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Abstract: In this paper, we study product convolutional codes described by state-space representa-
tions. In particular, we investigate how to derive state-space representations of the product code
from the horizontal and vertical convolutional codes. We present a systematic procedure to build
such representation with minimal dimension, i.e., reachable and observable.
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1. Introduction

It is well-known that the combination of codes can yield a new code with better
properties than the single codes alone. Such combinations have been widely used in coding
theory in different forms, e.g., concatenation, product codes, turbo codes, array codes, or
using EVENODD and interleaving methods [1–8]. The advantages of the combination of
codes can be due to, for instance, larger distance, lower decoding complexity or improved
burst error correction. In this paper, we shall focus on the so-called product codes, which
is a natural generalization of the interleaved schemes. More concretely, we will focus on
product convolutional codes.

In the context of block product codes, the codewords are constant matrices with
entries in a finite field. We may consider that both rows and columns are encoded into
error-correcting codes. Hence, for encoding, first the row redundant symbols are obtained
(horizontal encoding using Ch), and then the column redundant symbols (vertical encoding
using Cv). If Ch has minimum distance dh, and Cv has minimum distance dv, it is easy to
see that the product code, denoted by Ch ⊗ Cv, has minimum distance dhdv. This class of
product codes has been thoroughly studied and is widely used to correct burst and random
errors using many possible different decoding procedures. However, the product of two
convolutional codes has been less investigated and many properties that are known for
block codes are still to be investigated in the convolutional context.

Naturally, the class of convolutional codes generalizes the class of linear block codes,
and, therefore, they are mathematically more involved than block codes. In this context,
the data are considered as a sequence in contrast with block codes which operate with
fixed message blocks (matrices in this case). Even though they split the data into blocks of
a fixed rate as block codes do, the relative position of each block in the sequence is taken
into account. The blocks are not encoded independently and previously encoded data
(matrices in this case) in the sequence have an effect over the next encoded node. Because
of this, convolutional codes have memory and can be viewed as linear systems over a finite
field (see, for instance, [5,9–18]). A description of convolutional codes can be provided by
a time-invariant discrete linear system called discrete-time state-space system in control
theory (see [19–21]). Hence, we consider product convolutional codes described by state-
space representations. Convolutional codes have already been thoroughly investigated
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within this framework and fundamental system theoretical properties, such as observability,
reachability, and minimality, have been derived in [11–14].

It is worth mentioning the results derived in [22,23] on fundamental algebraic proper-
ties of the encoders representing product convolutional codes. In addition, they showed
that every product convolutional code can be represented as a woven code and introduced
the notion of block distances. In [22], it is was shown that, if the generator matrices of the
horizontal and vertical convolutional codes are minimal basic, then the generator matrix of
the product code is also minimal basic. In this work, we continue this thread of research
but within input-state-space framework instead of working with generator matrices. We
present a constructive methodology to build a minimal state-space representations for
these codes from two minimal state-space representation of the corresponding horizontal
Ch and vertical Cv convolutional codes. These representations are, therefore, reachable and
observable and are easily constructed by sorting and selecting some of the entries of a
given matrix built upon the state-space representations of Ch and Cv. This is done directly
without using the encoder matrix representations of the convolutional codes. The derived
representations are minimal and, therefore, are reachable and observable. Moreover, they
are easily constructed by sorting and selecting some of the entries of a given matrix built
upon the state-space representations of Ch and Cv.

Recently, there have been new advances in the original idea of deriving an algebraic
decoding algorithm of convolutional codes using state space representations. The idea was
first proposed in [24] and heavily uses the structure of these representations to derive a
general procedure, which will allow for extending known decoding algorithms for block
codes (like, e.g., the Berlekamp–Massey algorithm) to convolutional codes. More concretely,
the algorithm iteratively computes the state vector xt inside the trellis diagram, and, once
this state vector is constructed, the algorithm computes, in an algebraic manner, a new
state vector xt+s, where s is related to the observability index of the state representation.
Recently, these ideas have been further developed in [25,26]. Hence, the ideas of this paper
can be used to built a minimal state space representation of a product convolutional code
with the property that its decoding can be simplified by considering the simpler horizontal
and vertical component codes and applying the decoding algorithms developed in [25,26].

In [27], an input–state–output representation of each one of the convolutional codes
Ch and Cv, two input–state–output representations of the product convolutional code
Ch ⊗ Cv were introduced, but none of them are minimal, even if the two input–state–output
representations are both minimal. In this paper, we give a solution to this problem.

The rest of the paper is organized as follows: In Section 2, we introduce the background
on polynomial matrices and convolutional codes to understand the paper. In Section 3, we
describe how product convolutional codes can be viewed as a convolutional code whose
generator matrix is the Kronecker product of the corresponding generator matrices. In
Section 4, we provide a state-space realization of the product convolutional code based on
a state-space realization of each one of the convolutional codes involved in the product.
Finally, in Section 5, we present the conclusions and future work.

