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Abstract 

Labour market areas (LMAs) are a type of functional region (FR) defined on commuting flows and 

used in many countries to serve as the territorial reference for regional studies and policy making at 

local levels. Existing methods rely on manual adjustments of the results to ensure high quality, making 

them difficult to be monitored, hard to apply to different territories, and onerous to produce in terms of 

required work-hours. We propose an approach to automatise all stages of the delineation procedure and 

improve the final results, building upon a state-of-the-art stochastic search procedure, that ensures 

optimal allocation of municipalities/counties to LMAs while keeping good global indicators: a pre-

processing layer clusters adjoining municipalities with strong commuting flows to constrain the initial 

search space of the stochastic search, and a multi-criteria heuristic corrects common deficiencies that 

derive from global maximisation approaches or simple greedy heuristics. It produces high quality 

LMAs with optimal local characteristics. To demonstrate this methodology and assess the 

improvement achieved, we apply it to define LMAs in Spain based on the latest commuting data. 

Keywords: Functional Regions, Functional Economic Areas, Commuting Zones, Labour Market 

Areas, Optimisation Problem. 
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1. Introduction 

1.1. Background 

Labour Market Areas (LMAs), understood as the functional regions (FRs) in which supply and demand 

for labour meet and fix a price (Brown and Holmes, 1971; Jones, 2017), are a useful instrument to 

analyse the economic reality of the territory and to design, apply and monitor socio-economic policies 

at the regional level (Casado-Díaz and Coombes, 2011; OECD, 2002; Wicht et al., 2020). Other 

examples of FRs, particularly within the concept of functional economic areas (FEAs) (Jones, 2017), 

include functional urban areas and metropolitan areas (OECD, 2012), and housing market areas (Jones 

et al., 2012). The precision of regional analyses and the effectiveness of the respective public policies 

depend on how accurately the boundaries of the regions on which they are based reflect the actual 

spatial functional reality of the territory. Hence, assuring high standards of quality in the definition of 

such FRs is of great relevance. 

LMAs are composed of basic spatial units (BSUs), such as municipalities, counties or census areas, 

which are grouped using regionalisation methods that process information on the commuting flows 

existing between them. In an ideal LMA, there is a strong interaction (cohesion) between the BSUs 

that integrate the region, and weak interaction with other regions –i.e. the region has a high degree of 

autonomy– (Goodman, 1970). These objectives are in conflict: the maximum autonomy is reached 

when a single region encompasses the whole territory, which implies insufficient cohesion because not 

every job is accessible to every worker (too large regions, excessive travel distances), and, conversely, 

the maximum degree of cohesion implies small regions with boundaries frequently crossed by work 

commuters (insufficient autonomy). This trade-off brings uncertainty to what should be considered an 

appropriate compromise between cohesion and autonomy. When conducting a delimitation of LMAs, 

most methods accept one or more parameters to control how the conflicting objectives are weighted. 

Most methods also require the regions to be spatially continuous. In Martínez-Bernabéu et al. (2020), 

the authors review the concept and use of LMAs and elaborate on the complexity of the problem. 

1.2. Regionalisation methods 

Defining optimum LMAs for a given territory (i.e. finding the division of that territory into relatively 

autonomous and cohesive regions) is a complex exercise in real world. Exact methods are not 

computationally affordable except for small enough instances. For example, Kim et al. (2015) use 

linear programming to define FRs in Seoul (South Korea), with 25 BSUs, and South Carolina (USA), 

with 46 BSUs. The process required minutes for the former and hours for the latter. The computational 



time required grows exponentially with the number of BSUs, with tens of thousands in common study 

cases. 

Greedy algorithms, suboptimal but capable of solving real-world problems in reasonable time, have 

been traditionally used in this field (Masser and Scheurwater, 1980). Most of these methods are either 

pure hierarchical clustering methods such as Intramax (Masser and Brown, 1975) or pseudo-

hierarchical such as the well-known Travel-to-Work Areas method (last revision in Coombes and Bond, 

2008). Their aggregative procedure is guided by an interaction index that measures the strength of 

commuting between two areas considering the number of commuters shared relative to the size of the 

two areas. 

Recently, approximate methods based on optimisation of a global objective function have shown to 

find better solutions. Compared with greedy methods, approximate procedures require more 

computational effort, but in exchange they are able to find results closer to optimum (Coombes et al., 

2012; Fowler and Jensen, 2020; Martínez-Bernabéu et al., 2020). These methods are a good 

compromise between the fast but less effective greedy methods and the optimum but computationally 

unaffordable exact methods. Two objective functions are predominant in this field: modularity quality 

(Mu and Yeh, 2020; Shen and Batty, 2019), and a form of global cohesion that measure average BSU-

LMA interaction (Alonso et al., 2015; Flórez-Revuelta et al., 2008; Martínez-Bernabéu et al., 2012). 

