1. Participants and Curricular Context

The study reported here is part of a larger project in which we explore primary
students’ geometrical thinking [39]. Here, we focused on the nine students selected from
the 59 pupils (total sample) of the third year of primary education (aged 9–10 years) in a
Spanish state school. The teaching conducted in previous courses with these students had
been based on the textbook. The third-grade curriculum includes the concept of polygon
and the recognition of attributes of the polygon classes such as concavity/convexity,
symmetry and number of sides, while classes of triangles and quadrilaterals are introduced
in fourth grade. We considered the concept of polygon as a plane closed figure with straight
and non-crossed sides.

We chose to conduct a teaching experiment as this type of research is directly addressed
to solve student learning problems and how this learning can be supported by teaching,
addressing key issues in the current practice of mathematics in the classroom [40]. We
designed a teaching experiment to favour the progressive understanding of the polygon
concept and polygons class through the recognition and use of the attributes of geometric
figures, a difficulty that we have indicated in previous research (e.g., [10,20]).

In this study, we asked the school and parents for permission to carry out the teach-
ing experiment and conduct the interviews and informed them that the data from this
research would only be used for research or teacher training at the university, maintaining
the anonymity of the participants [41]. During all the interviews, the well-being of the
participants was considered. To do this, we started with a short conversation with the
student to find out how they felt about the teaching experiment and to see what their
attitude towards it was.

3.2. Teaching Experiment

The teaching experiment consisted of a sequence of 10 teaching sessions, in conjunction
with three individual interviews in different moments, and a questionnaire before and
after the teaching sequence (Table 1) [42]. From the questionnaires, we characterized the
changes in the children’s reasoning (pre-post) through an implicative analysis with the
software CHIC (see more in [39]). Furthermore, to provide additional formation about how
8–9 years-old children built polygon concept and polygon classes, we conduct interviews
with nine students. We selected the nine students taking into account their answers to the
initial questionnaire regarding how they recognized the attributes of shapes and reasoned
with them. We chose:

• three students who initially had difficulty recognizing figures as polygons;
• three students who recognized polygons but had difficulty identifying classes of

polygons; and
• three students who recognized polygons, drew polygons that fulfilled some conditions

and identified some classes of polygons.

We interviewed to these nine students three times during the teaching experiment to
identify how they reasoned with polygons attributes. These interviews provided additional
information about the children’s reasoning processes in three different times. We conducted
27 interviews that were approximately one hour each.

The first author of this study conducted the teaching sessions, acquiring the role of
teacher. During the teaching sessions, students shared their task solutions and compared
their answers with those of their peers. The teacher asked questions such as why or
how they completed the exercise. Next, the students individually solved additional tasks.
The teacher introduced the use of standardized geometrical terms as well as inclusive
definitions of classes of polygons. For example, an isosceles triangle is a triangle with two
congruent sides, so an equilateral triangle is an example of an isosceles triangle because it
has at least two congruent sides. The tasks in the teaching sessions showed a variety of
examples and non-examples of geometric figures to encourage students to analyze and
reason about the attributes. In this teaching experiment, we emphasized the importance
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of non-examples in abstracting common attributes in perceptually different figures [12].
Using the Drawing Machine [43], we tried to help students enlarge the number of examples
liked to a polygon class and support with this approach the hierarchical definitions (linked
to inclusive classifications) favoring learning effectiveness of class inclusion. Furthermore,
didactic resources as meccano or geoplane were used during the sessions and interviews to
construct different geometrical figures as an assertion of properties of figures.

Table 1. Teaching experiment: interviews, questionnaires, and sessions.