2. Preliminaries

Let F be a finite field, F[z] the ring of polynomials in the variable z and coefficients in
F, and F(z) the set of rational functions in the variable z and coefficients in F.

Assume that k and n are positive integers with n > k, denote by F[z]n×k the set of all
n× k matrices with entries in F[z], and denote by F[z]n the set F[z]n×1.

A matrix U(z) ∈ F[z]k×k is called unimodular if it admits a polynomial inverse; that
is, its determinant is a nonzero element of F (see, for example [28,29]).

Assume that G(z) ∈ F[z]n×k. The internal degree of G(z) is the maximum degree of
the k× k minors of G(z). We said that G(z) is basic if its internal degree is the minimum of
the internal degrees of the matrices G(z)U(z), for all invertible matrices U(z) ∈ F(z)k×k; i.e.,
the internal degree of G(z) is as small as possible (see, for instance, [17,30–33]. In particular,
if U(z) is unimodular, then G(z) and G(z)U(z) have the same internal degrees. G(z) is
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called right prime, if, for every factorization, G(z) = G′(z)U(z) with G′(z) ∈ F[z]n×k and
U(z) ∈ F[z]k×k; necessarily, U(z) is unimodular (see, for instance, [28,33,34]). Furthermore,
G(z) is basic if and only if any (and therefore all) of the following equivalent conditions
are satisfied: G(z) is right prime, G(z) has a polynomial left inverse [17,32]).

Assume that G(z) =
[
gij(z)

]
∈ F[z]n×k and denote by νj = max1≤i≤n deg

(
gij(z)

)
the

j-th column degree of G(z). We said that G(z) is column reduced if the rank of the high-

order coefficient matrix G∞ =
[

g
(νj)

ij

]
∈ Fn×k is k, where g

(νj)

ij is the coefficient of zνj in

gij(z). Equivalently, G(z) is column reduced if and only if its internal and external degrees
coincide, where the external degree of G(z) is the number ∑k

j=1 νj. Note that the internal
degree of a polynomial matrix is always less than or equal to its external degree [17]. For
any G(z) ∈ F[z]n×k, there exists a unimodular matrix U(z) ∈ F[z]k×k such that G(z)U(z) is
column reduced. Moreover, if G(z), G(z)U(z) ∈ F[z]n×k are column reduced matrices with
U(z) ∈ F[z]k×k unimodular, then G(z) and G(z)U(z) have the same column degrees, up
to a permutation. Column reduced matrices are also called minimal matrices [12,13,33]).
Basic and reduced matrices are also called minimal-basic matrices [30–32] or canonical
matrices [17].

A rate k/n convolutional code C is an F[z]-submodule of rank k of the module F[z]n
(see [18,20,35]). Since F[z] is a Principle Ideal Domain, a convolutional code C has always a
well-defined rank k, and there exists G(z) ∈ F[z]n×k, of rank k, such that (see [35])

C = imF[z](G(z)) =
{

v(z) ∈ F[z]n | v(z) = G(z)u(z) with u(z) ∈ F[z]k
}

where u(z) is the information vector, v(z) is the corresponding codeword, and G(z) is the
generator or encoder matrix of C.

If G(z) ∈ F[z]n×k is a generator matrix of C and U(z) ∈ F[z]k×k is unimodular, then
G(z)U(z) is also a generator matrix of C. Therefore, all generator matrices of C have the
same internal degree. The degree or complexity of C is the internal degree of one (and
therefore any) generator matrix and, therefore, is also equal to the external degree of one
(and therefore any) column reduced generator matrix (see [17,34]). The column degrees of
a basic and column reduced generator matrix of C are called Forney indices of C.

Since C always admits a generator matrix G(z) ∈ F[z]n×k which is column reduced,
the row degrees ν1, ν2, . . . , νk of G(z) are the Forney indices of C and ∑k

j=1 νj = δ, the degree
of C. From now on, we refer to a rate k/n convolutional code with degree δ as an (n, k, δ)
convolutional code.

An (n, k, δ) convolutional code C can be described by a time invariant linear system
(see [11,14,16,17]), denoted by (A, B, C, D),

xt+1 = Axt + But
vt = Cxt + Dut

}
, t = 0, 1, 2, . . . , x0 = 0, (1)

where A ∈ Fm×m, B ∈ Fm×k, C ∈ Fn×m and D ∈ Fn×k. For each instant t, we call xt ∈ Fm

the state vector, ut ∈ Fk the input vector, and vt ∈ Fn the output vector, and we say that
the system (A, B, C, D) has dimension m. In the literature of linear systems, the above
representation is known as the state-space representation (see, for example, [28,29,36–38]).
If we define u(z) = ∑t≥0 utzt, and v(z) = ∑t≥0 vtzt, it follows from expression (1) that
v(z) = G(z)u(z) where

G(z) = C(Im − zA)−1B z + D (2)

is the transfer matrix of the system. We say that (A, B, C, D) is a realization of G(z) if G(z)
is the transfer matrix of (A, B, C, D).

