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Resumen en español

Introducción

La traducción asistida por ordenador (TAO) podŕıa definirse como el uso de un
programa informático que ayuda a un traductor en su tarea de traducir documentos en
un idioma denominado “idioma origen” a otro idioma denominado “idioma destino”.
Las herramientas TAO se denominaban originalmente “herramientas de traducción hu-
mana asistida por ordenador” (Bowker, 2002) debido a que el proceso de traducción se
dejaba al usuario. Las herramientas TAO proporcionan diferentes recursos para ayudar
con la traducción, pero el acto de traducir un segmento origen queda totalmente en
manos del usuario. Algunos de los recursos disponibles para los usuarios en las herra-
mientas TAO son: correctores ortográficos y gramaticales, herramientas de búsqueda,
memorias de traducción y motores de traducción automática (Federico et al., 2012). La
mayoŕıa de las herramientas TAO utilizan memorias de traducción (MT) como recurso
principal para ayudar en el proceso de traducción; de hecho, cuando en la literatura
reciente se habla de herramientas TAO se sobreentiende que son herramientas TAO
basadas en MT.

Una MT es un repositorio que contiene unidades de traducción (UT), esto es, pares
de segmentos paralelos (s,t) en lengua origen junto con su traducción a la lengua meta.
Generalmente, los segmentos constan de frases simples; pero también podŕıan constar
de otras unidades de texto (por ejemplo, párrafos).

Las herramientas TAO desempeñan un papel fundamental en el flujo de trabajo
de los traductores profesionales tal y como se describe con más detalle en la Sección
1.1.2. La responsabilidad subyacente de la herramienta TAO basada en MT es com-
parar un nuevo segmento en lengua origen a traducir s′ con los segmentos en lengua
origen existentes en la MT. Si en la comparación se encuentra un segmento en len-
gua origen similar al que se va a traducir, la UT correspondiente (s,t) se muestra al
traductor para la posedición de t o para su aceptación inmediata cuando haya una con-
cordancia exacta (ambos segmentos origen sean idénticos). Si se produce la posedición,
el segmento origen a traducir s′, junto con su traducción t′ se guardan para su uso
futuro. Es responsabilidad de la herramienta TAO segmentar el documento a traducir
e implementar el método de búsqueda en la MT de las UT cuyo segmento origen sea
similar al que se va a traducir. El algoritmo que calcula la similitud de dos segmentos
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es de particular interés para nuestro método de reparación de concordancias parciales
(RCP) y se describe con más detalle en la Sección 1.1.1.

Las herramientas TAO que pueden ayudar a un traductor durante su flujo de tra-
bajo normal no solo se basan en MT, ya que otro de los principales componentes
disponibles para el traductor es la traducción automática (TA), la cual se define como
la traducción que se realiza por medio de un programa informático de textos de un
idioma a otro. Aunque la TA sea una manera rápida de traducir no llega a tener el
grado de complejidad necesario para traducir los lenguajes naturales hablados por el
ser humano, siendo recurrente el echo de que palabras de un idioma no puedan tradu-
cirse directamente a otro idioma. La principal diferencia entre un sistema TAO y un
sistema de TA radica en que en un sistema TAO el traductor produce la traducción;
mientras que en la TA, el usuario no juega ningún papel activo en la traducción aparte
de corregir la salida.

El flujo de trabajo t́ıpico para traducir un documento origen mediante una herra-
mienta TAO basada en MT consta de cuatro pasos: (1) segmentación del documento
origen, (2) búsqueda en la MT para cada segmento origen que se vaya a traducir de
UT cuyo segmento origen sea similar al que se traducirá, (3) aceptación o modificación
(posedición) de propuestas de la MT, y (4) generación del documento en lengua meta.
El flujo de trabajo básico se describe en la Sección 1.1.2.

El flujo de trabajo básico puede ser modificado para incluir un sistema de TA y tra-
ducir los segmentos (s′) cuando no haya ninguna concordancia aproximada disponible
con un porcentaje de coincidencia por encima de un umbral previamente establecido.
Este enfoque puede considerarse práctico si el sistema de TA generara traducciones
para cuya posedición se requiera menos tiempo que para traducir esos segmentos desde
cero o para corregir la coincidencia encontrada en la MT por su bajo porcentaje de
coincidencia.

Aparte del uso de TA ya comentado, existen también formas más sofisticadas de
integrar MT y TA. En la literatura, pueden encontrarse dos tipos de enfoques que
integran MT y TA: (1) enfoques que integran sub-segmentos de la MT en el proceso de
decodificación de un sistema de TA y (2) enfoques que utilizan el segmento destino t de
una UT (s, t) como plantilla o esqueleto de la traducción a realizar. Los dos enfoques
suelen estar respaldados por un sistema de TA que podrá ser de cualquier tipo: basado
en reglas, estad́ıstico, o neuronal, por citar algunos. Los enfoques en el segundo grupo
de integración MT-TA, es decir, aquellos que usan el segmento destino t en una UT (s,
t) como esqueleto de la traducción que se va a producir, están más cerca del enfoque
introducido en esta tesis, el cual hace uso de TA para reparar las coincidencias parciales
encontradas en la MT, modificando únicamente los sub-segmentos no coincidentes.
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Reparación de concordancias parciales

En el Capitulo 2, se presenta nuestra aproximación al problema de reparación de
concordancias parciales (RCP). Nuestro enfoque consiste en reemplazar solo los sub-
segmentos no concordantes en t de la MT y, al mismo tiempo, guarda los sub-segmentos
en t que se puedan reutilizar, ya que han sido traducidos profesionalmente. Primero,
el método alinea las palabras en el segmento origen a traducir s′ con la UT (s, t).
Tras esto, se identifican las palabras no concordantes en s es decir, los sub-segmentos
que no tienen en común. A continuación, el método utiliza un sistema de TA, aunque
podŕıa usar cualquier otra fuente de información bilingüe, para identificar los sub-
segmentos en t que son traducciones de los sub-segmentos no concordantes en s, de
una manera similar a la de Esplá-Gomis et al. (2011), y construye un conjunto de
operadores de reparación traduciendo los sub-segmentos no concordantes en s′. Cada
operador de reparación especifica el sub-segmento en lengua meta τ en t que necesita
ser reparado y el sub-segmento en lengua meta τ ′ que se utilizará para la reparación. A
continuación, se aplican combinaciones de operadores de reparación compatibles para
obtener un conjunto de segmentos reparados, de los cuales se selecciona el que se vaya
a utilizar finalmente tras estimar su calidad.

Ya se ha explicado cómo se construyen los operadores de reparación; para ilustrar
mejor los pasos de alto nivel, profundizaremos en la implementación del algoritmo de
reparación de concordancias parciales. La implementación del algoritmo RCP (Sección
2.2) se divide en dos partes: (1) la generación de operadores de reparación de con-
cordancias parciales y (2) la exploración de posibles combinaciones de operadores de
reparación para generar el conjunto de segmentos reparados denominados concordan-
cias parciales reparadas.

El método para generar los operadores mencionados está explicado en detalle en
la Sección 2.2.1. Para obtener el conjunto de operadores de reparación que será uti-
lizado, primero, se obtiene el alineamiento entre las palabras de s′ y las de s como
un subproducto del cálculo de la distancia de edición a nivel de palabra (Wagner and
Fischer, 1974) entre s′ y s. Los pares de sub-segmentos (σ, σ′), que contienen palabras
no alineadas (no concordantes) y sus posiciones correspondientes en s y s′, se obtienen
utilizando el algoritmo de extracción de pares de sub-segmentos utilizado en TA es-
tad́ıstica basada en sub-segmentos bilingües (Koehn, 2010, sección 5.2.3). Estos pares
de sub-segmentos se traducen luego a la lengua meta para obtener los conjuntos M
y M ′ de traducciones de sub-segmentos µ y µ′, respectivamente, utilizando un siste-
ma de TA como caja negra. Finalmente, estas traducciones se utilizan para construir
operadores de reparación buscando todas las ocurrencias en t de cada sub-segmento
meta µ para obtener los sub-segmentos meta τ posicionados en t y luego asociando a
cada τ el sub-segmento meta µ′ para obtener τ ′, el sub-segmento que se utilizan para
la reparación. Si µ no se encuentra en t, no se podrá construir ningún operador de
reparación. Esto actúa como un control de calidad que evita que el algoritmo genere
operadores de reparación de baja calidad. El ejemplo de la Figura 2.1 ilustra cómo
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se construye la lista de operadores de reparación. Cabe destacar que solo en aquellos
casos en los que µ, la traducción de σ, se encuentra como un sub-segmento contiguo de
palabras en el segmento meta t de la UT que se este reparando, se podrá construir un
operador de reparación; esto se indica en la quinta columna de la tabla en la Figura
2.1.

El método para la exploración de posibles combinaciones de operadores de repara-
ción para generar el conjunto de segmentos reparados se presenta en la Sección 2.2.2.
Los segmentos reparados se crean utilizando la lista de operadores de reparación (P
en el Algoritmo 2 de la Sección 2.2.2). Primero, se combinan los operadores con una
búsqueda exhaustiva en profundidad del árbol de recursividad y luego se construyen
concordancias parciales reparadas t'.

Para que un operador de reparación sea aplicable, deberá ser compatible con el
conjunto de operadores de reparación O aplicado hasta el momento para construir
t' (en la Sección 2.3). Si es compatible con el resto de operadores de reparación en
O, el operador de reparación se agregará a O y se aplica; de lo contrario, la rama del
árbol de recursividad se corta. Cuando se alcanza una hoja del árbol de recursividad, la
concordancia parcial reparada correspondiente t' se agrega a la lista T de concordancias
parciales reparadas.

Para evaluar el potencial de nuestro método de reparación, realizamos una eva-
luación de tipo oráculo (explicada en la Sección 2.4.3) con tres pares de idiomas:
inglés–español (en–es), español–portugués (es–pt) y español–francés (es–fr). Elegimos
estos idiomas para estudiar cómo se comporta nuestro método con idiomas estre-
chamente relacionados (español–portugués y español–francés) y no tan relacionados
(inglés–español).

Nuestros experimentos utilizan varios sistemas de TA. Antes de comprobar el ren-
dimiento de nuestro método, evaluamos los sistemas TA de forma aislada. Para esta
evaluación se usaron tres sistemas de TA distintos: Apertium (basado en reglas; (For-
cada et al., 2011)), Moses (estad́ıstico basado en segmentos bilingües; (Koehn et al.,
2007) ) y Nematus (neuronal, (Sennrich et al., 2017)). Los resultados de esta evaluación
se pueden encontrar en la Sección 2.4.2.

Después de evaluar los sistemas de TA de forma aislada, evaluamos nuestro método
RCP con los pares de idiomas mencionados y distintos umbrales de coincidencia: 60 %,
70 % y 80 % , en consonancia con los hallazgos de Bowker (2002), quien demuestra que
los umbrales de coincidencia usados suelen ser superiores al 60 %. En estos experimen-
tos, probamos con varios métodos de traducción: MT, TA y RCP. Los resultados de las
Tablas 2.5 y 2.6, muestran que con nuestro método de RCP se puede lograr una tasa de
error por debajo de la de usar un sistema de TA de forma aislada. Además, concluimos
que para el par de idiomas no relacionados (en–es), un sistema RCP respaldado por
un sistema TA estad́ıstica o neuronal supera al sistema respaldado por un sistema de
TA basado en reglas para todos los umbrales de coincidencia.
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La diferencia entre un segmento reparado por nuestro método (eligiendo el oráculo)
y las traducciones producidas por un sistema TA revela que nuestro método es bastante
robusto a los errores t́ıpicos de TA. Esto se debe a que para que un operador de
reparación se construya con éxito, τ , la traducción del sub-segmento σ de s, debe
aparecer como un sub-segmento de texto contiguo en t, la propuesta de traducción
a reparar. Esto actúa como un filtro de calidad que hace que nuestro método no se
utilice para reparar sub-segmentos para los cuales la fuente de información bilingüe no
coincide con la MT. Obviamente, esta verificación de calidad no se puede realizar en
τ ′, la traducción del sub-segmento σ′ en s′ alineada con σ. Sin embargo, parece que
tener un control de calidad en τ ayuda a garantizar que la mayoŕıa de los operadores
de reparación construidos sean de buena calidad.

Estimación de la calidad de los segmentos reparados

En el contexto de la TA, los métodos de estimación de la calidad (EC) a nivel
frase (Blatz et al., 2004; Specia et al., 2009) han sido desarrollados durante las últimas
dos décadas para evitar traducciones de baja calidad y para elegir entre un conjunto
de traducciones diferentes producidas por distintos sistemas de TA para un segmento
origen determinado, o para estimar el esfuerzo de poseditar la salida de un sistema TA
determinado. La calidad generalmente se mide en términos de tiempo de posedición, en
términos de cantidad de operaciones de edición necesarias para convertir la traducción
en una traducción adecuada, o usando otras métricas relacionadas (Specia, 2011; Bojar
et al., 2014).

Las técnicas de EC en TA se pueden adaptar fácilmente para estimar la calidad de
las diferentes concordancias parciales reparadas que se obtienen como resultado de apli-
car el método descrito en el Caṕıtulo 2. Existen principalmente dos enfoques diferentes
para lograr esto: el uso de clasificadores binarios y por otro lado, el uso de un regresor.
El primero se puede utilizar para seleccionar la mejor concordancia parcial reparada
mediante una comparación por pares (Avramidis, 2013); el segundo se puede utilizar
para ordenar el conjunto de segmentos reparados en función de su calidad estimada.
Nuestro método, descrito en el Cápitulo 3 sigue este segundo enfoque; espećıficamente,
utilizamos, después de experimentos preliminares con regresores lineales y vectores de
soporte (Basak et al., 2007), árboles extremadamente aleatorios (Geurts et al., 2006)
para la regresión (extremely-randomized trees en inglés).

Nuestro método de estimación de la calidad utiliza en primer lugar el enfoque de
reparación descrito en el Caṕıtulo 2 con el que genera un conjunto de concordancias par-
ciales reparadas. Después, estima la calidad de cada concordancia parcial reparada para
seleccionar la mejor. El método para estimar la calidad de estos segmentos, inspirado
en el trabajo sobre estimación de calidad (EC) en TA a nivel frase (Blatz et al., 2004;
Specia et al., 2009), utiliza regresores entrenados usando dos conjuntos de caracteŕısti-
cas: uno que usa información disponible para las herramientas TAO (caracteŕısticas de
caja negra, Sección 3.2.1), y otro que explota la información del funcionamiento interno
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del algoritmo de reparación descrito en el Caṕıtulo 2 (caracteŕısticas de caja blanca,
Sección 3.2.2).

Para demostrar que nuestro método de EC da buenos resultados, tomamos como
punto de partida la evaluación realizada en el Caṕıtulo 2 originalmente basada en el
uso de un oráculo usando varios umbrales de coincidencia y con tres pares de idiomas
diferentes. Con el fin de determinar la mejor configuración para entrenar el regresor
para estimar la calidad de las concordancias parciales reparadas, hemos probado con las
siguientes configuraciones: (1) entrenar diferentes regresores para diferentes umbrales
de coincidencia y pares de idiomas, (2) entrenar un regresor para cada par de idiomas
independientemente del umbral de coincidencia, y (3) entrenar un solo regresor para
todos los pares de idiomas y umbrales de coincidencia. Los resultados obtenidos se
discuten en la Sección 3.4 (Tablas 3.4 a 3.6) donde se proporcionan resultados con
corpus filtrados siguiendo el método de Esplà-Gomis et al. (2015) para eliminar UT con
ruido y con corpus sin filtrar. Los resultados de la Tabla 3.6 son bastante similares a los
de la Tabla 3.5 donde se usa un regresor diferente por par de idiomas. Para algunos pares
de idiomas y umbrales de coincidencia, los resultados mejoran ligeramente, mientras
que para otros empeoran. Esto nos permite concluir que, dada la pequeña diferencia en
las tasas de éxito informadas en ambas tablas, es aconsejable utilizar un solo regresor
entrenado usando un umbral de coincidencia del 60 % para todos los idiomas juntos,
al menos para los idiomas que están relacionados en algún sentido (como las cuatro
lenguas indoeuropeas occidentales de nuestros experimentos).

Los resultados muestran además que el conjunto de caracteŕısticas que proponemos
es lo suficientemente informativo como para obtener regresores que permitan seleccionar
concordancias parciales reparadas cercanas a la mejor (oráculo) de entre las producidas
por nuestro algoritmo de reparación y funciona mejor en los corpus filtrados donde se
eliminan las UT ruidosas. La diferencia de rendimiento es notable para los umbrales de
coincidencia por debajo del 90 %, especialmente en el caso del inglés–español. Además,
la tasa de éxito, es decir, la proporción de operaciones de edición evitadas al editar la
concordancia parcial reparada seleccionada sobre el número de operaciones de ediciones
evitadas al editar la mejor concordancia parcial reparada posible, aumenta a medida
que crece el umbral de coincidencia; para el umbral de coincidencia del 60 % las tasas
de éxito en los corpus filtrados rondan el 0,68, mientras que para el 90 % alcanzan hasta
0,78; superando el 0,80 para inglés–español y español–portugués. Esto significa que el
uso del segmento reparado seleccionado permitirá evitar de media, más del 80 % de las
operaciones de edición que se habŕıan evitado si se hubiera elegido la mejor concor-
dancia parcial reparada posible (oráculo). Si las concordancias parciales reparadas a
usar se seleccionaran al azar, el ahorro de operaciones de edición estaŕıan alrededor del
44 %. Nuestro método de EC es mejor a la hora de clasificar las concordancias parciales
reparadas cuando la cantidad de sub-segmentos no similares es pequeña; el cual es el
escenario t́ıpico en el que se usan programas TAO basados en MT. 1

1Las concordancias parciales rara vez se usan para un umbrales de coincidencia por debajo del
70 %.
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En cuanto a las caracteŕısticas utilizadas por los regresores, hemos propuesto un
conjunto de caracteŕısticas compuestos por caracteŕısticas de caja negra (independien-
tes del sistema) y de caja blanca (dependientes del sistema). Las caracteŕısticas de
caja negra son más fáciles de calcular ya que no explotan ninguna información sobre
los operadores de reparación utilizados para generar los segmentos reparados. Las ca-
racteŕısticas de caja negra resultan más informativas que las de caja blanca, aunque
todas son útiles hasta cierto punto. Este resultado sugiere que el método de EC uti-
lizado para seleccionar el mejor segmento reparado podŕıa usarse para clasificar los
segmentos reparados producidos por otros enfoques de RCP como los descritos en la
Sección 1.4.

Los concordancias parciales reparadas seleccionadas por nuestro método están con-
sistentemente más cerca de las traducciones de referencia que los segmentos de destino
no reparados (t). También, son mejores que las traducciones obtenidas al traducir
segmentos de origen completos (s′) utilizando el sistema de TA. Además, los mejores
regresores se obtienen en la mayoŕıa de las veces cuando se entrenan con todos los pares
de idiomas juntos, lo que significa que los valores de las caracteŕısticas propuestas y
los regresores aprendidos son independientes del idioma.

Selección del traductor automático a emplear para

la reparación de concordancias parciales

Para aumentar aún más el rendimiento de nuestro sistema, intentamos ahorrar re-
cursos y tiempo al traductor mediante la implementación de un sistema que selecciona,
para cada sub-segmento, el sistema de TA a utilizar para la reparación de concor-
dancias parciales, sin ejecutar realmente el sistema de TA. El Caṕıtulo 4, se centra
espećıficamente en un problema que podŕıa ocurrir al usar varios sistemas de TA: sa-
ber seleccionar el sistema de TA más adecuado dado solo el segmento en lengua origen
a traducir.

Nuestra investigación se centra primero en la TA para demostrar la importancia
de tener un método que seleccione un sistema de TA antes de traducir un segmento
en lengua origen. Tras demostrar que se puede seleccionar el sistema de TA con una
precisión relativamente alta (casi el 70 %), se ilustra cómo la selección de un sistema de
TA de entre un conjunto de varios sistemas de TA mejora los resultados presentados en
el Caṕıtulo 2. La motivación para la investigación se basa en trabajos recientes (Bojar
et al., 2017) que demuestran que un sistema de TA neuronal logra mejores resultados
en términos generales; pero, un sistema de TA estad́ıstica o basado en reglas pueden
obtener mejores resultados para segmentos individuales dependiendo del dominio y tipo
de cada segmento. Existen también investigaciones que demuestran que los traductores
profesionales y los usuarios de herramientas TAO prefieren un sistema de TA estad́ıstica
sobre un sistema de TA basado en reglas o un sistema de TA neuronal.(Arenas, 2013)
Un trabajo anterior de Bentivogli et al. (2016) demostró cómo funcionan los diferentes
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paradigmas de TA ante ciertos tipos de entrada. Más espećıficamente, se ha encontrado
que un sistema de TA neuronal tiene un rendimiento peor que un sistema de TA
estad́ıstica debido a anomaĺıas espećıficas en el texto como signos de puntuación o
nombres de entidades (Koehn and Knowles, 2017). Teniendo esto en cuenta, podŕıa
considerarse prematuro abandonar por completo los métodos “antiguos” en favor de
los “nuevos”. Las alternativas que combinan sistemas de TA podŕıan lograr mejores
resultados; particularmente, si el método de combinación de sistemas puede aprovechar
las diferentes fortalezas de cada paradigma.

En el Caṕıtulo 4 se presenta el sistema predictivo, llamado SelecT, que tiene como
objetivo mejorar las traducciones obtenidas eligiendo el sistema de TA para cada seg-
mento origen antes de intentar traducirlo. También se presentan los resultados de dos
experimentos para nuestro sistema de selección: el primer experimento mide la preci-
sión de los clasificadores de SelecT usando BLEU y la tasa de error por palabra (WER)
como métricas de evaluación de un sistema TA; el segundo experimento utiliza SelecT
como predictor para elegir un sistema TA para RCP. En concreto, hemos probado con
tres tipos distintos de clasificadores: uno basado en redes neuronales recurrentes bidi-
reccionales (Schuster and Paliwal, 1997), otro basado en FastText (Joulin et al., 2017),
y, por último, otro basado en regresión loǵıstica (Cramer, 2002; Fan et al., 2008).

Los resultados cuando se usa SelecT para elegir un sistema de TA (sin evaluar el
método RCP) se encuentran en la Sección 4.6.1. Los resultados del primer experimen-
to se muestran en la Tabla 4.1. A cada segmento se le asigna una etiqueta que se
corresponde con el sistema de TA con la puntuación BLEU más alta. El trabajo del
clasificador durante las pruebas es predecir el sistema de TA con mejor rendimiento
para cada segmento. El mejor clasificador es FastText. Tiene una precisión del 68,12 %
y supera ligeramente (menos del 1 %) al clasificador que usa redes neuronales recurren-
tes bidireccionales. En la Tabla 4.2, se ofrece más información del primer experimento
que nos muestra: (1) las cotas superior e inferior proporcionadas por el mejor y el peor
sistema de TA, respectivamente; (2) el rendimiento usando cada tipo de clasificador;
y, (3) el rendimiento de cada sistema cuando se usa de forma aislada. La media entre
las cotas superior e inferior ofrece un valor de referencia que nuestro sistema mejora
y viene a demostrar que nuestro sistema tiene éxito a la hora de predecir el mejor
sistema en la mayoŕıa de los casos. La selección aleatoria también podŕıa utilizarse co-
mo referencia, aunque, en nuestros experimentos, la selección aleatoria no proporcionó
resultados muchos mejores que la cota inferior (alrededor de 2 puntos de BLEU).

La Tabla 4.4 muestra el rendimiento de nuestro método RCP para tres umbrales
diferentes de coincidencia — 60 %, 70 % y 80 % — en términos de tasa de error por
palabra (WER en la tabla) para los tres sistemas de TA (Apertium, Moses y Nematus)
y para SelecT cuando usa el clasificador basado en FastText (el clasificador con mayor
precisión). La última columna (SelecT) muestra que SelecT ofrece mejores resultados
cuando se usa para seleccionar el sistema de TA de forma aislada (la sub-columna MT
en la tabla), seguido de cuando se usa para RCP (la sub-columna FMR en la tabla).
El sistema SelecT supera los resultados del Caṕıtulo 2 para todos los sistemas en
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ambas situaciones de concordancias parciales (concordantes o no). Esto es más evidente
cuando el umbral de coincidencia es menor. Por ejemplo, para el umbral de coincidencia
del 60 %, SelecT es aproximadamente 1 punto mejor que el sistema de TA con mejor
puntuación (Moses) y 1,3 puntos mejor que el mejor sistema de TA para RCP (Moses
también). Por último, SelecT parece funcionar mejor cuando se traducen segmentos
completos que cuando se traducen sub-segmentos para la construcción de operadores
de reparación. Este comportamiento se atribuye al entrenamiento del clasificador sobre
segmentos en lugar de sub-segmentos.

Nuestros experimentos muestran que SelecT cubre más casos que cualquier sistema
de TA probado y, por lo tanto, podŕıa ser útil para un traductor o usuario de herra-
mientas TAO. SelecT es agnóstico con respecto a los sistemas de TA que se utilizan y
no requiere cambios en proceso subyacentes.

Combinación con un sistema de posedición automáti-

ca

En las secciones anteriores nos hemos centrado en el rendimiento de nuestro método
de reparación de concordancias parciales (RCP) de forma aislada como un elemento
modular del entorno TAO. Los usuarios de herramientas TAO pueden utilizar RCP
con una MT y un sistema de TA, pero, todav́ıa existe otra opción disponible en el
entorno TAO para mejorar su productividad – la posedición automática (PA). En el
Caṕıtulo 5 mostramos como se ha combinado nuestro método con PA: primero, se
produce una concordancia parcial reparada a partir de la unidad de traducción y el
segmento origen; luego, el segmento reparado se mejora aún más mediante un sistema
de PA ajustado espećıficamente para dicha tarea. Los experimentos realizados sobre la
traducción de textos del inglés al alemán muestran que, al combinar las dos tecnoloǵıas,
la calidad de las traducciones mejora hasta un 23 % en comparación con un sistema
de TA usado de forma aislada. Además, la mejora, con respecto a un sistema RCP
aislado, es del 16 %. Esta mejora demuestra la eficacia de nuestra solución conjunta. En
la Sección 5.2 revisamos el sistema de PA de última generación utilizado en nuestros
experimentos y después, en la Sección 5.3, mostramos cómo las dos tecnoloǵıas se
combinan para formar un nuevo sistema que se agrega de forma modular a un sistema
TAO. Los resultados de la combinación de RCP y PA se presentan en la Sección
5.5 junto con una evaluación humana para confirmar los resultados obtenidos usando
medidas automáticas de evaluación de la calidad de las traducciones.

Los métodos de PA se han introducido en las herramientas TAO como una técnica
de posedición para corregir segmentos traducidos automáticamente. Las investigacio-
nes han demostrado que los traductores pueden ser más productivos cuando utilizan
técnicas de posedición de última generación (Isabel, 2017). Según lo motivado por Par-
ton et al. (2012), un sistema de PA puede ayudar a mejorar un sistema de TA de
dos maneras: (1) explotando información no disponible durante la traducción o (2)
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realizando un análisis del texto más profundo que el que pueda hacer el decodificador
t́ıpico de un sistema de TA. Además, el sistema de PA puede adaptar la salida de un
sistema de TA de propósito general al estilo de escritura de un dominio espećıfico. La
PA puede proporcionar a los traductores una traducción automática mejorada para
reducir aśı el esfuerzo (humano) posterior de posedición. Los sistemas de PA no se ba-
san en memorias de traducción y son eficaces sin la intervención inicial del traductor.
No obstante, en la Sección 5.3, nuestros experimentos muestran que un sistema de PA
puede integrarse sin problemas en el flujo de traducción t́ıpico para mejorar las concor-
dancias parciales reparadas. Primero, se utiliza RCP para producir una propuesta de
traducción reparada y luego se usa PA como una herramienta para mejorar la calidad
de dicha propuesta. El sistema combinado está ilustrado en la Figura 5.1.