Initial Interview (II): Initial Questionnaire (IQ) and Additional Questions

Recognize when a figure is a polygon
Draw and justify how a non-polygon can become a polygon

Draw examples and non-examples of quadrilaterals with at least one pair of parallel sides
Recognize a square as a quadrilateral with two pairs of parallel sides

Identify examples of a polygons class: a rhombus as a symmetrical polygon (identify the class of symmetrical figures); an
equilateral triangle as an isosceles triangle (identify the class of isosceles triangle)
Draw examples of polygons class: concave/convex polygons; six-sided polygons and polygons that do not have six sides;
symmetrical and non-symmetrical polygons; quadrilaterals with two parallel sides and quadrilaterals with no parallel sides
Identify the attribute of a triangle class, classify triangles by attribute, and draw examples of triangles classes

First Part of the Teaching Sessions

Session 1
Recognize and draw examples and non-examples of polygons
Draw and justify how a non-polygon can become a polygon.
Recognize and draw: polygons based on the number of sides

Session 2 Draw: diagonals
Draw concave and convex polygons; also considering the number of sides

Session 3 Recognize symmetrical figures. Draw axes of symmetry
Draw symmetrical and non-symmetrical polygons

Session 4 Draw/construct angles according to their amplitude: acute, right and obtuse
Recognize internal polygon angles

Middle Interview (MI)

Draw and justify how a non-polygon can become a polygon

Recognize different attributes in a polygon: pentagon, concave, quadrilateral, convex, symmetry
Construct and draw polygons that fulfil certain conditions: have 6 sides, concave hexagon with at least one symmetry axis; convex
quadrilateral with more than two axes of symmetry
Draw internal angles of a polygon according to its amplitude

Identify polygon classes
Identify examples of a class—a regular hexagon as a polygon with at least two axes of symmetry
Draw polygon examples of the identified polygons class: polygons with two axes of symmetry, with one or no axis of symmetry

Second Part of the Teaching Sessions

Session 5 Construct with the meccano and draw: classes of triangles according to their sides
(equilateral, isosceles and scalene)

Session 6 Construct with geoplane and draw: classes of triangles according to their angles (acute, right
and obtuse)

Session 7
Construct with the meccano and draw: triangles according to their sides (equilaterals,
isosceles and scalene) and triangles according to their sides and angles

Identify the attribute that defines a triangle class
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Table 1. Cont.

Second Part of the Teaching Sessions

Session 8

Recognize a polygon’s attributes: parallel sides; quadrilaterals with parallel sides and no
parallel sides

Identify the attribute that defines a class of quadrilaterals: parallelograms; trapezoids
(classify quadrilaterals according to an attribute: quadrilaterals with at least one pair of
parallel sides; with two pairs of parallel sides)
Recognize attributes: quadrilaterals without parallel sides, concave and convex
Identify the attribute that defines a quadrilateral group

Session 9
Construct with geoplane and draw (parallelograms)

Draw examples of polygons as elements of the identified classes: quadrilaterals with four
congruent angles and that do not have four congruent angles

Session 10

Draw parallelograms according to their diagonals: diagonal perpendicularity (square and
rhombus); Congruent diagonals: square and rectangle

Identify the attribute of a parallelogram class, classify parallelograms by attribute and draw
examples of parallelograms as elements of the identified classes

Final Questionnaire

Final Interview (FI)

Recognize that a scalene triangle is not an equilateral triangle
Draw and justify the transformation of a scalene triangle into an equilateral triangle; a scalene or obtuse triangle into an acute or
isosceles triangle
Construct and draw: an obtuse isosceles triangle; an equilateral and obtuse triangle (which is not possible); a parallelogram with
diagonals of the same length; a parallelogram with right angles and diagonal perpendiculars

Identify a quadrilateral with four congruent sides
Draw examples of the identified polygons classes: quadrilaterals with four congruent sides, quadrilaterals without four congruent
sides (or quadrilaterals whose diagonals are axes of symmetry and quadrilaterals whose diagonals are not axes of symmetry)

3.3. Interviews

The interviews were relied on task-based interviews [44] and inserted in the teaching
experiment. The tasks in the interviews were linked to the activities performed during the
teaching. We adapted the Drawing Machine metaphor [43] in the tasks aimed at identifying
a common attribute in a set of polygons (Table 1). The Drawing Machine can do figures that
have certain attributes (examples of a class) and cannot do figures that do not have those
attributes (non-examples of a class) (Figure 1). Furthermore, the students’ justification
could be verbal and/or non-verbal (drawings, constructions), allowing to make inferences
about children’s understanding of polygon concepts and polygons class. The interviews
were aimed at generating information on what students knew and how they reasoned
with the attributes (dimensional deconstruction) through the coordination of cognitive
apprehensions, using standardized geometric terms.
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Figure 1. Example of a task in the questionnaire and initial interview: identify the attribute that
defines a class (having 6 sides) and represent examples and non-examples of the class.