For a given transfer matrix G(z), there are, in general, many possible realizations.
A realization (A, B, C, D) of G(z) is called minimal if it has minimal dimension, and this
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happens if and only if the pair (A, B) is reachable and the pair (A, C) is observable (see, for
instance, [28,29,36]). Recall that the pair (A, B) is called reachable if

rank
([

B AB · · · Aδ−1B
])

= δ

or equivalently (see [39]), rank
([

λIδ − A B
])

= δ, for all λ ∈ F̄, where F̄ is the closure of
F. Analogously, the pair (A, C) is observable if and only if the pair (AT , CT) is reachable.
The dimension of a minimal realization of a transfer matrix G(z) is called the McMillan
degree of G(z). In the particular case that G(z) is a column reduced generator matrix of a
convolutional code C, the McMillan degree of G(z) coincides with the degree δ of C.

Reachability and observability represent two major concepts of control system theory.
They were introduced by Kalman in [40] in the context of systems theory and, in [35], the
definitions of reachability and observability of convolutional codes were presented, see
also [9,41–43]. These notions are not only important for characterizing minimality of our
state-space realization but also to describe the possibility of driving the state everywhere
with the appropriate selection of inputs (reachability) and the ability of computing the state
after from the observation of output sequence.

A system (A, B, C, D) is a realization of a convolutional code C if C is equal to the set
of outputs corresponding to polynomial inputs u(z) ∈ F[z]k and to zero initial conditions;
i.e., x0 = 0. The minimal dimension of a realization of C is equal to the degree of C
and the minimal realizations of the column reduced generator matrices of C are minimal
realizations of the code.

If (Ā, B̄, C̄, D̄), with Ā ∈ Fm×m, B̄ ∈ Fm×k, C̄ ∈ Fn×m, and D̄ ∈ Fn×k is a non-
minimal realization of a transfer matrix with McMillan degree δ, from the Kalman’s
decomposition theorem (see, for example, [28,29,36,38,40,44–47]), there exists an invertible
matrix S ∈ Fm×m such that

(SĀS−1, SB̄, C̄S−1, D̄) =




A O Ã13 O
Ã21 Ã22 Ã23 Ã24
O O Ã33 O
O O Ã43 Ã44

,


B
B̃
O
O

,
[
C O C̃ O

]
, D

,

where A ∈ Fδ×δ, B ∈ Fδ×k, C ∈ Fn×δ and the pair (A, B) is reachable, the pair (A, C) is
observable, and

C̄(Im − zĀ)−1B̄ z + D̄ = C(Iδ − zA)−1B z + D.

That is, (A, B, C, D) is a minimal realization of the transfer matrix G(z). Moreover, if
(A′, B′, C′, D′) is another minimal realization of G(z), then there exists a unique invertible
matrix P ∈ Fδ×δ such that

A′ = PAP−1, B′ = PB, C′ = CP−1, and D′ = D.

The state-space representation in expression (1), also known as, driving representa-
tion, is different from the input–state–output representation (see [21]) given by

xt+1 = Axt + But
yt = Cxt + Dut

}
, vt =

[
yt
ut

]
, t = 0, 1, 2, . . . , x0 = 0,

where A ∈ Fm×m, B ∈ Fm×k, C ∈ F(n−k)×m and D ∈ F(n−k)×k. This input–state–output
representation has been thoroughly studied by many authors [9,10,18,19,21,27,33,35,48],
and the codewords are the finite support input–output sequences {vt}t≥0 corresponding
to finite support state sequences {xt}t≥0.

The next theorem (see [11,14]) provides a state-space realization for a given polynomial
matrix, and it will be very useful in Section 4.
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Theorem 1. Let G(z) =
[
g1(z) g2(z) · · · gk(z)

]
∈ F[z]n×k be a matrix with column degrees

ν1, ν2, . . . , νk. Assume that g j(z) = ∑
νj
`=0 g(`)j z`, for j = 1, 2, . . . , k, and consider the matrices

Aj =

[
0T 0

Iνj−1 0

]
∈ Fνj×νj , Bj =

[
1
0

]
∈ Fνj , Cj =

[
g(1)j g(2)j · · · g

(νj)

j

]
∈ Fn×νj .

If δ = ∑k
j=1 νj and

A =


A1

A2
. . .

Ak

 ∈ Fδ×δ, B =


B1

B2
. . .

Bk

 ∈ Fδ×k,

C =
[
C1 C2 · · ·Ck

]
∈ Fn×δ, D =

[
g(0)1 g(0)2 · · · g(0)k

]
∈ Fn×k,

then the pair (A, B) is reachable. Moreover, if G(z) is column reduced, then the pair (A, C) is
observable, and, therefore, (A, B, C, D) is a minimal realization of G(z).

For the realization (A, B, C, D) of G(z) introduced in the previous theorem, it follows
from expression (2), that G(z) = CE(z) + D, where

E(z) =


E1(z)

E2(z)
. . .

