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Abstract

Accurate and high-resolution spatio-temporal information about crop phe-

nology obtained from Synthetic Aperture Radar (SAR) data is an essential

component for crop management and yield estimation at a local scale. Crop

growth monitoring studies seldom exploit complete polarimetric information

contained in dual-pol GRD SAR data. In this study, we propose three po-

larimetric descriptors: the pseudo scattering-type parameter (θc), the pseudo

scattering entropy parameter (Hc), and the co-pol purity parameter (mc)

from dual-pol S1 GRD SAR data. We also introduce a novel unsupervised

clustering framework using Hc and θc with six clustering zones to represent

various scattering mechanisms. We implemented the proposed algorithm on

the cloud-based Google Earth Engine (GEE) platform for Sentinel-1 SAR

data. We have shown the sensitivity of these descriptors over a time series of
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data for wheat and canola crops at a test site in Canada. From the leaf devel-

opment stage to the flowering stage for both crops, the pseudo scattering-type

parameter θc changes by approximately 17°. Moreover, within the entire phe-

nology window, both mc and Hc varies by about 0.6. The effectiveness of

θc and Hc to cluster the phenological stages for the two crops is also ev-

ident from the clustering plot. During the leaf development stage, about

90 % of the sampling points were clustered into the low to medium entropy

scattering zone for both the crops. Throughout the flowering stage, the en-

tire cluster shifted into the high entropy vegetation scattering zone. Finally,

during the ripening stage, the clusters of sample points were split between

the high entropy vegetation scattering zone and the high entropy distributed

scattering zone, with > 55 % of the sampling points in the high entropy dis-

tributed scattering zone. This innovative clustering framework will facilitate

the operational use of S1 GRD SAR data for agricultural applications.

Keywords: GRD SAR, Dual-pol, phenology, Unsupervised clustering,

GEE, Sentinel-1

1. Introduction1

Synthetic Aperture Radar (SAR) data have been extensively used for2

crop growth monitoring and classification, yield estimation, and phenolog-3

ical stages characterization. This is due to their high sensitivity towards4

the structure and dielectric properties of crop canopies (Ulaby, 1975; Ulaby5

and El-Rayes, 1987; Brisco et al., 1992; Ferrazzoli et al., 1992; McNairn and6

Brisco, 2004; Steele-Dunne et al., 2017). Because of its high spatial reso-7

lution and all-weather capabilities, SAR has proven to be a promising data8
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source for continuously monitoring crops at field scales. The interaction of9

the SAR signal with crop canopies and the underlying soil varies with wave-10

length, polarization and angle of incidence (Ferrazzoli et al., 1992; Davidson11

et al., 2000). In general, during the early vegetative growth stage, the SAR12

backscatter signal is significantly affected by the underlying soil (Wiseman13

et al., 2014). The canopy structure and canopy moisture distribution are14

among major observable biophysical parameters that influence backscatter15

at each phenological stage. Further, the dense and complex geometry of16

the canopy leads to randomness in the scattering, which is more significant17

for fully developed crop canopies (Mascolo et al., 2016; Hariharan et al.,18

2018; Wang et al., 2019). The scattering becomes increasingly unpredictable19

during fruit development stages, leading to greater randomness in the SAR20

response (Jiao et al., 2014).21

The availability of dual-pol SAR data acquired by the Sentinel-1 con-22

stellation provides diverse opportunities for many crop monitoring applica-23

tions (ESA, 2017). Compared to full-pol mode, dual-pol modes have ad-24

vantages in terms of larger swath widths and lower data volumes, but at25

the expense of reduced polarimetric information (Lee et al., 2001; Ainsworth26

et al., 2009). The Sentinel-1 (S1) SAR sensor in Interferometric Wide (IW)27

swath mode acquires data in dual-polarization, either in VV-VH or HH-HV.28

Several researchers indicated the potential use of dual-pol backscatter29

intensities for crop type identification (Kussul et al., 2016; Nguyen et al.,30

2016; Bargiel, 2017; Van Tricht et al., 2018; Mandal et al., 2018; Whelen31

and Siqueira, 2018; Minasny et al., 2019; Arias et al., 2020), crop biophysi-32

cal parameter estimation (Bousbih et al., 2017; Kumar et al., 2018; Mandal33
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et al., 2020a), and phenology identification (Nelson et al., 2014; De Bernardis34

et al., 2015; Lasko et al., 2018; Singha et al., 2019; Fikriyah et al., 2019).35

Cloude (2007) proposed a clustering technique for dual-polarimetric (HH-HV36

or VV-VH) SAR data. An eigendecomposition of the 2×2 covariance ma-37

trix is performed to characterize scattering mechanisms from targets. The38

average scattering angle α is obtained from the two orthogonal polariza-39

tion states weighted by their corresponding pseudo probabilities obtained40

from the eigenvalues. The entropy H is obtained from the pseudo prob-41

abilities. Ainsworth et al. (2008) introduced a scattering-type parameter θ42

for dual-pol SLC data (HH-HV) utilizing the eigendecomposition technique.43

This parameter is presented as a measure between the cross- and co-pol44

backscatter ratio (σ◦
XY/σ

◦
XX). It was stated that although the formulation is45

similar to Cloude α, the scattering information content is different. Utiliz-46

ing θ and the scattering entropy (H) for dual-pol SAR data, an unsupervised47

clustering framework was proposed to identify different targets based on their48

scattering mechanisms. The unsupervised clustering plane was divided into49

eight different zones based on the scattering types.50

Besides this, several vegetation descriptors such as the Radar Vegetation51

Index (RVI) for dual-pol (Trudel et al., 2012), Dual-Pol SAR Vegetation52

Index (DPSVI) (Periasamy, 2018), and Dual-pol Radar Vegetation Index53

(DpRVI) (Mandal et al., 2020b) have been developed for crop growth moni-54

toring and biophysical parameter retrieval. However, similar descriptors are55

not directly available for dual-pol GRD SAR data products.56

In particular, investigation often is limited to the direct use of backscat-57

ter intensities or their ratios for crop phenology identification and cluster-58
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ing. Vreugdenhil et al. (2018) studied the sensitivity of backscatter intensities59