In the initial interview (II), we used answers to the Initial Questionnaire and 4 addi-
tional tasks were carried out focused on recognizing and justifying when a figure was a
polygon and on identifying classes of polygons (concave/convex, classes of triangles, and
quadrilaterals with two pairs of parallel sides, with one pair of parallel sides and without
parallel sides). For example, Figure 2 illustrates the task in which students were asked to
turn a non-polygon into a polygon and to justify the transformation. In this task, students
had to recognize which attributes in the polygon’s definition were not present in the figure.
Solving this task requires dimensional deconstruction of the figure and related the parts
with the definition to justify what must be modified through discursive apprehension.
Furthermore, modifying part of the figure to transform it into a polygon call on operative
and sequential apprehensions.

Figure 2. Example of task in the initial interview: transform a non-polygon into a polygon.

In the middle interview (MI), the tasks focused on recognizing attributes of polygons
and recognizing different polygon classes (concavity/convexity, number of sides, symmetry,
the measurement of the internal angles, and polygons with two axes of symmetry). Figure 3
shows the task in which students had to recognize different attributes in a polygon using
standardized geometrical terms. This task presented a concave pentagon and pupils had to
justify if this polygon was a convex quadrilateral. As they were primary school students, we
wanted them reason with the attributes of polygons, so in this type of task we considered
as correct whether they refused at least one of the two conditions.
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Figure 3. Task in the middle interview: recognize figure attributes.

The Drawing Machine metaphor [42] was used in the tasks in the middle interview
aimed at identifying a common attribute in a group of polygons. For example, Figure 4 shows
the task of identifying two axes of symmetry as a common attribute in a set of shapes.
The children had to identify the attribute that defines the class and draw examples and
non-examples of that class (by sequential apprehensions). In an additional task, the pupils
had to recognize whether a figure fulfilled this attribute (for example, a regular hexagon as
an example of a polygon with two axes of symmetry). These tasks provided information
on dimensional deconstruction and different apprehensions and helped to verify the extent
to which students used standardized terms and how a figure was considered an example
of a polygons class through discursive apprehensions.

Figure 4. Example of a task in the middle interview: identify the attribute that defines a class (having
two axes of symmetry), represent examples and non-examples of the class and identify examples of
figures of the identified class.

In the final interview (FI), the tasks focused on recognizing figure attributes and
identifying the common attribute in a set of polygons (classes of triangles according to
their sides or angles and classes of quadrilaterals according to their parallel sides or their
diagonals) and identifying examples and non-examples of figures. For example, they
were asked whether the representation of a scalene triangle could be an example of an
equilateral triangle and whether the representation of an obtuse scalene triangle could be
an example of an acute isosceles triangle. These tasks made it possible to determine how
children reasoned with the attributes of polygon classes and to what extent dimensional
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deconstruction allowed students to focus their attention on certain parts of the figure, and
to observe how the mathematical meaning linked to the use of standardized geometric
terms supported discursive apprehensions.

The tasks of drawing and transforming polygons made it possible to show the link
between the sequential, operative, and discursive apprehensions through the dimensional
deconstruction. For example, one task asked pupils to construct and draw an obtuse
isosceles triangle (Figure 5), and quadrilaterals fulfilling various conditions; an obtuse
equilateral triangle (which is not possible); a parallelogram with diagonals of the same
length; and a parallelogram with right angles and perpendicular diagonals.

Figure 5. Example of a task in the final interview: draw polygons with certain attributes using an
isometric geoplane and explain why.