Ek(z)

 with Ej(z) =


z
z2

...
zνj

, for j = 1, 2, . . . , k. (3)

The following example will help us to understand the previous theorem.

Example 1. Let F = GF(2) be the Galois field of two elements and consider the polynomial matrix

G(z) =

 z2 z + 1
z + 1 z

1 1

 ∈ F[z]3×2.

Since ν1 = 2, ν2 = 1, and rank(G∞) = 2. It follows that G(z) is column reduced. Now consider
the matrices

A1 =

[
0 0
1 0

]
, A2 =

[
0
]
, B1 =

[
1
0

]
, B2 =

[
1
]
,

C1 =

0 1
1 0
0 0

, C2 =

1
1
0

, D =

0 1
1 0
1 1

.

Then, according to Theorem 1, it follows that (A, B, C, D) is a minimal state-space realization of
G(z) with

A =

[
A1

A2

]
, B =

[
B1

B2

]
and C =

[
C1 C2

]
.

Moreover, E(z) =

 z 0
z2 0
0 z

 and G(z) = CE(z) + D.
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3. Product Convolutional Codes

In this section, we introduce the product of two convolutional codes called horizontal
and vertical codes, respectively. Assume that Ch and Cv are horizontal (nh, kh, δh) and
vertical (nv, kv, δv), respectively. Then, the product convolutional code (see [22,49]) C =
Ch ⊗ Cv is defined to be the convolutional code whose codewords consist of all V(z) ∈
F[z]nv×nh whose columns belong to Cv and whose rows belong to Ch.

Encoding of the product convolutional code C can be done as follows (see [22,49]):
Let Gh(z) ∈ F[z]nh×kh and Gv(z) ∈ F[z]nv×kv be generator matrices of the component
convolutional codes Ch and Cv, respectively. Denote by U(z) ∈ F[z]kv×kh an information
matrix. Now, we can apply row-column encoding; i.e., every column of U(z) is encoded
using Gv(z), and then every row of the resulting matrix Gv(z)U(z) is encoded using Gh(z)
as (Gv(z)U(z))Gh(z)T . We can also apply column-row encoding; i.e., every row of U(z)
is encoded using Gh(z), and then every column of the resulting matrix U(z)Gh(z)T is
encoded using Gv(z) as Gv(z)(U(z)Gh(z)T). As a consequence of the associativity of the
product of matrices, we get the same matrix in both cases. Thus, the codeword matrix V(z)
is given by

V(z) = Gv(z)U(z) Gh(z)T ,

and by using properties of the Kronecker product (see [50,51]), we have

vect(V(z)) = (Gh(z)⊗ Gv(z)) vect(U(z))

where vect(·) is the operator that transforms a matrix into a vector by stacking the column
vectors of the matrix below one another. Now, since

G(z) = Gh(z)⊗ Gv(z) ∈ F[z]nhhv×khkv

and rank(G(z)) = rank(Gh(z)) rank(Gv(z)) = kh kv, it follows that G(z) is a generator
matrix of the product convolutional code C = Ch ⊗ Cv. Note that C is a rate khkv/nhnv
convolutional code. We will compute its degree in Theorem 5 below.

The following two theorems were introduced in [22,49] without proof. We include
them here, with proof, for completeness and further references. The first one establishes
that the generator matrix of the product code is basic if the generator matrices of the
constituent codes are also basic.

Theorem 2. Assume that Gh(z) ∈ F[z]nh×kh and Gv(z) ∈ F[z]nv×kv are generator matrices of
the horizontal (nh, kh, δh) and vertical (nv, kv, δv) convolutional codes Ch and Cv, respectively. If
Gh(z) and Gv(z) are basic, then G(z) = Gh(z)⊗ Gv(z) is basic.

Proof. Since Gh(z) and Gv(z) are basic matrices, there exist Lh(z) ∈ F[z]kh×nh and Lv(z) ∈
F[z]kv×nv such that Lh(z)Gh(z) = Ikh

and Lv(z)Gv(z) = Ikv . Now, consider the polynomial
matrix L(z) = Lh(z)⊗ Lv(z) ∈ F[z]khkv×nhnv . From the properties of the Kronecker product,
it follows that L(z)G(z) = Ikhkv . Consequently, G(z) is basic.

The next theorem gives us the column degrees of a generator matrix of the product
code as a function of the column degrees of the generator matrices of the constituent codes.