and the cross-pol ratio (VH/VV) to crop biophysical parameters such as the60

Vegetation Water Content (VWC), Leaf Area Index (LAI), biomass, and the61

plant height for three different crops using the Sentinel-1 GRD SAR data.62

Temporal sensitivity analysis using various machine learning models has63

shown that the cross-pol ratio is a valuable parameter for monitoring crop64

biophysical parameters and phenology. Song and Wang (2019) analyzed the65

temporal trend of VV and VH backscatter intensities to identify and map66

winter wheat crop using a parallelepiped classifier. They distinguished dif-67

ferent phenology stages by exploring the temporal trend of the VH/VV ratio68

and its slope.69

Nasrallah et al. (2019) fitted multiple Gaussian functions to a time-70

series of backscatter intensities (VV, VH and VH/VV) to estimate the date71

of significant phenology stages for wheat. Wali et al. (2020) explored the72

sensitivity of temporal backscatter intensities of rice biophysical parameters73

using a combination of linear regression lines. With this approach, they were74

able to identify the reproductive growth stages of rice. Schlund and Erasmi75

(2020) demonstrated the sensitivity of interferometric phase information to76

estimate the dates of different phenology stages of wheat.77

Information about phenological status can increase crop classification ac-78

curacy (Bargiel, 2017; Li et al., 2019). However, available studies on crop79

monitoring using GRD SAR data are mostly limited to the direct use of80

backscatter intensities and their ratios, along with a few empirical models.81

These approaches partly utilize the available polarimetric information from82

dual-pol GRD SAR data. Dual-polarimetric descriptors that characterize83
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different target scattering mechanisms have a wide range of applicability84

compared to empirical and data-driven models limited to specific crops and85

regions. In this regard, an unsupervised clustering framework that suitably86

utilizes the available polarimetric information from dual-pol GRD SAR data87

is needed to monitor crop growth dynamics.88

In general, polarimetric parameters have been directly attributed to the89

physical properties of the crop canopy (Lopez-Sanchez et al., 2012, 2014;90

McNairn et al., 2018; Dey et al., 2020b), and has therefore helped monitor91

crop phenology. Unfortunately, the polarimetric parameters reported in these92

studies are not immediately apparent in the case of dual-pol GRD SAR data.93

The majority of SAR-based crop monitoring studies were limited to small94

study areas due to the high volume of data processing. For example, the95

Sentinel-1 constellation acquires data at a rate of approximately 600 GB per96

day (Ali et al., 2017). This volume of data requires high storage and compu-97

tational resources for processing. Unfortunately, these resources are limited98

and restricted for full exploitation to those with access to High-Performance99

Computing Systems (HPCS). With the advent of cloud platforms such as the100

Google Earth Engine (GEE) (Gorelick et al., 2017), the NASA Earth Ex-101

change (Nemani et al., 2011), Amazon Web Services (AWS) (Jackson et al.,102

2010), and Microsoft Azure (Redkar et al., 2009), large-scale remote sensing103

and geospatial data analysis have become possible with minimum local com-104

putational resources (Hird et al., 2017). In this aspect, the web-based GEE105

platform is designed to make planetary-scale remote sensing data process-106

ing manageable and efficient (Gorelick et al., 2017). The free-to-use policy107

and various in-built GEE algorithms make it an ideal tool for both experts108

6



and non-experts alike. The major contributions of the current study are as109

follows:110

� Introduces three new dual-polarimetric descriptors: mc, θc, and Hc.111

� Proposes a new unsupervised clustering framework using two parame-112

ters (θc and Hc) obtained from the dual-pol GRD SAR data.113

– Six feasible clustering zones depicting different scattering mecha-114

nisms.115

– Specific to crop monitoring, the proposed clustering framework116

effectively characterizes different phenological stages.117

� Demonstrates how the proposed algorithm is implemented on GEE,118

making it available for global monitoring with minimal local computa-119

tional requirements.120

The performance of the parameters and clustering framework is analyzed121

using time-series Sentinel-1 SAR data for monitoring wheat and canola.122

2. Study area and dataset123

The test site is located near Carman, Manitoba (Canada), covering an124

intensively cropped area of 26 km × 48 km. The dominant crops grown in125

this region include wheat, canola, soybeans, corn and oats, along with a small126

fraction of acreages in grassland and pasture. The sowing period of crops in127

this region varies from early to late May, depending on crop variety and128

cultivation practices. The harvesting period extends until late September.129
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The nominal size of each field is approximately 800 m×800 m. Each field130

comprises 16 sampling locations arranged in two parallel transects separated131

by 200 m, as shown in Figure 1. During the SMAPVEX-16 campaign, in-situ132

measurement of vegetation and soil was collected for 50 fields near coincident133

with satellite acquisitions.134

In this study, we have considered 24 fields (13 wheat and 11 canola) for135

analysis. Figure 1 presents the distribution of the selected fields in the study136

area. One can find additional details regarding in-situ sampling methods137

during the SMAPVEX-16 campaign in McNairn et al. (2016); Bhuiyan et al.138

(2018).139

Figures 2 and 3 provide field photos of different growth stages of wheat140

and canola, respectively. The Manitoba weekly agriculture reports Agricul-141

ture (2016) provide additional details regarding crop conditions. Sentinel-142

1 operates at C-band with a central transmit frequency of 5.405 GHz. In143

this work, we have utilized the data acquired with the Interferometric Wide144

swath (IW) mode with a swath width of 250 km. The spatial resolution is145

5 m × 20 m in range and azimuth, respectively, and the Noise Equivalent146

Sigma Zero (NESZ) is −25 dB with the incidence angle varying between 20°147

to 46°. From the available Sentinel-1 images acquired during the campaign,148

we have used eight dual-pol (VV-VH) C-band Sentinel-1A GRD SAR in the149

present study. We have utilized the VV-VH data acquired with IW mode150

with incidence angle ranging from 30.65° to 41.76°. Complete details of the151

SAR data utilized in the study are presented in Table 1.152

The data were chosen based on the availability of in-situ measurements153

of crop phenology stages and coincident Sentinel-1A acquisitions for six days154
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of the year (DOY) for wheat (DOY-146, 165, 182, 189, 201, 230) and canola155

(DOY-146, 165, 182, 189, 206, 225).156
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Figure 1: The study area and the distribution of wheat and canola fields in the study
area overlaid on a Google earth image. The sampling schema followed for ground truth
collection is detailed in the dashed rectangle (bottom left).

3. Methodology157

This section proposes three descriptors from the Level-1 S1 GRD SAR158

data. We express the co-pol purity parameter in terms of the co-pol to159

cross-pol ratio, which is then used to obtain the scattering-type parameter.160

The measure of scattering randomness is expressed in terms of the ratio161

parameter. We utilize these descriptors to introduce a clustering framework162
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Table 1: Details and specification of Sentinel-1A data used in the present study. Data are
acquired from the Carman test site during the SMAPVEX16-MB campaign. The range of
incidence angles shown is specific to the location of the sample sites (IW: Interferometric
Wide swath)

Date DOY
Acquisition

Mode
Incidence angle
range (deg.)