In the tasks of identifying the attribute, that defines the class, the Drawing Machine and
the attributes of quadrilaterals with congruent sides were used. Pupils had to identify the
class and draw examples and non-examples of that class. These tasks allowed for obtaining
evidence of how dimensional deconstruction was articulated (to identify the attribute that
defines the class), as well as sequential apprehension to draw examples and non-examples
of polygons with this attribute. The fact that students were given the possibility to justify
their drawings allowed us to observe to what extent discursive apprehensions linked
mathematical meanings to figure parts using standardized geometric terms.

3.4. Analysis

Our analysis aimed at identifying different levels of sophistication in students’ under-
standing of the polygon concept and polygon classes through a qualitative analysis. These
levels of sophistication allowed characterizing the mental spatial structuring processes
supported by the dimensional deconstruction of figures through discursive, sequential and
operative apprehensions while students resolved the tasks of the interviews.

The qualitative analysis was based on the Grounded Theory approach developed by
Corbin and Strauss [45]. Our levels of sophistication do not generally characterize the
understanding of the polygon concept and polygon classes but are a local approximation
of this understanding that is conditioned by the teaching experiment, the context, and the
participants of our study, but providing information about children’s structuring processes.
The data corresponds to the transcripts of the twenty-seven interviews conducted through-
out the experiment, the pupils’ written task solutions, and photographs of the constructions,
in cases in which they had to draw or construct a polygon (purposing sampling).

For the data analysis, we took indications from previous studies into account regarding
how students assign mathematical meaning to figure parts (the research background).
Besides, constant theoretical sampling was carried out during the analysis, which consisted
of following clues in the data and looking at different students’ answers to verify what the
initial data under analysis seemed to indicate (the pre-analytical comments and the first ideas
that seemed to emerge). To carry out the initial coding, we compared the answers to each
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task and of each student to identify initial patterns and similarities. We drew up a detailed
description of the data and inferred how students reasoned based on the attributes (memos).
We considered:

• how students used polygon attributes when they solved tasks in which they had to
recognize polygons and transform non-polygon figures into polygons; and how they
identified common attributes in a group of polygons (which defined a class) to draw
or identify examples and non-examples of the class and

• how they used standardized or non-standardized geometric terms to describe their
reasoning.

Figure 6 shows the memo of the answer of student G2S18 (student 18 of group 2) dur-
ing the initial interview to the task of recognizing whether a square (in a non-prototypical
position) could be an example of a quadrilateral with one pair of parallel sides. Figure 7
shows the memo of the student’s answer to the task of identifying the attribute that defines
a class (the concave polygon class) and drawing an example and a non-example of the class
in the initial interview.

Figure 6. Memo of the solution of student G2S18 when performing the task of recognize polygon
attributes (initial interview).

Figure 7. Memo of the solution of student G2S18 when performing the task of identifying the attribute
that defines a class and represent an example and a non-example of the class (initial interview).

Comparing the different memos of the different tasks and students, we inferred the
characteristics of children’s structuring processes of the understanding of polygon concept
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and polygon classes. Specifically, we identified differences in student answers based on
the attribute that defines the class of polygons. Thus, for example, in the middle interview,
the previous student (G2S18) had difficulties when the attribute that defined the class was
polygons with two axes of symmetry (Figure 8) but had no difficulties in the initial interview
when the class was defined by the attribute be concave (Figure 7).

Figure 8. Memo of the answer of student G2S18 when performing the task of identifying the attribute
that defines a class and representing an example and a non-example of the class (middle interview).

By means of a constant comparative analysis between the generated memos, we refined
the characteristics of benchmarks until no evidence of new characteristics emerged. The
focus of attention in the constant comparative analysis was on how the classes of polygons
were identified and examples and non-examples of the identified class were drawn, as well
as how standardized geometric terms were used to designate the attributes and justify their
answers. The coding of students’ ways of knowing and structuring processes constituted
an intermediate coding, helping to transform the initial data into characteristics that defined
the levels of sophistication in the understanding of polygon concept and polygon classes
(categories). The constant comparative analysis allowed refining the categories (advanced
coding) to generate an explanation of the levels of understanding of the polygon concept
and polygon classes, considering how the students assigned mathematical meaning to
figure parts by way of dimensional deconstruction and discursive, sequential and operative
apprehensions.