Theorem 3. Assume that Gh(z) ∈ F[z]nh×kh and Gv(z) ∈ F[z]nv×kv are generator matrices of
the horizontal (nh, kh, δh) and vertical (nv, kv, δv) convolutional codes Ch and Cv, respectively. If
ν
(h)
1 , ν

(h)
2 , . . . , ν

(h)
kh

, and ν
(v)
1 , ν

(v)
2 , . . . , ν

(v)
kv

, are the column degrees of Ch and Cv, respectively, then
the column degrees of G(z) = Gh(z)⊗ Gv(z) are

ν1, ν2, . . . , νkv , νkv+1, νkv+2, . . . , ν2kv , ν2kv+1, . . . , ν(kh−1)kv+1, ν(kh−1)kv+2, . . . , νkhkv ,

with νl = ν
(h)
i + ν

(v)
j , with l = (i− 1)kv + j and j = 1, 2, . . . , kv.
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Proof. Assume that

Gh(z) =
[

g(h)1 (z) g(h)2 (z) · · · g(h)kh
(z)
]

Gv(z) =
[

g(v)1 (z) g(v)2 (z) · · · g(v)kv
(z)
]
.

From the properties of the Kronecker product, it follows that

G(z) =
[
M1 M2 · · · Mkh

]
where

Mi =
[

g(h)i (z)⊗ g(v)1 (z) g(h)i (z)⊗ g(v)2 (z) · · · g(h)i (z)⊗ g(v)kv
(z)
]
,

for i = 1, 2, . . . , kh.

Now, since the column degrees of g(h)i (z) and g(v)j (z) are ν
(h)
i and ν

(v)
j , respectively, it

follows that the column degree of g(h)i (z)⊗ g(v)j (z) is ν
(h)
i + ν

(v)
j , and the theorem holds.

As an immediate consequence of the previous theorem, we have the following theo-
rem:

Theorem 4. Assume that Gh(z) ∈ F[z]nh×kh and Gv(z) ∈ F[z]nv×kv . If Gh(z) and Gv(z) are
column reduced, then G(z) = Gh(z)⊗ Gv(z) is column reduced.

Proof. Let G(∞)
h and G(∞)

v the high-order coefficient matrices of Gh(z) and Gv(z), respec-
tively. If G∞ is the high-order coefficient matrix of G(z), from Theorem 3, it follows that

G∞ = G(∞)
h ⊗ G(∞)

v ,

and, from the properties of the Kronecker product,

rank(G∞) = rank
(

G(∞)
h ⊗ G(∞)

v

)
= rank

(
G(∞)

h

)
rank

(
G(∞)

v

)
= kh kv.

Therefore, G(z) is column reduced.

Finally, as a consequence of Theorems 2 and 4, we obtain the following theorem that
gives us the degree of the product code as a function of the degrees of the constituent codes.

Theorem 5. Assume that Ch and Cv are horizontal (nh, kh, δh) and vertical (nv, kv, δv) convolu-
tional codes, respectively. Then, the degree of C = Ch ⊗ Cv is δhkv + khδv.

Proof. Assume that Gh(z) ∈ F[z]nh×kh and Gv(z) ∈ F[z]nv×kv are basic and column re-
duced generator matrices of Ch and Cv, respectively. With the notation of Theorem 3,
ν
(h)
1 , ν

(h)
2 , . . . , ν

(h)
kh

and ν
(v)
1 , ν

(v)
2 , . . . , ν

(v)
kv

, are the Forney indices of Ch and Cv, respectively,

and, therefore, δh = ∑kh
i=1 ν

(h)
i and δv = ∑kv

j=1 ν
(v)
j . Moreover, from Theorems 2 and 4,

G(z) = Gh(z)⊗ Gv(z) is a basic and column reduced generator matrix for C. Again, with
the notation of Theorem 3, ν(i−1)kv+j = ν

(h)
i + ν

(v)
j , for i = 1, 2, . . . , kh and j = 1, 2, . . . , kv,

are the Forney indices of C, and, therefore,

kh

∑
i=1

kv

∑
j=1

(
ν
(h)
i + ν

(v)
j

)
=

kh

∑
i=1

(
ν
(h)
i kv + δv

)
= δhkv + khδv

is the degree of C.
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We will use the above theorems in the next section to obtain a minimal state-space
realization of the product convolutional code C = Ch ⊗ Cv.

4. State-Space Realizations of Product Convolutional Codes

More specifically, let us assume that (Ah, Bh, Ch, Dh) and (Av, Bv, Cv, Dv) are mini-
mal realizations of column reduced generator matrices of the (nh, kh, δh) horizontal and
(nv, kv, δv) vertical codes Ch and Cv, respectively. In this section, we will obtain a minimal
state-space realization (A, B, C, D) of the (n, k, δ) product convolutional code C = Ch ⊗ Cv,
where n = nhnv, k = khkv and δ = δhkv + khδv. This means that we must find matrices
A ∈ Fδ×δ, B ∈ Fδ×k, C ∈ Fn×δ and D ∈ Fn×k, such that the pair (A, B) is reachable, the
pair (A, C) is observable, and C(Iδ− zA)−1Bz+ D is a basic and column reduced generator
matrix for C.

We can assume, without loss of generality, that matrices Ah, Av, and Bh, Bv have the
form of matrices A and B in Theorem 1. That is,

Ah =


A(h)

1

A(h)
2

. . .