Orbit

25-May-16 146 IW 40.18 - 41.76 Ascending
13-Jun-16 165 IW 30.65 - 32.70 Ascending
30-Jun-16 182 IW 40.17 - 41.75 Ascending
07-Jul-16 189 IW 30.64 - 32.69 Ascending
19-Jul-16 201 IW 30.70 - 32.70 Ascending
24-Jul-16 206 IW 40.16 - 41.74 Ascending
12-Aug-16 225 IW 30.65 - 32.70 Ascending
17-Aug-16 230 IW 40.16 - 41.74 Ascending

(a) Leaf Development - Tillering (b) Stem Elongation-Booting (c) Heading

(d) Flowering-Fruit Development (e) Dough formation (f) Maturity

Figure 2: Field photos showing different phenology stages of wheat.

for crop phenology identification. Finally, we present the overall processing163

chain of the framework using the GEE platform.164
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(a) Leaf Development - Side shoot
formation

(b) Stem Elongation (c) Inflorescence Emergence

(d) Flowering (e) Pod Development (f) Ripening

Figure 3: Field photos showing different phenology stages of canola.

3.1. Dual-polarimetric descriptors165

In this section, we present three dual-polarimetric descriptors from the166

Level-1 S1 GRD SAR data. We propose an unsupervised clustering frame-167

work to monitor different crop growth stages based on their diverse scatter-168

ing characteristics using these descriptors. In the Level-1 S1 GRD SAR data169

product, we obtain backscatter response either in (σ◦
VV, σ

◦
VH)dB or (σ◦

HH, σ
◦
HV)dB170

modes, where H and V are respectively the horizontal and vertical transmit171

and receive polarization components. The subscript dB represents the GRD172

SAR data products in decibel (dB) scale. In general, for a monostatic an-173

tenna configuration and a natural scene, we assume σ◦
XY ≤ σ◦

XX (where X and174

Y are H or V polarizations respectively) (Cloude, 2009). Using this assump-175

tion, we consider the ratio parameter, 0 ≤ q =
σ◦

XY

σ◦
XX

≤ 1, in the linear scale.176

This parameter has been widely used in the literature as a descriptor for177
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several crop monitoring applications (Della Vecchia et al., 2008; Vreugdenhil178

et al., 2018; Homayouni et al., 2019). In the GRD product, we do not keep179

the relative phase information between the XX and XY polarization. Hence,180

we cannot obtain covariance information from the GRD product, unlike the181

SLC data. We express the co-pol purity parameter (mc) in terms of q given182

in Equation 1. It can be noted that for q = 1, mc = 0, and for q = 0, mc = 1.183

In between these two extreme cases, 1 > q > 0, 0 < mc < 1.184

mc =
1− q
1 + q

; 0 ≤ mc ≤ 1 (1)

Utilizing σ◦
XX, σ◦

XY, and mc we define two auxiliary quantities as,185

tan ζ1 =
σ◦

XX

mc I
and tan ζ2 =

σ◦
XY

mc I
, (2)

where the total intensity, I = σ◦
XX + σ◦

XY. By using a simple relationship, we186

obtain,187

tan θc = tan (ζ1 − ζ2)

=
(1− q)2

1 + q2 − q
; 0° ≤ θc ≤ 45°

(3)

We can observe from equation (3) that when mc = 0, then θc = 0° character-188

izes complex scattering from targets. Whereas, when mc = 1, then θc = 45°,189

characterizes pure scattering from deterministic targets (i.e., trihedral or di-190

hedral). Therefore, the pseudo scattering-type parameter θc ∈ [0°, 45°] char-191

acterizes different scattering information in between these two cases.192
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Next, we define the pseudo scattering entropy parameter as,193

Hc = −
2∑

i=1

pi log2 pi; 0 ≤ Hc ≤ 1 (4)

where p1 =
1

1 + q
and p2 =

q

1 + q
are the two pseudo probability measures194

with p1 ≥ p2. We can observe that Hc = 1 for p1 = p2 (i.e., q = 1), whereas195

Hc = 0 for p1 = 1 (i.e., q = 0).196

Using θc and Hc together, we propose an unsupervised clustering frame-197

work shown in Fig. 4. The curve (Curve I) represents the unique feasible198

clustering section in the Hc/θc plot. It can be noted that this curve is deter-199

mined from the theoretical relationship between θc and Hc while varying mc200

between 0 to 1.

0.3 0.5 0.7 1.0
Hc

0°

15°

30°

45°

c

Curve I

Z1: Low entropy 
      pure scattering

Z2: Low to medium entropy 
      pure scattering

Z3: Medium to high entropy 
      distributed scattering

Z4: High entropy 
      distributed scattering

Z5: High entropy 
      vegetation scattering

Z6: High entropy 
      complex scattering

Figure 4: The Hc/θc 2D clustering sections. The curve is divided into six zones: Z1 to Z6.

201

Based on particular scattering characteristics from targets (Cloude and202

Pottier, 1997), we propose six possible clustering zones: Z1, Z2, Z3, Z4, Z5203
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and Z6 by splitting Hc into four sub-categories: [0, 0.3), [0.3, 0.5), [0.5, 0.7),204

and [0.7, 1.0], and θc into three sub-categories: [0°, 15°), [15°, 30°), [30°, 45°].205

Each of these zones represents different scattering phenomena from the scene.206

The relationship between q and the three proposed descriptors (θc, mc, and207

Hc) along with the boundary values of the clustering zones is shown in Fig-208

ure 5 and Table 2.209

0.0 0.2 0.4 0.6 0.8 1.0
q

0°

15°

30°

45°

c

c
Hc
mc

0.0

0.3

0.7

1.0

m
c,

H
c

Figure 5: Relationship between the proposed descriptors (θc, mc, Hc) and q.