The three researchers compared the memos based on the data and the inferences
made from the differences between students and between tasks. The aspects on which
we disagreed were discussed, looking for additional evidence to support or refute the
inferences made to validate them. The objective of this part of the analysis was to search for
evidence that confirmed or not the characteristics of children’s structuring processes when
we compared answers of different students. Following this examination, we determined
four levels of sophistication in students’ understanding of the polygon concept and polygon
classes. These four levels are described in the next section.

4. Results

The results reported here show four levels of sophistication in the understanding of the
polygon concept and polygon classes in third-grade student. These levels were character-
ized based on the analysis of the responses to the contextualized interviews in the teaching
experiment. This characterization is thus linked to the instructional sequence followed
in the study. The analysis allowed us to infer characteristics linked to the recognition of
polygons, how attributes were used to reason, and how classes of polygons were identified
and about the use of standardized geometric terms. The characterization of the levels
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considers the mental process through which students select, organize, and coordinate the
information of parts of geometric figures to understand them or to establish relationships
between them based on the discursive, sequential and operative apprehensions that are
mobilized during dimensional deconstruction. From this perspective, the levels describe
both students’ behaviors in specific tasks and our inferences about the mental mechanisms
that could explain these behaviors.

4.1. Level 1. Partial Structuring of Polygon Concept

Students at this level recognized some relevant attributes in the polygon’s definition,
but not all (one or two of the three relevant attributes). For example, they can recognize
in a figure the cross sides and is open as non-relevant attributes of polygon concept but
not the curved side. That is, if students have to transform a non-polygon into a polygon,
they can recognize and transform the crossed sides into non-crossed sides and close the
figure if it is open; but if the figure has a curved side, they still keep the curved side. Thus,
although they can consider two attributes together, they have difficulty in considering the
three attributes that together determine a polygon. At this level, students do not recognize
attributes of polygon classes since they are not able to identify the common attribute in a set
of perceptually different polygons. Students at this level are starting to look at parts of the
figures, but they do not have a structural approach that allows them to consider the three
attributes that determine together that a figure is a polygon. This way of proceeding can
be considered as evidence that the perceptual and the analytical dimensions are starting
to be related, though without being able to globally organize the three conditions that a
figure must meet to be a polygon. At this level, students typically used non-standardized
geometric terms to justify their actions.

An example of this type of thinking is the answers of student G1S1 (student 1 in
group 1). On the one hand, to the task of transforming a non-polygon into a polygon in the
initial interview (Figure 9), this student explained that the cross had to be removed, referring
to the crossed sides (using non-standardized geometric terms), but did not consider the
curved side.

Figure 9. The answer given by G1S1 when performing the task of transforming a non-polygon into
a polygon.

By other hand, this student had difficulties to recognize the polygon classes (for
example, consider two different labels to the same figure). So, student G1S1 could not
recognize if a square (polygon represented) fulfilled the attributes of having four sides and
two parallel sides. In task 6, this student wrote: Yes, because it is a figure that cannot be made
(Figure 10).
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Figure 10. The answer given by G1S1 to the task of recognizing if a figure is an example of a polygon
class (it can have two different labels).

4.2. Level 2. Global Structuring of Polygon Concept

Students at this level recognized all examples and non-examples of polygons, justify-
ing when a figure had the attributes given in the polygon’s definition. Additionally, they
were able to recognize only some additional attributes. For example, students can recog-
nize being concave or the number of sides, but not other attributes such as symmetry or
attributes that characterize classes of triangles and quadrilaterals (attributes of the polygon
classes considered in this research). At this level, a global structure of the polygon concept
is generated (that is, considering the three attributes together to be polygon: a closed figure
with straight sides that do not cross each other), and a partial structuring of other attributes
starts to appear. When students recognize additional attributes, they can draw examples
of that class, thus demonstrating the assignment of mathematical meaning to figure parts
by means of dimensional deconstruction and sequential apprehension (drawing a figure
that fulfils certain conditions). At this level, they begin to use standardized geometric
terms along with non-standardized terms: this provides evidence that they are assigning
mathematical meaning to figure parts through discursive apprehension.

