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Abstract In this work, the role of a time-varying Newton
constant under the scale-dependent approach is investigated
in the thermodynamics of the Friedman equations. In partic-
ular, we show that the extended Friedman equations can be
derived either from equilibrium thermodynamics when the
non-matter energy momentum tensor is interpreted as a fluid
or from non-equilibrium thermodynamics when an entropy
production term, which depends on the time-varying Newton
constant, is included. Finally, a comparison between black
hole and cosmological thermodynamics in the framework of
scale-dependent gravity is briefly discussed.

1 Introduction

It is well known that the “standard model” of the Universe
is based on the Cosmological Principle [1]. The latter states
that our Universe is homogeneous and isotropic when viewed
on large scales (i.e., ≥ 100 Mpc, spatial scales). Taking into
account the two above facts, the FLRW metric emerges [2].
Thus, we can use the Einstein’s field equations for the per-
fect fluid to obtain the Friedman equations. Including the
cosmological constant, the equations look like

H2 + κ

a2 = �

3
+ 8πG

3
ρs (1)

H ′ + H2 = �

3
− 4πG

3
(ρs + 3ps) , (2)

where a concrete relation between ρs and ps , an equation-
of-state (EoS hereafter), is always required.

It should be pointed out that �CDM (one of the most basic
FLRW models) assumes that dark energy is a cosmological
constant �. This model is able to explain many of the current
observations, although certain evidence suggests that such
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a model is inadequate to explain some features of cosmic
evolution and the large scale structure [3].

In general, we have a huge variety of cosmological models
(see [2] and references therein). Originally, they were based
on general relativity but, in light of the above-mentioned
discrepancies, the community has moved to study cosmo-
logical problems taking advantage of alternative models of
gravity. Avoiding unnecessary details, we should mention a
few approaches used up to now, for example: scalar–tensor
theories [4–6], vector–tensor [7,8] and just tensor theories as
Starobinsky [9,10], Gauss–Bonnet, f (R) [11] and Lovelock
gravity [12]. In addition, a recent and novel approach can be
included into the subset of alternatives theories of gravity; the
so-called scale-dependent gravity, which basically extend the
classical solutions by the inclusion of scale-dependent cou-
plings (see [13–33] and references therein).

Regardless of the approach used to make progress, the
relevance of thermodynamics properties in the cosmologi-
cal context is doubtless. In black hole physics, for example,
it is well-known that the temperature is proportional to its
surface gravity (at the black hole horizon), and the entropy
is proportional to its horizon area [34,35]. Such quantities,
and the corresponding black hole mass, obey the first law
of thermodynamics [36]. Along the years, a transparent rela-
tion between the Einstein’s field equations and the black hole
thermodynamics has been investigated in detail. In the cos-
mological context, however, some progress has been made
[37,38], but still more research is required.

Thus, thermodynamic properties are always a suitable
ingredient to be included and properly analyzed. Clearly,
black hole physics is usually a substantial motivation to tries
to understand how the thermodynamics can serves to gets
the Einstein’s field equations in a cosmological context. In
particular, as has been pointed out in Refs. [37,38], taking
advantage of the first law of thermodynamics to the appar-
ent horizon of a Friedmann–Robertson–Walker universe and
considering the entropy given by a quarter of the apparent
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horizon area, it is possible to derive the Friedmann equa-
tions describing the dynamics of the universe with any spa-
tial curvature. Following the same spirit, we will deal with
the same problem, but now in an alternative formalism: the
scale-dependent scenario.

This work is organized as follows, after this brief intro-
duction, we will discuss in Sect. 2, the main features of scale-
dependent gravity as well as the basic equations to be con-
sidered. Then, in Sect. 3 the corresponding generalized Ein-
stein’s field equations in cosmology are derived. After that, in
the next section the thermodynamics considerations of these
models are discussed. Finally, some concluding remarks are
made in the last section.

2 Scale-dependent gravity

This sections aims to summarize the main ingredients of the
scale-dependent formalism. Up to now, the idea has been sig-
nificantly implemented in several contexts, viz, alternative
black hole solutions at lower and higher dimensions, rela-
tivistic stars and also in cosmology (see [13–33] for details).
In addition, certain black hole properties has been reviewed
in light of the above-mentioned formalism, for instance, the
computation of quasinormal modes of black holes for certain
geometries.