Cloude (2007) proposed theH/α clustering technique for dual-polarimetric210

(HH-HV or VV-VH) SAR data. Unlike full-polarimetric measurements, the211

2×2 covariance matrix is formed using only the column of the scattering ma-212

trix to characterize various targets. The scattering angle α is obtained from213

the eigenvector parameterization, and H is obtained from the eigenvalues of214
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Table 2: Boundary values of the descriptors (Hc, θc, q, and mc) for adjacent zones in the
proposed clustering framework

Hc θc q mc

— 0 45° 0 1
Z1–Z2 0.30 43.25° 0.06 0.89
Z2–Z3 0.50 40.74° 0.12 0.78
Z3–Z4 0.70 35.59° 0.23 0.62
Z4–Z5 0.81 30.00° 0.33 0.51
Z5–Z6 0.94 15.00° 0.55 0.29

— 1 0° 1 0

the covariance matrix as pseudo probabilities. The average scattering angle215

α is obtained from the two orthogonal polarization states weighted with the216

two corresponding pseudo probabilities.217

It is important to note that we cannot directly apply the H/α decom-218

position technique to characterize target scattering mechanisms for GRD219

SAR data. Hence, to characterize targets utilizing GRD data, we propose220

an equivalent scattering angle θc based on the approach presented in (Dey221

et al., 2020a). We present the comparison of the two scattering angles for222

elementary targets and volume scattering models from a random cloud of223

anisotropic particles in Table 3. For comparison purpose, the scattering an-224

gle θc is scaled to the same range of α as, θc = 45°− θc. We can note that all225

elementary targets reside at the origin, whereas the volume scattering models226

reside precisely on the lower curve of the H/α plane.227

Unlike the unsupervised clustering plane formed from the dual-pol H/α228

framework, the proposed Hc/θc framework forms a clustering segment. Both229

θc and Hc are derived from the cross-pol ratio q. However, their physical in-230

terpretations for targets are quite different due to their fundamental formula-231
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Table 3: Comparison between Cloude α and θc for elementary targets and volume scat-
tering models for dual-polarimetric SAR data.

Trihedral Dihedral Prolate Oblate Noise (Identity)

α 0° 0° 22.5° 10° 45°

θc 0° 0° 15.3° 4.3° 45°

H = Hc 0 0 0.811 0.503 1

tion, even though there is some correlation between the two parameters. On232

the one hand, the derivation of Hc is equivalent to the von Neumann type of233

entropy (represented as Shannon entropy) utilizing the pseudo-probabilities234

in terms of q. On the other hand, the derivation of θc follows from the equiv-235

alent formalism given in (Dey et al., 2020a). It characterizes scattering-type236

information using co-pol purity (mc) and total intensity (I) in terms of q.237

One can note that their combined use is also supported by a better separation238

of clusters when the thresholds are defined by any one of these parameters.239

The division of the clustering segment is realized from the symmetry re-240

lation for the scattering of a polarized wave. The input Stokes vector Si and241

output Stokes vector to the scattering medium So are related by a linear242

relation of the form: So = KSi. Several restrictions are attributed to the243

Kennaugh matrix K depending upon the symmetry and reciprocity require-244

ments. Scattering from symmetrical medium makes K diagonal. In the limit245

of weak scattering, the linear response of the scattering medium is determined246

by the ensemble-averaged covariance satisfying the Bethe-Salpeter equation247

(Cloude and Pottier, 1997). Following some rigorous computation, So can248

be expressed as a function of the number of scattering events, n. Having249

specified So, we can formulate the expression of the degree of polarization, m250
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in terms of n. From the definition of entropy S (Hc in this context) given in251

(Brosseau, 1991; Bicout and Brosseau, 1992), which is a function of the de-252

gree of polarization m, satisfying the inequality: S(m = 1) ≤ S ≤ S(m = 0).253

Therefore, we observe that S increases with increase in n, as, S(n = 0) = 0;254

S(n = 1) ≈ 0.3; S(n = 2) ≈ 0.5, and, S(n ≥ 3) ≈ 0.7, and further increas-255

ing n (i.e., higher-order scattering), S saturates for both dual- and full-pol256

case. Furthermore, for dual cross-pol case, Hc ≈ 0.7 for randomly oriented257

cylinders. A similar dependency of the scattering-type parameter (Cloude258

α) can also be observed as a function of the order of scattering n. We can259

approximately translate this observation to θc.260

3.2. Effect of system parameters on the proposed descriptors261

In this section, we show the analysis of the effect of polarization com-262

bination and frequency. Also, we present a comparative study of conven-263

tional dual-pol descriptors from SLC data and the proposed dual-pol de-264

scriptors from dual-pol GRD SAR data. In this context, we have utilized265

the RADARSAT-2 (C-band) and UAVSAR (L-band) data acquired over a266

Canadian test site for wheat. During the acquisition, wheat was at flowering267

to heading stage. The sampling points consists of acquisitions from two dates268

(29 June 2012 and 14 July 2012), and the incidence angle ranges from 22.2°269

to 26.5°.270

We know that longer wavelength SAR signal (L-band) penetration depth271

is higher than the shorter SAR signal (C-band). Moreover, a shorter wave-272

length SAR signal (C-band) will suffer relatively more attenuation within273

vegetation canopies than a longer wavelength SAR signal (L-band). There-274

fore, we observe the differences in the proposed descriptors for different in-275
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cident frequencies. From Table 4, we can observe higher values of mc and276

lower values of the pseudo scattering entropy in the case of L-band compared277

to the C-band. It may be due to less attenuation of the L-band compared278

to C-band. Similarly, we observe that the values of θc are more towards a279

pure scattering-type in the L-band than the C-band in both the dual-pol280

combinations. Also, we observe some effects of polarization combination on281

the descriptors. The predominantly vertical structure of the wheat canopy282

leads to higher interaction of the V-pol than the H-pol. Hence, we observe283

higher scattering entropy Hc and lower co-pol purity mc in the VV+VH284

combination.285

Besides, we observed higher values of the scattering-type parameter θc in286

the HH+HV combination than the VV+VH combination. The high value287

of θc indicates that the scattering mechanism is comparatively purer in the288

HH+HV combination than the VV+VH combination due to less interaction289

of H-pol with the vertically oriented crop canopy than the V-pol.290

Table 4: Effect of frequency on the proposed dual-pol descriptors for wheat.