Modularity can fail to identify very large or very small communities, even when a resolution parameter 

is arbitrarily modified to accommodate the scale of division to the practitioners expectations 

(Lambiotte, 2010; Lancichinetti and Fortunato, 2011)). Average BSU-LMA interaction is biased 

towards high cohesion regionalisations with many small LMAs (Casado-Díaz et al., 2017a; Martínez-

Bernabéu et al., 2020), but a constraint on minimum LMA autonomy and/or size makes it possible to 

produce results of any level of detail as desired, based on readily understood indicators (autonomy, 

size, area) instead of an obscure resolution parameter that doesn’t relate to the regions characteristics 

sought in these exercises. 

1.3. Deficiencies in the results of functional regionalisation methods 

The revision of existing methods, especially those used by public administrations, shows that their 

outcomes are very frequently subject to expert examination and rounds of consultations with local 

authorities, and the procedures include final steps of manual adjustments, usually undocumented 

(Casado-Díaz and Coombes, 2011). See Franconi et al. (2017) for an example of such correction 

procedures. The most common corrections are reallocation of BSUs to different LMAs to improve 



their local characteristics (increasing its autonomy within its LMA and/or the interaction with the other 

BSUs in it), division of too big LMAs, and merger of too small LMAs functionally dependent on each 

other. These changes are always based on expert knowledge that supersedes the regionalisation 

algorithm criteria, and onerous when there are hundreds or thousands of BSUs. A complete system to 

automatise such procedures in a consistent and replicable manner would imply an increase in the 

quality of the results and savings in time and money. 

The issues that require a final phase of manual correction can be grouped according to this typology:  

 Cohesion-misallocated BSUs: those that adjoins a LMA to which they could be reallocated to 

achieve stronger interaction. 

 Autonomy-misallocated BSUs: those that adjoins a LMA to which they could be reallocated to 

achive higher autonomy (optionally, “without causing significant loss in cohesion”). 

 Convenience LMAs: regions that barely meet the constraints of autonomy and size to be a valid 

LMA and that are composed by one or more misallocated BSUs whose removal would render 

the LMA invalid. 

1.4. Automatising the regionalisation process 

The aim of this work is to present an automatic method that tackles the whole problem of LMA 

delimitation, from data pre-processing to the final local corrections, starting from an existing 

regionalisation method. We develop a multi-step procedure around the Grouping Evolutionary 

Algorithm (GEA) proposed by Casado-Díaz et al. (2017b), a refinement of the method by Martínez-

Bernabéu et al. (2012). We demonstrate the suitability of our proposal by applying it to the commuting 

data from Spanish 2011 Census to define LMAs, and evaluate the results using a set of quantitative 

indicators extracted from relevant literature (Martínez-Bernabéu et al., 2020). 

In the rest of the paper, Section 2 describes the data, Section 3 formally describes the problem at hand 

and the methodology we propose, Section 4 discusses the results with and without the proposed 

improvements, and Section 5 concludes. 

2. Data 

The main data required to solve this problem is a non-symmetrical matrix T of travel-to-work 

(commuting) flows between the set S of n BSUs, where Tij is the number of residents of BSU si that 

work in BSU sj. These values derive from the questions on place of residence and place of work from 

the latest Spanish Census (INE, 2011). The smallest available BSU is the municipality (numbering 



8,116). To be able to apply size restrictions on population size (inhabitants), P={p1, p2, … pn} was 

derived from the same source, where pi is the population of BSU i. Additionally, the algorithm requires 

the data on geographical adjacency between each pair of BSUs if the contiguity restriction is to be 

applied. We created this database, a binary symmetrical matrix, using geographic information systems 

in R (R Core Team, 2013). Figure S1 in the Supplementary Material exemplifies a commuting and an 

adjacency matrix from a synthetic territory. 

It should be noted that previous censuses performed an exhaustive coverage of all Spanish population. 

That was not the case of the 2011 wave when, in line with other countries, the INE adopted a sample-

based approach in which less than 10% of the population answered the census questionnaire. 

Furthermore, the estimated BSU-to-BSU commuting flows were rounded to multiples of 5 due to 

significance and confidentiality concerns. These two facts challenged the statistic quality of the data 

compared with previous exercises, with a stronger effect for less populated BSUs. In particular, many 

small BSUs (more than 10%) did not register travel-to-work flows to any of their neighbouring BSUs, 

while in 2001 this happened in less than 1% of cases. This exemplifies a development in the data 

quality that deserves attention given its progressive generalisation and potential implications (United 

Nations Statistics Division, 2019). 

3. Methodology 

In this section we formally describe (a) the regionalisation problem as an optimisation problem, (b) the 

GEA method used as the regionalisation algorithm around which we build our multi-step procedure, 

and (c) the algorithms for the two extra steps we propose in this paper. Table S1 in the Supplementary 

Material lists all acronyms and symbols used in this section, including the parameters of each 

algorithm. 