Scale-dependent gravity takes advantage of the seminal
work of Reuter and Weyer (see [39] for details) which has
served as an inspiration for a subsequent set of works (see
for instance [40] and also [41]).

A detailed discussion can be found in Refs. [39,42,43],
but the basic idea is to promote the couplings, which appears
in the gravitational action, to scale-quantities. It should be
mentioned that such approach is also quite common in high
energy theories.

As usual, the starting point will be a general action,
namely, a scale-dependent version of the Einstein–Hilbert
action, without ghosts or any other contributions given by

S[gμν, k] =
∫

dnx
√−g

[
1

2κk
(R − 2�k)

]
, (3)

where k is a scale-dependent field considered as a renor-
malization scale and κk ≡ 8πGk is the Einstein coupling.
Additionally, we have two more couplings, i.e., Gk which
represent the scale-dependent gravitational coupling and �k

that corresponds to the scale-dependent cosmological cou-
plings. Now, we compute the corresponding modified Ein-
stein’s equations taking variations with respect to the metric
field gμν to obtain

Gμν + gμν�k = −�tμν, (4)

being the additional tensor �tμν defined as

�tμν = Gk

(
gμν� − ∇μ∇ν

)
G−1

k . (5)

Then, to supplement our set of equations, we take the varia-
tion of the effective action with respect to the scale field k(x),
i.e.,

d

dk
S[gμν, k] = 0, (6)

considered as an a posteriori condition towards background
independence.

In practice, both Eqs. (4) and (6) are sufficient to close
the system. However, given that the β-functions are in gen-
eral unknown, it could be a more convenient approach to
consider that both couplings, Gk and �k , are promoted to
be space-time dependent function, depending of the scale
field, k(x), so that the corresponding couplings are written
as G(x) and �(x). In this sense, the problem is, basically,
looking for the solution of the metric potentials, the Newton
and cosmological function. Following the above mentioned
idea and considering an adequate line element, we will be
able to solve the problem in situations with a high symmetry.
With these ideas in mind, scale-dependent gravity can be
considered, in some sense, as a special kind of scalar–tensor
theory, although the improved action is not supposed to be
varied neither with respect to G(x) nor to �(x) [39]. The
total action we consider is

ST =
∫

d4x
√−g

(
R

16πG(x)
− �(x)

8πG(x)

)
+ Smat, (7)

where Smat encodes the matter sector of the theory. Then,
after varying Eq. (7) with respect to the metric, we arrive at

Gαβ + G
(
gαβ� − ∇α∇β

)
G−1 + �gαβ = 8πGTαβ (8)

or

Sαβ ≡ Gαβ + �tαβ + �gαβ − 8πGTαβ = 0, (9)

where, as stated before, G and � have to be understood as
functions of the space-time points. Be aware and notice that a
common redefinition of the energy–momentum tensor can be
used, which accounts for the running of Newton’s coupling
via the tensor �tμν . Thus, we may think that the inclusion of a
running Newton’s coupling is a natural mechanism to obtain
an effective energy–momentum tensor in more generalized
scenarios.

3 Generalized Einstein equations in a cosmological
setting

Let us consider a line element written as

ds2 = −dt2 + a(t)2
(

dr2

1 − κr2 + d
2
)

, (10)
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where d
2 is the line element four the round 2-sphere, a(t) is
the scale factor and κ stands for the spatial curvature. Even
more, within a time-dependent context, � and G turn into
functions of the time coordinate only. In this particular case,
the generalized (vacuum) equations are written as:

−3a′(t)G ′(t)
a(t)G(t)

+ 3
(
a′(t)2 + κ

)
a(t)2 − �(t) = 0 (11)

−a(t)G(t)
(
2a′(t)G ′(t) + a(t)G ′′(t)

)
+G(t)2

(
2a(t)a′′(t) + a′(t)2 + a(t)2(−�(t)) + κ

)

+2a(t)2G ′(t)2 = 0. (12)

Note that we have two equations for three unknowns,
a(t),G(t),�(t); i.e., the system is undetermined. For sim-
plicity, we can consider the case �(t) = 0 which leads to
following conclusions:

(i) Eq. (11) can be solved for G(t), obtaining

G(t) = C1 exp

(∫ t

1

a′(y)2 + κ

a(y)a′(y)
dy

)
. (13)

(ii) In this case, Eq. (12) turns into

(
a′(t)2 + κ

) (
a(t)a′′(t) + a′(t)2 + κ

)
(
κr2 − 1

)
a′(t)2

= 0. (14)

(iii) We observe that only in the κ = 0 case the solution for
a(t) is unique.