Frequency
HH+HV VV+VH

mc Hc θc mc Hc θc

C-band (5.405 GHz) 0.79± 0.08 0.47± 0.12 40.78°± 2.30° 0.53± 0.12 0.78± 0.1 30.33°± 6.59°
L-band (1.258 GHz) 0.93± 0.03 0.22± 0.07 43.84°± 0.59° 0.83± 0.08 0.4± 0.14 41.79°± 2.15°

A comparative study between the conventional SLC dual-pol descriptors:291

Barakat degree of polarization m, scattering entropy H and Cloude α, and292

the proposed GRD dual-pol descriptors: co-pol purity mc, pseudo scattering-293

entropy Hc, and pseudo scattering-type parameter θc. Table 5 shows the294

values of the conventional dual-pol descriptors and the proposed descriptors295

for two dual-pol combinations for the above experiment setup. We observe296
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a negligible difference between H and Hc, and m and mc. However, we297

observe a noticeable difference between the scattering-type parameters, α298

and θc (kindly note that θc = 45°− θc). This difference could be because of299

the parameterization of the eigenvector of the C2 matrix while deriving the300

Cloude α. Hence, we can say that our proposed parameters obtained from301

dual-pol GRD SAR data possess equivalent information as the conventional302

parameters derived from dual-pol SLC data.303

Table 5: Comparison of conventional dual-pol descriptors from SLC data and the proposed
dual-pol descriptors from dual-pol GRD SAR data.

Channels
SLC GRD

m H α mc Hc θc

HH+HV 0.80± 0.08 0.45± 0.15 12.23°± 4.24° 0.79± 0.08 0.47± 0.12 4.22°± 2.3°
VV+VH 0.55± 0.11 0.76± 0.10 24.27°± 5.45° 0.53± 0.13 0.78± 0.10 14.67°± 6.59°

3.3. Sentinel-1 dual-pol descriptors in GEE304

This section describes the extraction process of the proposed polarimetric305

descriptors from the Sentinel-1 dual-pol GRD SAR data on the GEE plat-306

form. The overall processing framework comprises three major blocks: data307

preparation, clustering and temporal analysis, as shown in Figure 6.308

In the data preparation block, we import the Level-1 Ground Range De-309

tected (GRD) Sentinel-1 backscatter coefficient (i.e., σ◦ in decibel) data into310

the GEE platform. The imported temporal data stack is cloud filtered using311

three filters:312

� Metadata filter (bands: VV, VH, incidence angle, instrument mode:313

IW, and orbit: ascending)314

� Temporal filter (date range: 25 May 2016 to 17 August 2016)315
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� Spatial bound filter (region of interest: shapefile of the study area)316

Subsequently, we use two masks to generate a valid pixel data stack. As317

described in section 3.1, the first mask (i.e., σ◦
VV > σ◦

VH) ensures estima-318

tion constraints of the proposed descriptors, whereas the second mask (i.e.,319

σ◦
VV >−20 dB) separates out water bodies. The backscatter values in the320

valid pixel data stack are then converted into a linear scale. Further, we use321

a 5× 5 boxcar filter to despeckle the data.
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Figure 6: The proposed schematic workflow to derive the dual-polarimetric descriptors
from Sentinel-1 dual-pol GRD SAR data on the GEE platform.

322

In the clustering block, we first generate the dual-pol descriptors using323

the Equations 1- 4 from the valid and speckle filtered data stack. Further,324

we utilize these descriptors to generate the Hc/θc clusters for each scene in325
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the temporal stack. The temporal analysis block starts by importing in-326

situ data such as sampling locations, crop type and crop phenology stages.327

Subsequently, we utilize these data to analyze the temporal stack of dual-pol328

descriptors and the Hc/θc clusters. Further, to complement the analysis, we329

generate temporal maps of each descriptor over the study area.330

4. Results and discussion331

In this section, we analyze the temporal dynamics of crops using the332

proposed dual-polarimetric descriptors. Furthermore, we utilize the pro-333

posed clustering framework to assess the phenological stages of the two crops334

(wheat, canola) from the C-band Sentinel-1 dual-pol GRD SAR data. The335

description of the phenological stages for wheat and canola are presented in336

Tables 6 and 7 respectively.337

Table 6: Phenology stages of wheat. The BBCH (Biologische Bundesanstalt, Bundessorte-
namt und CHemische Industrie) codes of each phenology stage are also highlighted.

Phenology stage BBCH code Description

Leaf development 10-19 1-9 or more leaves unfolded
Tillering 20-29 Formation of 1-9 or more number of tillers
Stem elongation 30-39 Elongation of first internode to fully unrolled flag leaf
Booting 41-49 Flag leaf sheath extended to first awns visible
Heading 51-59 First spikelet to completely emerged heads
Flowering-fruit development 61-77 Beginning of flowering and formation of grains with milk
Doughstage 83-89 Development of soft to Hard dough
Maturity 92-97 Grain turns very hard and over ripened; grain loosening in day-time

4.1. Temporal dynamics of the dual-polarimetric descriptors338

In this section, we present the temporal analysis of mc, θc and Hc across339

the phenological stages of wheat and canola over Carman, Manitoba, Canada.340

The spatio-temporal changes of mc, θc and Hc are shown in Figure 7, Fig-341

ure 8, and Figure 9, respectively, over the entire test site. Variations for342
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Table 7: Phenology stages of canola. The BBCH (Biologische Bundesanstalt, Bun-
dessortenamt und CHemische Industrie) codes of each phenology stage are also high-
lighted.

Phenology stage BBCH code Description

Leaf development 10-19 1-9 or more leaves unfolded
Side shoot formation 20-29 Formation of 1-9 or more side shoots
Stem elongation 30-39 Formation of 1-9 or more extended internodes
Inflorescence emergence 50-59 Formation of flower buds, still enclosed by leaves
Flowering 60-69 Starting from first flower opening to the majority of petals fallen
Pod development 71-79 Formation of pods and reaching their full size
Ripening 80-89 Green seeds hardens and turns into dark

all three parameters are evident with crop growth starting from early leaf343

development to maturity for most agricultural fields. We also present the344

temporal dynamics of Hc/θc clusters as shown in Figure 10, to assess the345

crop growth condition.346

On DOY-146, most wheat and canola fields show high values of mc347

(wheat: 0.81 ± 0.08 and canola: 0.82 ± 0.08), θc (wheat: 41.37° ± 2.04°348

and canola: 41.6° ± 1.91°) and medium to low value of Hc (wheat: 0.43349

± 0.12 and canola: 0.42 ± 0.13). These responses are due to the minimal350

crop cover, before significant vegetative growth and leaf development. Hence,351

the soil characteristics (i.e., moisture and surface roughness) dominate the352

backscatter response. Therefore, the effect of soil roughness on the backscat-353

ter response is significant (Wiseman et al., 2014), which may have led these354

sample pixels to cluster in the low to medium entropy pure scattering zones355

(viz., Z1, Z2) in the Hc/θc map (Figure 10).356

With crop growth advancing to the inflorescence stage, we observe an357

overall decrease in the values of mc, which is evident in Figure 7. Thus,358

on DOY-206, we observe medium to low values of mc (wheat: 0.43 ± 0.07359

and canola: 0.42 ± 0.1). From the flowering to maturity stage, the canopy360
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Figure 7: Temporal variation of mc over the study area.