A(h)
kh

 with A(h)
i =

[
0T 0

I
ν
(h)
i −1

0

]
∈ Fν

(h)
i ×ν

(h)
i , (4)

Bh =


B(h)

1

B(h)
2

. . .

B(h)
kh

 with B(h)
i =

[
1
0

]
∈ Fν

(h)
i , (5)

Av =


A(v)

1

A(v)
2

. . .

A(v)
kv

 with A(v)
j =

[
0T 0

I
ν
(v)
j −1

0

]
∈ Fν

(h)
j ×ν

(h)
j , (6)

Bv =


B(v)

1

B(v)
2

. . .

B(v)
kv

 with B(v)
j =

[
1
0

]
∈ Fν

(v)
j . (7)

The next theorem allows us to obtain a reachable pair (A, B) from the reachable pairs
(Ah, Bh) and (Av, Bv).

Theorem 6. Assume that (Ah, Bh, Ch, Dh) and (Av, Bv, Cv, Dv) are minimal state-space realiza-
tions of the (nh, kh, δh) horizontal and (nv, kv, δv) vertical codes Ch and Cv, respectively, with
Ah, Bh, Av, and Bv as in expressions (4)–(7). For i = 1, 2, . . . , kh and j = 1, 2, . . . , kv, let
ν(i−1)kv+j = ν

(h)
i + ν

(v)
j and consider

A(i−1)kv+j =


0T 0

I
ν
(h)
i −1

0

1 0T 0
I
ν
(v)
j −1

0

 =

[
0T 0

Iν(i−1)kv+j−1 0

]
∈ Fν(i−1)kv+j×ν(i−1)kv+j ,

B(i−1)kv+j =

[
1
0

]
∈ Fν(i−1)kv+j ,
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and define

A =


A1

A2
. . .

Ak

 ∈ Fδ×δ, B =


B1

B2
. . .

Bk

 ∈ Fδ×k.

Then, (A, B) is a reachable par.

Proof. It is easy to see that rank
([

λIδ − A B
])

= δ, for all λ ∈ F̄. Thus, the pair (A, B) is
reachable.

Assume again that (Ah, Bh, Ch, Dh) and (Av, Bv, Cv, Dv) are minimal state-space real-
izations of the (nh, kh, δh) horizontal and (nv, kv, δv) vertical codes Ch and Cv, respectively,
with Ah, Bh, Av, and Bv as in expressions (4)–(7). From Theorem 1 and expressions (1) and
(3), it follows that

Gh(z) = ChEh(z) + Dh and Gv(z) = CvEv(z) + Dv (8)

where

Eh(z) =


E(h)

1 (z)
E(h)

2 (z)
. . .

E(h)
kh

(z)

 with E(h)
i (z) =


z
z2

...

zν
(h)
i

, for i = 1, 2, . . . , kh. (9)

Ev(z) =


E(v)

1 (z)
E(v)

2 (z)
. . .

E(v)
kv

(z)

 with E(v)
j (z) =


z
z2

...

zν
(v)
j

, for j = 1, 2, . . . , kv. (10)

Now, since G(z) = Gh(z)⊗ Gv(z), from expression (8) and the properties of the Kronecker
product, we have that

G(z) = (ChEh(z) + Dh)⊗ (CvEv(z) + Dv)

= (Ch ⊗ Cv)(Eh(z)⊗ Ev(z)) + (Ch ⊗ Dv)(Eh(z)⊗ Ikv)

+ (Dh ⊗ Cv)
(

Ikh
⊗ Ev(z)

)
+ Dh ⊗ Dv

=
[
Ch ⊗ Cv Ch ⊗ Dv Dh ⊗ Cv

]Eh(z)⊗ Ev(z)
Eh(z)⊗ Ikv

Ikh
⊗ Ev(z)

+ Dh ⊗ Dv

= C̄Ē(z) + D̄. (11)

Note that D̄ = Dh ⊗ Dv is a matrix of size nhnv × khkv; that is, n × k. Thus, we
can take D = D̄. However, since C̄ =

[
Ch ⊗ Cv Ch ⊗ Dv Dh ⊗ Cv

]
is a matrix of size

nhnv × (δhδv + δhkv + khδv), that is, n × (δhδv + δ), we cannot take the above matrix as
matrix C. The following example will help us to understand how we should proceed to
obtain the matrix C from the matrix C̄ in expression (11).
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Example 2. Let F = GF(2) be the Galois field of two elements and consider Gh(z), the col-
umn reduced matrix, and the minimal state-space realization (Ah, Bh, Ch, Dh) of Gh(z) given in

Example 1. That is, Gh(z) =

 z2 z + 1
z + 1 z

1 1

 ∈ F[z]3×2 and

Ah =

 0 0
1 0

0

, Bh =

 1
0

1

, Ch =

 0 1 1
1 0 1
0 0 0

, and Dh =

 0 1
1 0
1 1

.

Moreover, Eh(z) =

 z 0
z2 0
0 z

.