(iv) The idea is to solve Eqs. (11) and (12) in such a way that
one is able to identify two constants of integration, G0

(the non-running Newton constant) and tε , the running
time scale which signals when scale-dependent effects
are supposed to appear.

(v) When tε → ∞, one should recover the corresponding
general relativistic solution (�tαβ = 0) which, given the
FRW ansatz we have chosen together with �(t) = 0, it
should be the Minkowski space-time. This implies that
we are looking for an improved (in the scale-dependent
sense), homogeneous and isotropic space-time emerging
from the Minkowski background when scale-dependence
is switched on.

3.1 A scale-dependent radiation universe

The following functions solve Eqs. (11) and (12) in the case
of interest:

G(t) = G0

√
1 + 2t

tε

a(t) = a0

√
1 + 2t

tε
, (15)

where tε > 0 for physically relevant solutions. Interestingly,
Eq. (15) resembles the profile of the scale-factor obtained
in the framework of loop quantum cosmology in the sense
that the singularity at t = 0 has been removed (see [44], for
example). Of course, this is a formal relationship. In loop
quantum cosmology the power law is 1/6 instead 1/2 and the
critical time tε should be replaced by the Planck time.

In principle, in view of Eq. (9), one can assign some kind
of energy densities and pressures associated with the non-
matter energy–momentum tensor, by interpreting it as some
kind of curvature fluid, as is usually established in f (R) the-
ories [45]. In our case of interest, we can define this effective
energy–momentum tensor as

Tαβ = −8πG(t)�tαβ. (16)

Interestingly, within the fluid interpretation we obtain the
corresponding density and pressure as

ρs(t) = −gttTt t = 3

8πG0t2
s

(
2t
ts

+ 1
)5/2

(17)

ps(t) = −grrTrr = 1

8πG0t2
s

(
2t
ts

+ 1
)5/2

, (18)

which satisfy the radiation condition,

− ρs + 3ps = 0. (19)

We note that a(t) = a0, G(t) = G0, ρε = pε = 0 when
tε → ∞, as required to reach the Minkowskian limit. Note
that, although Eq. (19) could lead to conclude that our find-
ings serve to model a radiation dominated era, it should be
emphasized that our solution is a vacuum one and (19) arises
as a consequence of the dependence of the Newton coupling
as a function of the space-time points (encoded in the non-
matter energy momentum tensor). Even more, there are not
reasons to believe that tε allows to connect different epochs.

Interestingly, the curvature scalars are given by

R = gαβRαβ = 0 (20)

K = Rαβγ δRαβγ δ = 24

(2t + tε)4 (21)

Ric2 = Rαβ Rαβ = 12(
2t + tε

)4 (22)

showing that the corresponding solution is regular every-
where (remember we are considering tε > 0).

4 Thermodynamical considerations

Let us write Eqs. (11) and (12) in a Friedmann-like form. By
introducing the usual Hubble parameter H = ȧ/a, we arrive
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to

H2 + κ

a2 = �

3
+ H

G ′

G
(23)

H ′ + H2 = �

3
+ 1

G

(
HG ′ + G ′′ − 2 (G ′)2

G

)
. (24)

As commented before, we can define an effective scale-
dependent energy–momentum tensor, Tαβ , from which the
corresponding energy density and pressure are given by

ρs = 3

8π

HG ′

G2 (25)

ps = − 1

4πG2

(
3HG ′

2
+ G ′′ − 2

(
G ′

G

)2
)

, (26)

such that Eqs. (23) and (24) acquire the usual form:

H2 + κ

a2 = �

3
+ 8πG

3
ρs (27)