For example, when performing the task of transforming non-polygons into polygons
(section b in Figure 11), student G2S7 indicated that for the figure to be a polygon, it should
be closed, have straight sides, and non-crossed sides. In addition, the student recognized
that the figure is opened and has a curved side, explaining that for being a polygon would
be closed and have straight sides (section c in Figure 11).

Figure 11. The answer given by student G2S7 when performing the task of transforming non-
polygons into polygons.

In addition, this student had difficulties to represent (draw and construct) polygons
with conditions, specifically, when he had to consider three attributes at the same time. For
example, to construct and draw a polygon with six sides, concave, and with at least one
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axis of symmetry. In this case, this student was able to consider some of the additional
conditions, to be concave and have at least one axis of symmetry, but not to have six sides
(Figure 12).

Figure 12. The answer given by student G2S7 when performing the task of constructing and drawing
a polygon with conditions.

Furthermore, at this level, students could identify an additional attribute in some
cases but not in other cases. For example, students could identify to be more open as the
common attribute in a set of concave polygons and drew an example of that class although
using non-standardized terms (Figure 13).

Figure 13. The answer given by student G2S7 when performing the task of transforming non-
polygons into polygons.

However, in other cases, students have difficulties identifying the additional attributes
of polygons. For example, triangles with two equal sides to differentiate them from a
triangle without equal sides (scalene triangles) (Figure 14).
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Figure 14. The answer given by student G2S7 when performing the task of recognizing the equilateral
triangle as an example of an isosceles triangle (identified class).

4.3. Level 3. Partial Structuring of Polygon Classes

At this level, students use mainly standardized geometric terms to refer to the at-
tributes of polygons, but they also use sometimes non-standardized geometric terms. For
example, student G2S27 (Figure 15) in the task of recognizing whether a scalene triangle
could be an example of an acute isosceles triangle, indicated that the representation of the
obtuse scalene triangle was not an example of an acute isosceles triangle because it has
the different sides and an obtuse angle. To reason about the attributes and to justify whether
or not the given representation of a triangle fulfilled the mathematical meanings of acute
isosceles triangle, this student used the standard terms (obtuse).

Figure 15. The answer given by student G2S27 when performing the task of recognizing and
reasoning about the triangle’s attributes.

One characteristic of how pupils manage additional attributes at this level is given
when the student tries to build and draw a polygon that fulfils certain conditions (as the
drawing of the G2S27: an obtuse isosceles triangle) (Figure 16). This way of proceeding
demonstrates the role of sequential apprehension when they try to draw a polygon that
fulfils certain conditions and discursive apprehension when having to specify them.
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Figure 16. The answer given by student G2S27 when performing the task of drawing a polygon that
fulfils certain conditions (obtuse isosceles triangle).

However, at this level, students have difficulties in identifying some polygons classes
depending on the attribute defining the class. At this level, students can identify some
classes, but they could have difficulties in identifying other attributes that define a class. For
example, they identify symmetry or concavity as a common attribute in a set of polygons,
but not having two axes of symmetry in other cases. This is a different process from the
processes of recognizing whether a polygon has certain attributes or drawing a polygon
that fulfils certain conditions (as it happened in level 2). Concerning the difficulties to
identify attributes that define a class. For example, the student G2S27 did not identify
having two axes of symmetry as the criterion that defined a class and did not draw examples
of the class. However, this student used to be a symmetrical figure as the attribute that
defines the class, without taking into account that there were symmetrical polygons in the
set of non-examples (polygon 10 and 14 in the Cannot do section) (Figure 17).

Figure 17. The answer given by student G2S27 when performing the task of identifying the common
attribute into a set of polygons (having two axes of symmetry).
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4.4. Level 4. Global Structuring of Polygon Classes

Students at this level generally identified the attribute that defines the polygons class,
drew examples of polygons belonging to the class, and recognized examples of the class in
the cases used in the teaching experiment. At this level, students began to use different
attributes of quadrilaterals, such as the notion of symmetry to characterize some classes of
quadrilaterals, instead of focus on properties of sides, angles and so forth. Furthermore,
students at this level reasoned mostly using standardized geometry terms, which provided
evidence of the bi-directionality of discursive apprehension, giving mathematical meaning
to the parts of the figures (from discourse to figure and from figure to discourse).