density increases as crop biomass increases (Wiseman et al., 2014; Hariharan361

et al., 2018). Therefore, as reported in (Sarabandi, 1991; Wang et al., 2019;362

Ratha et al., 2019), we also observe similar high scattering randomness at363

this stage.364

Moreover, during this period, the observed backscatter response is ex-365

pected to be dominated by the upper canopy layer. Additionally, the values366
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Figure 8: Temporal variation of pseudo scattering type parameter (θc) over the study area.

of θc for wheat are 24.51° ± 6.34°, and for canola 25.23° ± 4.7° (Figure 8).367

These values are indicative of low random scattering within the resolution368

cells. We also observe an increasing trend of Hc due to the randomly oriented369

canopy structure. The values of Hc for wheat and canola are 0.86 ± 0.06370

and 0.86 ± 0.05, respectively (Figure 9). Due to randomness in the vegeta-371

tion structure on DOY-206, we observe dominance within the high entropy372

vegetation scattering zone (Z5) in Figure 10.373
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Figure 9: Temporal variation of pseudo scattering entropy parameter (Hc) over the study
area.

One can note that all three polarimetric descriptors show a trend reversal374

at early crop senescence. This change could be due to the randomness varia-375

tion corresponding to morphology attributes with a likely decrease in canopy376

moisture. We can observe from Figure 7 that mc significantly increases dur-377

ing the ripening stage (DOY-230). At this stage, the values of mc for wheat378

and canola are 0.52± 0.08 and 0.55± 0.08, respectively. A similar trend is379
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Figure 10: Temporal variation of Hc/θc clusters over the study area.

also observed for θc and Hc from Figures 8 and Figure 9. These notable380

changes in the polarimetric descriptors might be due to the enhanced ability381

of the radar wave to penetrate into the moderately dry crop canopy. Also,382

the vegetation water content variations might have decreased the SAR signal383

attenuation within the resolution cell.384
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4.2. Analysis over sampling fields385

In the following sections, we provide a detailed quantitative analysis of386

the three descriptors (mc, θc, and Hc) and the novel clustering framework for387

wheat and canola. In this study, we considered a total of 24 sample fields388

(wheat: 13 and canola: 11) for sensitivity and performance evaluation of the389

descriptors during temporal morphological changes in the canopies.390

4.2.1. Wheat391

First, we analyse temporal characteristics of mc, Hc and θc for different392

phenological stages of wheat. We considered a total of 48 sampling points in393

three different fields (Field no. 62, 220, and 233) for assessing the temporal394

dynamics of θc, Hc and mc. We also evaluate temporal variations of the395

Hc/θc clusters according to wheat phenology.396
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Figure 11: Temporal variation of mc, Hc and θc for the growth stages of wheat. The
white dot represents the median value, the black bar in the center represents the standard
boxplot. On either side of the boxplot is a kernel density estimation displaying the shape
of the data distribution.
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Figure 12: Temporal dynamics of the Hc/θc data cluster for wheat during entire growth
period.

We have shown the temporal dynamics of the parameters mc, Hc and θc397

using a series of standard violin plots. The width of the violin represents the398

probability that the sampling points portion will take on the given value. We399

can observe from Figure 11 that mc, Hc and θc are sensitive to wheat morpho-400

logical changes. For example, we note that during the early leaf development401

stage (around DOY-146), mc and θc show differential scattering information402

due to the presence of a minimal crop canopy. However, on DOY-201, wheat403

has advanced to the dough stage and consequently, the interaction of the404
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radar wave with the matured canopy structure has increased. Therefore at405

this stage, the increase in the cross-pol component has decreased the value406

of mc.407

On DOY-146, high values of mc and θc are evident from Figure 11, reach-408

ing 0.8 ± 0.12 and 40.82° ± 3.41°, respectively. The distributions of mc and409

θc are left-skewed, indicating that most samples fall towards higher values410

of mc and θc. These high values correspond to pure scattering, which is due411

to the dominance of the soil contribution relative to vegetation. As a result,412

most data points are clustered in the low entropy pure scattering zone (Z2)413

(Figure 12a). However, it is noteworthy that a fraction of the backscatter414

response originates from the crop leaves and side tillers. The interaction of415

radar waves with these structures has produced a small cluster with ≈11 %416

of data points in the medium entropy zone (Z3) (Table. 8).417

We note that a few fields have advanced to the tillering stage during this418

period due to early sowing. Hence, new tillers in those fields might have419

decreased mc and increased Hc. During stem elongation and booting, on420

DOY-165, we observe a decrease in mc and θc. The values of mc and θc are421

0.71 ± 0.12 and 37.87° ± 4.88°, respectively. This decrease is likely due to422

changes in crop morphology in the vertical direction, with an increase in the423

main stem and side tillers (Figure 2b). The distributions of mc and θc have424

shifted towards lower values. However, depending on the difference in the425

growth pattern, bi-modal distributions of mc and θc are observed.426

During this period, high crop canopy density enhances scattering entropy,427

shifting the data points towards medium to high entropy zones (Z3, and Z4)428

as shown in Figure 12b. Hence, 57.7 % of the data points are clustered within429
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the medium entropy zone, while 42.3 % are clustered within the high entropy430

zone (Table 8). Subsequently, during the heading stage (DOY-182), we ob-431

serve a considerable drop in the mean values of mc and θc from Figure 11.432

These values decrease by 21.13 % and 14.21 %, respectively, when compared433

to the previous date.434

On DOY-182, the crops are in their advanced vegetative stage. The radar435

response is similar for all fields due to their comparable scattering random-436

ness. The standard deviations of the sample distributions have decreased437

significantly. During this period, we observe from Figure 12c a shift in the438

data clusters from the medium entropy (Z3) to the high entropy zone (Z4).439

This shift could be due to changes in the wheat canopy structure during the440

heading stage. At this stage, the distribution of plant biomass shifts towards441

the upper layer of the canopy. Thus, a major contribution of scattering is442

from the upper canopy layer. A small proportion of data points (≈15 %) are443

clustered in the vegetation scattering zone (Z5) (Table. 8), which might be444

due to early flowering of these wheat fields.445

With the advancement of wheat phenology to flowering stage (Figure 2d)446

on DOY-189, we observe a further drop in mc (0.49 ± 0.06) and θc (28.72°447

± 3.39°). During this period, the wheat canopy forms a complex structure448

due to the appearance of flowers on the upper portion of the canopy layer.449

Interestingly, randomness in scattering during the flowering stage is more no-450