H ′ + H2 = �

3
− 4πG

3
(ρs + 3ps) , (28)

where � and G have to be understood as �(t) and G(t),
respectively.
Finally, we note that, when a matter sector is considered,
the corresponding energy–momentum tensor contributes to
Eqs. (27) and (28) with its own densities and pressures, ρm
and pm , such that the structure of the previously mentioned
equations remains the same with the sources being ρm + ρs
and pm + ps .
At this point, several comments are in order. First, Cai and
Kim [37] proved that it is possible to derive the Friedmann
equations describing the dynamics of the universe with any
spatial curvature by applying the first law of thermodynamics
to the apparent horizon of a FRW geometry, and considering
that the entropy is given by a quarter of the apparent horizon
area. And second, by using the tunneling approach of Parikh
and Wilczek [46,47], Cai et al. showed [48] that there exists
Hawking radiation for a locally defined apparent horizon of
a FRW universe with any spatial curvature. In essence, the
authors of Ref. [48] shown that the inverse temperature is
given by

β = 2π r̃a, (29)

where r̃a = H−1 is the location of the apparent horizon of a
flat (κ = 0) FRW universe.

In our case of interest, it is straightforward to show that the
scale-dependent version of the emission appears at a inverse
temperature given by

βs = 2π(tε + 2t), (30)

which diverges for tε → ∞ (Minkowskian limit).
This fact supports a first evidence of an existing relationship
between thermodynamics and the scale-dependent Fried-
mann equations given by Eqs. (23) and (24). In the following

lines we will show that Cai and Kim approach of Ref. [37]
can be extended to the scale dependent case under appropri-
ate assumptions.

4.1 Scale-dependent Friedmann equations from
thermodynamics

In this section we will follow closely the techniques employed
in Ref. [37], extending them when necessary.
First of all, let us write Eq. (10) as

ds2 = habdx
adxb + r̃2d
2, (31)

where r̃ = a(t)r , x0 = t , x1 = r and hab =
diag

(
−1, a2

1−κr2

)
. The dynamical apparent, r̃a horizon is

determined by the relation hab∂ar̃∂br̃ = 0 which, in this
case, is given by

r̃a =
(
H2 + κ

a2

)−1/2
. (32)

This dynamical apparent horizon has been argued to be a
causal horizon with both gravitational entropy and surface
gravity [49,50]. Therefore, we will employ it in the first law
of thermodynamics in order to deduce the generalized Fried-
mann equations.
After defining the work density at r̃a , W , as the work done
by a change of the apparent horizon,

W = −1

2
T abhab, (33)

and the energy-supply vector at r̃a , �a , as the total energy
flow through it [49,50] as

�a = T b
a ∂br̃ + W∂ar̃ , (34)

we arrive to Hayward’s unified first law [49],

∂a E = A�a + W∂aV . (35)

In Eq. (35), A = 4π r̃2, V = 4
3π r̃3 and the total energy inside

the spherical space bounded by r̃ is

E = r̃

2G

(
1 − hab∂ar̃∂br̃

)
. (36)

At this point it is important to note that both the work density
and the energy flow include a contribution coming from the
non-matter energy momentum tensor, �tab. In addition, the
total energy depends on the time-dependent Newton’s con-
stant, G = G(t). This issue was raised by Cai and Cao [38],
who pointed out that “an interesting question is whether the
field equations for non-Einstein gravity can be written to a
form as the unified first law in Einstein gravity”. In the same
spirit, after rewriting the field equations for scale-dependent
gravity in the form of the Einstein gravity by introducing
an effective energy–momentum tensor, we assume that the
unified first law can be safely employed.
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Even more, the heat flow is related to the change of energy
of the given system. Therefore, the entropy is associated with
the energy-supply term, which can be rewritten, in our case,
as

A� = κ

8π
∇

(
A

G

)
+ r̃

G
∇

(
E G

r̃

)
, (37)

where κ is the surface gravity defined as

κ = 1

2
√−h

∂a

(√−hhab∂br̃
)

. (38)

Note that the main difference with the case studied in Ref.
[37] is the inclusion of G inside the differential terms. Even
more, as the second term of the rhs of Eq. (37) vanishes
on the apparent horizon, we are left with an entropy and a
temperature given by

S = A (r̃a)

4G (r̃a)
(39)

T = 1

2π r̃a
. (40)

At this point a couple of comments are in order: (i) the appar-
ent horizon and its corresponding temperature are modified
following Eqs. (29) and (30), respectively; (ii) the entropy
acquires a form similar to that obtained in Brans–Dicke and
f (R) theories (see, for example, Ref. [51] and references
therein) and (iii), the general relativistic limit (which in this
case collapses to the Minkowskian limit) is obtained when
tε → ∞.