For example, student G1S18 used symmetry as the attribute to determine that the
kit is a nonexample of the set of figures since exists a diagonal that is not symmetry axe
using standardized geometry terms (Figure 18). This student indicated that the Drawing
Machine can do figures whose diagonals are axes of symmetry and form perpendicular
straight lines, and then explained that the kite is a non-example of this class because a line
does not “mark” an axis of symmetry, referring to the diagonal as a line.

Figure 18. The answer given by student G1S18 in the middle interview when performing the task of
identifying the common attribute in a set of polygons (having diagonals marking axes of symmetry).
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5. Discussion

The objective of this study was to characterize levels of sophistication in third-grade
pupils’ understanding of polygon concept and polygon classes. We used Duval’s dimen-
sional deconstruction and coordination of cognitive apprehensions to draw our attention
to students’ spatial structuring. The analysis of the answers to the initial, middle and final
interviews during a teaching experiment allowed us to identify four levels of sophistica-
tion in the way students endow mathematical meaning to parts of figures and how they
organize the information about polygons and polygons class.

The level featured by a partial structuring of polygon (Level 1) can be assimilated to
pre-cognition and syncretic levels [10,29], in which students attend to visual characteristics
of a shape evidencing a synthesis of verbal declarative and imaginary knowledge, but
cannot identify common shapes or distinguish between shapes of the same kind. At
this level, by the dimensional deconstruction and discursive, sequential and operative
apprehensions (modifying and drawing figures that meet certain conditions), students
recognize figures perceptually using non-standardized terms. While global structuring of
polygon concept and partial structuring of polygon class levels (levels 2 and 3) provide a
finer detail of analytic level in which students reason with the set of properties of figures
although they still do not manage inclusive relationships [8]. So, at level 2, students can
transform non-polygons into polygons through sequential and operational apprehension,
evidencing a global structuring of the polygon concept. Furthermore, students can identify
different attributes using standardized and non-standardized geometric terms, but they
have difficulties in reasoning with them. Meanwhile, at level 3, students use standardized
geometric terms to endow mathematical meaning to parts of polygons and draw polygons
coordinating discursive and sequential apprehensions, although they are not always able to
identify the common attribute of a set of polygons. Finally, at level 4 (global structuring of
polygons classes), students can identify the attribute defining a polygons class considered
in this teaching experiment. Students reason using mostly standardized geometric terms.
The characteristics of this level confirm the beginning of the relational level (Table 2).

Table 2. Levels of sophistication of polygon concept and polygons classes.

Levels of Geometric Thinking

Van Hiele [8] Clements & Battista [9];
Clements et al. [10] Levels of sophistication of this study

Visual
Pre-recognition

Partial structuring of polygon concept
Syncretic

Analytic Analytic
Global structuring of polygon concept

Partial structuring of polygon classes

Relational Relational Global structuring of polygon classes

The sophistication levels were characterized considering how students reasoned
using the figural and conceptual information of the figures [3] based on the dimensional
deconstruction and the coordination of discursive, sequential and operative apprehensions.
The coordination allowed transforming a figure that is not a polygon into a polygon or
drawing a polygon that fulfilled certain conditions. For example, when students recognize
concavity or identify being concave as the attribute in a set of figures, being able to draw
or recognize examples of the class. This process evidenced a way of knowing that goes
beyond being perceptually aware of a difference or similarity between the polygons.