Los resultados de nuestros experimentos se presentan en la Sección 5.5 y muestran
que la combinación de RCP y PA mejora los resultados obtenidos en el Caṕıtulo 2.
Usamos la mejor concordancia parcial reparada (oráculo) en lugar de una obtenida
usando la estimación de la calidad como se hizo en el Caṕıtulo 3. Para demostrar el
rendimiento de nuestra combinación, presentamos los resultados en la Tabla 5.2, la
cual muestra los resultados de tres tipos de experimentos usando como medidas de
evaluación BLEU y WER: (1) TA y MT; (2) TA con PA; y, (3) RCP y RCP con PA.
Aunque los resultados de la MT son mejores que los experimentos del Caṕıtulo 2, RCP
y RCP con PA logran superarlo. La combinación de RCP con PA mejora la calidad de
traducción del sistema RCP aislado por un amplio margen (+12 puntos de BLEU). En
todos los experimentos, la adición del sistema de PA ayuda a lograr mejores resultados.
En un sistema en producción, lo ideal seŕıa que los sistemas de TA y PA estuvieran
debidamente entrenados sobre corpus del dominio deseado para obtener el máximo
beneficio de la combinación de los dos métodos. Nuestros resultados excluyen otras
combinaciones de sistemas, como el uso de corpus del dominio deseado o técnicas de
estimación de calidad, con el fin de mostrar únicamente la combinación de RCP y PA
bajo configuraciones genéricas (listas para usar).

Las dos métricas de evaluación (BLEU y WER) muestran como nuestra combina-
ción de sistemas mejora los resultados obtenidos hasta ahora y probablemente seŕıa
suficientes para demostrar que merece la pena combinar RCP con PA. Sin embargo,
como un control cualitativo adicional, verificamos las traducciones de nuestros siste-
mas con mejor rendimiento con un evaluador nativo de alemán. Se midió la fluidez y
coherencia de las traducciones del sistema dadas las frases de origen donde se preguntó
al evaluador nativo: “¿Es la traducción comprensible y una traducción válida dado la
frase en lengua origen?”. La Tabla 5.3 muestra una descripción de cómo se puntua-
ron nuestros mejores sistemas en una escala Likert (Likert, 1932): la puntuación de la
evaluación humana está en ĺınea con las métricas automáticas ya discutidas.
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Discusión

El enfoque principal de esta tesis es la introducción de un algoritmo de reparación
de concordancias parciales para su uso en herramientas de traducción asistida por
ordenador, capaz de usar cualquier fuente disponible de información bilingüe (usamos
sistemas de traducción automática en nuestros experimentos) como una caja negra;
es decir, sin acceso a su funcionamiento interno. Con la esperanza de que mediante
la aplicación de las diferentes técnicas descritas en esta tesis, la intervención humana,
desde el punto de vista de la posedición, pueda mantenerse al mı́nimo y al mismo tiempo
preservar la calidad de la traducción. No solo presentamos un algoritmo de última
generación para la reparación de concordancias parciales si no que presentamos varias
mejoras que pueden considerarse contribuciones importantes al estado de la cuestión.
Para ser más espećıficos, a continuación indicamos los componentes principales en los
que se centra esta tesis:

• un novedoso algoritmo de reparación de concordancias parciales capaz de utilizar
cualquier fuente de información bilingüe como una caja negra para proponer
segmentos reparados basados en memorias de traducción y que modela todas
las operaciones de edición (inserciones, borrados y sustituciones) de la misma
manera;

• el diseño de un conjunto de caracteŕısticas independientes del idioma para la es-
timación de la calidad que se puede utilizar para seleccionar el mejor segmento
reparado por nuestro método en un entorno multilingüe independiente del sis-
tema de reparación de concordancias parciales o fuente de información bilingüe
utilizada;

• la combinación de reparación de concordancias parciales con posedición automáti-
ca para reducir aún más la posedición necesaria para las propuestas de una
manera fluida;

• el diseño de caracteŕısticas de caja negra, es decir, sin acceso al funcionamiento
interno del algoritmo de reparación de concordancias parciales, que permite que
nuestro enfoque de estimación de la calidad se pueda utilizar para evaluar la
calidad de segmentos reparados producidos utilizando otros enfoques;

• un clasificador que es capaz de seleccionar, a priori, el sistema de TA que se
utilizará para la reparación de concordancias parciales para cada segmento.

Con respecto al algoritmo de reparación de concordancias parciales, esta tesis pre-
senta y prueba emṕıricamente un nuevo enfoque que está diseñado para requerir solo la
presencia de una memoria de traducción y una fuente de información bilingüe y, al mis-
mo tiempo, es altamente efectivo en un entorno de herramienta TAO. Otras ventajas
principales incluyen: independencia del idioma de origen y de destino y fácil integración
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en cualquier entorno de herramientas TAO. En el Caṕıtulo 2, los experimentos se pre-
sentan con tres pares de idiomas (inglés–español, español–portugués y español–francés)
que muestran el correcto funcionamiento de nuestro algoritmo. Se utilizan tres para-
digmas principales de traducción automática (basado en reglas, estad́ıstico y neuronal)
para probar el potencial del algoritmo. Los hallazgos muestran que nuestro enfoque es
más efectivo que usar un sistema de traducción automática solo y puede usarse con
software moderno basado en memorias de traducción como OmegaT.2

Otra técnica innovadora que saca a la luz esta tesis es una técnica de estimación de
la calidad para seleccionar segmentos reparados por nuestro método. Demostramos que
un regresor no lineal puede estimar con precisión, dadas varias caracteŕısticas a nivel de
segmento, la mejor propuesta reparada de entre muchas. Este enfoque novedoso es una
contribución importante, además del algoritmo para la reparación de concordancias
parciales, porque también se puede utilizar con otros métodos de reparación. Además,
la técnica de estimación de calidad, que funciona mejor con árboles extremadamente
aleatorios, es muy eficaz como regresor para varios pares de idiomas.

La modularidad de nuestra solución de reparación es una caracteŕıstica importante.
No se trata únicamente de que nuestro sistema se pueda utilizar con cualquier fuente
de información bilingüe; también, se puede utilizar en combinación con otros sistemas
que normalmente existen en un entorno de herramientas TAO. En esta tesis mostramos
lo fácil que es combinar nuestro sistema con un sistema de posedición automática de
última generación. Se dejan otras combinaciones para trabajos futuros; pero la facilidad
de integración con otras herramientas TAO que muestra nuestro enfoque es una gran
ventaja.

En lo que respecta al sistema predictivo la adición de SelecT a esta tesis propor-
ciona evidencia de que la naturaleza de caja negra de nuestro enfoque de reparación
de concordancias parciales puede beneficiarse de otros sistemas de manera agnóstica.
El clasificador se puede utilizar junto con el sistema de TA que usa el algoritmo de
reparación de concordancias parciales para mejorar aún más todo el proceso.

2https://omegat.org



Preface

When translating a source text into a target text, translators may use what is known
as a computer-aided translation (CAT) tool to increase their productivity. A CAT tool
has several functions; one of those functions is the use of what is known as a translation
memory (TM). A TM stores parallel sentences, or segments, for two languages. Each
pair (source, target) of parallel segments is called a translation unit (TU). For a new
segment to be translated, CAT tools are responsible for finding TUs from the TM where
the TU’s source segment is similar to the source segment to translate. When a CAT tool
does not find an exact match, the translator has to choose the TU whose source segment
is most similar to the segment to be translated and use its target segment as a starting
proposal for the translation. Translators use different techniques to assist in the editing
of these target segments. In this dissertation, we explore the use of a technique called
fuzzy-match repair (FMR) which repairs translation proposals from a TM by using
any available machine translation (MT) system, or any external source of bilingual
information, regardless of its internals. FMR aids CAT-tool users through a process
that “repairs” the target segment of a TU by creating a new proposal with an improved
translation. The results presented in this dissertation show how FMR improves the
translation proposals and reduces the amount of editions needed for translating those
source segments for which there is not an exact match in the TM.

My work with FMR spans over several years dating back to October 2013 when I
first began my doctorate studies at the Departament de Llenguatges i Sistemes Infor-
matics at Universitat d’Alacant in Alicante, Spain. The initial proposal was to solve a
problem that had not been researched at the time – how to repair translation proposals
in a CAT-tool environment using a black-box MT system, i.e. without access to its
internal workings. I conducted an initial pilot study which lasted about four months.
The first pilot study implementation resulted in an article that was presented at the
2014 conference of the Association for Machine Translation in the Americas (AMTA).
It consisted of generating all possible fuzzy-match repaired segments and conducting
an oracle evaluation to see if the algorithm was capable of producing fuzzy-match re-
pair segments good enough to reduce their post-editing needs. The initial empirical
proof was provided through word-error rate measurements that the FMR approach,
called patching originally, worked for repairing TM proposals in the English–Spanish
language pair. The pilot study was the ground work for what resulted in deeper ex-
perimentation of how FMR could improve performance in several situations. In the
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two years following (2014 and 2015), several approaches were considered to improve
FMR which led way to a re-implementation that decreased the number of overlapping
repair proposals through the introduction of compatibility checks between the repair
operators to avoid generating meaningless proposals.

Apart from the introduction of compatibility checks, new language pairs were
introduced including Spanish–French (es–fr) and Spanish–Portuguese (es–pt). The
introduction of compatibility checks, new language pairs, and a new implementation
led to another article in 2016 at AMTA which described the FMR algorithm in more
detail and provided a more complete baseline for FMR, able to be integrated with
other systems for further improving translator productivity.

After establishing the baseline in 2016, I began to discuss my work with others
from the academic world like Philip Koehn and Rebecca Knowles from John Hopkins
University. With the resurgence of neural machine translation (NMT), I began to try
out FMR with other MT systems since my method was designed to work as a black
box – the original MT system used was Apertium,3 a free/open-source rule-based
MT system whose development is headed by Mikel Forcada at the Departament de
Llenguatges i Sistemes Informatics at Universitat d’Alacant. The thought of bringing
NMT and statistical machine translation (SMT) systems to test in FMR was intriguing
as I had already used Moses, an SMT system, for low-resource language translation of
a Peruvian language called Quechua during my Master’s thesis in Computer Science
at Hofstra University. Armed with the gumption of working with NMT and SMT on
FMR, I discussed the idea with Phillip Koehn and Rebecca Knowles. Several tests were
done, similar to the 2014 paper at AMTA, in English to Spanish using different types of
NMT and SMT systems. The experiments showed that the quality of the MT system
and the domain of the text used to train the MT system were important. The article
where those experiments can be found was presented in 2018 at AMTA. At that same
conference, work from my Master’s thesis on low-resource languages was accepted into
the Workshop on Technologies for MT of Low Resource Languages (LoResMT 2018)
hosted at AMTA 2018. Having two papers accepted at the same location was a new
and gratifying experience for me.

During the past three years of my dissertation, I dedicated myself to expanding the
FMR system in different ways. I did a research stay from January to April, 2018, at
New York University (NYU) hosted by Adam L. Meyers, clinical professor of Natural
Language Processing. During my stay at NYU, I worked with several other researchers,
one of which became a researcher mentor on neural networks and statistical approaches,
Kyunghyun Cho, known for publishing work on the gated recurrent unit for recurrent
neural networks. Kyunghyun Cho, Weiyi Lu, and I created a system, known as SelecT,
which served as part of this dissertation (Chapter 4). My stay at NYU also resulted in
a deeper, academic, dive into natural language processing (NLP) and its approaches.
In one project, I worked with two other researchers, Sam Bowman and Katharina

3https://apertium.org
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Kann, on measuring the fluency of MT using a logarithmic approach instead of the
most-common MT measurement, BLEU. In another project, with Samir Undavia and
Adam L. Meyers, I worked on a method for classifying supreme court cases using NLP.
Lastly, at NYU, I also helped with the implementation of a terminology extraction
software, called the Termolator,4 in collaboration with Adam L. Meyers and others.

The last three years of my dissertation provided the extra insight needed for pro-
ducing what can be considered one of the most important components of our FMR
approach, the use of quality estimation to determine which proposals were the best
to return to the user. Our quality estimation approach, based on extremely random-
ized trees, is able to estimate the post-editing effort of each fuzzy-match repaired
segment produced. Its introduction in this dissertation was well received and I en-
joyed the implementation. For our work, we were rewarded with an article in one of
the highest-indexed, most important, journals in the Computer Science sector, namely
IEEE Transactions on Pattern Analysis and Machine Intelligence.

Other collaborations with research groups includes a collaboration with Marco
Turchi and Matteo Negri at the Fondazione Brunno Kessler in Trento, Italy. Marco
and Matteo were responsible for publishing several works on automatic post-editing
(APE) previous to our collaboration. Since they were obtaining results in CAT tools
similar to those of FMR, it made sense to attempt to combine the two approaches.
The combination of FMR with APE is presented in this dissertation, Chapter 5.

One should note that the time to complete this dissertation was nearly seven years.
This was mostly due to the holding of a full-time position in the private sector. For the
first 5.5 years (October 2013 - March 2019) of my PhD work, I worked in the health
care sector at Nuance Communications where I worked together with several highly-
skilled researchers from IBM and others in a project which was dedicated to using
NLP to classify health-care records in several ways. During the last 1.5 year (March
2019 - Present), I have also worked as the head of a small NLP group for Blackboard
Insurance (an AIG company) solving problems related to underwriter activity and
insurance claim fraud. The combination of having worked in private industry along
with the research of this dissertation have proven to be a truly valuable experience,
providing insight into how NLP products are implemented and working at the global
level in the health care and insurance industries.

As an aside, and not related to FMR, my previous work, and background research
passion has been working on low-resource MT. I have collaborated with several others
to work on indigenous South American languages in the past, including during my
Master’s thesis which was on a technique for improving MT for Quechua. Since then,
I have worked on other approaches and languages including an even lower resource
language from Peru and Brazil called Asháninka. Techniques have been introduced
on sub-segmentation for MT along with neural machine translation by learning the
morphology of a low-resource language through the use of a high-resource language.

4https://nlp.cs.nyu.edu/termolator/
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My plan is to continue to work with both FMR and low-resource MT with the hope
to one day combine FMR with low-resource MT as a future work.

Lastly, my advisor and co-author of several works, Felipe Sánchez-Mart́ınez, has
been an important resource for understanding several main points. He has helped me
focus on the approaches presented and given unparalleled and deep research-associated
advice. His constant supervision has given this dissertation a fresh outlook on a problem
that included machine learning, a topic of which I thoroughly enjoyed. Mikel L. Forcada
from the Departament de Llenguatges i Sistemes Informatics at Universitat d’Alacant
helped greatly to establish the FMR idea as a pertinent and valid idea for research. He
has also helped direct my research in the right direction. Both have greatly contributed
to the success of FMR.

Structure of this thesis

This thesis is structured in 6 chapters. The following is a brief synopsis of each one.

Chapter 1 begins by giving an introduction to computer-aided translation (CAT)
tools based on translation memories (TM). It presents the most common fuzzy-
matching algorithm used in CAT tools to match a source segment to be translated
with a source segment in the TM. A baseline translator’s workflow is outlined
which explains how a CAT tool is used. After that, an introduction to machine
translation (MT) is presented which leads way to a mixed translation workflow
that combines TMs with MT and provides the necessary information to better
understand the final section which is dedicated to fuzzy-match repair.

Chapter 2 provides details on the fuzzy-match repair (FMR) approach, the center-
piece of this dissertation. The FMR approach is described in detail along with
the two core algorithms it uses. First, an algorithm that uses MT for generating
repair operators. Second, an algorithm that uses the repair operators to generate
as many fuzzy-match repaired segments as possible. Experiments are done that
illustrate how the three main MT paradigms (rule-based, statistical, and neural)
performed when used as sources of bilingual information for FMR. The results
presented in this chapter serve as a first step for the FMR approach presented and
use an oracle to measure FMR’s performance, a technique that is later replaced
by a quality estimation method.

Chapter 3 dives deeper into the FMR algorithm in order to show how FMR segments
can be chosen by using a tree-based regressor for estimating their quality. An
evaluation is presented on the three language pairs from Chapter 2 to provide
proof that the estimation of the “best” fuzzy-match repaired segment is consis-
tently nearer to the oracle than using a TM or MT system alone.

Chapter 4 focuses on how to decide which black-box MT system to use for FMR in
real time. A mechanism is presented that automatically selects an MT system of
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those available to the CAT tool. It is a state-of-the-art selector which is able to
determine the best MT system to use at the segment level a-prior without having
to translate them. The chapter includes several experiments based on BLEU and
shows that the overall aim of the selection method, to save the translator time
by selecting at the segment-level which MT system to use, is accomplished.

Chapter 5 explores the integration of FMR and automatic post-editing (APE). In
particular, the use of APE is presented as an orthogonal mechanism to work
with FMR. Background is given on what APE is and how it works within a CAT
tool. Then, the combination of FMR with APE is presented. Finally, experiments
are done with the combination system for translations from English to German
that show how well FMR with APE perform when compared to a stand-alone
MT system in FMR.

Chapter 6 recapitulates the work performed in this dissertation. It summarizes the
approaches from each of the chapters by giving a high-level overview of the con-
tributions of this dissertation to the state of the art. It also provides possible
future research lines on the FMR approach presented in this dissertation.
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Chapter 1

Introduction

Computer-aided translation (CAT) tools based on translation memories (Bowker,
2002; Somers, 2003) are widely used to assist professional translators. A transla-
tion memory (TM) consists of a set of translation units (TU) made up of source-
and target-language segment pairs. For the translation of a new source segment
s′, these tools search the TM and retrieve the TUs (s, t) whose source segments
are more similar to s′. The translator then chooses a TU and edits the target
segment t to turn it into an adequate translation of s′. This dissertation tackles
the problem of automatically editing those parts of the translation proposal t
that need to be corrected by the user with a fuzzy-match repair (FMR) method
capable of using any source of bilingual information without access to its inner
workings. In this chapter, an introduction to the different components of a CAT
tool is presented. First, CAT tool solutions, which are primarily based on TMs,
and their history are covered in Section 1.1. Section 1.2 then provides a brief in-
troduction to machine translation (MT) whereas Section 1.3 reports the state of
the art on the integration of MT and TM. The chapter ends with an introduction
to FMR and a description of the state-of-the-art FMR approaches.

1.1 Computer-aided translation tools

Computer-aided translation (CAT) tools were originally called machine-assisted
human translation tools (Bowker, 2002) because the translation process was duly left
to the user – the CAT-tool system provides several resources to help with translation
but the act of translating a source segment is entirely left up to the user. The main
difference between a CAT tool and a machine translation (MT) engine is that in a CAT
tool the translator is the one that produces the translation; in MT, on the other hand,
the user plays no active role in the translation apart from correcting the output. A few
of the resources available to CAT-tool users are spell checking, text search, translation
memories, and MT engines (Federico et al., 2012). Most CAT tools use translation
memories (TM) as the primary resource to aid in the translation process; in fact, when
modern literature talks about CAT tools, they are assumed to be TM-based CAT
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2 1. INTRODUCTION

tools. A TM is a collection of translation units (TU) that consists of segment pairs
(s, t). Each pair contains segments in two languages which are mutual translations.
Typically, segments consist of single sentences; but, they may consist of other text
units (e.g. phrases or paragraphs).

TM-based CAT tools are a subset of other systems known as terminology-management
systems (Bowker, 2002). They play a critical role in the overall CAT-tool translation
workflow as described in more detail in Section 1.1.2. The TM-based CAT tool’s un-
derlying responsibility is to compare a new source segment to be translated s′ with
the previously-translated source segments in the TM. If the comparison finds a source
segment similar to the one to be translated, the corresponding TU (s, t) is returned
to the translator for further editing or immediate acceptance of t, as is the case when
there is an exact match (both source segments are identical). If post-editing occurs,
the source segment to be translated s′, along with its translation t′ is saved for future
use. It is the CAT tool’s responsibility to segment the document to be translated
and to implement the method for searching the TM for TUs whose source segment is
similar to the one to be translated. The algorithm that computes the similarity of
two segments is of particular interest to our fuzzy-match repair (FMR) method and is
described in further detail in Section 1.1.1.

Figure 1.1 illustrates how a TM-based CAT tool works. The main (retrieval) opera-
tion of a TM1 is illustrated for the source segment: This will also be 100% match.. The
TM retrieves two closely matched TUs (ID 90 and ID 91 from the top window which
correspond to ID 1 and ID 2 in the lower window): (1) (This will also be 100% match.,
Dies wird auch zu 100% ubereinstimmen.) and (2) (This will also be a fuzzy match.,
Dies wird eine Fuzzy-Match werden.). The first is a one-hundred percent match with
the source segment; and, is probably the segment that the translator would use for
the final translation. The second one, nonetheless, could be modified by replacing be a
fuzzy with also be 100% to create a translation. The decision to choose between one or
the other is up to the CAT-tool user. If a TM proposal is modified, the newly created
TU would be saved to the TM with a new ID (95 for example). The next section
describes the algorithm for computing the similarity between two segments in detail.

1Example from the TM tool in Wordfast Pro 3 (https://wordfast.com/WFP3/).
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Figure 1.1: A translation memory example using WordFast Pro3 software.

1.1.1 Fuzzy matching

The fuzzy-match algorithm is one of the key methods of how the TU retrieval
process works with a TM in a CAT-tool setting. While the similarity distance of
two segments can be computed using different types of algorithms like Bitap (Baeza-
Yates and Gonnet, 1992), Hamming (Bookstein et al., 2002), or Damerau-Levenshtein
(Damerau, 1964), to name a few, the most common method is the word-based edit-
distance (Wagner and Fischer, 1974). The edit-distance algorithm may be used to
compare the source segment to be translated s′ to all the source segments s in the TM
by using Equation 1.1 to calculate what is known as the fuzzy-match score (FMS):2

FMS(s′, s) =
ed(s′, s)

max(len(s′), len(s))
(1.1)

where ed(x, y) stands for the word-based edit distance between x and y, and len(x)
stands for the number of tokens of segment x.

Before the computation of the FMS between two segments, they may be pre-
processed in different ways to obtain different FMSs. This pre-processing may include
(1) tokenization, for separating words and other symbols like punctuation marks into
smaller, stand-alone, units; (2) stemming, for converting words into their base form or

2In OmegaT (https://omegat.org), the fuzzy-match score is calculated in this way.
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Figure 1.2: Fuzzy-match proposal from a TM in OmegaT.

stem (e.g. the verbs ran, run, and runs are converted to the infinitive form run) and;
(3) number replacement, for substituting numbers for a common token. For example,
OmegaT,3 an open-source CAT tool, computes three different FMSs (see Figure 1.2).
Assuming that the tokenizer option is turned on in the CAT tool, the first percentage
is calculated by using tokenization and stemming on the words only and ignoring for-
matting tags and numbers. The second one uses tokenization, it does not use stemming
on the words and ignores formatting tags and numbers. The third one also only uses
tokenization but it includes formatting tags and numbers.

In order to prevent the TM-based CAT tool from proposing matches that have little
in common with the segment to be translated, the user can configure a fuzzy-match
threshold (FMT). An all-encompassing FMT that maintains productivity is typically
around 70% or above according to previous studies (Escart́ın and Arcedillo, 2015a,b).
However, like O’Brien et al. (2017) have shown, often times translators adjust their
FMT to the task at hand. Figure 1.1 illustrates the use of a 70% FMT for which two

3https://omegat.org
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Figure 1.3: A typical baseline workflow for CAT tool users as depicted by Esplà-Gomis
et al. (2015).

matches have been found with FMS of 77% and 100%; notice how the CAT tool always
provides the FMS for the segment to be translated and the source segment in the TU.

1.1.2 Translation workflow

The typical workflow for translating a source document by means of a TM-based
CAT tool consists of: (1) segmentation of the source document, (2) TM lookup for
each source segment to be translated, (3) acceptance or modification (post-editing) of
the TM proposals, and (4) generation of the target document. This workflow has been
well illustrated in previous work (Esplà-Gomis et al., 2015) and is shown in Figure 1.3.
FMR is directly related to and fits in between the lookup of TUs similar to the segment
to be translated and the proposal of a translation.

The four-step (baseline) process for translating a document with a TM-based CAT
tool begins with the division of the source document into several, sentence-level, seg-
ments. In order to separate the source document into segments, boundary markers such
as punctuation marks can be used. In most cases, a lists of boundaries are used for
boundary definitions since segments can vary quite a bit. However, depending on the
language and the text, sentence segmentation can be more difficult and are typically
broken down into two main approaches: a rule-based approach and statistical based
approach (Mi lkowski and Lipski, 2009). Rule-based approaches may contain heuris-
tics that determine the beginning and ending boundaries to break up a document into
segments. The most common rule-based approach uses a file that contains regular
expressions or segment-boundary limits in accordance with an industry standard know
as Segmentation Rules eXchange (SRX) (originally maintained by the Localization In-
dustry Standards Association but now maintained by GALA4). SRX rules are defined
in an XML file that can be transferred from one CAT-tool system to another and are
the most widely used segmentation rule types. On the other hand, statistical-based
approaches (Mikheev, 2003; Xu et al., 2005; Beeferman et al., 1999; Matusov et al.,

4https://www.gala-global.org/lisa-oscar-standards
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2006; Deng et al., 2007) are most often associated with classification that uses some
type of machine learning to determine the beginning and end of each sentence.

The secondary step is the comparison of each source segment to be translated s′ to
the source segment s in each TU from the TM. All of the s′ segments are matched with
their corresponding TU as discussed in Section 1.1.1. Then, each s′ is presented to the
user along with any TM matches that were discovered during the retrieval process and
whose bounds meet the FMT. As seen in Figure 1.2, TUs are typically ranked in a list
from top to bottom with the most similar segment at the top. The right-hand side
pane displays several matches of which the top match is highlighted.

After reviewing the ranked segments in the list, the third step consists of the CAT-
tool user either accepting one of the matching segments (typically 100% fuzzy-matches
are accepted) or modifying it which, in turn, saves it to the TM. After iterating through
steps 2 and 3 with the different segments in the document to be translated, the final
document translation is generated. This workflow is the most typical workflow in a
CAT-tool setting and depends on the existence of a TM.

The baseline translation workflow described above can be modified to include an
MT engine to translate all of those segments for which there is no fuzzy match available.
This approach can be considered practical if the MT engine produces translations whose
post-editing requires less time than translating those segments from scratch. For those
segments for which there is a fuzzy-match above the FMT, it may also be possible to
obtain further productivity gains using the MT-translated segments. While the MT
translation may contain errors and lack quality, as shown in a previous study (O’Brien
et al., 2017), the total amount of editions needed to correct it may be less than the
number of editions to convert a translation proposal into the desired translation. Those
cases (the post-editing of the MT engine output instead of the TM target segment)
have been shown to be accepted as closer to human translations in previous research
by Carl et al. (2015) where 57% of translators preferred the MT engine output over the
TM output alone. In those cases, fuzzy matches and MT-translated segments need to
be ranked together, this can be done if MT quality estimation (QE) methods, either
at the segment- or word-level (as performed by Esplà-Gomis et al. (2019)), are used.