The heat flow through the apparent horizon is the change
of the energy inside it. Moreover, assuming a perfect fluid
energy–momentum tensor for the matter sector, we find that
[37]

− dE = −A� = A (ρ + p) Hr̃adt. (41)

Finally, if the Clausius law,

− dE = TdS (42)

is applied with T and S given by Eqs. (39) and (40), it
is to show that it is not possible to arrive to the scale-
dependent Friedmann equations. Interestingly, a similar no-
go behaviour has been found in scalar–tensor and f (R) the-
ories [38,52].
There is a simple way of circumventing this problem. First,
note that the temperature is a purely geometric quantity and,
therefore, it does not depend on the specific theory one is
dealing with. Second, instead of taking a perfect fluid energy–
momentum for matter, Tαβ , let us consider Tαβ + Tαβ =
Tαβ − 8πG(t)�tαβ . And third, let us take the corresponding
entropy as S = A

4G0
(note that G0 has been employed instead

of G(r̃a). Then, as it should be clear from Eqs. (27) and (28)
together with the associated discussion, the procedure works

out and the corresponding scale-dependent Friedmann equa-
tions can be obtained from thermodynamics, as previously
pointed out for scalar–tensor [38] and f (R) theories [52].
Finally, it has been shown [53] that the Clausius law holds
when an entropy production term, dSp, is added to it. Specif-
ically, this entropy production term is given, in our context,
by Eq. (41) of Ref. [53] which states that

dSp = 2π r̃2
a
Ġ(r̃a)

G2(r̃a)
dt. (43)

5 Final remarks and conclusions

We close this work by briefly comparing black hole and cos-
mological thermodynamics in the framework of SD gravity.
In the former case, the authors of Ref. [51] obtained appro-
priate generalizations for both the entropy and energy of SD
black holes, showing that no entropy production terms are
needed in order to describe the theory, in complete agree-
ment with both scalar–tensor [38] and f (R) theories [54].
In the latter case, although entropy production can be intro-
duced in order for the Clausius law to be valid, a redefinition
of the energy associated with the apparent horizon can also be
performed by introducing a non-equilibrium energy dissipa-
tion term [53]. Therefore, non-equilibrium thermodynamics
is needed in SD gravity in order to completely derive the
extended Friedmann equations.

Acknowledgements P. B. dedicates this work to Anaís, Lucía, Inés
and Ana for continuous support. P. B. is funded by the Beatriz Galindo
contract BEAGAL 18/00207 (Spain). The author A. R. acknowledges
DI-VRIEA for financial support through Proyecto Postdoctorado 2019
VRIEA-PUCV. Ángel Rincán dedicates this work to Elena Guilarte,
who always gave him her unconditional love and support. “I will see
you again”.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Data sharing not
applicable. This article describes entirely theoretical research.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  477 Page 6 of 6 Eur. Phys. J. C           (2021) 81:477 

References

1. A. R. Liddle, An introduction to modern cosmology. Wiley, Chich-
ester, UK, 129 p (1998)

2. G.F.R. Ellis, H. van Elst, NATO Sci. Ser. C 541, 1–116 (1999).
arXiv:gr-qc/9812046

3. F. Melia, Astrophys. Space Sci. 356(2), 393–398 (2015).
arXiv:1411.5771 [astro-ph.CO]

4. C. Brans, R.H. Dicke, Phys. Rev. 124, 925–935 (1961)
5. P.G. Bergmann, Int. J. Theor. Phys. 1, 25–36 (1968)
6. V. Faraoni, Fundam. Theor. Phys. 139 (2004)
7. R.W. Hellings, K. Nordtvedt, Phys. Rev. D 7, 3593–3602 (1973)
8. C.M. Will, K. Nordtvedt Jr., Astrophys. J. 177, 757 (1972)
9. A.A. Starobinsky, JETP Lett. 30, 682–685 (1979)