5.1. Relationships between the Levels of Sophistication

The levels of sophistication show students’ ways of knowing as they assign math-
ematical meaning to figure parts using discursive apprehension related to dimensional
deconstruction and regarding how students use the geometrical terms. Considering a list
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of a figure’s attributes or a certain structure in this information are processes of thinking
different and they are initially linked to the constitution of the polygon concept. Specifically,
this is the case when students accept that a figure is a polygon when recognizing three
attributes in the figure (a closed figure, with straight sides that do not cross each other).
Next, they reason about a list of polygon attributes recognizing, for example, that a certain
triangle is an obtuse triangle because it has an angle greater than 90 degrees or recognizing
that a polygon has an axis of symmetry or is a concave polygon. These processes are linked
to giving mathematical meaning to parts of a figure evidenced when they draw polygons
that fulfil certain conditions or give reasons explaining why a figure does not fulfil certain
conditions. However, reasoning based on elements of a list of attributes does not imply
that students have built a global structure allowing them to identify a common attribute
that defines a class in a set of perceptually different figures and to decide when a figure is
or is not an example of that class.

From this perspective, our results indicate that identifying a common attribute in
perceptually different figures represents cognitive progress since it implies abstraction
concerning the information of some of the figures. This change consists of a shift from
local to global structuring but depending on the attributes used. In the characterization
generated in our study—linked to the tasks performed in the teaching experiment— the
global structuring began with attributes such as being concave (having an angle greater
than 180 degrees) and was more difficult in symmetrical figures [39]. What is relevant in
the results of this study is the identification of the students’ mental processes as they reason
about the attributes evidencing changes from local to global structuring.

Our results also indicate that the use of standardized geometry terms and non-
standardized terms characterizes the mental processes described. Introducing standardized
geometry words during the instruction helped the students’ speech to evolve from primary
speech to secondary speech [31]. In this way, we can consider that the use of standardized
geometry terminology is linked to the development of forms of reasoning about figure
attributes [32–34].

The results of this study are a step forward in the research on the links between how
the figures are perceived and how they are analyzed [22,23], describing this relationship
in more detail. Specifically, we refer to the sophistication levels 2 and 3, which show the
change from reasoning with a list of attributes to making mathematical sense of this list
through spatial structuring as a form of abstraction [5].

5.2. Cognitive Apprehensions and Dimensional Deconstruction in the Characterization of Spatial
Structuring

The coordination of discursive, sequential, and operative apprehensions through
dimensional deconstruction is a characteristic of student learning [24,25]. The processes
of recognizing whether a figure is an example of a polygon, or drawing polygons that
fulfil certain conditions, differ from that of identifying the attribute that defines a class
and drawing an example of that class. Building an organization of information based on the
analysis of a group of figures implies identifying the attribute that defines the class and
is based on the result of the dimensional deconstruction applied to the different figures.
Identifying the attribute that defines the class is a form of abstraction that allows students
to create an organization for a set of figures. This process of generating information beyond
individual cases is what Battista et al. [5] called spatial structuring. In this sense, discursive
apprehension and the use of standardized geometric terms allow assigning a mathematical
meaning to the attribute that defines the class (what has been abstracted) and sequential
and operative apprehensions allow to draw examples of figures with this attribute or
transform a figure to fulfil the attributes of the class (by abstracting the concept). These are
ways of seeing that are transformational engaging the dimensional deconstruction [19].
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6. Conclusions

Our results indicate that identifying a common attribute in a group of perceptually
different figures to define a class is a mental process that should be generated to progress
in the understanding of polygons. The tasks in the teaching experiment seem to have
encouraged the development of this mental process in some students by allowing them to
compare examples of perceptually different polygons but sharing some common attribute.
In addition, the introduction of standardized geometric terms allowed the use of common
terms for the mathematical meanings that defined the class of polygons.

The description of different levels of sophistication of students’ understanding of
the polygon concept and polygon classes expands our understanding of the development
of geometric thinking in primary school students. These levels could be used in teacher
training programs to help to pre-service primary school teachers learn about the sophis-
tication levels of understanding of the polygon concept and polygon classes. However,
further research is needed, to characterize learning trajectories in other levels and with
other geometric objects. The characterization of different learning trajectories linked to
specific task sequences would allow us to complement our understanding of the structuring
processes regarding the relationship between figures or shapes, supported by the processes
of dimensional deconstruction, cognitive apprehensions, and the use of standardized
geometric terms.
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