1.2 Machine translation

As aforementioned, TM-based CAT tools may also integrate machine translation
(MT). MT may be defined as the translation by means of a computer program of
texts in one language into another language. Using MT to achieve satisfactory, near-
human, results can be considered difficult because natural languages spoken by humans
are complex and ambiguous (Costa-jussà, 2012). Words and grammatical constructs
that exist in one language may have different meanings in other languages (Jakobson,
1959). Often times, words in one language may not be directly translatable to another
language.
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There has been a need for MT for many years, recorded as far back as the early
1930’s (Hutchins, 2007). The early MT systems were, for the most part, based on
a bilingual dictionary and merely substituted words in the source language for those
parallel words in the the target language. Later, in 1947, Warren Weaver, director
of Natural Sciences Division of the Rockefeller Foundation, recognized that there was
a “communication problem” (Hutchins, 1997) in the world and set out to solve it by
first defining the problem as a “translation problem”. That is when the world began
to see MT and the creation of MT systems as an attempt to disambiguate natural
language. Since then, numerous MT systems have been created in an attempt to solve
the problem. However, we can group the most recent MT paradigms into two main
categories: (1) knowledge-based and (2)corpus-based MT systems.

Knowledge-based MT (KBMT) systems can be defined as those systems that in-
corporate linguistic knowledge explicitly recorded by human experts in the form of
rules (Nirenburg et al., 1994). KBMT is also referred in the literature as rule-based
MT (RBMT) since, for the most part, they are based on rules. In general, rules have
to be created for every language pair. Today, one of the most used RBMT system
is an open-source system called Apertium (Forcada et al., 2011). Apertium allows
users to create the resources needed for translating between any pair of languages
(mainly morphological dictionaries, disambiguation rules, bilingual dictionaries, and
structural-transfer rules). Under-resourced language pairs that cannot benefit from
corpus-based approaches often times use RBMT systems like Apertium for their first
steps of introducing human knowledge into an MT system.

Corpus-based MT (CBMT) systems are based on statistics and probability. Some-
times called context-driven (Carbonell et al., 2006) approaches, they use features from
the source and target languages to attempt to derive a correlating function between
the two languages. This allows them to automatically learn to translate from parallel
corpora i.e. collections of texts in one language together with their translations into
another language. Since the approximation of a correlating function is necessary, math-
ematical concepts are key features in CBMT systems and have given way to two main
paradigms today: (1) statistical machine translation (SMT) and (2) neural machine
translation (NMT) . Both SMT and NMT systems are better generic approaches than
RBMT for translation when there is an abundance of training data to train a model
that will approximate translation well. At the time of this writing, the most used
SMT system is Moses (Koehn et al., 2007) and one of the most used NMT systems
is Nematus (Sennrich et al., 2017). When there is a plethora of data, NMT systems
have generally been found to outperform other MT paradigms (Koehn and Knowles,
2017; Knowles et al., 2018). In some cases, even with low amounts of data, NMT
systems have been found to outperform other MT paradigms through hyperparameter
tuning. (Sennrich and Zhang, 2019) NMT systems are based on neural networks of
which we focus on two main types of architectures, recurrent neural networks (RNN)
and transformer-based neural networks. While both are neural networks, they dif-
fer in the approach used for translation. RNNs were initially used to translate using
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sequence-to-sequence (Sutskever et al., 2014; Cho et al., 2014b), or encoder-decoder,
approaches which later evolved into more effective approaches that used attention and
could jointly align and translate (Bahdanau et al., 2015; Luong et al., 2015). Not long
after, the attention idea was expanded to process segments in a non-sequential order
using transformer-based models (Vaswani et al., 2017) that contain several (multi-
headed) attention components. In this thesis, we use Apertium, Moses, and Nematus
(with the RNN encoder-decoder approach) in our experiments to show the power of
the three paradigms.

1.3 Translation memory and machine translation

integration

In addition to the use of MT to translate those segments for which there is not a
fuzzy match found in the TM, there are more sophisticated ways of integrating TM
and MT. In the literature, one can find two main types of approaches integrating TM
and MT: (1) approaches that integrate sub-segments from the TM into the decoding
process of an MT system and (2) approaches that use the target segment t from a TU
(s,t) as the backbone of the translation to be produced.

Of the two types of approaches introduced above, the majority of approaches
combine the TM and MT engine by using the first approach, i.e. by introducing
sub-segments from the TUs (s,t) in the TM into the decoding process of the MT
system. Biçici and Dymetman (2008), for example, use a phrase-based SMT system
trained on a bilingual corpus in the same domain as the TM and combine it with
the TM’s fuzzy match by extracting a phrase table that is dynamically added to the
usual set of bi-phrases used for decoding the source. Their implementation augments
the internal translation table in the SMT system with bilingual non-contiguous sub-
segments (phrases) that have source sub-segments in common with the source segment
to be translated s′. Alignments in the system created by Biçici and Dymetman (2008)
are detected using word alignments directly obtained from the SMT system training
process and are used to find the parts of t that need to be edited (mismatches).

Similarly, Simard and Isabelle (2009) use a phrase-based SMT system by adding
phrase pairs (sub-segment pairs) of any length (obtained using a statistical aligner
on the TM) to the SMT system’s phrase table and introduce a feature to flag those
phrase-pairs that come from their TM. After that, they optimize the weighting of the
TM-based phrase table in a regular SMT decoder. By means of optimization and
phrase table inclusion they are able to make their SMT system produce a translation
close to the desired translation t′.

Additional work done by Zhechev and Genabith (2010) makes use of a phrase-based
SMT system along with an alignment method that, like Simard and Isabelle (2009),
connects source and target sub-segments from the TUs (s,t) in the TM. The alignment
method Zhechev and Genabith (2010) use takes advantage of a tree-based structural



1.4. FUZZY-MATCH REPAIR 9

alignment created from a bilingual dictionary after training their SMT system with
phrase pairs. After aligning the words in s with those in t, Zhechev and Genabith
(2010) are able to identify words that should appear in the final translation t′.

Koehn and Senellart (2010) take a similar approach to Biçici and Dymetman (2008).
They first align words in s′ and s to find mismatches. Then, they align the words in
s and t to identify target matches and remove the words in t that are aligned to the
mismatched words in s. Target mismatches are sent to the SMT decoder for translation.
Mismatched words in Koehn and Senellart (2010)’s system are treated separately; that
is, context around a mismatch, while indirectly taken into account by the language
model, is not directly taken into account when applying phrase pairs.

Ma et al. (2011), on the other hand, decided to research the shortcomings of using a
fuzzy-match score as a threshold for determining translation unit matches that serve as
translations for other segments. Ma et al. (2011)’s approach uses discriminate learning
and support vector machines to salvage translations of matched words from translation
units that would have been otherwise thrown away due to the fuzzy-match score being
used as a threshold. Their work, unlike Koehn and Senellart (2010), takes matched
parts in s and replaces them with their counterparts in t. The main drawback of the
approaches from Ma et al. (2011), Koehn and Senellart (2010), Zhechev and Genabith
(2010), and Biçici and Dymetman (2008) is that they are all based on MT and either
have access to the internals of an MT system trained on the user’s or related data or
modify its behavior in some way.

The approaches in the second group of TM-MT integration approaches, i.e. those
that use the target segment t in a TU (s,t) as the backbone of the translation to
be produced are closer to the approach introduced in this dissertation. In the next
section, we introduce the concept of fuzzy-match repair, which belongs to the second
group of TM-MT integration approaches, and highlight the main differences between
our approach and those in the literature.

1.4 Fuzzy-match repair

Fuzzy-match repair approaches differ from the approaches described above in that
they use the target segment t in the TU (s, t) as a backbone for the translation to be
produced. Its integration into a CAT tool is illustrated in Figure 1.4. FMR’s main
goal is to replace the sub-segments in the target segment t that are the translation of
the sub-segments in the source segment s that do not appear in the source segment s′

to be translated with the translation of the corresponding sub-segment in s′.

The aim of this dissertation’s FMR approach is to replace only the mismatched
sub-segments in t while at the same time saving the sub-segments in t that can be
reused, since they have already been professionally translated. The approach first
aligns the words in the source segment s of the TU being repaired (s, t) with the words
in the source segment to be translated s′ and identifies the mismatched words in s
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Figure 1.4: The addition of fuzzy-match repair (FMR) in a traditional computer-aided
translation (CAT) pipeline. A source segment s′ is first fuzzy-matched with a translation
unit (s, t) from the translation memory (TM). The target segment t is then fuzzy-match
repaired to get t' , a new repaired proposal presented to the CAT tool user.

and s′, that is, the sub-segments they do not have in common.5 It then uses MT,
although it could use any other source of bilingual information (SBI) , to identify the
sub-segments in t that are the translations of the mismatched sub-segments in s, in a
way similar to that of Esplá-Gomis et al. (2011), and builds a set of repair operators
by translating the mismatched sub-segments in s′. Each repair operator specifies the
TL sub-segment τ in t that needs to be repaired and the TL sub-segment τ ′ to be used
for repairing. Combinations of compatible repair operators are then applied to obtain
a set of candidate fuzzy-match repaired segments from which the one to be finally used
is selected after estimating their quality.

There are several other repair methods similar to ours that do not use quality
estimation techniques. Kranias and Samiotou (Kranias and Samiotou, 2004) use several
linguistic resources —such as bilingual dictionaries and lists of suffixes and closed-class
words— to align the words in s to those in t and use these alignments to identify the
words in t to be repaired. The words to be repaired are then replaced (edited, inserted
or deleted) by the translation of the corresponding mismatch in s′ obtained using MT.
This method is similar to the one we focus on in this dissertation, but differs in that it
uses context around the mismatches only when the new segment s′ contains words not
found in s that need to be inserted. In contrast, we use context around all mismatches,
when available, and this allows us to treat insertions, deletions and substitutions in the
same way. It also allow us to mitigate the incomplete reordering and agreement errors
that may occur because of not using context. In addition, Kranias and Samiotou
(2004) only produce a single fuzzy-match repaired segment, whereas we produce as

5This is usually obtained as a by-product of fuzzy matching.
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many fuzzy-match repaired segments as possible and then select the best one using
quality estimation (QE) techniques.

Hewavitharana et al. (2005) first use a modified IBM model 1 to align the mis-
matched words in s to sequences of one or more words in t and then directly map the
sequence of source-side one-word edit operations (substitutions, deletions and inser-
tions) needed to convert s into s′ into an identical sequence of edit operations on the
corresponding word sequences in t to generate the repaired translation. An important
strength of the method by Hewavitharana et al. (2005) is that multiple alternative
target-side edits are possible for each source-side insertion or substitution, and that
they are scored using a probabilistic model. An important limitation, as compared to
ours, is the lack of source context around source-side one-word edits.

The method described by Dandapat et al. (2011) first aligns, in a way similar to ours,
the words in s and s′ using the (word-based) edit distance (Wagner and Fischer, 1974)
and marks the mismatched sub-segments in s and s′ for translation. The mismatched
sub-segments in s are then aligned with their counterparts in t by using a sub-segmental
TM built on the user’s TM by means of the method used to obtain phrase tables in
statistical MT (Koehn, 2010). Finally, the sub-segments in t aligned to mismatched
sub-segments in s are replaced by the translations of the corresponding sub-segments
in s′ as they are found in the sub-segmental TM. There are three main differences
with our approach. First, context around mismatches is not taken into account, which
may lead to incorrect translations due to boundary friction problems (Carl and Way,
2003, p. 341), such as incorrect agreement or incomplete word reorderings. Second,
the methods relies on the user’s TM (which may be small) rather than on an external
SBI. And third, a single fuzzy-match repaired segment is produced, even when the
sub-segmental TM contains several translation alternatives per sub-segment, whereas
we generate as many fuzzy-match repaired segments as possible and then use QE to
select the best one.

A method for FMR to be applied on close matches is described by Bulté et al.
(2018). Their method first performs a simple punctuation repair and then applies a set
of edit operations —deletions, insertions and substitutions— to the target segment t of
the TU (s, t) being repaired. To detect the target sub-segments to be repaired it uses
statistical word alignment models. For deletions, it just removes from t the translation
of the mismatched sub-segment in s, and the word to the left of the sub-segment to be
removed if it is not aligned to any word in s. For insertions, it inserts in t the new sub-
segment between the two target words aligned with the matched words in s surrounding
the sub-segment in s′ not appearing in s. For substitutions, it translates anchored
mismatched sub-segments in s′, that is, mismatched sub-segments surrounded by words
common to s, one word at each end. The mismatched sub-segments are translated in-
context by translating the whole segment s′ using statistical MT and constraining the
output of the MT system to use the sub-segments of t aligned to sub-segments of s
common to s′ in a way similar to that used in Simard and Isabelle (2009); Zhechev
and Genabith (2010); Koehn and Senellart (2010). The main differences between this
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FMR approach and ours is that it uses statistical word alignments and treats in a
different way substitutions, deletions and insertions, whereas our approach does not
explicitly compute the alignment between the words in s and t and simply performs
string substitutions in t. In addition, this approach is not able to repair a target
segment t if the translation of the mismatched source sub-segment does not consist of
contiguous words in t; our approach does not have this limitation because it does not
impose any constraint on the amount of anchored words surrounding a mismatch sub-
segment and their location. Lastly, it can only use MT systems, such as Moses (Koehn
et al., 2007), that allow part of the translation to be fixed beforehand; in contrast, our
approach can benefit from any available SBI.

Finally, it is worth noting that some commercial CAT tools implement FMR meth-
ods. For example, MemoQ6 implements a feature called MatchPatch that uses term
bases and other resources for FMR, while Déjà Vu implements a feature called Deep-
Miner7 that extracts sub-segments from the very same TM being used for their use for
FMR. Unfortunately, details about how these methods work are not available. All of
these approaches can be considered a form of FMR similar to ours which is formally
introduced in the next chapter.

6https://www.memoq.com/whats-new-in-memoq-2015
7https://atril.com/key-features/



Chapter 2

Fuzzy-match repair using
black-box machine translation

This chapter goes over our fuzzy-match repair approach and the details of the

algorithm used for generating candidate fuzzy-match repaired segments. Experi-

ments and results are provided using a well-known DGT-TM translation memory

and, initially, the rule-based machine translation system, Apertium (Forcada et

al., 2011). Additionally, in order to compare other types of MT systems, experi-

mentation is conducted using Moses (Koehn et al., 2007) and Nematus (Sennrich

et al., 2017). We show that FMR can successfully edit target segments from the

TM and propose fuzzy-match repaired segments that are closer to the desired

translation.

2.1 Overview

In the following sub-sections, we illustrate the five steps followed by our FMR
approach at a high level by showing how repair operators are generated from a source
English segment s′ to be translated into Spanish and a TU (s,t). We then cover how
candidate fuzzy-match repaired segments in Spanish are generated.

2.1.1 Step 1: find mismatches and align

We first find the mismatched sub-segments between the source segment to be trans-
lated s′ and the source segment s in the TU (s,t). Imagine we are translating from
English to Spanish and the new segment to be translated is:

s′ = “The blue dog barks loud when it rains at night”

13
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The system shows a translation unit (s, t) from the translation memory and marks
mismatched words (in bold below):

s′ = “The blue dog barks loud when it rains at night”
s = “The red dog barks loud sometimes when it rains at night”
t = “El perro rojo ladra fuerte a veces cuando llueve por la noche”

According to Eq. (1.1) the fuzzy-match score is FMS(s′, s) = 81.8%, and as a side
result of the computation of the edit distance (Wagner and Fischer, 1974) between s′

and s, the alignment between the words in s′ and those in s is produced. The edit
operations needed to convert s into s′ are:

• one substitution: replace the word red in s by the word blue from s′, and

• one deletion: delete the word sometimes in s between the words loud and when.

2.1.2 Step 2: translate source-side sub-segments covering mis-
matches

Each one of the sub-segments σ from s covering a mismatch is sent to the external
machine translation system to obtain their corresponding target language translations
τ . The hope is to get a translation τ that exists in t so that the corresponding sub-
segment can be later replaced by the translation of the mismatched sub-segment σ′

from s′ to produce the desired translation t′.

If we choose Apertium (Forcada et al., 2011) as the MT system to translate the
sub-segments σ covering a mismatch, we get the following (σ, τ) pairs:1

• (the red dog, el perro rojo)

• (the red, el rojo)

• (red dog, perro rojo)

• (red, rojo)

• (loud sometimes when, fuerte a veces cuando)

• (loud sometimes, fuerte a veces)

• (sometimes when, a veces cuando)

• (sometimes, a veces)

2.1.3 Step 3: match the source-side translations to t

In step 3, we identify the (σ, τ) pairs for which τ appears in t and can, therefore,
be used to build repair operators. We keep the (σ, τ) pairs whose τ appears in t as a
contiguous sub-segment; see Table 2.1.

1For this example, only sub-segments of up to length three are considered.
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σ position in s τ position in t outcome
the red dog 1–3 el perro rojo 1–3 kept
the red 1–2 el rojo – discarded
red dog 2–3 perro rojo 2–3 kept
red 2–2 rojo 3–3 kept
loud sometimes when 5–7 fuerte a veces cuando 5–8 kept
loud sometimes 5–6 fuerte a veces 5–7 kept
sometimes when 6–7 a veces cuando 6–8 kept
sometimes 6–6 a veces 6–7 kept

Table 2.1: The (σ, τ) pairs where the translation τ of mismatched sub-segment σ appears
in the target segment t. Since the τ sub-segment, el rojo, is not found in t, it is discarded.

Sub-segments that do not have a match in t (e.g. the second one in Table 2.1) are
discarded and not used further in the repair process. Word positions in t not covered
by any translation τ of any sub-segment σ in s contain words for which there is no
evidence to modify them. In the absence of information, they are not changed.

2.1.4 Step 4: pair τ and τ ′ together to form repair operators

After the initial matching occurs from the translations of sub-segments in s to form
(σ, τ) pairs, (σ′, τ ′) pairs are created by translating mismatched sub-segments from the
source segment to be translated s′. The alignment found between words in s and words
in s′ during fuzzy matching is used to extract phrase pairs that project mismatched
sub-segments σ in s to their corresponding mismatched sub-segments σ′ in s′.2 The σ′

sub-segments are sent to the MT system to get their translations τ ′.

Once the translation of the σ′ sub-segments is obtained, fuzzy-match repair opera-
tors are created. A repair operator is a tuple of string-positioned sub-segments (σ,σ′,
τ ,τ ′) where τ ′ is used to replace (repair) the target sub-segment τ in t. Table 2.2 shows
the σ and σ′ sub-segments and their τ and τ ′ translations computed using Apertium.
There were a total of eight original (σ, τ) pairs in Table 2.1. The second (σ, τ) pair
(“the red”, “el rojo”) is discarded due to the lack of a τ match in t and, thus, does not
show up as a repair operator in Table 2.2 where there are 7 total operators.

In the running example, most of the τ ′ sub-segments are aligned word by word to
their corresponding τ sub-segments in part because their source sub-segments (σ′ and
σ) are also aligned word by word. Notice, however, that the fourth τ ′ (fuerte cuando
in Table 2.2) does not align word by word to its corresponding τ sub-segment (fuerte
a veces cuando) because it is a deletion case where the sub-segment (a veces) should
be deleted.

.

2For more details on alignment and phrase extraction see section 2.2.
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σ σ′ τ τ ′

#1 the red dog [1–3] the blue dog [1–3] el perro rojo [1–3] el perro azul
#2 red dog [2–3] blue dog [2–3] perro rojo [2–3] perro azul
#3 red [2–2] blue [2–2] rojo [3–3] azul
#4 loud sometimes when [5–7] loud when [5–6] fuerte a veces cuando [5–8] fuerte cuando
#5 loud sometimes [5–6] loud [5–5] fuerte a veces [5–7] fuerte
#6 sometimes when [6–7] when [6–6] a veces cuando [6–8] cuando
#7 sometimes [6–6] a veces [6–7] ε

Table 2.2: A set of repair operators for the source segment to be translated “The blue
dog barks loud when it rains at night” and the translation unit (“The red dog barks loud
sometimes when it rains at night”,“El perro rojo ladra fuerte a veces cuando llueve por
la noche”).

2.1.5 Step 5: apply the repair operators

Once the set of repair operators has been built, the final step is to apply them
to t to create fuzzy-match repaired segments. It is entirely possible to have multiple
combinations of repair operators that form multiple repaired segments t'. Below, are
some possible results of applying repair operators to t from the running repair example
after comparing them to the reference translation t′ (el perro azul ladra fuerte cuando
llueve por la noche):

• t'1 = el perro azul ladra fuerte cuando llueve por la noche - (correct, produced
by #1 and #4)

• t'2 = el perro azul ladra fuerte a veces cuando llueve por la noche - (incorrect,
produced by #2)

• t'3 = el perro rojo ladra fuerte a veces cuando llueve por la noche - (incorrect,
produced by #4)

• t'4 = el perro azul ladra fuerte cuando llueve por la noche - (correct, produced
by #2 and #4)

Repair operators can deal with all three types of edit operations: substitution,
insertion, and deletion. The repair examples shown above depict a substitution and a
deletion example. Nonetheless, insertions can be handled using repair also. Insertions
occur when τ ′ contains new words not in τ (most likely because its corresponding σ′

contained words that were not in the corresponding σ).

Note that deletions are typically produced with some overlap, that is, in context.
The example above, for instance, creates a repair operator (#4) that deletes the word
sometimes. We are able to use the context of the surrounding words loud and when
to determine deletion. Context used for repair in this manner is different from other
research: Hewavitharana et al. (2005), for example, apply all possible context-free
deletions according to statistical word alignment, and later score the resulting segments
to determine the best translation.
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It is worthwhile to note that repair operators, as seen above, may not always be
applicable because positions in t that are modified by a repair operator may not be
available for another repair operator when τ does not match the partially-repaired
sentence. That would make the two repair operators incompatible. The incompatibility
issue for repair operators and its implementation is covered in detail in section 2.3.

The FMR method generates all possible fuzzy-match repair segments t' obtained
by applying all possible sets of mutually compatible repair operators (see Section 2.2.1).
For the experiments in this chapter, candidate fuzzy-match repaired segments are de-
termined to be correct (or not) by comparing them to previously-translated “gold”
segments in a test set. The results of this oracle evaluation shows that our approach
is capable of generating fuzzy-match repaired segments close to the desired transla-
tion. Chapter 3 discusses a quality estimation method to automatically select the
fuzzy-match repaired segment to show to the CAT-tool user.

2.2 Fuzzy-match repair algorithm

A high-level description of how repair operators are built has been given. In order
to better illustrate the high-level steps, we dive deeper into the fuzzy-match repair
algorithm’s implementation. This section covers a two-part algorithm that entails:
1) the generation of fuzzy-match-repair operators and 2) the exploration of potential
repair operator combinations to generate the set of candidate fuzzy-match repaired
segments.

2.2.1 Generation of repair operators

Algorithm 1 describes the procedure for building the list of repair operators to be
applied for the generation of candidate fuzzy-match repaired segments.

To obtain the set of repair operators to be used, first, the alignment between the
words in s′ and those in s is obtained as a by-product of the computation of the
(word-level) edit-distance (Wagner and Fischer, 1974) between s′ and s, a component
of the fuzzy-match score. The string-positioned sub-segment pairs (σ, σ′), containing
unaligned (unmatched) words and their corresponding positions in s and s′, are then
obtained by using the phrase-pair extraction algorithm used in phrase-based statistical
MT to obtain bilingual phrase pairs (Koehn, 2010, section 5.2.3). These sub-segment
pairs are then translated into the target language to obtain the sets M and M ′ of
sub-segment translations µ and µ′ respectively using the SBI available. Finally, these
translations are used to build repair operators by looking for all the occurrences in t
of each target sub-segment µ to get the corresponding string-positioned target sub-
segments τ , and then associating to each τ the target sub-segment µ′ to get τ ′, the
sub-segment to be used for repairing. If µ is not found in t, no repair operator can be
built. This acts as a quality check that prevents the algorithm from building low-quality
repair operators.
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Algorithm 1 BuildRepairOp(s′, (s, t)) generates the list of repair operators to use.

Input: SL segment to be translated s′; TU (s, t) to be repaired
Output: A list of repair operators P

1: P ← () . Initially P is an empty list
2: A← EditDistanceAligner(s′, s)
3: for (σ, σ′) ∈ ExtractPhrasePairs(s′, s, A) do
4: M ← Translate(σ) . Set with translations of σ
5: M ′ ← Translate(σ′) . Set with translations of σ′

6: for µ ∈M do
7: for µ′ ∈M ′ do
8: for τ ∈ FindInSegment(µ, t) do
9: τ ′ ← AttachTranslationToString(τ, µ′)

10: append (σ, σ′, τ, τ ′) to P
11: end for
12: end for
13: end for
14: end for
15: return P

The example in Figure 2.1 illustrates how the list of repair operators is built. It is
worth noting that only in those cases in which µ, the translation of σ, is found as a
contiguous segment of words in the target segment t of the TU being repaired a repair
operator can be built; this is indicated by the fifth column in the table. This acts as
a quality check to avoid creating repair operators for sub-segments with insufficient
context that lead to translations that do not appear in t.

2.2.2 Generation of candidate fuzzy-match repair segments

Candidate fuzzy-match repaired segments are built from the list of repair operators
P by combining them in all possible ways. This is done through a backtracking depth-
first exhaustive search, depicted in Algorithm 2, that incrementally builds fuzzy-match
repaired segments t'.

The algorithm is initialized with two calls Repair(P, ∅, 1, (s, t), t, false, ()) and
Repair(P, ∅, 1, (s, t), t, true, ()), where () stands for an empty list. At each level of
the recursion tree a new repair operator is considered and tested for applicability
(D = true) or discarded (D = false). For a repair operator to be applicable it needs
to be compatible with the set of repair operators O applied so far to build t' (see
Section 2.3). If it is compatible with the rest of repair operators in O, the repair
operator is added to O and applied (lines 3–4); otherwise the branch of the recursion
tree is cut. When a leaf of the recursion tree is reached (i.e. n = length(P )) the
corresponding fuzzy-match repaired segment t' is added to the list T of candidate
fuzzy-match repaired segments. The algorithm ApplyRepairOp(o, t') replaces in t'
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σ σ′ µ µ′ µ in t?
Gina found [1-2] found [2] Gina encontró encontró no
Gina found [1-2] Bill found [1-2] Gina encontró Bill encontró no
Gina found out [1-3] found out [2-3] Gina se enteró se enteró yes
Gina found out [1-3] Bill found out [1-3] Gina se enteró Bill se enteró yes
found [2] Bill found [1-2] encontró Bill encontró no
found out [2-3] Bill found out [1-3] se enteró Bill se enteró yes
about the [4-5] about the fraud [4-6] sobre el de la estafa no
about the news [4-6] about the [4-5] de noticias sobre el no
about the news [4-6] about the fraud [4-6] de las noticias de la estafa yes
the [5] the fraud [5-6] el la estafa no
the news [5-6] the [5] las noticias el yes
the news [5-6] the fraud [5-6] las noticias la estafa yes

Figure 2.1: Example illustrating how the list of repair operators is built. The segment
s′ = Bill found out about the fraud is to be translated into Spanish with the help of the
TU (s, t)=(Gina found out about the news, Gina se enteró de las noticias). Unmatched
(unaligned) words in s′ are Bill and fraud ; unmatched (unaligned) words in s are Gina
and news. The string-positioned sub-segment pairs (σ, σ′) shown are those up to length
3 that contain at least an unmatched word. Their translations (µ, µ′) into Spanish are
also provided. In this example, we assume that every σ and σ′ has a single translation,
that is, that M and M ′ are singletons.

the sub-segment τ by τ ′; this can be safely done if repair operator Pn is compatible
with the other repair operators applied so far.