Let Gv(z) =


1 + z + z2 1 + z

z 1
1 + z3 z

1 1 + z2

 ∈ F[z]4×2. Since ν
(v)
1 = 3, ν

(v)
2 = 2, and

rank
(

G(∞)
v

)
= 2, it follows that Gv(z) is column reduced. Now, consider the matrices

Av =


0 0 0
1 0 0
0 1 0

0 0
1 0

, Bv =


1
0
0

1
0

,

Cv =


1 1 0 1 0
1 0 0 0 0
0 0 1 1 0
0 0 0 0 1

, and Dv =


1 1
0 1
1 0
1 1

.

Moreover, Ev(z) =


z 0
z2 0
z3 0
0 z
0 z2

.

Now, from expression (11), the generator matrix G(z) = Gh(z) ⊗ Gv(z) of the product
convolutional code C = Ch ⊗ Cv is given by

G(z) = C̄Ē(z) + D̄

with

C̄ =
[
Ch ⊗ Cv Ch ⊗ Dv Dh ⊗ Cv

]
, Ē(z) =

Eh(z)⊗ Ev(z)
Eh(z)⊗ Ikv

Ikh
⊗ Ev(z)

, and D̄ = Dh ⊗ Dv,
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where

Ch ⊗ Cv =



0 0 0 0 0 1 1 0 1 0 1 1 0 1 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1 1 0 1 0 0 0 0 0 0 1 1 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,

Ch ⊗ Dv =



0 0 1 1 1 1
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
1 1 0 0 1 1
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, Dh ⊗ Cv =



0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1
1 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 1 0 1 0 1 1 0 1 0
1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1



,

Eh(z)⊗ Ev(z) =



z2 0
z3 0
z4 0
0 z2

0 z3

z3 0
z4 0
z5 0
0 z3

0 z4

z2 0
z3 0
z4 0
0 z2

0 z3



,

Eh(z)⊗ Ikv =



z 0
0 z
z2 0
0 z2

z 0
0 z

, Ikh
⊗ Ev(z) =



z 0
z2 0
z3 0
0 z
0 z2

z 0
z2 0
z3 0
0 z
0 z2


.

As we can observe, C̄ has 31 columns, but we need a matrix with 16 columns. Furthermore,
Ē(z) does not have the structure given by expression (3).
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However, considering the rows of Ē(z) whose elements have been written in red, we can move
these rows to the appropriate positions and then, by Gaussian elimination from those rows, we can

transform the matrix Ē(z) into the matrix
[

E(z)
O

]
, with

E(z) =



z 0 0 0
z2 0 0 0
z3 0 0 0
z4 0 0 0
z5 0 0 0
0 z 0 0
0 z2 0 0
0 z3 0 0
0 z4 0 0
0 0 z 0
0 0 z2 0
0 0 z3 0
0 0 z4 0
0 0 0 z
0 0 0 z2

0 0 0 z3


and O the zero matrix of the appropriate size. This means that we can find an invertible matrix
P ∈ F31×31 such that

PĒ(z) =
[

E(z)
O

]
and, therefore C̄Ē(z) = CE(z), with C ∈ F12×16 such that C̄P−1 =

[
C C̃

]
.

We can use the argument introduced in the above example to prove the following
theorem.

Theorem 7. Assume that (Ah, Bh, Ch, Dh) and (Av, Bv, Cv, Dv) are minimal state-space realiza-
tions of the (nh, kh, δh) horizontal and (nv, kv, δv) vertical codes Ch and Cv, respectively, with Ah,
Bh, Av, and Bv as in expressions (4)–(7). Let A be the matrix defined in Theorem 6 and let C̄ be the
matrix in expression (11). Moreover, assume that

E(z) =


E1(z)

E2(z)
. . .

Ek(z)

 with E`(z) =


z
z2

...
zν`

, for ` = 1, 2, . . . , k,

where ν` = ν
(h)
i + ν

(v)
j , with ` = (i − 1)kv + j, for i = 1, 2, . . . , kh and j = 1, 2, . . . , kv, and

consider the matrices Eh(z) and Ev(z) in expressions (9) and (10). If Ē(z) =

Eh(z)⊗ Ev(z)
Eh(z)⊗ Ikv

Ikh
⊗ Ev(z)

,

then there exists an invertible matrix P ∈ F(δ+δhδv)×(δ+δhδv) such that

PĒ(z) =
[

E(z)
O

]
.

Moreover, if C̄P−1 =
[
C C̃

]
, with C ∈ Fn×δ, then the pair (A, C) is observable.
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Proof. Note that the submatrix of Ē(z) given by

Ê(z) =



Eh(z)⊗ Ikv

zν
(h)
1 Ev(z) O · · · O

O zν
(h)
2 Ev(z) · · · O

...
...

...