10. A.A. Starobinsky, Adv. Ser. Astrophys. Cosmol. 3, 130–133 (1987)
11. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010).

arXiv:1002.4928 [gr-qc]
12. D. Lovelock, J. Math. Phys. 12, 498–501 (1971)
13. B. Koch, I.A. Reyes, A. Rincon, Class. Quantum Gravity 33(22),

225010 (2016). arXiv:1606.04123 [hep-th]
14. A. Rincon, B. Koch, I. Reyes, J. Phys. Conf. Ser. 831(1), 012007

(2017). arXiv:1701.04531 [hep-th]
15. A. Rincon, E. Contreras, P. Bargueño, B. Koch, G. Panotopou-

los, A. Hernandez-Arboleda, Eur. Phys. J. C 77(7), 494 (2017).
arXiv:1704.04845 [hep-th]

16. A. Rincon, G. Panotopoulos, Phys. Rev. D 97(2), 024027 (2018).
arXiv:1801.03248 [hep-th]

17. E. Contreras, A. Rincon, B. Koch, P. Bargueño, Eur. Phys. J. C
78(3), 246 (2018). arXiv:1803.03255 [gr-qc]

18. A. Rincon, B. Koch, Eur. Phys. J. C 78(12), 1022 (2018).
arXiv:1806.03024 [hep-th]

19. A. Rincon, E. Contreras, P. Bargueño, B. Koch, G. Panotopoulos,
Eur. Phys. J. C 78(8), 641 (2018). arXiv:1807.08047 [hep-th]

20. A. Rincon, E. Contreras, P. Bargueño, B. Koch, Eur. Phys. J. Plus
134(11), 557 (2019). arXiv:1901.03650 [gr-qc]

21. E. Contreras, A. Rincon, G. Panotopoulos, P. Bargueño, B. Koch,
Phys. Rev. D 101(6), 064053 (2020). arXiv:1906.06990 [gr-qc]

22. A. Rincon, G. Panotopoulos, Phys. Dark Univ. 30, 100725 (2020).
https://doi.org/10.1016/j.dark.2020.100725. arXiv:2009.14678
[gr-qc]

23. G. Panotopoulos, A. Rincon, Phys. Dark Univ. 31, 100743 (2021).
https://doi.org/10.1016/j.dark.2020.100743. arXiv:2011.02860
[gr-qc]

24. À. Rincòn, E. Contreras, P. Bargueño, B. Koch, G. Panotopou-
los,Phys. Dark Univ. 31, 100783 (2021). arXiv:2102.02426 [gr-qc]

25. A. Rincon, B. Koch, J. Phys. Conf. Ser. 1043(1), 012015 (2018).
arXiv:1705.02729 [hep-th]

26. E. Contreras, A. Rincon, J.M. Ramirez-Velasquez, Eur. Phys. J. C
79(1), 53 (2019). arXiv:1810.07356 [gr-qc]

27. A. Rincon, J.R. Villanueva, Class. Quantum Gravity 37(17),
175003 (2020). arXiv:1902.03704 [gr-qc]

28. M. Fathi, A. Rincon, J.R. Villanueva, Class. Quantum Gravity
37(7), 075004 (2020). arXiv:1903.09037 [gr-qc]

29. G. Panotopoulos, A. Rincon, I. Lopes, Eur. Phys. J. C 80(4), 318
(2020). arXiv:2004.02627 [gr-qc]

30. G. Panotopoulos, A. Rincon, I. Lopes, Eur. Phys. J. C 81(1), 63
(2021). arXiv:2101.06649 [gr-qc]

31. F. Canales, B. Koch, C. Laporte, A. Rincon, JCAP 2001, 021
(2020). arXiv:1812.10526 [gr-qc]

32. P.D. Alvarez, B. Koch, C. Laporte, A. Rincon (n.d.)
33. E. Contreras, P. Bargueño, Mod. Phys. Lett. A 33(32), 1850184

(2018). arXiv:1809.00785 [gr-qc]
34. S.W. Hawking, Commun. Math. Phys. 43, 199–220 (1975) [Erra-

tum: Commun. Math. Phys. 46, 206 (1976)]
35. P. Majumdar, Indian J. Phys. B 73, 147 (1999).