This algorithm takes advantage of the fact that repair operators that are compatible
can be applied in any order because the repaired segment to be generated would be the
same. Thanks to this assumption, the worst-case complexity of the algorithm is O(2n),
with n = length(P ), in which case 2n repaired segments would be produced.3 However,
as many repair operators are incompatible, the actual complexity of the algorithm is
well below the worst case (see Section 2.6).

For the example introduced in section 2.2.1, Algorithm 1 would produce 26 = 64
repaired segments if all 6 repair operators were compatible. However, most of them
are not compatible because they edit the same words in t and the algorithm ends
up producing only 25 repaired segments. Some of these 25 fuzzy-matched repaired
segments are identical but are produced by applying a different set of repair operators.
For instance, the repaired segment Bill se enteró de la estafa is produced by applying
the repair operator (Gina found out,Bill found out,Gina se enteró,Bill se enteró) and
either the repair operator (about the news, about the fraud, de las noticias, de la estafa)
or the repair operator (the news, the fraud, las noticias, la estafa).

3If the algorithm had to explore the application of all the repair operators in P and in all possible
orders its worst-case complexity would be super-exponential.
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Algorithm 2 Repair(P,O, n, (s, t), t', D, T ) generates all possible fuzzy-match re-
paired segments by backtracking.

Input: List of repair operators P ; set of repair operators O applied so far; position in
P of the repair operator being considered, n; TU to be repaired (s, t); fuzzy-match
repaired segment being built t'; boolean D indicating whether the n-th repair
operator in P will be attempted to apply (true) or not (false), list T containing
fuzzy-match-repaired segments

1: if D then
2: if Compatible(Pn, O, (s, t)) then
3: ApplyRepairOp(Pn, t

')
4: O ← O ∪ {Pn} . Add compatible repair operator
5: else
6: return . Prune this branch of the recursion tree
7: end if
8: end if
9: if n = length(P ) then

10: append t' to T . Add candidate fuzzy-match repaired segment to list T
11: return . All the repair operators have been considered
12: else
13: Repair(P,O, n+ 1, (s, t), t', true, T ) . Continue by applying operator n+ 1
14: Repair(P,O, n+1, (s, t), t', false, T ) . Continue by not applying operator n+1
15: end if

2.3 Compatibility between repair operators

Two repair operators are deemed incompatible, and therefore cannot be applied to
build the same candidate fuzzy-match repaired segment, if they edit the same word in
t or if they work on the same source-side mismatch, that is, if they take care of the
same change in s. Note that there may be repair operators that do not edit any word
in t but introduce missing ones. In those cases, if they were applied to build the same
candidate fuzzy-match repaired segment, they could end up producing candidate fuzzy-
match repaired segments t' with repeated words. The following example illustrates this
situation. Suppose the segment s′ = the size does not exceed 100 cm to be translated
with the help of the translation unit (s, t) = (the size does not exceed 100, el tamaño no
supera los 100) whose target segment can be repaired with the two repair operators
(σ1, σ

′
1, τ1, τ

′
1) = (exceed 100, exceed 100 cm, supera los 100, supera los 100 cm) and

(σ2, σ
′
2, τ2, τ

′
2) = (100, 100 cm, los 100, los 100 cm). Both repair operators do not edit

(change) any word in t but if they are applied one after the other the result would
be the fuzzy-match repaired segment t' = el tamaño no supera los 100 cm cm, which
contains duplicated words due to the fact that the word cm is to be inserted by both
operators.
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To avoid this problem we need to identify when two repair operators work on the
same source-side mismatch, and to do so, one needs to check the mismatches both in s
and s′ because there may be words in s not appearing in s′ (the mismatch only shows
up in s), or words that do not appear in s but are introduced in s′ (the mismatch only
shows up in s′, as in the example above). Hence two repair operators oi = (σi, σ

′
i, τi, τ

′
i)

and oj = (σj, σ
′
j, τj, τ

′
j) will be marked as incompatible if they edit the same word in t

or they meet the following condition:

(mismatch(σi, s) ∩mismatch(σj, s) 6= ∅)∨
(mismatch(σ′i, s

′) ∩mismatch(σ′j, s
′) 6= ∅)

where mismatch(x, y) returns the set of mismatched words covered by sub-segment x
in segment y.

It is worth nothing that this last restriction may mark as incompatible two repair op-
erators that, even though they work on the same mismatch, do not edit the same words
in t. In those cases it is still advisable to forbid the application of the two repair oper-
ators since it is very likely that they work on the same region in t and their application
interfere with one another. The following example illustrates this situation. Sup-
pose the segment s′ = the size is around 100 cm to be translated with the help of the
translation unit (s, t) = (the size is about 50 cm, el tamaño es de unos 50 cm) whose
target segment can be repaired with the two repair operators o1 = (σ1, σ

′
1, τ1, τ

′
1) =

(is about, is around, es de unos, está alrededor de) and o2 = (σ2, σ
′
2, τ2, τ

′
2) =

(about 50, around 100, de unos 50, de unos 100). Both operators share a mismatch
(about) but do not edit the same words in t: o1 edits the word es (which is re-
placed by está), introduces the word alrededor and removes (edits) the word unos ;
o2 edits the word 50 and replaces it by 100. The two operators can be applied
at the same time if operator o2 is applied first —the repaired target segment being
t' = el tamaño está alrededor de 100 cm— but not the other way around. Recall that
the algorithm described in Section 2.2 assumes that repair operators can be applied
independently of each other and the order in which they are applied does not affect
the final result.

2.4 Experimental settings

To evaluate the potential of the fuzzy-match repair algorithm described in Sec-
tion 2.2, we perform an oracle evaluation (Section 2.4.3) on three different language
pairs: English–Spanish (en–es), Spanish–Portuguese (es–pt) and Spanish–French (es–
fr). These language pairs are chosen to study how the method behaves when translating
between closely-related languages (e.g. Spanish–Portuguese and Spanish–French) and
when the languages involved in the translation are not so closely related (English–
Spanish). In addition, of the two closely-related language pairs we use, Spanish and
Portuguese are more alike than Spanish and French: Spanish and Portuguese are both
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en–es es–pt es–fr

TM
# TUs 196,294 150,567 149,479
Avg. SL segment length 9.61 27.24 27.35

Test set
# SL segments 1993 1983 1983
# SL words 40238 45334 46350
Avg. SL segment length 20.19 22.67 21.73

Table 2.3: Data about the TMs and their corresponding source language (SL) segments
and words from the test sets used in the experiments.

pro-drop, Ibero-Romance languages —they permit null-subject sentences— whereas
French is a non-pro-drop Gallo-Romance language.

Our experiments use various MT systems as the black-box source of bilingual
information. In particular, we first compare how well FMR performs using Aper-
tium (Forcada et al., 2011), an RBMT system. Then, as a secondary experiment, we
use two MT systems from distinct paradigms: Moses (Koehn et al., 2007), a phrase-
based SMT system, and Nematus, an RNN-based sequence-to-sequence with attention
NMT system, on the worst performing language pair (en–es) as a way to test if FMR
backed by MT systems from distinct paradigms makes a difference on the outcome.

In this chapter, we evaluate the potential of the FMR method with fuzzy-match
score thresholds of 60%, 70% and 80% with the aim of studying whether out method
is more capable of repairing fuzzy matches above a given threshold. In this regard it is
worth noting that professional translators usually set the fuzzy-match score threshold
above 60% (Bowker, 2002). In later chapters, we extend our experiments even further
to cover thresholds of 90%.

2.4.1 Corpora

As for the corpora used for the experiments, we use three translation memories, one
per language pair, extracted from the DGT-TM 2015 multilingual translation memory;4

each translation memory contains between 145,000 and 200,000 translation units. In
addition, we also extract three test sets from the same source. Each test set contains
around 2,000 parallel segments with source segments no longer than 100 words. The
experiments consist of simulating the translation of each source segment in the test
sets when using the TMs and using the corresponding target-language segment as a
reference for evaluation. Table 2.3 provides additional information about the TMs and
test sets used.

2.4.2 Machine translation systems

In the trade-off between adequacy (translations with the same meaning as the
source) and fluency (translations that sound fluid or natural), NMT systems, tend

4https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
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towards greater fluency, while sometimes producing fluent-sounding but semantically
inadequate output (Bojar et al., 2016; Koehn and Knowles, 2017; Toral and Sánchez-
Cartagena, 2017). In FMR, a full segment from the TM may provide the (fluent)
backbone for the translation, while only containing a few sub-segment mismatches
(such as numbers, names, and noun phrases). This naturally raises the question of
how RBMT (which may provide greater adequacy for individual sub-segments) will
compare to NMT systems (which may provide greater fluency) or SMT systems (which
may fall between the two) for FMR.

The MT systems are used to build repair operators by translating sub-segments
σ into the target language and to translate the segments in the test set for which
a fuzzy match above the given threshold has not been found. They are used, more
formally, to provide a single translation for each source segment;5 and, they reflect
the three paradigms mentioned: RBMT, SMT, and NMT. SMT and NMT systems
are used here as a non-methodical way of validating ideas from the latest work in
MT that point towards better-scoring translations which would, in turn, improve this
work’s worst performing FMR system based on English to Spanish translation with
Apertium (Forcada et al., 2011). NMT systems submitted to the Second Conference
on Machine Translation (WMT17), such as those built using the Nematus toolkit
(Sennrich et al., 2017) have produced state-of-the-art performance across a number of
language pairs (Bojar et al., 2017). NMT has been applied to other CAT applications,
namely interactive translation prediction, (Knowles and Koehn, 2016; Wuebker et al.,
2016) and neural approaches have been used for automatic post-editing (Pal et al.,
2016; Junczys-Dowmunt and Grundkiewicz, 2016; Hokamp, 2017). Rarely, has NMT
been used as the backing MT system for FMR.

Neural MT (Nematus)

We use the RNN-based sequence-to-sequence attention-based encoder-decoder Ne-
matus (Sennrich et al., 2017) and the compatible AmuNMT decoder6 (Junczys-Dowmunt
et al., 2016).

Initial model training is done using Europarl v7 (Koehn, 2005) and News Com-
mentary v10 data7 (WMT13 training data for English–Spanish), with 2012 News Test
data for validation. Following the domain adaptation method described in Luong and
Manning (2015) and Freitag and Al-Onaizan (2016), we continue training on DGT-TM
2011–2013, with 3000 parallel sentences from the 2014 release as validation data.8

We use these training parameters: vocabulary of size 50,000, word embedding layer
size of 500, hidden layer size of 1000, batch size of 80, Adadelta (Zeiler, 2012) as the
optimizer, maximum sentence length of 50, and default learning rate of 0.0001. All

5That is, sets M and M ′ in lines 4 and 5 of Algorithm 1 are singletons in this case.
6Now part of Marian (https://github.com/marian-nmt/marian).
7http://www.casmacat.eu/corpus/news-commentary.html
8As the fuzzy-match repair scenario assumes that no sentences from that test set have been observed

in the TM, we remove exact test set matches from DGT-TM training data.
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other parameters are set to Nematus defaults. Data is pre-processed with the standard
pre-processing scripts: tokenization, truecasing, and byte pair encoding (Sennrich et
al., 2016) with 10,000 operations. We report scores with a beam size of 12.

Phrase-Based SMT (Moses)

We use Moses (Koehn et al., 2007) to train our phrase-based statistical SMT system
using the same parallel text as the NMT model, with the addition of Common Crawl,9

for phrase extraction. Europarl v7, News Commentary v10, monolingual News Crawl
from 2007–2011, Spanish Gigaword v3 (Mendonça et al., 2011), and the target side of
DGT-TM was used to build a 5-gram interpolated language model.

We use an operation sequence model (Durrani et al., 2015) with order 5, Good-
Turing discounting (Good, 1953) of phrase translation probabilities, grouped phrase
pairs according to counts, pruning of low-probability phrase pairs, and sparse features
for target word insertion, deletion, and translation, and phrase length. Tuning is run
on the same DGT-TM data used for NMT model validation.

Rule-Based MT (Apertium)

Apertium10(Forcada et al., 2011), is a RBMT system, which performs translation
using a pipeline of components: a morphological analyzer, a part of speech tagger,
a lexical transfer module (which uses a bilingual dictionary to translate lexical forms
from source language to target language), a structural transfer module (which performs
syntactic operations), and a morphological generator.

For the primary multi-language pair (en–es, es–pt, and es–fr) experiments (Ta-
ble 2.4), we use the language-pair packages apertium-en-es,11 apertium-es-pt12 and
apertium-fr-es13, respectively. In the secondary experiments, performed later in
time, a more recent version of apertium-en-es is used.14

Machine translation performance

During development of fuzzy-match repair, it became clear that the original version
of Apertium used performed worse than other, more state-of-the-art, MT systems. In
order to better understand the difference in quality of the three systems, we present
comparative information in Table 2.4 that provides the word error rate (WER) and
BLEU scores attained by the initial, Apertium-only,15 experiments and then the sec-
ondary, multi-MT system that uses a newer version of Apertium,16 Nematus, and

9Available at http://www.statmt.org/wmt13/translation-task.html
10https://www.apertium.org
11SVN revision 64348.
12SVN revision 62539.
13SVN revision 62696.
14SVN revision 83165.
15en–es, SVN version 64348.
16en–es, SVN version 83165.
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Primary Experiments Secondary Experiments
Apertium Apertium Moses Nematus

en–es es–pt es–fr en–es
WER 65.3% 47.4% 55.2% 60.8% 35.2% 36.8%
BLEU 18.6% 36.4% 24.7% 19.2% 57.2% 52.6%
OOV 2.6% 2.4% 2.4% 2.5% 2.5% 2.5%

Table 2.4: Multiple experiments performed that first focus on three language pairs
(en–es, es–pt, and es–fr) with Apertium. Then, secondary experiments with several
MT systems are done on the worst-performing language pair (en–es). Primary exper-
iments use Apertium (apertium-en-es: SVN revision 64348, apertium-es-pt: SVN
revision 62539, and apertium-fr-es: SVN revision 62696). Secondary experiments
focus on the en–es language pair with three MT systems: a more recent version of
Apertium (apertium-en-es: SVN revision 64348), Moses and Nematus. Additionally,
out-of-vocabulary words (OOV) are provided for all experiments.

Moses. Additionally, we show the percentage of out-of-vocabulary words (OOV) for
both sets of experiments.

As seen in Table 2.4, Apertium needs less post-editing in the case of two closely-
related language pairs (es–pt and es–fr), unlike the case of English–Spanish. Gains,
however, for the en–es language pair were achieved by using the SMT (Moses) and NMT
(Nematus) systems instead. This is probably due to the fact that the SMT and NMT
systems have more resources and are better statistical estimators whereas Apertium,
which is a shallow-transfer RBMT system, aims at translating between closely related
languages and may not have enough transfer rules to address most of the grammatical
divergences between English and Spanish. Our results are favorable, even in the case
of the lower-performing MT system from the primary experiment – Apertium. The
newer version of Apertium used in the secondary experiment lowered the word-error
rate by nearly 5%.

2.4.3 Oracle evaluation

The way to study the potential of our approach for fuzzy-match repair has been to
generate, for each source segment s′ in the test set, the set of all possible fuzzy-match
repaired segments T and then use t′, the translation of s′, to choose the best one and
evaluate its quality. Obviously, in a real setting t′ would not be available and the best
fuzzy-match repaired segment would need to be chosen using a method similar to those
used for estimating the quality of machine translation output (see Chapter 3). What
follows is a detailed explanation of the procedure we have followed with each source
segment s′ in the test set:

1. Retrieve the set of translation units U whose fuzzy-match score FMS(s′, s) is
above the desired fuzzy-match threshold θ.
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2. If there is no translation unit (s, t) so that FMS(s′, s) ≥ θ, i.e. U = ∅, use
machine translation to get a translation for s′. Otherwise use the TU (s, t) ∈ U
with the highest FMS(s′, s) and produce the set T with all possible fuzzy-match
repaired segments.

3. Select the fuzzy-match repaired segment t' ∈ T with the minimum edit distance
to t′.

Once all the segments in the test set have been processed, the translations produced (t�)
are evaluated by comparing them to the target segments in the test set and computing
the error rate over the whole test set as follows:∑N

i=0 ed(t�i , t
′
i)∑N

i=0 max(|t∗i |, |t′i|)
(2.1)

where ed(x, y) returns the word-based edit distance between the segments x and y, N
is the number of segments in the test set, and |x| is the number of words of segment
x. This way of computing the error rate resembles the way in which the fuzzy-match
score is computed and accounts for the amount of operations needed to carry out a
translation job.17

2.5 Results

2.5.1 Multiple language pairs with Apertium

Table 2.5 shows, for the three different language pairs on which we have evaluated
our approach and for three different fuzzy-match score thresholds (FMT) —60%, 70%
and 80%—, the error rate computed as described in Equation (2.1) when:

TM: the target segment in the translation unit with the highest fuzzy-match score is
used as a translation, if available; otherwise, an empty translation is used, and
therefore the error reflects the need to type the words in the reference translation.

MT: the same machine translation system used as SBI (Apertium) is used to translate
the source segments in the test set.

FMR: the translation to be evaluated is obtained by applying the fuzzy-match repair
algorithm described in Section 2.2 with the translation unit with the highest
fuzzy-match score, if available, and selecting the fuzzy-match repaired segment
that is closer to the reference translation (oracle); otherwise, the translation is
produced using machine translation.

17For instance, OmegaT (http://www.omegat.org) computes the fuzzy-match score between s and

s′ as 1− ed(s,s′)
max(|s|,|s′|) .
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FMT: 60%
en–es es–pt es–fr

TM MT FMR TM MT FMR TM MT FMR
Error (%) 55.0 65.3 36.5 56.5 47.4 31.3 56.4 55.2 34.7
Er. (%) on matches 20.1 65.3 17.9 22.5 47.4 17.0 20.3 55.2 16.5
# matches 1184 1993 1184 1221 1983 1221 1206 1983 1206
Avg. length 22.6 22.1 22.6 21.1 20.6 21.1 22.8 22.4 22.8

FMT: 70%
en–es es–pt es–fr

TM MT FMR TM MT FMR TM MT FMR
Error (%) 61.0 65.3 38.5 62.4 47.4 31.8 62.3 55.2 35.6
Er. (%) on matches 16.3 65.3 14.6 18.0 47.4 13.9 15.8 55.2 12.8
# matches 828 1993 828 777 1983 777 786 1983 786
Avg. length 22.4 22.1 22.5 20.8 20.6 21.1 22.6 22.4 22.6

FMT: 80%
en–es es–pt es–fr

TM MT FMR TM MT FMR TM MT FMR
Error (%) 69.7 65.3 42.6 70.1 47.4 33.8 69.5 55.2 38.2
Er. (%) on matches 13.1 65.3 11.9 15.3 47.4 11.9 12.2 55.2 9.7
# matches 660 1993 660 641 1983 641 649 1983 649
Avg. length 22.3 22.2 22.4 20.8 20.6 21.1 22.5 22.4 22.8

Table 2.5: For the three different language pairs considered in our evaluation and for
three different means of translation —translation memory (TM), machine translation
(MT) and fuzzy-match repair (FMR)— and fuzzy-match score thresholds (FMT), the
table gives the error rate over the whole test set, the error rate over the segments in the
test set for which a match above the given threshold is found in the translation memory,
the amount of these segments (# matches) and the average length of the target segments
produced.

Two error rates are reported, one computed on the whole test set and another computed
only on the set of segments for which a TU with a fuzzy-match score above the given
threshold is found (error on matches). The former provides and indication of the actual
translation effort a translator would made to translate the source segments in the test
set. The latter provides an indication of the performance of our method for fuzzy-
match repair (FMR) without the interference of whole-segment machine translation,
since it focuses only on those segments for which there is a translation unit to repair.
This allows to directly compare FMR performance to that of using the target segment
in the best TU without any repair (TM). In addition, the number of source segments
for which a match is found in the translation memory and the average length of the
translations produced are provided.

Error rate is measured at the word level and over the entire test set. The error rate
over the test set grows with the fuzzy-match score threshold (FMT). This happens
because the greater this threshold is, the less source segments can be translated using
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Figure 2.2: Error rate when using Apertium and three language pairs for evaluation
over the segments in the test set for which a match above the fuzzy-match score threshold
is found in the translation memory.

fuzzy-match repair and, as a consequence, the amount of segments that are translated
with Apertium grows. If we focus only on those segments that can be translated
by means of FMR, we can see that the error rate decreases as the threshold grows;
Figure 2.2 show how the error rate from the initial multi-language experiment with
Apertium on matches behaves as a function of the fuzzy-match score threshold. This
is the expected behavior because as the threshold grows the amount of words to repair
decreases.

2.5.2 Apertium, Moses, and Nematus on the English to Span-
ish language pair

The initial experiments in Table 2.5 show how well FMR performs using the best-
case (oracle) candidate fuzzy-match repaired segment along with a rule-based MT
system, Apertium, and three language pairs. This section takes a deeper dive into
other MT paradigms with a focus on English to Spanish. Focus is placed on the en–
es experiments for two reasons. First, because English-to-Spanish MT systems can
benefit more from the plethora of data than other language pairs, resulting in higher
quality, in-domain, translations. Secondly, the need to better the results gotten from
the initial experiments with the en–es language pair was evident.

Table 2.6 reports the results using three MT paradigms: Apertium (RBMT), Moses
(SMT) and Nematus (NMT). Test data is also drawn from the 2015 DGT-TM data
set. While the initial experiments are unable to better the translation memory score
by more than 3 points, using other MT paradigms: statistical (Moses) and neural
(Nematus), with the same data nearly maintains a 3 point spread for all experiments.
Thus, a good part of the difference in performance between the three language pairs
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FMT: 60%
NMT SMT RBMT

TM MT FMR TM MT FMR TM MT FMR
Error (%) 55.0 36.8 27.1 55.0 35.2 26.7 55.0 60.8 37.5
Er. (%) on matches 20.8 36.8 15.2 20.8 35.2 15.6 20.8 60.8 18.5
# matches 1184 1993 1184 1184 1993 1184 1184 1993 1184
Avg. length 22.6 22.1 22.6 22.6 22.1 22.6 22.6 22.1 22.6

FMT: 70%
NMT SMT RBMT

TM MT FMR TM MT FMR TM MT FMR
Error (%) 61.0 36.8 20.8 61.0 35.2 27.3 61.0 60.8 39.6
Er. (%) on matches 16.7 36.8 12.0 16.7 35.2 12.7 16.7 60.8 15.0
# matches 828 1993 828 828 1993 828 828 1993 828
Avg. length 22.4 22.1 22.5 22.4 22.1 22.5 22.4 22.1 22.5

FMT: 80%
NMT SMT RBMT

TM MT FMR TM MT FMR TM MT FMR
Error (%) 69.7 36.8 28.5 69.7 35.2 27.9 69.7 60.8 43.7
Er. (%) on matches 13.4 36.8 9.4 13.4 35.2 10.4 13.4 60.8 12.2
# matches 660 1993 660 660 1993 660 660 1993 660
Avg. length 22.3 22.2 22.4 22.3 22.2 22.4 22.3 22.2 22.4

Table 2.6: Secondary experiments for three different MT paradigms: neural (NMT),
statistical (SMT), and rule-based (RBMT). We evaluate three different means of trans-
lating English to Spanish: translation memory (TM), machine translation (MT) and
fuzzy-match repair (FMR) using various fuzzy-match score thresholds (FMT). The table
gives the error rate over the whole test set, the error rate over the segments in the test
set for which a match above the given threshold is found in the translation memory, the
amount of these segments (# matches) and the average length of the target segments
produced. Apertium, the RBMT system, scores better here than the primary experi-
ments in Table 2.5 due to the use of a more up-to-date version (en–es: SVN 85136); yet,
Nematus (NMT) and Moses (SMT) still outperform it.

can be attributed to the performance of the MT system; if we pay attention to the
performance of FMR when the evaluation only focuses on those segments for which
a match has been found, we can see that the scores reported are quite similar for all
language pairs, even though this does not happen in the case of the MT scores reported,
i.e. our method for fuzzy-match repair appears to be quite robust to MT errors.

From the results in Table 2.6, it is clear that an error rate below that of using
the target segment in the best translation unit (TM) and below that of using machine
translation (MT) can be achieved by all MT systems. Additionally, we can conclude
that for the worst-performing language pair (en–es), an FMR system backed with an
SMT or NMT system outperforms the RBMT system by nearly 20 error-rate points (3
points when using matched segments alone) for all fuzzy-match thresholds.
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The difference between the best candidate fuzzy-match repaired segment produced
(oracle) by our algorithm and the MT-produced translations reveals that our FMR
approach is quite robust to MT errors. This is because for a repair operator to be
successfully built, τ , the translation of the sub-segment σ of s, must appear as a
contiguous text sub-segment in t, the translation proposal being repaired. This acts
as a quality filter that makes our FMR approach not to use for repairing sub-segments
for which the SBI does not match the TM. Obviously, this quality check cannot be
performed on τ ′, the translation of the sub-segment σ′ in s′ aligned with σ. However,
it seems that having a quality check on τ helps to ensure that most of the repair
operators built are of good quality.

Interestingly, despite having worse error rates on full-sentence translations, the
NMT system actually outperforms the SMT system as a source of bilingual information
for FMR on the subsets of data for which TM matches were found. The SMT system’s
high performance on all source segments (“Error (%)” row in Table 2.6) is due to
the higher quality translations of the entire segment when a fuzzy-match is not found
in the TM. Poorer performance of the RBMT system can be attributed to two main
factors: 1) Apertium is a shallow transfer system designed for the translation between
closely-related languages like Spanish and Portuguese; and, 2) Apertium generally
requires wider context for high-quality translations due to its use of transfer rules.
All of the MT systems outperform the no-repair TM baseline error rate (in which we
simply computed the error rate for the best fuzzy-matches from the TM, without any
repairs). Table 2.7 depicts an example from the data.

The NMT system outperforms SMT and RBMT for FMR on matches and is more
often successful at repairing segments. While the SMT and NMT display stronger
performance over the RBMT system and, thus, require more attention here, we include
some details of the RBMT performance as well to better understand how all systems
compare. At the 60% FMT level, the SMT system successfully produced repairs for
788 segments, while the NMT system successfully produced repairs for 957 segments,

s′:src promote human resources training;

t′:ref promover la formación de los recursos humanos;

s:TM promote human resources development;

t:TM fomentar el desarrollo de los recursos humanos;

RBMT fomentar el desarrollo de los los recursos
humanos que entrenan;

SMT fomentar la formación de recursos humanos;

NMT fomentar los recursos humanos;

Table 2.7: Example segments, showing the best fuzzy-match repaired segments for three
MT systems.
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and the RBMT system for 825 (out of a possible 1184 segments).18 Since those are
two distinct sets of segments, we cannot directly compare the error rate. We first
examine the intersection of those sets (the subset of segments for which the three
systems successfully performed FMR).