ticeable in the distribution of θc values. Moreover, the tail of the distribution451

becomes more comprehensive than the previous growth stage (Figure 11).452

The spread in the distribution of θc indicates multiple scattering mecha-453

nisms. Moreover, the shape of the distribution for mc is almost equivalent454
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to θc, with an overall shift towards lower values. An increase in pseudo en-455

tropy has displaced the Hc/θc cluster towards the high entropy vegetation456

scattering zone (Z5) as shown in Figure 12d.457

Dough and maturity stages continued from late July (DOY-201) to mid-458

August (DOY-225) with the values of mc, and θc reaching their minimum459

when the crop advanced from flowering to early dough on DOY-201. The460

mean values of mc and θc reach 0.38 ± 0.09 and 21.56° ± 6.24° respectively.461

We observe a broad spread of θc values in Figure 11, which may be due462

to randomly oriented wheat stems and heads (Figure 2e). Wu et al. (1985)463

reported a similar phenomenon given that during the heading stage, a sig-464

nificant portion of the total scattering occurs from the wheat heads. It is465

noteworthy that the distributions are bi-modal, denoting two primary scat-466

tering sources: the thick upper canopy layer and the relatively less dense467

bottom canopy. We observe that all data points cluster in the high entropy468

and vegetation scattering zone (Z5) in the Hc/θc plot (Figure 12e).469

Table 8: Temporal variation in the percentage of data points in each zone for different
phenology stages of wheat. The zone with the maximum number of points at a particular
phenology stage is highlighted in bold. Each row represents a phenology stage, and the
solid line in between two phenology stages represents a significant variation in the temporal
trend for the zones.

DOY Z1 Z2 Z3 Z4 Z5 Z6 Growth stage

146 0.0 89.4 10.6 0.0 0.0 0.0 Leaf Development-Tillering
165 0.0 0.0 57.7 42.3 0.0 0.0 Stem Elongation-Booting
182 0.0 0.0 0.0 84.6 15.4 0.0 Heading

189 0.0 0.0 0.0 0.0 100 0.0 Flowering-Fruit development
201 0.0 0.0 0.0 0.0 100 0.0 Dough stage

230 0.0 0.0 0.0 65.4 34.6 0.0 Maturity
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During the ripening stage, the canopy moisture content drops rapidly.470

As a result, penetration of the SAR signal into the crop canopy increases471

and hence, there is a substantial scattering contribution from the ground472

to the total backscatter. A trend reversal is observed for all the dual -473

polarimetric descriptors when the crop reaches the early mature stage (DOY-474

230). During this period, the mean values of mc and θc increase to 0.56 ±475

0.07 and 32.54° ± 3.65°, respectively. The median of the distribution shifts476

towards higher values (Figure 12f). We observe a decrease in the spread of477

distributions for both mc and θc in Figure 11 indicating uniformity in the478

scattering mechanism.479

A decrease in scattering entropy shifts the Hc/θc cluster towards the dis-480

tributed scattering zone (Z4) from random scattering, as shown in Figure 12f.481

However, 34.6 % of the data points are clustered within the vegetation scat-482

tering zone (Z5) with 65.4 % of the data points clustered in Z4 (Table 8). The483

Z5 clusters appearance might be due to the late maturity of wheat, which is484

also in agreement with the bi-modal distribution of the mc and θc parameters485

in Figure 11.486

The proportion of data points over different scattering regions for other487

crop phenological stages is presented in Table 8. The results indicate a488

smooth transition of scattering mechanisms throughout the growing cycle of489

wheat. Using the proposed scattering descriptors and the novel clustering490

framework, we capture different scattering mechanisms at each wheat growth491

stage.492
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4.2.2. Canola493

This section analyses the temporal characteristics of mc, Hc and θc for494

different phenological stages of canola. In total, 48 sampling points in three495

canola fields (Field no. 206, 208, and 224) are used to assess the temporal496

dynamics of these parameters. We also evaluate the temporal variations of497

the Hc/θc cluster according to canola phenology.

14
6

16
5

18
2

18
9

20
6

22
5

DOY

0°

15°

30°

45°

c

c mc Hc 0.0

0.3

0.7

1.0

m
c;

H
c

Leaf development-side shoot formation Stem elongation

Inflorescence emergence Flowering Pod development Ripening

Figure 13: Temporal variation of mc, Hc and θc for the growth stages of canola. The
white dot represents the median value, the black bar in the center represents the standard
boxplot. On either sides of boxplot is a kernel density estimation to show the distribution
shape of the data.

498

Canola is a broadleaf crop with a distinctive canopy structure at every499

growth stage (McNairn et al., 2018; Mandal et al., 2020b). The seeding of500

the canola crop was completed by mid-May, as indicated in the in-situ data.501

Until the beginning of June, the plant advanced to its vegetative growth502

stage. The plant develops a dense rosette of leaves near the soil surface503

during the leaf development, as evident from Figure 3a. However, the size of504
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these leaves is comparable to the wavelength of the C-band (≈ 5.6 cm).505

On DOY-146, the mean value of θc ≈ 40° and mc ≈ 0.8 which indicate506

dominant scattering from exposed soil due to sparse vegetation cover (Fig-507

ure 13). In Figure 14a, we observe that a majority of data points are clustered508

in zone Z2, which is characterized by medium entropy pure scattering. A few509

data points are in the medium to high entropy distributed scattering zone510

(Z3) as this crop advances to the leaf development stage.511
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Figure 14: Temporal dynamics of the Hc/θc data cluster for canola during entire growth
period.