arXiv:gr-qc/9807045
36. S. Carlip, Int. J. Mod. Phys. D 23, 1430023 (2014).

arXiv:1410.1486 [gr-qc]
37. R.G. Cai, S.P. Kim, JHEP 02, 050 (2005). arXiv:hep-th/0501055
38. R.-G. Cai, L.-M. Cao, Phys. Rev. D 75, 064008 (2007)
39. M. Reuter, H. Weyer, Phys. Rev. D 69, 104022 (2004)
40. B. Koch, P. Rioseco, C. Contreras, Phys. Rev. D 91, 025009 (2015)
41. C. Contreras, B. Koch, P. Rioseco, Class. Quantum Gravity 30,

175009 (2013). arXiv:1303.3892 [astro-ph.CO]
42. A. Bonanno, M. Reuter, Phys. Rev. D 62, 043008 (2000).

arXiv:hep-th/0002196
43. A. Bonanno, G. Kofinas, V. Zarikas, Phys. Rev. D 103(10), 104025

(2021). arXiv:2012.05338 [gr-qc]
44. T. Zhu, A. Wang, K. Kirsten, G. Cleaver, Q. Sheng, Phys. Lett. B

773, 196 (2017)
45. S. Capozziello, V. Faraoni, Beyond Einstein Gravity: A Survey of

Gravitational Theories for Cosmology and Astrophysics (Springer,
Berlin, 2011)

46. K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)
47. M.K. Parikh, Phys. Lett. B 546, 189 (2002)
48. R.-G. Cai, L.-M. Cao, Y.-P. Hu, Class. Quantum Gravity 26, 155018

(2009)
49. S.A. Hayward, S. Mukohyama, M.C. Ashworth, Phys. Lett. A 256,

347 (1999)
50. D. Bak, S.J. Rey, Class. Quantum Gravity 17, 83 (2000)
51. P. Bargueno, J.A. Miralles, J.A. Pons, Eur. Phys. J. C 80, 1156

(2020)
52. M. Akbar, R.-G. Cai, Phys. Lett. B 635, 7 (2006)
53. D.W. Tian, I. Booth, Phys. Rev. D 90, 104042 (2014)
54. S.F. Wu, G.H. Yang, P.M. Zhang, Prog. Theor. Phys. 120, 615

(2008)

123

http://arxiv.org/abs/gr-qc/9812046
http://arxiv.org/abs/1411.5771
http://arxiv.org/abs/1002.4928
http://arxiv.org/abs/1606.04123
http://arxiv.org/abs/1701.04531
http://arxiv.org/abs/1704.04845
http://arxiv.org/abs/1801.03248
http://arxiv.org/abs/1803.03255
http://arxiv.org/abs/1806.03024
http://arxiv.org/abs/1807.08047
http://arxiv.org/abs/1901.03650
http://arxiv.org/abs/1906.06990
https://doi.org/10.1016/j.dark.2020.100725
http://arxiv.org/abs/2009.14678
https://doi.org/10.1016/j.dark.2020.100743
http://arxiv.org/abs/2011.02860
http://arxiv.org/abs/2102.02426
http://arxiv.org/abs/1705.02729
http://arxiv.org/abs/1810.07356
http://arxiv.org/abs/1902.03704
http://arxiv.org/abs/1903.09037
http://arxiv.org/abs/2004.02627
http://arxiv.org/abs/2101.06649
http://arxiv.org/abs/1812.10526
http://arxiv.org/abs/1809.00785
http://arxiv.org/abs/gr-qc/9807045
http://arxiv.org/abs/1410.1486
http://arxiv.org/abs/hep-th/0501055
http://arxiv.org/abs/1303.3892
http://arxiv.org/abs/hep-th/0002196
http://arxiv.org/abs/2012.05338

	Thermodynamics of scale-dependent Friedmann equations
	Abstract 
	1 Introduction
	2 Scale-dependent gravity
	3 Generalized Einstein equations in a cosmological setting
	3.1 A scale-dependent radiation universe

	4 Thermodynamical considerations
	4.1 Scale-dependent Friedmann equations from thermodynamics

	5 Final remarks and conclusions
	Acknowledgements
	References