A total of 754 segments were successfully repaired by all systems. There were
34 segments which the SMT system repaired and the NMT system did not, and 203
segments for which the opposite was true. Of the 754 segments repaired by both, 212
were repaired better by the NMT system, 139 were repaired better by the SMT system,
and 403 were repaired equally well by the two MT systems (all in terms of error rate).
Computing the error rate over this shared 754 segment set, we find that the error rate
of the SMT system (14.4%) is quite close to that of the NMT system (14.3%). This
suggests that the NMT system’s ability to repair more sentences plays a major role in
its better FMR results.

The NMT system produced an average of 1.92 possible repaired segments per source
segment (standard deviation: 1.29, maximum: 9). Using the SMT system, an average
of 1.68 possible repaired segments were produced per source segment (standard devi-
ation: 0.92, maximum: 7). In a real-world setting, the system would need to choose
between more repaired options for the NMT system than the SMT system.

2.5.3 A closer look at repair operator creation and perfor-
mance

With respect to the process of building repair operators, and since the performance
of the machine translation system differs between the language pairs, it is worth study-
ing how successful FMR is when building repair operators. Figure 2.3 plots the success
rate when building repair operators as a function of the length of the source sub-
segments σ for a fuzzy-match score threshold of 60%, 70% and 80%. As can be seen,
success rates for different fuzzy-match thresholds behave very similarly. A repair oper-
ator is successful when the translation of the sub-segment σ of s is found in t, that is,
when the machine translation system and the proposed translation unit exactly agree
on the translation of a source sub-segment: this acts as a safety feature, as repair is
not attempted when this agreement is absent.

As seen in Figure 2.3, the longer the sub-segments the harder it is that the trans-
lation obtained from the MT system is found in t. This behavior is present in all the
language pairs and is more pronounced when the translation involves non-related lan-
guage pairs (en–es); hence, our analysis focuses on those σ sub-segments. Nonetheless,
the average length of σ in the repair operators used to build the fuzzy-match repaired
segment chosen by the oracle when the fuzzy-match score threshold is set to 80% is
around 2.8 words for en–es, 3.7 for es–fr and 4.7 for es–pt.

18Professional translators typically use higher fuzzy-match thresholds, but we select 60% in this
section to provide the greatest amount of data for direct comparison of repairs.
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Figure 2.3: Success rates when building repair operators using three different MT
system: Apertium (RBMT), Nematus (NMT), and Moses (SMT) for English to Spanish
and for fuzzy-match score thresholds (FMT) of 60%, 70%, and 80%. Success rates
are provided as a function of the number of words in the source sub-segments σ being
translated when building repair operators.

We examine the sub-segment translations produced by the RBMT (Apertium),
NMT (Nematus) and SMT (Moses) systems to gain insight about what allows the NMT
system to repair more segments and produce more candidate fuzzy-match repaired
segments per segment in those cases where the length of σ is between 2 and 3. On
the other hand, we also examine σ using Moses for lengths of 4 to 10. Notably, Moses
performs well over more σ sub-segments than the other MT systems.

First, we look at the lengths of the translations of the sub-segments. Particularly,
we focus on the two higher performing systems from Table 2.6: SMT and NMT. For
both the SMT and NMT systems, the translations tend to be longer than the source
sub-segments (64% of the time for the SMT system and 58% of the time for the NMT
system). The NMT system produces translations that are shorter than the source 23%
of the time, while the SMT system does so 18% of the time. They also differ in the
range of lengths; the NMT system has more extreme values, sometimes producing no
translation at all and even occasionally producing translations more than three times
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the length of the longest source segment. On average, the SMT translations are 2.37
tokens longer than the source sub-segments (standard deviation of nearly 3.95). The
NMT translations average 2.71 tokens longer than the source, with a much greater
standard deviation of 10.26. The very long NMT translations may be more likely to
be discarded (due to not matching), but the very short translations may be easier to
find matches for in the TM target side, contributing to the larger number of sentences
the NMT system repairs. As an aside, RBMT generally fairs well for sub-segments
where words are to be replaced (e.g. short segments of 1 to 3 words where adjectives
are to be replaced), much like the SMT system; however, SMT performs equally well
on deletions and insertions.

We also note a qualitative difference: the SMT system often add additional punc-
tuation that was not included in the source, as well as determiners. These spurious
tokens could make it harder to find matches in the TM target segments, resulting
in fewer opportunities for fuzzy-match repair. This could be caused by the language
model providing higher scores to the phrases that include those tokens.

The sub-segments that are most often translated for FMR are not complete seg-
ments; rather, they are sub-segments that can be taken from any point in the original
segment. This poses a potential challenge for any MT system which is trained on full
segments. In the case of the SMT system, the language model may prefer sub-segment
translations that include, for example, determiners or additional punctuation, as we
observed. NMT systems have been observed to do a poor job of handling data that
differs from the original training data, often producing fluent-seeming text that has
little to do with the source. While this mismatch does not seem to have had a strong
negative impact on the overall results, it is possible that the results could still improve
if the sub-segmental input were better matched to the training data.

2.6 Actual complexity of the repair algorithm

In Section 2.2.1, we saw that the worst-case complexity of the repair algorithm is
O(2n), where n is the number of repair operators available for a TU (s, t) and segment to
be translated s′. Usually, not all repair operators are compatible, and cannot therefore
be applied together to produced a fuzzy-match repaired segment (see Section 2.3); as a
result, the actual complexity of the algorithm is drastically reduced. Figure 2.4 shows,
for en-es, the ratio of fuzzy-match repair segments produced to those that would be
produced in the worst case (2n) as a function of n. As can be seen, this ratio decreases
as n increases and is quite close to zero when the amount of repair operators is high.
This accounts for the practicality of the approach.
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Figure 2.4: For en-es, ratio of fuzzy-match repair segments produced to those that
would be produced in the worst case.

2.7 Concluding remarks

In this chapter, we have introduced our fuzzy-match repair approach. We first
covered the general FMR approach, capable of using any available source of bilingual
information, such as an MT system, to generate a set of fuzzy-match repaired segments
from the source segment to be translated s′ and a TU (s,t) from the TM. In order to
show the details of our approach, a review of the five-step repair process is presented.
First, our approach locates mismatches between the source segment to be translated s′

and the source segment s from the TU to be repaired. We align those mismatches using
a well known phrase extraction algorithm (Koehn, 2010, section 5.2.3) and then, in the
second step, translate the source-side sub-segments gotten from those mismatches. In
the third and fourth steps, we pair sub-segment translations together to form repair
operators. Finally, in the fifth step, we apply the mutually compatible repair operators
to generate fuzzy-match repaired segments.

After walking through the five steps of our FMR approach, to give the reader a
better understanding through the use of a running example, we dive deep into the FMR
algorithm in Section 2.2. Particularly, we provide an algorithmic description of how
repair operators are generated and how fuzzy-match repaired segments are obtained
by applying them. To illustrate its application, we provide an in-depth analysis of
repair creation drawn from another running example which shows the robustness of
our approach.

Repair compatibility, first described in Section 2.3, is clearly defined to describe
how our approach avoids situations where two repair operators are incompatible and
cannot be applied together to produce the same fuzzy-match repaired segment. The
compatibility of repair operators leads way to a thorough analysis of the actual com-
plexity of our algorithm. Additionally, an in-depth analysis is performed in Section
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2.5.3 that shows that our repair method generally performs well on repairs between
two and five words long. The actual compatibility analysis combined with the repair
operator analysis provide the necessary details to show how the FMR approach would
perform.

Our experimentation illustrates the FMR approach’s performance with three differ-
ent language pairs (en–es, es–pt, es–fr) using a well-known TM (DGT-TM). The oracle
evaluation we have conducted reveals the potential of our FMR approach. For the
three language pairs experimented on, we consistently improve the translation qual-
ity produced —both with respect to raw machine translation and unrepaired fuzzy
matches— despite the initial MT system (Apertium) performance as compared to the
more state-of-the-art systems (Moses and Nematus).





Chapter 3

Quality estimation for fuzzy-match
repair

In Chapter 2, we presented and evaluated a fuzzy-match repair algorithm capa-

ble of generating a set of fuzzy-match repaired segments from a TU and the

segment to be translated. We performed an oracle evaluation to see if the

FMR algorithm was able to generate a fuzzy-match repaired translation close

to the reference translation. In this chapter, we describe how the best candidate

fuzzy-match repaired segment may be chosen by estimating the quality of the

fuzzy-match repaired segments produced using a regressor. Our evaluation con-

ducted on the three different language pairs used in Chapter 2 shows that the

candidate fuzzy-match repaired segment with the best predicted quality is a good

approximation to the best (oracle) candidate produced and is consistently closer

to reference translations than either machine-translated segments or unrepaired

fuzzy matches. In addition, a single quality estimation model trained on a mix

of data from all the languages performs well on any of the languages used in our

experiments.

3.1 Introduction

In this chapter, we use the FMR approach described in Chapter 2 to generate a set of
candidate fuzzy-match repaired segments and then estimate the quality of each fuzzy-
match repaired segment produced to select the best one. The method for estimating
the quality of candidate fuzzy-match repaired segments produced, inspired by the work
on sentence-level MT quality estimation (QE) (Blatz et al., 2004; Specia et al., 2009),
uses regressors trained on a combination of black-box, system-independent features and
glass-box, system-dependent features. In our experiments we use extremely randomized
trees (Geurts et al., 2006) as regressors and evaluate our approach using various fuzzy-
match score thresholds on the three different language pairs tested in Chapter 2. The
results show that the set of features we propose are informative enough to obtain

37
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regressors that allow us to select candidate fuzzy-match repaired segments close to
the best (oracle) one among those produced by our FMR algorithm. The selected
candidates are consistently closer to the reference translations in our test sets than
both the non-repaired target segments (t) and the translations obtained by translating
whole source segments (s′) using the MT system used as the SBI. Moreover, the best
regressors are most of the times obtained when they are trained on all language pairs
together, which signifies that the values of the features proposed and the regressors
learned are language-independent.

The rest of the chapter is organized as follows. Section 3.2 describes the QE
approach and the features we propose to automatically select the best fuzzy-match
repaired segment. Sections 3.3 and 3.4 then discuss, respectively, the experimental
settings and the results obtained when evaluating the success of our approach. Finally,
Section 3.5 ends with concluding remarks.

3.2 Quality estimation of candidate repaired seg-

ments

In the context of MT, sentence-level quality estimation (QE) methods (Blatz et al.,
2004; Specia et al., 2009) have been developed during the last two decades to avoid
bothering professional translators with low-quality translations, to choose among a set
of different translations produced by different MT systems for a given source segment,
or to estimate the effort to post-edit a given MT output. Quality is usually measured
in terms of post-editing time, in terms of the amount of edit operations needed to turn
the translation into an adequate translation, or using other related metrics (Specia,
2011; Bojar et al., 2014).

MT QE techniques can easily be adapted for estimating the quality of the different
candidate fuzzy-match repaired segments produced for the source segment to be trans-
lated and pick the best one. There are mainly two different approaches to achieve this:
the use of a binary classifiers and the use of a regressor. The former can be used to
select the best translation on a pairwise comparison basis (Avramidis, 2013); the latter
can be used to rank the set of candidate fuzzy-match repaired segments. In this chapter
we follow this last approach; in particular, we use, after preliminary experiments with
linear and support-vector regressors (Basak et al., 2007), extremely randomized trees
(Geurts et al., 2006) for regression.

In the following, we describe the features used by the regressor. In particular,
we describe two sets of features: one using information readily available to CAT tools
(black-box features, Section 3.2.1), and a second one that exploits information from the
inner workings or the FMR algorithm used to generate the set of candidate fuzzy-match
repaired segments (glass-box features, Section 3.2.2).
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3.2.1 Black-box (system-independent) features

The following features, some of which are borrowed from the set of 17 baseline
features used in the shared tasks on MT QE at the WMT MT contests and implemented
in QuEst++ (Specia et al., 2015),1 use only information already present in the source
segment to be translated s′, in the candidate fuzzy-match repaired segment t' or in
the translation unit being repaired (s, t):

BB1 Number of tokens in the source segment s′.

BB2 Number of tokens in the candidate fuzzy-match repaired segment t'.

BB3 Ratio of the number of tokens in t' to the number of tokens in s′.

BB4 Number of punctuation marks in s′.

BB5 Number of punctuation marks in t'.

BB6 Ratio of the number of punctuation marks in t' to the number of punctuation
marks in s′.

BB7 Number of digits in s′.

BB8 Number of digits in t'.

BB9 Ratio of the number of digits in t' to the number of digits in s′.

BB10 Source fuzzy-match score: FMS(s, s′).

BB11 Target fuzzy-match score: FMS(t, t').

BB12 Ratio of the source fuzzy-match score to the target fuzzy-match score:

FMS(s, s′)

FMS(t, t')
.

BB13 Source sub-segment-level fuzzy-match score: MMSseg(s, s
′). It is computed by

using the matching and mismatching sub-segments as the building blocks when
computing the edit distance; this implies a monotonic segmentation of (s, s′)
performed on the basis of the word alignments obtained as a by-product of the
edit distance.2 It measures the ratio of mismatched sub-segments to the total
number of sub-segments.

BB14 Target sub-segment-level fuzzy-match score: MMSseg(t, t
').

1https://github.com/ghpaetzold/questplusplus
2This is similar to the n-gram tuples used in n-gram based statistical MT (Marino et al., 2006,

Sec. 2.1)
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BB15 Ratio of the source sub-segment-level fuzzy-match score to the target sub-
segment-level fuzzy-match score:

MMSseg(s, s
′)

MMSseg(t, t')
.

It is worth noting that features BB1, BB4, BB7, BB10 and BB13 do not pay atten-
tion to the candidate fuzzy-match repaired segment but to the source segment to be
translated (s′) and its relation to the source segment s in the TU being repaired. Nev-
ertheless, the learning algorithm can rely on them to specialise the trees to be used for
regression, that is, to use different sub-trees for regression depending on their value.

3.2.2 Glass-box (system-dependent) features

The features described next make use of information about the inner workings of
the FMR algorithm used to generate candidate fuzzy-match repaired segments; more
precisely, they capture information about the repair operators used and their form:

GB1 Ratio of word positions in t' covered by at least one repair operator to the
number of words in t':

|{j : ∃τ ′ ∧ t'j is part of τ ′}|
|t'|

,

where t'j is the j-th word of t'.

GB2 Sum of the length of the repair operators used to build t' divided by the length
of t': ∑N

i=1 |τ ′i |
|t'|

,

where N is the number of repair operators used to get t'. Notice that a word
in t' may be covered by more than one repair operator and is counted as many
times as it is covered.

GB3 Ratio of word positions common to t and t' that are covered by at least one
repair operator to the number of words positions common to t and t'; i.e. average
overlap:

|{j : ∃τ ∧ tj is part of τ ∧ j ∈ match(t, t')}|
|match(t, t')|

,

where function match(t, t') returns a set with the word positions common to t
and t'.

GB4 Sum of the length of the overlapping sub-segments of the repair operators used
to build t' divided by the length of t':∑N

i=1 |match(t, τ ′i)|
|t'|

.
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The overlapping sub-segments of a repair operator are those containing words
common to t and t'. As above, a word common to t and t' may be covered by
more than one repair operator and is counted as many times as it is part of an
overlapping sub-segment.

GB5 Ratio of words in s′ covered by at least one σ′ used to build a repair operator to
the number of words in s′:

|{j : ∃σ′ ∧ s′j is part of σ′}|
|s′|

,

where s′j is the j-th word of s′.

GB6 Sum of the length of the σ′s used to build a repair operator divided by the length
of s′: ∑N

i=1 |σ′i|
|s′|

.

Similarly to GB2, a word in s′ may be covered by more than one σ′ and is counted
as many times as it is covered by a σ′.

GB7 Ratio of matched source word positions that are covered by at least one σ used
to build a repair operator to the number of matched source words positions; i.e.
average overlap in the source language:

|{j : ∃σ ∧ sj is part of σ ∧ j ∈ match(s, s′)}|
|match(s, s′)|

.

GB8 Sum of the length of the overlapping sub-segments of the (σ, σ′) used to build
the repair operators used to get t' divided by the length of s′:∑N

i=1 |match(s, σ′i)|
|s′|

.

The overlapping sub-segments here are those containing words common to s and
s′. As above, a word that is part of the matching between s and s′ may be
covered by more than one (σ, σ′) and is counted as many times as it is part of
an overlapping sub-segment.

GB9 Mean target context per repair operator:∑N
i=1 |LCS(τi, τ

′
i)|∑N

i=1 min(|τi|, |τ ′i |)
,

where LCS(x, y) is the longest common sub-sequence to x and y.

GB10 Mean source context per repair operator:∑N
i=1 |LCS(σi, σ

′
i)|∑N

i=1 min(|σi|, |σ′i|)
.
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GB11 Measure of how evenly distributed are the mismatched target-language sub-
segments in the repair operators used to build the fuzzy-match repaired segment
t': ∑N

k=1 |τk|
∏nk

j=1
|mj |−1

|τk|−2nk+1∑N
k=1 |τk|

,

where nk is the number of matching sub-segments in τk and mi is the i-th match-
ing sub-string. When computing nk it must be taken into account that every
matched sub-segment must consist of contiguous words both in τ and τ ′. The
closer the value of the feature is to 1, the more evenly distributed the mismatched
sub-segments are.

GB12 Measure of how evenly distributed are the mismatched source-language sub-
segments in the repair operators used to build the fuzzy-match repaired segment
t': ∑N

k=1 |σk|
∏nk

j=1
|mj |−1

|σk|−2nk+1∑N
k=1 |σk|

,

where nk is the number of matching sub-segments in σk and mi is the i-th match-
ing sub-string. As above, when computing nk it must be taken into account that
every matched sub-segment must consists of contiguous words both in σ and
σ′, as in GB11. The closer the value of the features is to 1, the more evenly
distributed the mismatched sub-segments are.

GB13 Number of repair operators used to get t' divided by the number of mismatched
words in s.

GB14 Number of repair operators used to get t' divided by the number of mismatched
sub-segments in s (sequences of contiguous word positions).

GB15 Number of repair operators used to get t'.

GB16 Ratio of grounded repair operators to the number of repair operators used to
get t'. A repair operator is considered to be grounded if at least one word at
each end of σ is matched.

GB17 Binary feature to flag whether all the repair operators used to get t' are
grounded or not.

3.3 Experimental settings

The experimental settings are nearly the same as those in Chapter 2. The difference
between them lies in the manner that the corpora is used. In this chapter, we split
the corpora used in Chapter 2 in a different way to provide training samples for the
QE regressor. In what follows, we describe the resources used, the way the training
samples used to train the QE component of the method were generated, the regressor
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used and how it is trained, and the metrics used to evaluate the performance of our
FMR approach with QE.

3.3.1 Resources

We use the DGT-TM 2015 parallel corpus3 for the three language pairs (en–es, es–
pt, and es–fr). For each fuzzy-match-score threshold (FMT) φ used in our experiments,
we split the DGT TM 2015 corpus into three sets: one for training the regressor used
for QE (training), another to select the configuration of the regressor to be finally used
(see next section; development) and a third one for performance evaluation (testing).
This splitting can be formally described as follows. Let P be the parallel corpus, Jφ a
randomly drawn subset of P , a translation job, for the FMT φ, and Mφ = P − Jφ the
translation memory to be used. Jφ is build by randomly selecting parallel segments
(s′, t′) from P so that the final set meets the following condition:

∀(s′, t′) ∈ Jφ,∃(s, t) ∈Mφ : FMS(s, s′) ≥ φ.

After building Jφ, we remove those segments for which, with the MT system used as
a SBI, it is not possible to build at least one repair operator. The resulting set is divided
into three disjoint subsets, Jφ,train, Jφ,dev and Jφ,test, such that Jφ = Jφ,train ∪ Jφ,dev ∪
Jφ,test. Table 3.1 shows, for each FMT used in the experiments and for each language
pair, the amount of segments to be translated and the average number of candidate
repaired segments t' per segment to be translated s′. These sets were obtained as
explained above from a parallel corpus P with 196,294 segments for en-es, 150,567 for
es-pt and 149,479 for es-fr. For convenience, the TM to be used is the same for all
FMTs, M60%, that is the one obtained for φ = 60%.

Like in Chapter 2, the figures in Table 3.1 show that the average number of
candidate fuzzy-match repaired segments per segment to be translated goes down as
the FMT grows because the percentage of words to be repaired, and; therefore, the
number of repair operators, is reduced.

For each (s′, t′) ∈ Jφ,train a set of training samples is generated as follows. First the
repair algorithm described in Section 2.2 is run to generate the set of candidate fuzzy-
match repaired segments {t'} for the translation of s′ using the TU with the highest
FMS, that is, the TU (s, t) ∈ M60% : (@(s′′, t′′) ∈ M60% : FMS(s′, s) < FMS(s′, s′′)).4

Then, from each candidate fuzzy-match repaired segment t' a training sample is gen-
erated by computing the features described in Section 3.2 and the error rate to be
predicted. This error rate is similar to the one presented in Section 2.4.3 with the
exception that this error rate is calculated for FMR proposals at the segment level and
the other one is calculated for several segments at the document level. It is depicted
as:

ξ(t', t′) =
ed(t', t′)

max(|t'|, |t′|)
(3.1)

3https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
4If there is more than one TU meeting this condition, one is selected at random.
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FMT (φ)
Language Training Development Test

pair Ns′ Nt' Ns′ Nt' Ns′ Nt'

60%
en-es 3,249 17.6 238 14.8 460 32.2
es-pt 3,194 14.9 220 15.5 1,084 11.3
es-fr 2,930 14.0 120 14.6 1,070 16.4

70%
en-es 2,289 9.8 157 16.6 355 25.5
es-pt 1,981 10.8 134 18.5 678 11.7
es-fr 2,376 12.4 94 17.1 716 17.2

80%
en-es 1,250 6.1 50 8.3 194 5.5
es-pt 1,267 7.6 83 9.0 554 9.5
es-fr 1,812 5.7 122 10.1 588 13.2

90%
en-es 239 6.9 18 8.3 56 3.3
es-pt 483 7.2 33 13.1 229 6.8
es-fr 762 5.4 50 4.2 236 6.6

Table 3.1: For each fuzzy-match score threshold (FMT; φ) and language pair, number
of segments to be translated (Ns′) and average number of candidate fuzzy-match repaired
segments per segment to be translated (Nt') in the training, development and test sets.

Language FMT (φ)
pair 60% 70% 80% 90%
en-es 57,816 22,333 7,653 1,661
es-pt 47,675 21,305 9,589 3,492
es-fr 41,124 29,432 10,351 4,140

Table 3.2: For the training set, number of samples for the different fuzzy-match-score
thresholds (FMT) used in the experiments.

where ed(x, y) returns the word-based edit distance (Wagner and Fischer, 1974) be-
tween the segments x and y. Table 3.2 shows, for the different fuzzy-match score
thresholds used, the amount of training samples used to train the regressor used for
QE.

The corpora used to build the training, development and test sets may contain
parallel segments that are free translations of one another, and this may be introducing
noise affecting the regressor’s performance. This problem was already detected in the
DGT-TM 2015 parallel corpus by Esplà-Gomis et al. (2015), who proposed a simple
filtering method to discard this noise. This method removes the candidate repaired
segments obtained from a segment to be translated s′, reference translation t′ and TU
to be repaired (s, t) for which |FMS(s, s′)−FMS(t, t′)| > 0.05. This filtering is based on
the assumption that the number of words that differ in both pairs of segments should
be similar for both languages. In Section 3.4, we report results when using both filtered
and non-filtered corpora to study the effect of this noise on the regressor’s performance.
By applying this filtering the amount of segments that are discarded is around 22%.
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Regarding the MT system used for FMR, we use the same version of Apertium and
language pair packages (apertium-en-es, apertium-es-pt, and apertium-fr-es)
from Chapter 2.

3.3.2 Regressor

In Section 3.4, we report the results obtained when using extremely randomized
trees (ERT) (Geurts et al., 2006) because it is the regressor that performed best when
evaluated on the development corpus on a set of preliminary experiments in which
we also tried with linear regression and support vector regression (SVR) (Basak et
al., 2007). In the case of SVR, we performed a 3-fold cross-validation grid search to
find the optimum hyper-parameter values of the Gaussian radial-basis function kernel
we used and tried with different feature selection methods, such as recursive feature
elimination (Guyon et al., 2002), chi-square, and the Gini importance computed over
extremely randomized trees (Louppe et al., 2013).5

Extremely randomized trees is a tree-based ensemble method for classification and
regression (Geurts et al., 2006). At each internal tree node the best feature is de-
termined from a subset of features selected at random from the whole set of features
whereas the cut-off point is selected fully at random. In our implementation the best
feature is selected according to the Gini importance, also know as mean decrease in
impurity (Breiman et al., 1984, ch. 4) (see Section 3.4.1 for more information). When
ERTs are used for regression, the prediction is computed as the average of the output
of all the trees in the ensemble.

The main hyper-parameters controlling the learning process of ERT are the size of
the subset of features randomly selected (N) and the amount of trees in the ensemble
(M). If N = 1, the feature to use in each internal node is selected fully at random
and the method builds completely randomized trees. If N equals the total amount of
features (F ), randomization only happens in the selection of the cut-off point. In our
experiments we tried with N =

√
F , N = log2(F ) and N = F ; the best results on

the development set were obtain with N = F , like in Geurts and Louppe (2011). In
regards to the amount of trees in the ensemble, we tried with 10, 100, 200, 500, 800 and
1, 000 and; overall, the best results on the development set were obtained for M = 100.
The difference between using 100 or more trees is negligible. With respect to the rest
of parameters, we used the default ones in the ERT implementation of scikit-learn.6

Finally, due to the randomization of trees, different training executions resulted in
regressors with small differences in the output they provide. The results we report in the
following section are those obtained with the ERT performing best on the development
set out of ten different training executions.

5SVR implementation used: version 0.19 of scikit-learn, http://scikit-learn.org/stable/

modules/generated/sklearn.svm.SVR.html.
6Version 0.19, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

ExtraTreesRegressor.html.
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3.3.3 Evaluation

We measure the performance of our QE approach for FMR with the following
metrics:

• Error rate over the whole test set is as performed in Chapter 2:∑N
i=1 ed(t�i , t

′
i)∑N

i=1 max(|t�i |, |t′i|)
,

where t′i is the gold standard translation in the test set for the source segment
s′i and t�i is the translation being evaluated; t�i may be the (unrepaired) target
segment ti, a candidate fuzzy-match repaired segment t'i produced by our repair
algorithm or the translation of si produced by the MT system.

• Mean absolute error (MAE) of the error rate predicted by the ERT regressor on
each candidate fuzzy-match repaired segment in the test set. MAE evaluates the
ability of the regressor to predict error rates at the segment level. It is computed
as ∑N

i=1

∑Mi

j=1 |ξ(t'ij, t′i)− ξ̂(t'ij, t′i)|∑N
i=1Mi

,

where ξ(·) and ξ̂(·) are the predicted error rate (see Equation (3.1)) and the error
rate to be predicted, respectively, and Mi is the number of candidate fuzzy-match
repaired segments produced for source segment si.