As growth progresses to stem elongation, a noteworthy change into a512
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vertical plant structure can be observed from Figure 3b. At this stage, the513

attenuation of V-polarized waves increases. Further, an increase in biomass514

and PAI due to increased leaf density and branch formation leads to increased515

scattering randomness. On DOY-165, the Hc/θc cluster shifts from the pure516

(Z2) to the distributed scattering zone (Z3) due to a substantial amount517

of mc component during stem elongation. The accumulation of points has518

increased in the distributed scattering zone (Z3) due to the matured crop519

morphology.520

During inflorescence emergence (Figure 3c), flower buds develop and leaf521

density increases significantly. Consequently, we observe a change in the522

data cluster on DOY-182 (Figure 14c). Further, the values of mc and θc523

dropped to 0.51±0.06 and 29.94°±3.38°, respectively. On the other hand,524

the formation of branches increases scattering entropy. Hence, a shift in the525

Hc/θc cluster from medium entropy zone (Z3) to high entropy zone (Z4) is526

evident on DOY-182 (Figure. 14c).527

During the flowering stage, the buds develop into flowers, and the main528

stem and branches grow (Figure 3d). On DOY-189, the scattering mechanism529

of all the data points is shifted towards high entropy vegetation scattering530

zone (Z5) (Figure 14d). We may attribute this shift to the development of531

a complex canopy geometry during the flowering and early pod development532

stage. As pods form, the canopy drops leaves. The decline of leaf cover533

followed by the development of pods dramatically changes the crop geometry.534

The canopy architecture becomes more random, with pods creating needle-535

like structures oriented randomly.536

During the development of pods canola develops a dense, random canopy537
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structure. Hence, the mean values of mc (0.47±0.06) and θc (27.6°±3.36°) are538

minimum on DOY-206. A majority of data points (≈ 91 %) are clustered into539

the high entropy vegetation scattering zone (Z5). At the same time, a small540

percentage (≈9 %) of data points are clustered into Z4 (Figure 14e). This541

small cluster may reflect the change in crop morphology as leaf area declines542

and the SAR signal interacts more with the needle-like canopy (Figure 3e).543

Table 9: Temporal variation in the percentage of data points in each zone for different
phenology stages of canola. The zone with the maximum number of points at a particular
phenology stage is highlighted in bold. Each row represents a phenology stage and the
solid line in between two phenology stages represents a significant variation in the temporal
trend for the zones.

DOY Z1 Z2 Z3 Z4 Z5 Z6 Growth stage

146 0.0 89.8 10.2 0.0 0.0 0.0
Leaf Development

Side shoot formation

165 0.0 48.9 51.1 0.0 0.0 0.0 Stem Elongation

182 0.0 0.0 0.0 84.1 15.9 0.0 Inflorescence Emergence

189 0.0 0.0 0.0 0.0 100 0.0 Flowering

206 0.0 0.0 0.0 9.1 90.9 0.0 Pod Development

225 0.0 0.0 0.0 54.5 45.5 0.0 Ripening

Subsequently on DOY-225, we observe an increase in mc and θc values to544

0.53±0.09 and 30.8°±4.63°, respectively. This increase in the values of the545

descriptors might be due to the decrease in overall canopy moisture content at546

maturity. As canopy moisture declines, the SAR signal can penetrate deeper547

into the crop canopy. Hence, at late maturity, there might be a greater548

contribution from the soil. Because of these physical changes, the Hc/θc549
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cluster shifts towards the distributed scattering zone (Z4) (Figure 14f). The550

bi-modal distribution of the parameters mc and θc (Figure 13) indicates two551

major sources of scattering. In particular, some fraction of the crop may be552

entering the mid/end-ripening stage, resulting in higher values of mc and θc.553

In contrast, other canopies may be just entering early ripening, resulting in554

lower values. We observe this difference in Figure 14f. Notably, 54.5 % of555

the data points fall in distributed scattering zone (Z4), whereas 45.5 % of556

the data points are in the vegetation scattering zone (Z5). The proportion557

of data points over different scattering regions for all phenological stages558

of canola is presented in Table 9. The results indicate a smooth transition559

of scattering mechanisms throughout the growing cycle. Consequently, the560

proposed descriptors exhibit high sensitivity to the phenological stages of561

both wheat and canola. Hence, these descriptors are useful in monitoring562

phenological changes for both crops.563

5. Conclusion564

In this study, we propose three polarimetric descriptors from dual-pol565

Sentinel-1 (S1) GRD SAR data. These parameter are: the pseudo scattering-566

type parameter (θc), the co-pol purity parameter (mc), and the pseudo scat-567

tering entropy parameter (Hc). We have expressed these descriptors in terms568

of q = σ◦
XY/σ

◦
XX, with 0 ≤ q ≤ 1. Additionally, we have proposed a novel569

unsupervised clustering framework using θc and Hc.570

We have used the dual-pol descriptors and the novel clustering framework571

to analyze temporal growth dynamics of wheat and canola over a Canadian572

test site. The results are very encouraging in assessing crop dynamics for573
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different major phenological stages. The high sensitivity of these descriptors574

to different crop growth stages is evident in this context.575

In the scope of this study, we have characterized diverse crop phenolog-576

ical stages in terms of the physical scattering of the electromagnetic wave577

from targets using the GRD SAR data. The unsupervised clustering frame-578

work using Hc/θc contains six zones representing different physical scattering579

mechanisms. Hence, it provides essential information about the crop growth580

stages without any a priori knowledge and therefore very useful in interpret-581

ing the available radar data.582

The temporal analysis of the proposed descriptors revealed their high583

sensitivity across different phenology stages of wheat and canola. The dy-584

namic range of θc from leaf development to fruit development of wheat is585

41° to 21.6°. Similarly, the variations of mc and Hc are 0.8 to 0.38 and 0.35586

to 0.9, respectively. Similar dynamic ranges of these parameters are also587

evident for canola crop. Furthermore, the proposed clustering schema effi-588

ciently captured the diverse phenology stage of wheat and canola. For leaf589

development and tillering stages of wheat, 90 % of the sampling points are590

clustered into low to medium entropy pure scattering zone. During flower-591

ing and fruit development stages, 100 % of the sampling points are shifted592

into high entropy vegetation scattering zone. Subsequently, during the ma-593

turity stage, the clusters of the sampling points were split between the high594

entropy vegetation scattering and high entropy distributed scattering zones595

with > 65 % of the sampling points in the high entropy distributed scattering596

zone. Similar cluster dynamics are observed for the canola crop. However,597

it is computationally intensive to implement these algorithms for a high vol-598
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ume of temporal data from a global agricultural monitoring perspective. To599

overcome this limitation, we utilized the cloud-based platform (GEE) to ac-600

quire and process the dense time-series data of Sentinel-1. Implementing the601

algorithms in GEE also facilitates efficient generation of global maps of crop602

phenology stages.603

This study only used the GRD SAR data product to formulate the target604

characterizing descriptors demonstrating promising results for natural tar-605

gets. We can further extend this study to different crop types and different606

dual-pol SAR sensors configurations. The proposed descriptors should be607

beneficial in studying natural ecosystems with upcoming dual-pol NASA-608

ISRO Synthetic Aperture Radar Mission (NISAR) and Sentinel SAR con-609

stellation.610
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