O O · · · z
ν
(h)
kh Ev(z)


(12)

contains the necessary rows to construct the matrix E(z). Thus, by using an appropriate
permutation matrix Q ∈ F(δ+δhδv)×(δ+δhδv), we have that

QĒ(z) =
[

E(z)
Ẽ(z)

]
.

Now, the entries in the first column of Ẽ(z) are 0 or zt with 1 ≤ t ≤ ν
(h)
1 + ν

(v)
1 − 1; therefore,

by using Gaussian elimination, we can transform these entries in 0. Once this operation is
completed, the entries in the second column of the modified Ẽ(z) are, again, 0 or zt with
1 ≤ t ≤ ν

(h)
1 + ν

(v)
2 − 1 and, therefore, we can transform these entries in 0. We continue

with this argument, until we transform matrix Ẽ(z) into the zero matrix. In other words,
we have found an invertible matrix R ∈ F(δ+δhδv)×(δ+δhδv) such that

R
[

E(z)
Ẽ(z)

]
=

[
E(z)

O

]
.

Thus, we can take P = RQ and, from expression (11), it follows that C̄Ē(z) = CE(z).
Now, by a similar argument to the argument used in the proof of Theorem 1, it follows

that the pair (A, C) is observable.

The proof of the previous theorem tells us which are the rows of matrix Ē(z) that we
must consider to obtain matrix E(z). Therefore, it also tells us which are the columns of
matrix C̄ that we must consider. Specifically, the submatrix Ê(z) given in expression (12)
will help us to determine a submatrix of C̄, which contains the necessary columns to
construct the matrix C. For that, on the one hand, the block Eh(z) ⊗ Ikv of Ê(z) means
that we take all the columns of Ch ⊗ Dv. On the other hand, if we assume that Ch =[

C(h)
1 C(h)

2 · · · C(h)
kh

]
, with

C(h)
i =

[ (
g(h)i

)(1) (
g(h)i

)(2)
· · ·

(
g(h)i

)(ν
(h)
i

) ]
, for i = 1, 2, . . . , kh,

then, from the properties of the Kronecker product,

Ch × Cv =
[
C(h)

1 ⊗ Cv C(h)
2 ⊗ Cv · · · C(h)

kh
⊗ Cv

]
with

C(h)
i ⊗ Cv =

[ (
g(h)i

)(1)
⊗ Cv

(
g(h)i

)(2)
⊗ Cv · · ·

(
g(h)i

)(ν
(h)
i

)
⊗ Cv

]
,

for i = 1, 2, . . . , kh.

Therefore, the rest of the rows of matrix Ê(z) in expression (12) means that we must take the

columns
(

g(h)i

)(ν
(h)
i

)
⊗Cv, for i = 1, 2, . . . , kh. Thus, by using the matrix P−1, we have that
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C̄P−1 =

[
· · ·

(
g(h)1

)ν
(h)
1 ⊗ Cv · · ·

(
g(h)2

)ν
(h)
2 ⊗ Cv · · ·

(
g(h)kh

)ν
(h)
kh ⊗ Cv

Ch ⊗ Dv Dh ⊗ Cv

]
P−1

=
[

c(1)1 c(2)1 · · · c(ν1)
1 c(1)2 c(2)2 · · · c(ν2)

2 · · · c(1)k c(2)k · · · c(νk)
k C̃

]
=
[

C C̃
]
,

with k = kh kv and ν` as in Theorem 7.
Now, as a consequence of Theorems 6 and 7, we obtain a minimal state-space realiza-

tion of the convolutional product code.

Corollary 1. With the notation of Theorems 6 and 7, the system (A, B, C, D), with D = Dh ⊗Dv,
is a minimal realization of the convolutional product code C = Ch ⊗ Cv.

Example 3. For the matrices in Example 2, it follows that

C̄P−1 =



· · ·

1 1 0 1 0 1 1 0 1 0
1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
1 1 0 0 1 1
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

· · ·



=



0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0
0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1
0 0 1 0 0 0 1 0 0 1 1 1 0 1 1 0
1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0 0 1 0 0 1 0 1 0
1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1
1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

· · ·



=
[

C C̃
]

5. Conclusions and Future Work

In this paper, we presented a constructive methodology to obtain a minimal state-space
representation (A, B, C, D) of a convolutional product code from two minimal state-space
representations, (Ah, Bh, Ch, Dh) and (Av, Bv, Cv, Dv) of an horizontal and a vertical convo-
lutional code, respectively. In this work, we have considered driven variable representa-
tions and showed that, even if the matrices A, B, and D of the product convolutional code
can be built in a straightforward way from the given matrix representations (Ah, Bh, Ch, Dh)
and (Av, Bv, Cv, Dv), the matrix C requires further analysis. We showed, however, that
C can still be computed if one properly selects the appropriate entries of a matrix that
depends on Ch, Cv, Dh and Dv. In this way, the produced representation is minimal and
can be computed in a relatively easy way.
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An interesting line for future research would be to consider input–state–output repre-
sentations instead of driven variables and study these different state space representations
in the context of convolutional product codes.
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