• Success rate (SR) of the ERT regressor used to select the best candidate fuzzy-
match repaired segment. It is computed by comparing the amount of edit
operations that are saved when editing the candidate fuzzy-match repaired seg-
ment t'i with the lowest predicted error rate, instead of the (unrepaired) target
segment ti of the TU being repaired, to the amount of edit operations saved when
editing the best possible (oracle) fuzzy-match repaired segment t?i :∑N

i=1
|ed(ti,t′i)−ed(t'i ,t′i)|
|ed(ti,t′i)−ed(t?i ,t′i)|

N

where t′i is the gold standard translation in the test set for the source segment s′i.
This metric shows how good t'i is when compared to the best possible repaired
segment (oracle) produced by the repair algorithm described in Section 2.2: the
numerator is the actual change in the edit distance when replacing ti with the
repaired version t'i and the denominator is the change in edit distance that would
be produced if ti was replaced with the oracle (best possible) repair t∗i .
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FMT
Non-filtered corpora Filtered corpora
TM MT Oracle TM MT Oracle

English–Spanish

60% 27.16 57.61 23.24 22.13 56.73 17.91
70% 22.83 56.21 19.32 18.53 56.43 14.73
80% 17.31 61.60 14.31 13.27 56.00 9.71
90% 11.63 66.84 5.85 11.21 58.91 4.78

Spanish–Portuguese

60% 22.08 40.56 15.86 17.29 36.86 10.07
70% 18.20 40.00 13.41 13.63 36.30 8.03
80% 15.29 39.67 11.13 10.62 35.55 5.52
90% 10.42 44.87 7.69 7.24 40.23 3.97

Spanish–French

60% 19.78 49.66 15.34 15.27 48.59 10.81
70% 15.97 49.75 12.52 12.17 48.54 8.71
80% 12.48 49.56 9.38 9.84 48.51 6.56
90% 7.71 51.42 5.36 6.34 50.72 3.75

Table 3.3: For the non-filtered and filtered corpora, error rate (%) for the target segment
t in the TU (s, t) being repaired (TM), for the translation produced by the MT system
for the whole source segment s′ (MT) and for the best possible fuzzy-match repaired
segment t? (Oracle).

3.4 Results and discussion

First, we repeat the oracle evaluation performed in Chapter 2 to show that the
FMR algorithm described in Section 2.2 provides similar results with the splitting of
the corpora we are using in this chapter. Table 3.3 shows the error rate, computed
as described above, for the oracle evaluation. Additionally, we provide error rates
computed on corpora filtered using the method by Esplà-Gomis et al. (2015) and
described in Section 3.3.1.

The results reported in Table 3.3 show the ability of our approach to produce
good candidate fuzzy-match repaired segments. It is worth noting the lower error
rates reported for all three approaches across the table when evaluated on the filtered
corpora, which is consistent with the way in which the corpora are filtered (see end of
Section 3.3.1).

Next, we evaluate how well our QE approach performs when selecting the best
candidate fuzzy-match repaired segment among the whole set of candidates produced.
In order to determine the best configuration to train the regressor to be used to esti-
mate the quality of fuzzy-match repaired segments, we have tried with the following
setups: (1) training different ERT regressors for different FMTs and language pairs,
(2) training one regressor per language pair regardless of the FMT, and (3) training a
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FMT
Non-filtered corpora Filtered corpora

TM ERT Oracle SR MAE TM ERT Oracle SR MAE

English–Spanish

60% 27.16 25.71 23.24 0.37 0.06 22.13 19.38 17.91 0.65 0.04
70% 22.83 21.58 19.32 0.36 0.06 18.53 15.71 14.73 0.74 0.04
80% 17.31 16.14 14.31 0.39 0.07 13.27 10.91 9.71 0.66 0.05
90% 11.63 7.55 5.85 0.71 0.07 11.21 5.77 4.78 0.85 0.02

Spanish–Portuguese

60% 22.08 17.74 15.86 0.70 0.11 17.29 11.84 10.07 0.76 0.06
70% 18.20 15.35 13.41 0.59 0.09 13.63 9.77 8.03 0.69 0.04
80% 15.29 13.54 11.13 0.42 0.08 10.62 6.79 5.52 0.75 0.03
90% 10.42 8.73 7.69 0.62 0.08 7.24 4.56 3.97 0.82 0.03

Spanish–French

60% 19.78 17.31 15.34 0.56 0.08 15.27 12.45 10.81 0.63 0.05
70% 15.97 14.44 12.52 0.44 0.07 12.17 10.37 8.71 0.52 0.05
80% 12.48 10.99 9.38 0.48 0.05 9.84 7.44 6.56 0.73 0.03
90% 7.71 6.50 5.36 0.52 0.06 6.34 4.57 3.75 0.68 0.03

Table 3.4: For both the non-filtered and filtered corpora, error rate (%) for the target
segment in the TU being repaired (TM), for the fuzzy-match repaired segment with the
lowest predicted error rate (ERT) and for the best possible one (Oracle). Success rates
(SR) and mean absolute errors (MAE) are also provided. A different ERT regressor was
trained for each FMT and language pair.

single regressor for all language pairs and FMTs. As above, we provide results when
the ERT is trained and evaluated both on filtered and non-filtered corpora.

Table 3.4 shows the error rates obtained for the target segment in the TU being
repaired (TM) —the one with the highest fuzzy-match above the FMT—, for the fuzzy-
match repaired segment with the lowest predicted error rate (ERT) and for the best
possible fuzzy-match repaired segment produced by the FMR algorithm (Oracle). The
table also provides the success rate (SR) obtained by comparing the error rate of the
oracle and the error rate of the fuzzy-match repaired segment with the lowest predicted
error rate, and the mean absolute error (MAE) of the ERT regressor. For each FMT
and language pair a different ERT regressor was trained.

The results show that the use of the ERT regressor to select, for a given source
segment and TU, the candidate fuzzy-match repaired segment with the lowest predicted
error rate performs better on the filtered corpora, where noisy translation units have
been removed from the training, development and test sets, than on the non-filtered
corpora. The difference in performance is noteworthy for FMT below 90%, especially
in the case of English–Spanish. Additionally, the success rate, that is the proportion of
edit operations saved when editing the selected candidate fuzzy-match repaired segment
over the number of edit operations saved when editing the best possible fuzzy-match
repaired segment, increases as the FMT grows; for 60% FMT the success rates on the
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FMT
Non-filtered corpora Filtered corpora

TM ERT Oracle SR MAE TM ERT Oracle SR MAE

English–Spanish

60% 27.16 25.71 23.24 0.37 0.06 22.13 19.38 17.91 0.65 0.04
70% 22.83 21.30 19.32 0.44 0.06 18.53 15.68 14.73 0.75 0.05
80% 17.31 16.07 14.31 0.41 0.07 13.27 10.54 9.71 0.77 0.04
90% 11.63 6.29 5.85 0.92 0.07 11.21 5.00 4.78 0.96 0.02

Spanish–Portuguese

60% 22.08 17.74 15.86 0.70 0.11 17.29 11.84 10.07 0.76 0.06
70% 18.20 15.14 13.41 0.64 0.09 13.63 9.54 8.03 0.73 0.04
80% 15.29 12.75 11.13 0.61 0.09 10.62 6.61 5.52 0.79 0.04
90% 10.42 8.66 7.69 0.64 0.09 7.24 4.49 3.97 0.84 0.03

Spanish–French

60% 19.78 17.31 15.34 0.56 0.08 15.27 12.45 10.81 0.63 0.05
70% 15.97 14.19 12.52 0.52 0.07 12.17 9.90 8.71 0.66 0.05
80% 12.48 10.82 9.38 0.53 0.06 9.84 7.71 6.56 0.65 0.03
90% 7.71 6.43 5.36 0.55 0.06 6.34 4.46 3.75 0.73 0.02

Table 3.5: Error rate for the target segment in the TU being repaired (MT), for the
fuzzy-match repaired segment with the lowest predicted error rate (ERT) and for the
best possible one (Oracle). Success rates (SR) and mean absolute errors (MAE) are also
reported. A single ERT regressor was trained on 60% FMT for each language pair.

filtered corpora are around 0.68, whereas for 90% FMT they scale up to 0.78, surpassing
0.80 for English–Spanish and Spanish–Portuguese. Our QE method is clearly better at
ranking fuzzy-match repaired segments when the amount of mismatched sub-segments
is small; which is the typical scenario where TM-based CAT is used.7

If we pay attention to the performance of the ERT regressor when evaluated as
such, we can see that the MAEs reported are below 0.10 in all cases but one (es–pt,
60% FMT, non-filtered corpora), and that, for the filtered corpora they are around
0.05. This accounts for the high informativeness of the features defined in Section 3.2.
We do not report the root mean square error because it shows a similar trend. It is
worth noting that MAE is computed at the sample-level and, as a result, all candidate
fuzzy-match repaired segments are equally judged, regardless of their length.

The results in Table 3.4 were obtained when using a different ERT regressor per
FMT and language pair. In order to study how dependent is the ERT regressor on the
FMT used for training, we repeated the experiments reported in Table 3.4 but using
a single regressor per language pair. In particular, we used the regressor trained on
samples obtained from TUs for which the fuzzy-match is above the 60% FMT; the
results are reported in Table 3.5.

7Fuzzy-matches are seldom used for FMS below 70%.
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FMT
Non-filtered corpora Filtered corpora

TM ERT Oracle SR MAE TM ERT Oracle SR MAE

English–Spanish

60% 27.16 25.64 23.24 0.39 0.06 22.13 19.72 17.91 0.57 0.04
70% 22.83 21.20 19.32 0.47 0.06 18.53 15.77 14.73 0.73 0.04
80% 17.31 15.97 14.31 0.45 0.08 13.27 10.40 9.71 0.81 0.05
90% 11.63 6.36 5.85 0.91 0.10 11.21 5.00 4.78 0.96 0.02

Spanish–Portuguese

60% 22.08 17.69 15.86 0.71 0.11 17.29 11.42 10.07 0.81 0.05
70% 18.20 15.23 13.41 0.62 0.09 13.63 9.11 8.03 0.81 0.04
80% 15.29 12.70 11.13 0.62 0.07 10.62 6.34 5.52 0.84 0.04
90% 10.42 8.83 7.69 0.58 0.07 7.24 4.55 3.97 0.82 0.04

Spanish–French

60% 19.78 17.18 15.34 0.59 0.08 15.27 12.02 10.81 0.73 0.05
70% 15.97 14.34 12.52 0.47 0.07 12.17 9.84 8.71 0.67 0.04
80% 12.48 11.17 9.38 0.42 0.05 9.84 7.60 6.56 0.68 0.03
90% 7.71 6.27 5.36 0.61 0.06 6.34 4.47 3.75 0.72 0.02

Table 3.6: Error rate for the target segment in the TU being repaired (MT), for the
fuzzy-match repaired segment with the lowest predicted error rate (ERT) and for the
best possible one (Oracle). Success rates (SR) and mean absolute errors (MAE) are also
shown. The same ERT regressor trained on 60% FMT is used for all language pairs.

From the comparison of the results in tables 3.4 and 3.5 we can conclude that using
a single ERT regressor per language pair is the best option. The results obtained with a
single regressor are better than those obtained with a regressor per FMT, especially for
the 80% and 90% FMTs. This is probably due to the fact that the amount of training
samples for 80% FMT and 90% FMT is an order of magnitude lower as compared
to 60% FMT (see Table 3.2), and as a result the ERT regressor was not learning
adequately.

None of the features used and listed in Section 3.2 are language-dependent, although
the distribution of their values and how informative they are may differ from one
language to another. To ascertain whether or not the ERTs informed by these features
are also language-independent, we repeated the experiments reported in Table 3.5 but
training an ERT regressor on the samples obtained from TUs for which the fuzzy-match
is above the 60% FMT for all language pairs together. Table 3.6 reports the results
obtained; it is worth noting that the same ERT regressor is used regardless of the FMT
and language pair, and that the amount of training samples is 146,615.

The results in Table 3.6 are quite similar to those in Table 3.5, where a different
ERT is used per language pair. For some language pairs and FMTs results improve
slightly, while for others they worsen slightly. This allow us to conclude that, given
the small difference in the success rates reported in both tables it is advisable to use a
single regressor trained on 60% FMT for all languages together, at least for languages
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which are related in some sense (such as the four Western Indo-European languages in
these experiments).

Next, we study how fast the learning process converges to see if the amount of
training samples used for training is enough to learn the best possible ERT models.
Figure 3.1 plots the learning curve computed when training ERT models for regression
for the English–Spanish language pair and for all languages together using a 60% FMT,
both on filtered and non-filtered corpora. The learning curves show cross-validation
(dashed line) and training (solid lines) scores of the ERT models as a function of the
number of training samples. For cross validation we performed 10 iterations of shuffle
split: in each iteration 20% of the training set was randomly selected as a validation
set. These scores correspond to the coefficient of determination (Rao, 1973, ch. 4): the
best possible score is 1.0 and it can be negative if the model gets arbitrarily worse.
Our ERT models for 60% FMT converge to values of the coefficient of determination
above 85%, some of them even above 95%, which indicates that our ERT models are
learning and that the amount of samples used for training is adequate for the task.

3.4.1 Discussion on the informativeness of features

To better understand how our ERT models work, we present an analysis of the
informativeness of the features used to create them. As mentioned above, the ERT
implementation we have used uses the Gini importance, also know as mean decrease
in impurity (Breiman et al., 1984, ch. 4), to decide the splitting of the nodes while
building the trees.8 The mean decrease in impurity is directly related to the purity
of a tree node. A node in a tree is considered to be pure if its probability for the
training samples reaching it is 1; that is, if all samples reaching the node are in the
same class (in the case of classification) or are close to a single target value (in the case
of regression).

Our analysis is based on the Gini importance computed as the total decrease in node
impurity, weighted by the probability of reaching that node (which is approximated
by the proportion of samples reaching that node) and averaged over all trees in the
ensemble.9 We used Gini importance instead of other methods, such as permutation
importance, which has been shown to have “better statistical properties” (Strobl et al.,
2008), because it is less computationally expensive (Breiman and Cutler, 2019) and is
the measure used by the scikit-learn implementation of ERT we have used.

Since the learning curve of the ERT models that use all language pairs (see Fig-
ure 3.1) is similar and in some cases better than the ones computed for individual
language pairs, we analyse the informativeness of the features obtained from the ERT
models for all language pairs trained on filtered and non-filtered corpora with a 60%

8This way of deciding on the splitting of nodes differs from that of the original paper describing
ERT (Geurts et al., 2006).

9For more information about the computation of the Gini importance we refer the reader to the
work by Louppe et al. (2013).



52 3. QUALITY ESTIMATION FOR FUZZY-MATCH REPAIR

(a) English–Spanish, non-filtered corpora (b) English–Spanish, filtered corpora

(c) All language pairs, non-filtered corpora (d) All language pairs, filtered corpora

Figure 3.1: Learning curve for training ERT models for English–Spanish (((a), (b)) and
for all language pairs together ((c), (d)) when using non-filtered ((a), (c)) and filtered
((b), (d)) corpora. The solid line is the learning curve computed over the training corpus,
whereas the dashed line corresponds to the cross-validation learning curve.

FMT. Figure 3.2 shows the Gini importance of the top 12 features for the ERT models
aforementioned. The rest of features, although less relevant, still have a Gini impor-
tance above 0.0, which means that they help the ERT regressor; in fact, the removal
of any of them affect the performance of the resulting ERT regressor.

As Figure 3.2 shows, the top 12 features are all black-box features that do not take
advantage of the information about the inner workings of the repair algorithm. Of
these top 12 features, BB10 scores unusually high while BB7 and BB1 are the best
performing features which are closer to the median of the Gini importance. The value
of BB10, that is, the fuzzy match between s and s′, may be working as a means for
specializing the trees to be used for regression so that the ones used for small values of
BB10 are different from those used for larger ones. In this regard, it is worth noting
that the value of BB10 is the same for all training samples obtained from the segment
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Figure 3.2: Gini importance for the top 12 features computed over ERT regressors
trained for all language pairs with a 60% FMT and on filtered and non-filtered corpora.
Features are ordered according to the Gini importance on non-filtered corpora.

to be translated s′ and the TU (s, t) to be repaired. Other high-scoring features like
BB1 and BB7 are in a similar situation because they count tokens and digits from the
source segment s′ to be translated, and provide a nice check of the validity of the repair
operators used (the number of digits should be invariant).

3.5 Concluding remarks

In this chapter we have described a quality estimation technique for fuzzy-match
repair that estimates the quality of fuzzy-match repaired segments produced in order
to select one for final translation. For selecting the best fuzzy-match repaired segment,
we propose a set of features and train a tree-based regressor to predict the amount of
edit operations needed to convert each candidate fuzzy-match repaired segment into
an adequate translation of s′. The candidate fuzzy-match repaired segment with the
lowest predicted amount of edit operations needed is the one selected as best.

We have extensively evaluated the performance of this approach on three differ-
ent language pairs, namely English–Spanish, Spanish–Portuguese and Spanish–French,
with different fuzzy-match score thresholds (FMT), and using raw (non-filtered) cor-
pora and (filtered) corpora from which noisy translation units have been removed. The
best results are obtained on the filtered corpora and with regressors trained on training
samples obtained using a 60% FMT. We have also evaluated the performance when
the regressor is trained on a mix of training samples from all language pairs and then
tested on each different language pair. The last evaluation shows that not only are the
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features that we propose language-independent; but also, the regressor based on them
is.

The performance of the quality estimation approach used to select the best candi-
date fuzzy-match repaired segment depends on the similarity between the segment to
be translated s′ and the source segment s in the TU (s, t) being repaired. The more
similar they are (the greater the FMT), the more successful it is. For a 90% FMT, the
QE method selects the best possible candidate fuzzy-match repair segment generated
by the repair algorithm most of the times, resulting, on average, in a success rate on
filtered corpora above 0.83. This means that the use of the selected candidate fuzzy-
match repaired segment allows to save, on average, 83% of the edit operations that
would have been saved if the best possible (oracle) candidate segment would have been
chosen. If the candidate repaired segments were selected at random the saving of edit
operations would be, on average, 44%.

As for the features used by the regressors, we have proposed a set of features
made up of black-box (system-independent) and glass-box (system-dependent) fea-
tures; black-box features are easier to compute as they do not exploit any information
about the repair operators used to generate the candidate fuzzy-match repaired seg-
ments. Black-box features are found to be more informative that glass-box ones,
although all of them are useful to some extent. This result suggests that the QE
method used to select the best fuzzy-match repaired segment could be used to rank
candidate fuzzy-match repaired segments produced by other FMR approaches like those
described in Section 1.4.



Chapter 4

Selecting an MT system for
fuzzy-match repair

This chapter deals with a problem that could occur when using various MT
systems: how to select the optimum MT system given a source segment. Here,
we attempt to save the CAT tool user, or industry-level expert, resources and
time by deploying a system that selects, on a segment basis, the MT system to
be used for fuzzy-match repair without actually running the MT system.

In this chapter we initially diverge our focus from FMR to MT in order to show
the importance of having a method that selects an MT system before translating
a source segment. After finding that we are able to select an MT system with
relatively high accuracy (nearly 70%), we then illustrate how the selection of
an MT system from a set of several MT systems improves the original FMR
approach presented in Chapter 2.

4.1 Introduction

While systems using the NMT paradigm achieve the highest scores on recent shared
tasks (Bojar et al., 2017), SMT and RBMT systems may provide better results for
individual segments due to different internal workings. Additionally, in some cases,
research has shown that professional translators and CAT-tool users prefer SMT over
NMT, despite NMT’s higher performance using conventional scoring standards like
BLEU (Arenas, 2013). Previous work by Bentivogli et al. (2016) has shown how dif-
ferent MT paradigms perform on certain types of input. More specifically, NMT has
been found to perform worse than SMT due to specific anomalies in the text like punc-
tuation or named entities (Koehn and Knowles, 2017). With that in mind, it may be
premature to completely abandon “old” methods in favor of “new” ones. Alternatives
that combine MT systems could achieve optimum results; particularly, if the system
combination method can take advantage of the different paradigm strengths.

55
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In Chapter 2, we saw how multiple MT systems score differently among various
fuzzy-match thresholds and language pairs. In this chapter, we introduce a predictive
system called SelecT that aims to derive optimum translations by choosing an MT sys-
tem for each source segment before attempting to translate it. Relying on a single MT
system could be costly because, as shown in a previous research (Rosti et al., 2007),
the single system’s accuracy may be directly related to its linguistic knowledge. That
linguistic knowledge can be better captured by using several MT paradigms that take
advantage of word, phrase, or even character-level features. As a way of addressing
those differences, professional translators use high-quality systems like Google Trans-
late1 or Bing Translate2 that provide state-of-the-art translations based on multiple
paradigms like NMT and SMT. The drawback, though, is that professionals may have
several MT systems at their disposal and they typically run their systems at the docu-
ment level which makes sentence-by-sentence processing nearly impossible. Contrarily,
SelecT determines the MT system to be used for each source segment based on a
predictive mechanism that is described in this chapter.

SelecT is beneficial because it prevents an external system from running several
MT systems per segment; thus, saving translators time and money when dealing with
high-grade, often times costly, MT systems. This chapter explores SelecT when used
as a selection device between the three paradigms introduced in Chapter 2: Nematus
(Sennrich et al., 2017), the NMT system; Moses (Koehn et al., 2007), the SMT system;
and Apertium (Forcada et al., 2011), the RBMT system.

The SelecT system presented in this chapter uses a FastText3 classifier (Joulin et al.,
2017) that predicts which MT system would perform best given a source segment. The
FastText classifier performs better in our experiments when compared to two other
classifiers: a recurrent neural network and a logistic regression classifier. SelecT’s
classifier is trained on a corpus of sub-segments labeled with MT system (Apertium,
Moses, or Nematus) producing the best translation according to the BLEU scores
computed by comparing each system’s output to a reference translation. It is important
to note that any other scoring mechanism could be used to train SelecT, it does not
need to be BLEU.

SelecT works in an agnostic, or black-box, manner; so, although it is typically
trained on entire segments, it can provide MT system hypotheses at the sub-segment
(or fuzzy-match repair) level as well. Our experiments show that using SelecT with
FMR increases performance for both entire segments and sub-segments, despite being
trained only on entire segments. The FMR system presented in Chapter 2 behaves as
a black-box also and accepts translations from any MT system; thus, it can be easily
integrated with SelecT for higher gains even though most (more than 80%) of the
requested translations from our FMR system are sub-segments.

1https://translate.google.com
2https://www.bing.com/translator
3https://github.com/facebookresearch/fastText/
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The next section explores previous work on system combination and quality assess-
ment of MT systems. We then dive deeper into the motivation and methodology of
selecting an MT system before translating. Afterwards, in Section 4.4, we explain the
three MT systems we use – making note of the major differences between their transla-
tion approaches. Next, in Section 4.5, experimentation is described by first explaining
the settings and; secondly, showing how the best classifier is chosen from the three
different classifiers we have tested. After establishing the best performing classifier, in
Section 4.6 we show how well SelecT performs when integrated with the FMR system
described in Chapter 2. Lastly, we provide concluding remarks for the chapter and
discuss future work.

4.2 Related work on system combination

There are a plethora of papers about system combination in MT. Most research,
like the majority of combination systems from WMT17 (Bojar et al., 2017), chose
to combine MT systems following different approaches. Combination systems can be
broken down into several main paradigms. Some of the approaches may use a pipeline
approach where one MT system’s output is used as input to another one, as is done
by Niehues et al. (2016). But typically, MT system combinations falls into three main
categories: 1) consensus, 2) selection, and 3) consensus and selection together (i.e.
in-between).

Consensus approaches are the most common approaches and typically create a
unique translation composed of several words or phrases using translations from various
MT systems. They are powerful approaches and in previous work (Peter et al., 2017)
they have outperformed translations from a single MT system in terms of translation
quality. Most of the more recent consensus methods, like Di Gangi et al. (2017)’s work,
rely on a standard system combination framework called Jane (Freitag et al., 2014).
Jane uses a confusion matrix to find the shortest path of word reordering among parallel
translations from distinct MT systems.

Other consensus approaches, like the work by Heafield and Lavie (2010), use a
Multi-Engine Machine Translation (MEMT) scheme. Their work combines translations
by first aligning them with METEOR (Lavie and Agarwal, 2007) and then using a beam
search to reorder sub-segments into a final translation. Additionally, Peter et al. (2016)
use a consensus approach that takes advantage of the differences between SMT and
NMT by combining sub-segments using METEOR.

Selection methods keep translations intact by choosing what they consider to be the
most appropriate translation from several distinct MT system’s translation candidates.
As seen in previous work (Nomoto, 2004; Zwarts and Dras, 2008), selection methods do
not modify the final chosen translation in any way. Nomoto (2004)’s selection method
uses a voting system based on a perplexity score. The voting system is considered
a confidence model that will assign a perplexity score for each translation according
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to how well the language models statistically fare on an input sentence. Their work
selects a sentence based on a score, much like SelecT that uses a BLEU score for
training its classifier; however, while their work requires translations of the sentence
first, our system does not.

Somewhere in between the consensus and selection approaches there are systems,
like Macherey and Och (2007)’s system, which also uses a MEMT system, that first
select a subset of promising translations and then combine them to produce a single
output. In-between approaches are less common and tend to be more complex. For
example, Garmash and Monz (2016) attempt to induce parameters for the various
MT systems in an ensemble system based on the best-scoring translations. González-
Rubio and Casacuberta (2015) use an in-between approach bringing together consensus
and selection by using a predictive, risk-like, model for marking and translating sub-
segments based on a performance metric.

We focus on system combination approaches that use a selection method because
it is the method that SelecT uses. Zwarts and Dras (2008)’s selection approach, for
example, is similar to SelecT in some ways. They propose a classifier approach that
selects the best translation from a MEMT system. But, unlike Nomoto (2004), atten-
tion is focused more on syntactic differences between the source and target sentences.
Furthermore, their objective, similar to that of our work, is to produce translations
that score well on a quality assessment metric. The main difference between their
work and ours is that they build a custom MT system (a modified SMT system) using
knowledge gained from the source and target segment. Then, they compare a baseline
SMT system to the modified one. Our work uses a black-box MT approach that does
not modify the baseline MT systems in any way. Additionally, SelecT is a unique
selection system because it focuses on selecting an MT system in a a-prior manner
without actually using it to translate the source segment until chosen.

Due to its a-prior method that uses sentence-level features to train binary maxi-
mum entropy classifiers, Sánchez-Mart́ınez (2011)’s work can be considered the closest
to ours. His work uses features from a parse tree to train a classifier for each MT sys-
tem that estimates the probability of that system being the best one to translate a
given source. The main differences between his approach and SelecT lie in how the
classification is done. SelecT reduces the overall implementation complexity by reduc-
ing the amount of features while at the same time increasing classification probability
by testing 3 distinct baseline classifiers (see Section 4.3) based on the latest prediction
architectures such as neural networks. Other classification details also differ. For exam-
ple, while Sánchez-Mart́ınez (2011) extracts features at the sentence level like SelecT,
his method can be considered complex because of requirements on a statistical parser,
quality estimation techniques, and other deeply contextual knowledge. The three clas-
sifiers in SelecT’s system either extract the features in an unsupervised manner, as is
the case for most neural networks, or are based on a standard representation such as
bag-of-words. Apart from feature extraction, differences between SelecT and Sánchez-
Mart́ınez (2011)’s work are found in how the classifiers are configured. His work use one
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classifier per MT system; SelecT uses one classifier with multiple (MT-engine) labels
in an attempt to discover the single best classifier.

To our knowledge, our work is novel because it uses state-of-the art classifiers and
MT systems. SelecT determines which MT system to use before translating the source
segment given. Also, while details from this chapter report that BLEU scores are used
to determine the best MT system for each source segment, any score could be used;
thus making SelecT an agnostic classifying mechanism for modular translation tasks.
The next section covers SelecT’s classifier in more detail.

4.3 Classification approach

SelecT is designed to use any number of classifiers in an agnostic manner during
development. The idea is to first train and test each classifier on the entire training
corpus during the development stage to determine the optimum one; then, use that
classifier on the unseen test data. In this section we first describe the classifiers used in
our experiments but leave the explanation of experimental settings for each classifier
to Section 4.5. After that, we show how SelecT is used as a classifier for fuzzy match
repair.

Our work intrinsically compares 3 open-source MT systems using the three predic-
tive models below:

1. Bi-Directional Recurrent Neural Network: A recurrent neural network
(RNN) is an artificial neural network that processes an input sequence using
a directed graph that can be thought of as state “memory”. RNNs are different
than their n-gram model predecessors because they attempt to induce distribu-
tions over sequences using gradient calculation while n-gram models count exact
matches between new and old examples. According to Kolen and Kremer (2001),
they do not use exact templates from the training data to make predictions, but
rather, like other neural networks, use their internal representation to perform a
high-dimensional interpolation between training examples. For our experimen-
tation, we use a specific type of RNN, called a bi-directional RNN (BIRNN),
that processes text in both left-to-right and right-to-left manners, identical to
Schuster and Paliwal (1997). Additionally, we use gated recurrent units (GRU)
(Cho et al., 2014a).

We base our decision to use an RNN on the fact that, as Yin et al. (2017)
show, they are good at capturing word sequences, especially at the sentence
level. RNNs are also known to learn grammatical structures automatically de-
spite missing word or character information which sometimes leads to degradation
when dealing with large sentences (Knowles et al., 2018; Cho et al., 2014a; Stei-
jvers and Grünwald, 1996). Vukotic et al. (2016) say: “sometimes solely the
current sentence suffice while in most cases, the knowledge of what has been



60 4. SELECTING AN MT SYSTEM FOR FUZZY-MATCH REPAIR

Figure 4.1: A bi-directional recurrent neural network with gated recurrent units to
predict MT systems.

previously mentioned improves the understanding of the current sentence”. We
use a BIRNN classifier with hopes that it has the ability to learn from the con-
text around words and classify MT systems better than the other (non-neural)
classifiers.

Our BIRNN architecture consists of an embedding layer, two hidden GRU layers
(one in each direction), a dense feed-forward layer using a rectified linear unit
(ReLU) (Hinton et al., 2006) as its activation function, and a softmax layer, as
show in Figure 4.1.

Word-embedding creation. The input sequence (x1, x2, ..., xn) is a sequence
of words mapped to vectors of real values known as word embeddings. Our word
embeddings are created using Word2Vec (Mikolov et al., 2013) which produces a
vector for each word in the input by using a continuous-bag-of-words (CBOW)
approach (Mikolov et al., 2013).

BIRNN training and classification. In order to train the BIRNN, we make
the pre-trained word embeddings available to the model and for each sentence
in the training corpus we extract the embedding that corresponds to each word.
The activation function (h) produces a final vector of hidden states where each
word’s “state” is passed on to the next hidden state. The final output, or state,
of each hidden layer consists of a concatenation of words from the backward
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states onto the forward state’s vector and each final state represents a real num-
ber from RELU activation that is the same size in dimension as the input. We
use a softmax layer to reduce the sentence representation into one of the three
classifications used to map each sentence’s input to a target MT system (Aper-
tium, Moses, or Nematus). In order to speed up the training process, sentence
batches are used along with fixed-length sentences (see 4.5 for configuration de-
tails). Sentences that exceed the established (maximum) length are cropped
and shorter sentences are padded with zero-filling masks. This also accounts for
variable-length sentences during classification.

2. FastText Supervised Learner: The second classifier that we test with in our
SelecT combination system is the FastText4 classifier (Joulin et al., 2017). Fast-
Text is know for its speed; however, we mostly use it here because it can achieve
prediction performance comparable to RNNs (Joulin et al., 2017), especially at
the sentence level. Since it is a linear classifier based on a bag-of-words like
approach that does not depend on deep learning, the FastText classifier can be
considered less complex than the BIRNN. The architecture, according to Yu et al.
(2016), maps each vocabulary to a real-valued vector, with unknown words hav-
ing a special vocabulary id. In FastText, sentences are represented using a linear
representation that takes the average from a lookup table produced by word vec-
tors that are created using an architecture similar to a continuous-bag-of-words
(CBOW) model (Mikolov et al., 2013).

The FastText framework by default offers pre-trained word vectors (Mikolov et
al., 2018) that encompass more than 5 million words from crawled websites and
Wikipedia news data. FastText has its own word representation (Bojanowski et
al., 2017) that can be considered state-of-the-art and comparable to the most
common word embeddings like Word2vec (Mikolov et al., 2013) and Glove (Pen-
nington et al., 2014). We use the default pre-trained word embeddings which are
based on a CBOW-like model.

While the supervised classifier from FastText is inspired by the CBOW model,
in order to avoid speed complications, it uses a CBOW variant created to use
a bag of n-grams (see Section 4.5 for the exact number of n-grams and setup)
as additional features to capture some partial information about the local word
order, similar to work by Joulin et al. (2017). For comparison purposes, FastText
can be considered a neural network with a single hidden layer that uses a bag-
of-n-grams representation.

Bojanowski et al. (2017) and Kovstial and Davrena (2017) have shown that Fast-
Text is a powerful source for enriching verbal representation and that it works
well with morphology due to its use of sub-word information that works at the
n-gram level. One of the MT systems that we use for experiments, Apertium,
also works well with morphology due to its use of a morphological dictionary and
shallow, structured, transfer rules. It is our hope that FastText will be able to

4https://fasttext.cc/, https://github.com/facebookresearch/fastText/
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capture differences at the sub-word level better than the other classifiers in order
to highlight Apertium’s strengths by classifying those segments where Apertium
would typically score better.

FastText is also a good choice for experimentation because it is efficient. Joulin
et al. (2017)’s main effort was to improve the typical processing times that would
sometimes take days on standard multi-core processors. They were able to train
the classifier on more than one billion words in less than ten minutes using a
standard multi-core CPU, and classify half a million sentences among 312,000
classes in less than a minute.

3. Logistic Regression: For our purposes, the Logistic Regression (LR) classi-
fier can be considered the least complex because it is a linear classifier with a
very straightforward approach. Its origin dates back to the early 19th century
(Cramer, 2002) which make it a popular algorithm that is implemented in many
packages such as the one by Fan et al. (2008).

The LR classifier models the relationship between a set of variables and their
outcome. For our purposes, we use multinomial logistic regression, also known
as a maximum-entropy classifier, to select a specific MT system for each sen-
tence. The probability that the LR classifier will choose a particular MT system
(Apertium, Moses, or Nematus) can be expressed as:

Pr(y = c | x, W) =
exp(wTc x)∑C
c′=1 exp(w′Tc x)

(4.1)

Equation 4.1 can be considered the standard multi-class logistic regression model
where the probability of a sentence (y) being classified with the class (c) depends
on the weight of each feature vector (wc and w′c). The sentence-level features for
our experiments are produced using a bag-of-words model and scored using term
frequency inverse document frequency (TF-IDF) (Salton and Buckley, 1988) (see
Section 4.5 for more details).

The SelecT classifier can be thought of as a model similar to the QE model from
Chapter 3 because it attempts to use segment-level features to choose an optimum
translation. During training, each source segment is labeled with the MT-system class
(Apertium, Moses, or Nematus) by selecting the system with the highest BLEU score
for that segment. Afterwards, during testing, the best performing classifier is used for
labeling new segments, or sub-segments.

4.4 MT paradigm differences

In this dissertation, we use MT systems from different paradigms. In this chapter,
we show how the SelecT classifier allows us to take advantage of each paradigm’s
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strengths by comparing three specific paradigms: rule-based, statistical, and neural, as
used in Section 4.5. This allows us to show how well an a-prior selection system can
increase the odds for an optimum FMR implementation by taking advantage of each
MT system’s approach.

Apertium, the representative rule-based MT systems, is used as the MT system for
FMR in Chapter 2. We use the same version (SVN 64348) and language-pair package:
apertium-en-es in this chapter. Apertium is a shallow-transfer RBMT system and, for
our experiments, it may make a difference because it is able to capture grammatical
differences, such as part-of-speech, well. Similarly, dictionaries and rules in Apertium
are encoded by human experts and can be helpful for infrequent words and phrases
not typically captured in by an SMT or NMT system due to their reduced number of
occurences in the corpora, if any. Therefore, while Apertium has been shown to perform
worse on English to Spanish in Chapter 2 and by Knowles et al. (2018), RBMT systems
can still be considered useful for FMR.

Moses is our representative SMT system. Moses combines statistical models with
phrase tables that are used for decoding. In Chapter 2, we found that Moses performs
well when compared to other MT engines.5 It is the most widely adopted open-source
statistical MT system and it generally outperforms other RBMT systems like Systran
(Dugast et al., 2007). On the other hand, Moses also peforms better than NMT in
some cases (Schwenk et al., 2012). In a recent comparison to NMT, Junczys-Dowmunt
and Grundkiewicz (2016) show that performance for en–es is nearly the same according
to BLEU (about 1.4 difference). Moses is a complex system that, in our experiments,
performs well on word ordering and on the translation of symbols like punctuation
and quotation marks. In several cases, Moses is the only MT system that correctly
translates rare punctuation mark differences (Knowles et al., 2018).

Nematus is used here as the NMT representative. One major advantage of Nema-
tus over Moses and Apertium is that it uses byte-pair encoding (BPE) which starts
from a character-level segmentation and eventually encodes full words as a single sym-
bol (Sennrich et al., 2016). The potential for Nematus to score well on translations
that differ at the character-level instead of at the word level is high. In WMT 2016,
Nematus outperformed other SMT systems with more complex language models.

Based on the previous work using the three MT systems (Apertium, Moses, and
Nematus), we believe that SelecT should outperform any single system. Each MT
system is capable of outperforming the others on specific segments due to its internal
workings and those differences are what a classifier is able to use as discriminant fea-
tures. For example, Apertium may produce quality translations in some cases where
morphology or part-of-speech linguistic features are absolutely necessary; Moses may
perform better than Apertium on segments that have frequent phrases; and, Nematus
will probably outperform the other systems for most segments.

5We train Moses on Europarl V7 (Koehn, 2005) and tune it on WMT12.
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Some types of problems that an MT system may find with the test corpus, DGT-TM
2016,6 relate to the corpus’s parliamentary text. It contains punctuation irregularities
and a lot of legal register segments, like article and section numbers, where target
(Spanish) words do not change much despite the language difference (English to Span-
ish). In addition, the text contains several hundreds out-of-vocabulary (OOV) words
which can be hard to cover with any MT system. Luong et al. (2014) and Alva-
Manchego et al. (2017) show that Moses is conservative with deletions, yet good with
punctuation. Apertium is good at making lexical and morphological distinctions. How-
ever, both Apertium and Moses are unlikely to do well with lexical complexity (Luong
et al., 2014).

4.5 Experimental settings

The experiments in this chapter use the same corpora and MT systems as in Chapter
2. SelecT is first used to show that a single MT system can be selected in an a-prior
manner for each source segment. Then, the best-performing classifier, used initially
to learn from entire source segments, is used as a selection device when translating
sub-segments for fuzzy-match repair.

4.5.1 Classification experiments

The source code for the three classifiers that we use in SelecT is placed on GitHub.7

All classifiers and their respective MT system’s output use the DGT-2016 TM8 for
training. We divide DGT-2016 into an 80%/10%/10% split for train/dev/test, respec-
tively. At this point, to address the weakness found when translating from English to
Spanish in Chapter 2, we focus only on the en–es language pair which contains a total
of 203,214 parallel segments. We lowercase all segments and tokenize them using the
tokenizer in Moses.

In order to address caveats in Chapter 2, such as difficulties with long sub-segments
and proper nouns in English, we maintain the Apertium version but slightly change the
SMT and NMT systems. The SMT system, Moses, mirrors the typical SMT baseline9

and is trained on Europarl v7 (Koehn, 2005) and tuned on the development set (news-
test2008) distributed for the WMT1210 translation task. The NMT system, Nematus,
is trained on Europarl v7 and News Commentary v10 corpora11 (WMT13 training data
for en–es). While there is some difference between WMT12 and WMT13, for modeling
purposes, they can be considered similar corpora because the overall language is the
same and they belong to the same domain – news commentary.

6https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
7https://github.com/AdamMeyers/Web-of-Law/EAMT2018
8https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
9http://www.statmt.org/moses/?n=Moses.Baseline

10http://www.statmt.org/wmt12/dev.tgz
11http://www.casmacat.eu/corpus/news-commentary.html
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As mentioned in Section 4.3, the training corpus of SelecT consists of a labeled data
set where each segment is accompanied by the best scoring translation using BLEU.
For our experiments, there are 162,571 segments in the training set. Apertium scores
best on 26,426 of the segments; Moses scores best on 54,372 of the segments; and
Nematus scores best on 81,773 of the segments. If we were to apply the trained model
on our test set of 20,321 segments, the perfect SelecT classification would be: 3,441
Apertium segments, 6,602 Moses segments, and 10,278 Nematus segments.

The three classifiers used for experimentation and their implementation have been
covered in section 4.3. Here, we extend the explanation to discuss their configuration:

1. Bi-Directional Recurrent Neural Network: Word2Vec (Mikolov et al., 2013)
word embeddings are created using Gensim.12 They are trained using the con-
tinuous bag-of-words algorithm on the DGT-TM 2016 corpus. The embeddings
are of size 300 and serve as input to the BIRNN.

As a manner of reducing memory footprint, a limit of 100 words is set on each
input segment to the BIRNN. Segments with more than 100 words are reduced
by removing extra words from the end of the segment to fit in the input space.
The DGT-2016 corpus contains few segments longer than 100 (less than .0004%
of the total); therefore, changes in performance using a higher word limit would
be negligible.

The model is implemented using Theano.13 The RNN layers themselves contain
300 hidden units, a dropout rate of 0.5, and RELU activation. Since the two
layers are combined, the final dense layer sent to RELU for activation is of size
600 (300 and 300 from each RNN). The Softmax layer then consists of 3 outputs,
one for each MT system.

After several developmental experiments with various learning rates (0.025, 0.050,
and 0.075), we settled on the learning rate parameter of 0.025. Additionally,
we train for 20 epochs. Since training the BIRNN takes longer than the other
classifiers, we had to reduce our memory footprint. So, in addition to reducing
the word-length for input segments, we use 50-segment batches for training.

2. FastText Supervised Learner: Our FastText14 training phase consists of 25
epochs. For word embeddings, we use a vector of 300 dimensions and a n-gram
length of 5.

3. Logistic Regression: For our Logistic Regression (LR) model we used the
popular Python machine learning framework SciKit-Learn v0.19.115. Segment
representations are vectors that contain the term frequency inverse document

12https://radimrehurek.com/gensim/
13http://deeplearning.net/software/theano/
14https://github.com/facebookresearch/fastText/
15https://sklearn.org/modules/generated/sklearn.linear_model.LogisticRegression.

html
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frequency (TF-IDF) (Salton and Buckley, 1988) scores for each word and are
created using the distinct words from each document.

Model training time differs for the 3 models. FastText and logistic regression (gen-
erating a bag-of-words representation and features based on TF-IDF features) can both
be trained within several minutes (on 12 cores of an Intel Xeon E-2690v2 3.0GHz CPU),
while it takes roughly 16 minutes per epoch to train the bi-directional recurrent neural
network (on one NVIDIA P40 GPU). For our purposes during the development stage,
the best accuracy on the development set for the RNN was observed at 40 epochs.
Clearly, in our experiments, the FastText and logistic regression models train faster
than the RNN.

4.5.2 FMR experiments

In order to replicate experiments from Chapter 2, we use exactly the same settings as
before. Thus, there are 1,993 test sentences along with a translation memory extracted
from DGT-TM 2015. All three systems (Apertium, Moses, and Nematus) make up
part of the SelecT system that FMR uses when calling its black-box translate method
such that, when a new source-side sub-segment (σ or σ′) is proposed for translation, it
is passed first to the SelecT system to determine which of the three MT systems would
perform best for the sub-segment. After the MT systems is selected, it is used to get
the translated sub-segment τ or τ ′, respectively.

We use the best performing model (FastText) from our MT experiments to test
the use of SelecT for FMR. As we did in Chapter 2, results for the FMR system with
FastText are reported using WER and the selected MT systems; selection is done on
a segment basis.

We report WER when each MT system is used to translate the whole source seg-
ment, when FMR is performed with each individual MT system, and when SelecT is
used to select the MT system for FMR. It is worthwhile to note that there are cases
when a fuzzy-match score is not met and the entire segment (s′) is translated using
MT. In those cases, we also use SelecT to choose the MT system to be used to translate
the whole segment.

4.6 Results

We provide results of two experiments: the first experiment measures the accuracy
of the classifiers of SelecT using BLEU and WER as evaluation metrics; the second
experiment uses SelecT as a predictor to choose an MT system for FMR. For the
first experiment, we use 20,321 development sentences with three classifiers: BIRNN,
FastText, and Logistic Regression.
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Label Prec. Rec. F1 Accuracy

RNN SelecT MT System

Apertium 61.05 50.65 55.37
65.79%Moses 59.25 58.60 58.92

Nematus 70.94 75.48 73.14

FastText SelecT MT System

Apertium 70.52 46.79 56.25
68.12%Moses 60.72 60.27 60.49

Nematus 71.86 80.30 75.84

Logistic Regression SelecT MT System

Apertium 71.30 37.26 48.94
65.05%Moses 57.60 52.20 54.76

Nematus 67.71 82.61 74.42

Table 4.1: Evaluation of three classifiers on three MT system labels.

4.6.1 MT experiments

Results for the first experiment are reported in Table 4.1. Each segment is assigned
an MT system label which corresponds to the system with the highest BLEU score.
It is the classifier’s job during testing to predict the best-performing MT system for
each segment. The best classifier on the 20,321 segments is the FastText classifier. It
is 68.12% accurate and slightly outperforms (less than 1%) the BIRNN classifier. It
is important to note that precision (Prec. in the table), recall (Rec. in the table),
and F1 scores are displayed for each respective MT-system label. True positives are
measured as the count of segments where the classifier correctly predicts the respective
MT system; false positives are the count of segments where the classifier should have
predicted the respective MT system but it did not; false negatives (FN) are the count
of segments where the classifier incorrectly labels segments that should have been
labeled as the respective MT system. Precision, Recall, and F1 scores are the standard
evaluation measures for classification tasks.

In Table 4.2, we report more information from the first experiment that shows: 1)
the maximum (upper) and minimum (lower) bounds, that is the best-performing and
worst-performing systems; 2) performance using each type of SelecT classifier; and, 3)
how well each system performs in isolation – if we were to use the respective system
as the sole translation engine for all 20,321 segments.

Table 4.2 provides a general idea of how well a classification system like SelecT
works when compared to the three MT systems in isolation. It is clear that the BLEU
performance from the best-performing SelecT systems (Logistic Regression and Fast-
Text) is nearly the same as using Nematus in isolation. However, word-error rate
for both systems is somewhat better than Nematus. The FastText classifier provides a
19.04 improvement over the BLEU lower-bound (90.2% of the potential difference) and
a 14.36 improvement over the WER lower-bound (83.4% of the potential difference).
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Upper and Lower Bounds

BLEU WER
Best 40.08 46.70
Worst 18.97 63.91

SelecT Classifiers

BLEU WER
RNN 37.36 49.69
FastText 38.01 49.55
LR 38.03 49.97

MT Systems in Isolation

BLEU WER
Apertium 20.96 59.19
Moses 30.05 54.02
Nematus 37.36 51.77

Table 4.2: A comparison of SelecT classification with MT systems and upper/lower
bounds.

System RNN FT LR Ref
Apertium 2855 2283 1798 3441
Moses 6530 6553 5983 6602
Nematus 10936 11485 12540 10278

Table 4.3: Count of segment for 3 predictive SelecT models.

The FastText classifier also outperforms the best individual system (Nematus) by 0.65
BLEU score and 2.22 WER. The BLEU and WER score differences are statistically
significant according to paired bootstrap re-sampling (Koehn, 2004) with a p-level of
0.05.

The average between the upper and lower bounds is a good baseline to beat and
demonstrates that our system is successful at predicting the correct high-scoring system
most of the time. Random selection could also be used as a lower bound for the baseline;
but, in our experiments, random tests did not do much better than the worst baseline
(about 2 points BLEU score).

Table 4.3 shows the predictive capability of each classifier at the segment level.
It provides a segment count for each classifier and a corresponding system reference
count. This helps to show how well the predictors perform at choosing an MT system.

When using the FastText system (FT in Table 4.3) as a predictor, Apertium out-
performs Moses and Nematus on 2,283 of the 20,321 total sentences; Moses gets 6,553
of them correct when compared to the reference; and, Nematus gets 11,485 correct
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Apertium Moses Nematus SelecT
TM MT FMR MT FMR MT FMR MT FMR

FMT: 60%

Error (%) 55.0 65.3 36.5 45.8 29.2 48.6 30.1 44.8 27.9
Er. (%) on matches 20.1 65.3 17.9 45.8 16.2 48.6 17.1 44.8 16.0
# matches 1184 1993 1184 1993 1184 1993 1184 1993 1184

FMT: 70%

Error (%) 61.0 65.3 38.5 45.8 30.5 48.6 31.15 44.8 29.2
Er. (%) on matches 16.3 65.3 14.6 45.8 13.7 48.6 13.9 44.8 13.5
# matches 828 1993 828 1993 828 1993 828 1993 828

FMT: 80%

Error (%) 69.7 65.3 42.6 45.8 32.6 48.6 33.7 44.8 31.7
Er. (%) on matches 13.1 65.3 11.9 45.8 11.3 48.6 11.4 44.8 11.2
# matches 660 1993 660 1993 660 1993 660 1993 660

Table 4.4: Word-Error Rate (WER) for FMR using SelecT to select, on a sub-segment
basis, the MT system to be used for fuzzy-match repair.

(over-predicting by more than 1000 examples). This shows that the FastText model
tends to prefer Nematus in more cases than the BIRNN

4.6.2 FMR experiments

For FMR, we evaluate our best performing classifier (FastText) from Table 4.1 by
using it to select, on a sub-segment basis, the MT system to be used for translating
sub-segments σ and σ′ for building the repair operators to be used. Much like results
from Table 2.5 in Chapter 2, we report on two error rates: 1) WER computed on the
whole test set and 2) WER computed only on the segments for which a translation
unit (TU) with a fuzzy-match score above the fuzzy-match threshold is found (error
on matches). We use those two different forms of measurement to better understand
how a translator or CAT tool user would use FMR in a production setting since they
would typically only see matches.

Table 4.4 shows the performance of our approach for 3 different fuzzy-match score
thresholds (FMT) —60%, 70% and 80%—. We report the WER for the same three
MT systems (Apertium, Moses, and Nematus) as before and when using the FastText
classifier from SelecT. The last column (SelecT) shows how well SelecT performs when
used for selecting the MT system in isolation (the MT sub-column) and then when
used for FMR (the FMR sub-column).

The SelecT system outperforms the results from Chapter 2. In addition to outper-
forming the stand-alone FMR work from before, it seems to score well when compared
to other work that uses various MT paradigms (also from Chapter 2). SelecT out-
performs all systems in both fuzzy-match situations (matched or not). This is more
evident when the FMT is lower. For example, at 60% FMT, SelecT is about 1 point
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better than the best-scoring MT system in isolation (Moses) and 1.3 points better than
the best MT system for FMR (Moses also). Scores are similar for the same MT system
using an 80% FMT and consistently score better than Nematus, the best scoring MT
system in isolation during development from Table 4.2. It performs best for FMR when
there’s no fuzzy-match and the MT system has to translate the entire source segment
(s′). This is first seen in the performance from Table 4.2 but even more detailed in the
direct comparisons in Table 4.4. We attribute this behavior to training on segments
instead of sub-segments.

4.7 Concluding remarks

Fuzzy-match repair has already shown its potential for improving translator’s pro-
ductivity. The SelecT system presented here shows performance gains of as much as 2
points in WER over the initial work in this thesis. We believe that the gains presented
here are due to Moses and Apertium’s phrase-based and rule-based technology, respec-
tively, that allow it to come somewhat closer to translator’s needs at the sub-segment
level. In order to explain this, we observe that Nematus is more likely to correctly
handle polysemous words (should English march be translated to Spanish as marzo
(the month) or marcha (the action)). However, some of Nematus’ errors involve seem-
ingly arbitrary translations of words or the addition of arbitrary words. For example,
the English “identification numbers” is correctly translated as “números de identi-
ficación” by Apertium, but Nematus translates it as identificación de identificación
(Moses translates it nearly correctly, but leaves off the “s” in “números”). Similarly,
Apertium correctly translates the English “saffron” as azafrán, whereas Moses leaves
it untranslated (“saffron”) and Nematus translates it mysteriously as “lágrimas de los
perros”. Sub-segments in FMR are usually shorter and have more punctuation involved
(especially in the DGT-TM 2015 corpus).

Our experiments show that SelecT can be used as an ensemble system that covers
more cases than any MT system tested and could, thus, be more valuable for a trans-
lator or CAT-tool user. SelecT is agnostic with respect to the MT systems being used
and does not require underlying process changes. Our results also help to explain how
well various classifiers perform on FMR. The classifiers could also be trained with more
detailed, feature-level information such as sentence and word-length ratio as done for
quality estimation in Chapter 3.



Chapter 5

Combining FMR with automatic
post-editing

Previous chapters have focused on fuzzy-match repair performance in isolation as

a modular element of the CAT environment. While CAT tool users can use FMR

with TMs as a primary device for improving their productivity, they can also use

automatic post-editing (APE) systems, among others, to get further productivity

gains. In this chapter, we combine FMR and APE: first, a fuzzy-match repaired

segment is produced from the translation unit proposed by the TM and the

source segment to be translated; then, the repaired segment is further improved

by an APE system specifically tuned for this purpose. Experiments conducted

on the translation of English texts into German show that, by combining the two

technologies, the quality of the translations improves up to 23% compared to a

pure MT system. The improvement over a pure FMR system is of 16%, showing

the effectiveness of our joint solution.

5.1 Introduction

The focus of this chapter is on extending the baseline work presented in Chapter 2 to
improve fuzzy-match repaired segments by adding an additional post-editing technique
called automatic post-editing (APE) (Chatterjee et al., 2017). APE methods have been
introduced in CAT tools as a post-editing technique to correct machine-translated
segments. Research has shown that translators can be more productive when using
state-of-the-art post-editing techniques (Isabel, 2017). As shown in recent WMT tasks
(Bojar et al., 2017; Chatterjee et al., 2018a), APE, as a secondary device for correcting
MT segments, requires less post-editing effort to convert it into an adequate translation
for the intended purpose. In this chapter, we demonstrate that the application of APE
to the best possible repaired segment produced by the FMR algorithm presented in
Chapter 2 leads to improved translation proposals.
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As motivated by Parton et al. (2012), an APE system can help to improve MT out-
put in two major ways: (1) by exploiting information not available during translation
or (2) performing a deeper text analysis than a typical MT system decoder. Addi-
tionally, the APE system can adapt the output of a general-purpose MT system to
the lexicon/style requested in a specific application domain. Altogether, APE provides
professional translators with improved MT output to reduce (human) post-editing ef-
fort.

APE systems do not rely on translation memories and are effective without the
initial intervention of the translator. Nonetheless, our experiments show that APE can
be seamlessly integrated into the typical translation pipeline as a post-editing technique
to improve segment-level proposals from FMR, not only MT output. FMR is first used
to produced a repaired translation proposal and then APE is used as a tool to better
the quality of that proposal. Our proposed system outperforms both a competitive
neural MT system and FMR alone.

The remainder of this chapter is organized as follows. First, we review the state-
of-the-art APE system used in our experiments. Second, in Section 5.3, we show
how the two technologies are “glued” together to form a new system that is added in
a modular way to a traditional CAT pipeline. Third, we describe our experimental
settings. Fourth, we present our results in Section 5.5. Then, we introduce human
reviews as a sanity check to confirm our findings from the qualitative analysis. Finally,
we wrap up our findings with a conclusion.

5.2 Automatic post-editing

Automatic post-editing is the task of correcting recurring errors made by an MT
system by learning from human corrections. Starting from the seminal work by Simard
et al. (2007), the problem has been tackled as a “monolingual translation” task in which
the MT output is translated into an improved text in the target language. Under this
definition, the “parallel data” used for training an APE system consist of pairs of the
form (target, post-edited target) rather than the (source, target) pairs normally used in
MT. Following the translation-based approach, initial solutions relied on the phrase-
based paradigm (Simard et al., 2007; Dugast et al., 2007; Terumasa, 2007; Pilevar,
2011; Béchara et al., 2011; Chatterjee et al., 2016). Yet, in the past couple of years, top
results have been achieved by neural architectures (Pal et al., 2016; Junczys-Dowmunt
and Grundkiewicz, 2016; Chatterjee et al., 2017; Junczys-Dowmunt and Grundkiewicz,
2017). In particular, most of the neural architectures cited here are based on recurrent
attention encoder-decoder networks and use triplets of the form (source, target, post-
edited target) to train the APE system.

Recent advancements made by participants in the APE shared task at WMT 2017
have shown the capability of the APE system to significantly improve the performance
of a black-box MT system gaining up to seven BLEU points (Bojar et al., 2017).
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Figure 5.1: Seamless addition of fuzzy-match repair (FMR) and automatic post-editing
(APE) in a traditional computer-aided translation (CAT) pipeline. A source segment s′

is first fuzzy-matched with a translation unit (s, t) from the translation memory (TM).
The target segment t is then fuzzy-match repaired to get t'. Finally, the automatic
post-editing system modifies t' to create t'∗.

Our APE system is a re-implementation of the multi-source attention-based recurrent
encoder-decoder system (Chatterjee et al., 2017) that achieved the best performance
in the automatic evaluation by Fondazione Brunno Kezzler (FBK) at the APE shared
task at the WMT 2016. It uses two different encoders to independently process the
source and the MT segments. Each encoder consists of a bi-directional GRU and
has its own attention layer that is used to compute weighted context. To obtain
a single context, the two context vectors are combined via a feed-forward network.
To regularize the multi-source network and to avoid over-fitting, a shared dropout is
applied to the hidden state of both encoders and to the merged context. The APE
multi-source architecture makes it particularly suitable for the FMR task because it
corrects common MT caveats, such as erroneous translations due to a lack of domain-
specific context, that may occur when using MT as a black box, as is done in stand-alone
FMR.

5.3 Combination of FMR with APE

Our combination system, depicted in Figure 5.1, works as follows. After fuzzy-
matching, the CAT tool system uses the FMR technique from Chapter 2 to propose
a fuzzy-match repaired segment t', not necessarily present in the TM, by using the
segment to be translated s′ and the TU (s,t) retrieved from the TM. Then, the APE
system uses t' and s′ to produce the final FMR and APE-repaired segment t'∗.
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Source: article 18 , paragraph 1 , of the co2 act
TM: article 45 , paragraph 1 , of the co2 ordinance

FMR: artikel 18 absatz 1 der co2-verordnung
APE: artikel 18 absatz 1 des co2-gesetzes

Reference: artikel 18 , absatz 1 des co2-gesetzes

Table 5.1: An example of integration of fuzzy-match repair (FMR) and automatic
post-editing (APE).

As a quick way of showing that our combination system outperforms the FMR
baseline in Chapter 2, we use the best (oracle) fuzzy-match repaired segment instead
of an approximation via quality estimation as was done in Chapter 3. That is, the fuzzy-
match repaired segment that is most similar to the reference translation is provided as
input to the APE system.

Table 5.1 shows the combination of FMR and APE on a real example. First, FMR
repairs the TM proposal by replacing two words (45 and ordinance); notice that FMR
incorrectly translates co2 act as co2-verordnung. APE then takes the FMR proposal
and produces an improved translation, co2-gesetzes, that is closer to the reference
translation.

APE has been combined with other techniques in a CAT tool setting. We briefly
describe those combinations that could be considered related to our work. The first, and
probably the most relevant work, is based on the combination of MT quality estimation
with APE. Chatterjee et al. (2018b) present three different combination types: one in
which sentence-level MT QE is used to activate an APE system, a second one in which
word-level MT QE is used to guide the APE system, and a third one that uses MT QE
to chose between the original MT output and its automatically post-edited version.

Hokamp (2017) includes word-level MT QE features as additional inputs to an
APE system and trains several neural models using different input representations,
but sharing the same output space. These models are finally ensembled together and
tuned for APE and MT QE.

Lastly, Tan et al. (2017) attempts to correct a common problem in APE known as
“overcorrection”. They do this by specifying two models (called neural post-editing
models) and then combine MT QE to help select a model for the translation. This by
no means is related to fuzzy-match repair; but, the idea of combining several systems
around APE is similar to what we are doing.

5.4 Experimental settings

Unlike previous chapters that attempt to show how well FMR works with specific
language pairs, namely English and Spanish, here we use English and German because
they performed well in a recent (2018) WMT task (Chatterjee et al., 2018a) and have
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become a de-facto standard for APE experiments. We experiment with a combination
of FMR and APE using a phrase-based MT system as the SBI for FMR. In addition,
we use APE on the output of two MT systems, a phrase-based MT system and a neural
MT system, as a point of comparison. This section goes over the details of the data and
systems we use. One of our objectives is to maintain practical (non domain-specific)
settings for both our data and MT systems despite other works (Knowles et al., 2018;
Chatterjee et al., 2018b) that have already shown that training the MT systems on
in-domain data, especially in the case of a neural MT system, can be advantageous.

5.4.1 Data

Our entire dataset is based on 4,000 randomly selected sentences from the DGT
translation memory (DGT-TM-release 2018).1 This TM is available in several lan-
guages containing many translation units.2 In our evaluation we use the English–
German (en–de) TM extracted using the formal DGT extraction methodology men-
tioned on their website.

As done in Chapter 2, FMR is used to generate fuzzy-match repaired translation
proposals for the 4,000 sentences by using the entire en–de DGT TM to look for
translation units to repair; it is worth noting that the whole DGT TM is not used in
any way by the APE system. If a translation unit with a fuzzy match score above 60%
is found, it is used for FMR; otherwise, Moses (Koehn et al., 2007), the SMT system
used as the SBI for FMR, is used to translate the source sentence.

Of the 4,000 sentences selected at random from the DGT TM, 2,500 were randomly
selected and used to fine-tune the APE system (see Section 5.4.3), 500 were used
for development, and 1,000 for testing. Altogether, about 350 sentences were not
successfully repaired by FMR; in those cases we used the output of Moses.

5.4.2 Machine translation systems

We use the phrase-based statistical MT system Moses (Koehn et al., 2007) as a SBI
for FMR; it has shown to perform well in previous experiments and in the black-box
setting (Knowles et al., 2018). In addition to Moses, we use the neural MT system
Nematus (Sennrich et al., 2016) as a point of comparison. We do not use Nematus as
a SBI for FMR because of time constraints; in any case, the phrase-based MT system
performed better with APE alone than the neural MT system (see Table 5.2).

For Moses, we use pre-trained models downloaded from http://www.statmt.org/

moses/RELEASE-3.0/models/ with default configuration settings such as the inclusion
of the UNK symbol for words that were not translatable.3 Nematus, on the other

1https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
2For some statistics about this TM, please visit https://wt-public.emm4u.eu/Resources/

DGT-TM_Statistics.pdf
3This is left on purpose for clear distinction during human evaluation.
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hand, is trained on a collection of corpora belonging to different domains and contain-
ing approximately 4 million sentences. In particular, we use domain-specific parallel
corpora from the European Central Bank, Gnome, JRC-Acquis, KDE4, OpenOffice,
PHP and Ubuntu,4 and generic training sets obtained from the CommonCrawl dataset5

and Europarl.6 The Europarl corpus can be considered an in-domain dataset because
it belongs to the same domain of the DGT TM collection.

We train Nematus with default hyper-parameters7 The training corpus is first pro-
cessed using byte pair encoding (Sennrich et al., 2016), so that the less frequent words
are segmented into their sub-word units, resulting in vocabularies of maximum size of
90k entries. The size of word embeddings and hidden layers is set, respectively, to 500
and 1024. Source and target dropout is set to 10%, whereas, encoder and decoder hid-
den states and embedding dropout is set to 20%. The learning rate is set to 0.001. The
cost function is computed on mini-batches of 100 sentence pairs with maximum length
of 50 tokens, extracted from the randomly shuffled data after each epoch. The models
are optimized using Adagrad (Duchi et al., 2011) and every 10,000 mini-batches they
are evaluated with BLEU on the development set. Training stops after ten evaluations
with no BLEU improvement.

5.4.3 APE settings

The APE system is trained on the eSCAPE corpus (Negri et al., 2018), a collection
of 7.2 million triplets (source, MT output, and reference), where the MT outputs
have been created by a phrase-based MT system. It consists of datasets belonging
to different domains and it has been filtered by removing duplicates and too short (3
words) or too long (60 words) segments.

To adapt the generic APE system to the FMR task, the model has been fine-
tuned (Luong and Manning, 2015) on 2,500 triplets (see Section 5.4.1), where the
source input is paired with the fuzzy-match repaired translation proposal produced
by FMR using an oracle approximation from the original set of 4,000 sentences that
matched a 60% fuzzy-match threshold or above.

Similar to the neural MT system, the APE system is trained on sub-word units
by using BPE (Sennrich et al., 2016). The APE vocabulary is created by selecting
50k most frequent sub-words. Word embedding and GRU hidden state size is set to
1024 – default settings for most APE systems. Network parameters are optimized with
Adagrad with a learning rate of 0.01 following the work by Farajian et al. (2016), which
empirically showed that Adagrad has a faster convergence rate and better performance
than Adadelta (Zeiler, 2012). Source and target dropout is set to 10%, whereas, encoder
and decoder hidden states, weighted source context, and embedding dropout are set to

4All available at http://opus.lingfil.uu.se.
5http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz
6http://www.statmt.org/europarl/
7https://github.com/EdinburghNLP/nematus
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20% as the default system in WMT 2017 (Chatterjee et al., 2017). After each epoch,
the training data is shuffled and the batches are created after sorting 2,000 samples in
order to speed-up the training. The batch size is set to 100 samples, with a maximum
sentence length of 60 sub-words. The fine-tuning step is performed using the same
parameters of the generic training.

5.4.4 Combined FMR and APE settings

Our FMR approach is identical to the FMR approach presented in previous chap-
ters. The differences are in the MT system used as the SBI, the language pair, and the
TM. The fuzzy-match repaired segment t' produced for each source segment s′ serves
as input to the APE system. We experiment with one fuzzy-match repaired segment in
particular: the oracle fuzzy-match repaired proposal which is chosen as the best pos-
sible fuzzy-match repaired segment for each segment s′ by computing the word-based
edit distance between the fuzzy-match repaired segment and the reference translation.

5.4.5 Evaluation setting

For evaluating the combination of FMR and APE, we use two major metrics: BLEU
(Papineni et al., 2002) and WER. We report on BLEU because it is a centerpiece of
the development of MT systems; and, we report on WER because it is the main FMR
evaluation metric from previous chapters.

In addition to automatic evaluation metrics, a native German speaker conducted a
human evaluation. The evaluator is not a translator; yet, does have a background in
natural language processing and evaluation. The evaluator is presented with several
random sentences to compare and contrast the differences. We report the evaluators
overall evaluation on the best performing systems in our results.

5.5 Results

Table 5.2 reports the BLEU and WER results of three main sets of experiments:
(1) MT and TM; (2) MT with APE; and, (3) FMR and FMR with APE. The first
set of experiments (MT and TM) consists of (a) the output of the phrase-based MT
system Moses; (b) the output of the neural MT system Nematus; and (c) the translation
proposal as found in the TM. As can be seen, the TM performs the best when compared
to the two MT systems (+∼25 BLEU points over the phrase-based MT and +∼13
BLEU over the neural MT). We attribute the performance of the TM approach to the
fact that the DGT-TM is highly repetitive: it is likely that a match is found when a
high fuzzy match threshold is used. As a matter of fact, the TM was carefully selected
so that for the 1000 test sentences there is a match at a minimum of 60% fuzzy-match
threshold; that is, for all of the test segments there is a translation unit for which the
fuzzy match score is 60% or above. For 70% fuzzy-match score there are 763 matches,
for 80% 436, and for 90% 184.
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System BLEU WER
Phrase-based MT 39.62 49.74
Neural MT 51.54 38.00
TM 64.95 24.91
Phrase-based MT-APE 60.02 33.30
NMT-APE 56.58 35.00
FMR 68.36 23.17
FMR-APE 80.54 15.54

Table 5.2: Performance of three approaches (use of a phrase-based MT system, use of
a neural MT system, and use of the TM proposal without repairing), of the use of APE
to better the MT outputs, the use of FMR alone when the fuzzy-match repaired segment
is selected using an oracle, and of the combination of FMR and APE.

While the TM results are better than those reported in Chapter 2, FMR and FMR-
APE outperform it. Combining FMR with APE improves the translation quality of
the stand-alone FMR system by a large margin (+12 BLEU points). In all experiments
the addition of the APE system helps achieve better results. In a production system,
ideally the MT and APE systems would be properly trained on in-domain data to
get the maximum benefit from combining the two methods. Our results exclude other
system combinations, such as the inclusion of in-domain data or quality estimation
techniques, in order to solely show that the combination of FMR and APE under
generic (out-of-the-box) settings is favorable.

The overall APE gains over FMR alone can be classified into two main categories:
(1) addition of missing tokens and (2) lexical substitution. In the former, since APE is
configured to accept as input the source segment and the fuzzy-match repaired segment,
APE may insert tokens that are not present in the FMR translation proposal. One
example from our test set is described as follows: FMR proposes the segment, 30 2015,
for the source segment 30 October 2015, FMR discards the word October. When the
APE system receives the FMR proposal with the word October missing, it decides
to reinsert the word and, as a by-product of that, ends up matching the reference
sentence, 30 Oktober 2015. The latter category (lexical substitution) is mainly related
to the identification of words and their correctness; it is very important when dealing
with one or more TMs, where two suggestions can only differ by one word. An example
from the test set of lexical substitution follows: FMR proposes, Verordnung 2015 / 8,
for the source segment Regulation 2015 / 7. FMR introduces an incorrect number for
the month (8 instead of 7). Since APE leverages the source segment and the FMR
output, the APE is able to use lexical substitution to set the correct value which
matches the reference Verordnung 2015 / 7.

The two evaluation metrics (BLEU and WER) show how well our best system
performs and would probably be enough to show that it is worthwhile to combine
FMR with APE. However, as an extra qualitative check, we verify the translations
from our best performing systems with a native German evaluator. The evaluator is
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Best System Human Rating
TM 2.84
Phrase-based MT-APE 2.82
FMR 2.90
FMR-APE 3.67

Table 5.3: Average human evaluation for fluency and coherence given the source sen-
tence for the best system combining FMR and APE where the native evaluator was asked:
“Is the translation understandable and a valid translation given the source sentence?”.
Translations are rated using a 5-point Likert (Likert, 1932) scale where 1 means strongly
disagree and 5 means strongly agree.

quite tuned to natural language processing and has a good idea of the typical problems
that may occur with an MT system. The system translations were measured for fluency
and coherence given the source sentences where the native evaluator was asked: “Is
the translation understandable and a valid translation given the source sentence?”.
Table 5.3 shows a quick overview of how the best systems perform on a Likert scale
(Likert, 1932) (1=Strongly Disagree, 5= Strongly Agree): the human evaluation score
is in line with the automatic metrics reported above.

We also asked the human evaluator to provide general comments on each of the
best-performing systems. We did this to get a better idea of the types of errors each
system made. Below is an overview of what the evaluator found.

TM. The most common error from the TM was “missing” or “wrong” data which
describes typical information in the parliamentary texts like an article changing from
33 to 45. This is one of the reasons that a translator would like to use a TM because
the translator would typically only have to change the numbers in those situations.
There are also a few comments such as “wrong” part-of-speech, e.g. an adjective or
noun being wrong.

Phrase-based MT-APE. Unlike the TM, we see some common phrase-based MT
mistakes such as “noun cases wrong”. Also, the evaluator stressed the fact that there
were several unknown words. In addition to the normal mistakes, the evaluator noticed
that quite a few of the translations just “did not make sense”, even more than the TM.
That could be coupled with another finding, “repetition”, to form what seems to be
somewhat common in phrase-based MT-backed APE systems (Chatterjee et al., 2016).

FMR. The best FMR system is not immune to issues either. This could be due
to the MT systems used. Many of the errors were similar to the phrase-based MT-
APE system; however, other errors were reported such as “punctuation is weird” and
“important” words are missing. Nonetheless, in more cases than others, it seems that
the FMR system gets the underlying meaning correct.
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FMR-APE. This system performed the best in all cases. While there were comments
concerning unknown words (typical of the phrase-based MT translations), we saw some
issues of morphology such as problems with inflection. For the most part, the evaluator
made few comments because the translations were easier to understand than all other
systems.

5.6 Concluding remarks

In this chapter, we propose a two-step process able to generate improved trans-
lations. This approach relies on two state-of-the-art techniques: fuzzy match repair
(FMR) and automatic post-editing (APE). Given a translation unit and the segment
to be translated, the FMR module creates a set of fuzzy-match repaired segments.
The selected repaired segment is then fed as input to the APE system that fixes its er-
rors. When compared against MT, TM-based approach and FMR alone, the combined
solution outperforms all these methods indicating the effectiveness of the proposed
technique.

We measured performance using common MT performance metrics: BLEU and
WER. In addition to BLEU and WER, we provided a human rating from a native
German speaker as insight into how the best-performing systems fair to the average
reader (not necessarily a translator).



Chapter 6

Concluding remarks

This chapter summarizes the dissertation work by providing a high-level review

of the different steps taken to both present and test the fuzzy-match repair

approach presented in this dissertation. We cover the major contributions to

the state of the art and summarize research lines for future work that could

potentially improve the performance of our FMR approach.

6.1 Summary

The main focus of this dissertation is the introduction of a fuzzy-match repair algo-
rithm for its use in computer-assisted translation tools, capable of using any available
source of bilingual information (we use MT systems in our experiments) in a black-box
manner, i.e. without access to its internal workings. The hope is that by applying
the different techniques described within this dissertation, human intervention from
the post-editing point of view could be kept to a minimum while at the same time
preserving translation quality. Not only do we introduce a state-of-the-art algorithm
for fuzzy-match repair; but, we present several improvements that can be considered
important contributions to the state of the art. To be more specific, these are the
principal components that this dissertation focuses on:

• a novel, fuzzy-match repair algorithm that is capable of using any source of bilin-
gual information as a black box to propose fuzzy-match repaired segments based
on translation memory entries; and, that models all edit operations (insertions,
deletions, and substitutions) in the same way;

• the design of a set of language-independent features for quality estimation that
can be used to select the best fuzzy-match repaired segment in a multi-lingual
environment independent of the FMR system or source of bilingual information
used;
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• the combination of fuzzy-match repair with automatic post-editing to further
reduce the post-editing needed by the proposals in a seamless manner;

• the design of black-box features, i.e. without access to the inner workings of the
FMR algorithm, that allow our QE approach to be used for evaluating the quality
of fuzzy-match repaired segments produced using other FMR approaches;

• a classifier that is able to select, a-prior, the MT systems to be used for FMR on
a segment basis.

With regard to the fuzzy-match repair algorithm, this dissertation presents and
empirically tests a new approach that is designed to require only the presence of a
translation memory and a source of bilingual information while at the same time being
highly effective in a CAT tool environment. Other principal advantages include: source
and target language independency and easy integration into any CAT tool environment.
In Chapter 2, experiments are presented with three language pairs (English–Spanish,
Spanish–Portugese, and Spanish–French) that show how well the algorithm performs.
Three major machine translation paradigms (rule-based, statistical, and neural) are
used to test the algorithm’s potential. The findings show that our approach is more
effective than using a machine translation system alone and it can be used with modern
software backed by translation memories like OmegaT.

Another innovative technique that this dissertation brings to light is a quality esti-
mation technique for selecting fuzzy-match repaired segments. We show that complex
machine learning algorithms based on non-linear regression can accurately estimate,
given several segment-level features, the best fuzzy-match repaired proposal among
many. This novel approach is an important contribution, in addition to the main
algorithm for which it is titled, because it can also be used as a test-bed for other
fuzzy-match repair techniques. Additionally, the quality estimation technique, which
is found to work best with extremely randomized trees, is highly effective as a regressor
for several language pairs.

The modularity of our fuzzy-match repair solution is an important feature. It is
not solely that our system can be used with any source of bilingual information; it
can also be used in combination with other systems that typically exist in a CAT tool
environment. Much like a machine translation system, it takes as an input a source
sentence and produces an output. Indeed, it also requires the presence of a translation
memory. However, in this dissertation we show how easy it is to combine our system
with a state-of-the-art automatic post-editing system. Other combinations are left
for future work; but, the ease-of-integration that our approach displays as a modular
device is a big advantage.

In regards to the predictive system (SelecT), it is a classifier that is developed and
tested on deep learning techniques (a bi-directional recurrent neural network) along
with other machine learning techniques such as logistic regression. SelecT’s addition
to this dissertation provides evidence that the black-box nature of our FMR approach
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can benefit from other systems in an agnostic way. The classifier is able to be used
in conjunction with the MT system that backs FMR to further improve the entire
process.

6.2 Future research lines

What follows is a list of open research lines that may be followed to study more in
depth some of the approaches proposed in this dissertation:

1. The sub-segments that our FMR method operates on are gotten using a phrase-
pair extraction algorithm (Koehn, 2010, section 5.2.3). In Section 2.5.3, we show
that FMR favors sub-segments that have context around them. Future research
lines could consider other work (Bulté et al., 2018; Koehn and Senellart, 2010)
to determine which sub-segments should be applied and on what occasions. In
order to preserve the black-box nature of our approach, this would have to be
done in a way that does not take into consideration the MT engine used.

2. An analysis of the morphology of the repaired operators (sub-segment length,
number of gaps, anchored context, etc.) could be used to devise contextual
features to decide the repair operators to be used to produce the best repaired
segments. It could be used to discard low quality repair operators and reduce the
amount of fuzzy-match repaired segments that are generated per source segment
and translation unit to be repaired.

3. In our experiments, we show that several techniques can be used with FMR to
reduce post-editing needs. However, with the exception of Chapter 3, we use
an oracle evaluation to show how well FMR performs. Since our QE approach
is effective at selecting fuzzy-match repaired segments, future research should
include it instead of an oracle. The quality estimation technique described in
Chapter 3 could also be used as a mechanism for choosing the best fuzzy-match
repaired segments from a multitude of systems like the ones proposed by Bulté
et al. (2018), Dandapat et al. (2011), Koehn and Senellart (2010), Biçici (2008),
and Hewavitharana et al. (2005).

4. In Chapters 2 and 4, there is evidence that FMR can be used with any MT
engine; and, for some input, it may be advantageous to use one MT engine over
another. Further investigation could be done to test other MT engines or sources
of bilingual information such as bilingual dictionaries, lexicons, translation search
engines or translation memories, similar to previous work on word alignment
(Espla-Gomis et al., 2012).

5. The QE technique from Chapter 3 could be extended to include features from
post-editing tasks to train regressors that use human-level information similar
to the QE tasks presented by Specia (2011) and Chatterjee et al. (2015). Post-
edited information, such as the position of the sub-segments modified by the
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post-editor in a fuzzy-match repaired proposal, could serve as strong input signal
to the quality estimator of the FMR system.

6. The QE technique from Chapter 3 uses a regressor to determine the best possible
fuzzy-match proposal at the segment level. Future investigation could use a QE
technique that determines the best fuzzy-match repair at the repair operator level
instead.

7. SelecT is a classifier used in Chapter 4 for selecting an MT engine for each source
segment to be translated (s′). We experimented with several (out-of-the-box)
classifiers such as a logistic regression model, a recurrent neural network (Schus-
ter and Paliwal, 1997), and a FastText classifier (Joulin et al., 2017). Future
lines of research could use classifiers with more complex architectures to better
approximate which MT engine to use depending on the domain and/or language.

8. The SelecT system is trained on out-of-domain data in a black-box manner. We
strongly feel that the FMR results presented in Chapter 4 could be improved
in future research by training SelecT models on in-domain corpora like previous
work (Knowles et al., 2018) that shows in-domain trained systems work best with
FMR.

9. SelecT training was performed by using each system’s sentence-level BLEU (Pa-
pineni et al., 2002) score to determine the class label (or best MT engine) in
Chapter 4. Metrics such as Meteor (Lavie and Agarwal, 2007), HTER (Snover
et al., 2006), CHFR (Popović, 2015), or WER Wagner and Fischer (1974) could
be used in future research lines to find correlations that better align with human
judgment.

10. In Chapter 5, we covered the juxtaposition of two orthogonal technologies (FMR
and APE) to improve post-editor productivity. However, we did not cover the use
of QE or in-domain corpora when combining FMR with APE. In-domain corpora,
like Knowles et al. (2018) suggest, could be used to improve FMR performance
when combined with an APE system. Additionally, QE could be used as a way
to rank fuzzy-match repaired segments that are combined with APE.

11. Future lines of investigation could benefit from an in-depth study of transla-
tor’s productivity when using FMR. In order to perform a productivity study on
FMR, much like the previous MT study by Cadwell et al. (2016) that use corpora
(DGT-TM) similar to that of Chapter 2, future work would need to take into
account several human circumstantial factors such as ergonomics, translator’s
needs, well-being, and limitations. By including translators in the evaluation,
one could simulate a human-to-machine (O’Brien, 2011) collaboration where the
FMR system is capable of learning from the translator by updating the quality
estimation model after translations were made. This could lead to a metric for
correlating FMR performance to human acceptance. One example line of in-
vestigation to accomplish correlation with human judgment could measure the
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post-editor productivity difference between the use of FMR, QE, and APE meth-
ods in CAT tools and the TM alone.
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