3.1 Regionalisation as an optimisation problem 

The aim is finding the partition R of a set of BSUs S = {s1, s2, … sn} into geographically contiguous, 

non-overlapping and sufficiently autonomous and populated regions (LMAs) that maximise cohesion 

measured as the average interaction between each BSU and the rest of its LMA (Flórez-Revuelta et al., 

2008). Formally: 

Maximise 

𝑓(𝑅) = ∑ (∑ interaction(𝑠, 𝑀 ∖ 𝑠)

𝑠∈𝑀

)

𝑀∈𝑅

 (1) 



subject to 

∪i=1..𝑚 𝑀𝑖 = 𝑆 (2a) 

𝑀𝑖 ∩ 𝑀𝑗 = 0∀𝑀𝑖 ≠ 𝑀𝑗 ∈ 𝑅 (2b) 

contiguous(𝑀𝑖) = 1∀𝑀 ∈ 𝑅 (2c) 

∑ 𝑝𝑘

𝑘∈𝑀

≥ 𝑃min∀𝑀 ∈ 𝑅 (3a) 

autonomy(𝑀) ≥ 𝐴min∀𝑀 ∈ 𝑅 (3b) 

autonomy(𝑀) ≥ 𝐴tar +
𝐴tar − 𝐴min

𝑃min − 𝑃tar
(∑ 𝑝𝑘

𝑘∈𝑀

− 𝑃min) ∀𝑀 ∈ 𝑅 (3c) 

where M is each of the m regions of partition R; contiguous(M) equals 1 if the BSUs of M form a 

single geographically contiguous region and 0 otherwise; Pmin < Ptar and Amin < Atar are the parameters 

of, respectively, minimum population, target population, minimum autonomy and target autonomy of a 

LMA to be considered valid. 

Eqs. (2a-c) ensure that a regionalisation is a partition of the whole territory (Eq. 2a) into non-

overlapping (Eq. 2b), contiguous (Eq. 2c) regions. Eqs. (3a-c) conform the validity criteria: each 

region must reach the required minimum levels of Pmin inhabitants (Eq. 3a) and Atar autonomy (Eq. 3b), 

linearly relaxed to Amin for regions that reach Ptar or more inhabitants (Eq. 3c). Figure S2 in the 

Supplementary Material illustrates the validity criteria. 

The autonomy of a region is measured as the number of residents of that region that hold a job also in 

that region divided by the maximum between total occupied residents and total jobs of that region: 

autonomy(𝑀𝑥) =
∑ ∑ 𝑇ij𝑗∈𝑀𝑖∈𝑀

max(∑ ∑ 𝑇ik𝑘∈𝑆𝑖∈𝑀 , ∑ ∑ 𝑇jk𝑘∈𝑆𝑗∈𝑀 )
 (4) 

The interaction between two regions is measured using the following index (a modification of the one 

used in the Travel-to-Work Areas method, proposed by Casado-Díaz et al., 2017b, to reduce the 

presence of cohesion-misallocated BSUs): 



interaction(𝑀𝑎, 𝑀𝑏) =
1

2
√

(∑ ∑ 𝑇ij𝑗∈𝑀𝑏𝑖∈𝑀𝑎
)

2

∑ ∑ 𝑇ik𝑘∈𝑆𝑖∈𝑀𝑎
⋅ ∑ ∑ 𝑇kj𝑘∈𝑆𝑗∈𝑀𝑏

+
(∑ ∑ 𝑇ji𝑗∈𝑀𝑏𝑖∈𝑀𝑎

)
2

∑ ∑ 𝑇jk𝑘∈𝑆𝑗∈𝑀𝑏
⋅ ∑ ∑ 𝑇ki𝑥∈𝑆𝑖∈𝑀𝑎

 (5) 

In the rest of the paper, we use Eq. (5) as the index to determine when a BSU is cohesion-misallocated 

as well as in the objective function. To assess autonomy-misallocation, we calculate the minimum of 

supply-side and demand-side autonomy that the BSU would reach on each LMA, and call it within-

region autonomy: 

𝑤(𝑠𝑖, M𝑥) = minimum (
𝑇𝑖𝑖 + ∑ 𝑇ij𝑗∈𝑀𝑥

∑ 𝑇ik𝑘∈𝑆
,
𝑇𝑖𝑖 + ∑ 𝑇ji𝑗∈𝑀𝑥

∑ 𝑇ki𝑘∈𝑆
) (6) 

3.2 Multi-step procedure built around an optimisation algorithm 

GEA (Casado-Díaz et al., 2017b) is a state-of-the-art regionalisation method that has proved to be 

superior to other pre-existing, relevant formal procedures (see Martínez-Bernabéu et al., 2012, for the 

Spanish case; Coombes et al., 2012, for a comparison of GEA, the Swedish and the Travel-to-Work 

Areas methods applied to Spain, Sweden and UK; and Casado-Díaz et al., 2017b, for the Chilean 

case). In short, this method uses parallel evolutionary computation to perform a stochastic search of the 

solution space. Using several sets (cells) of possible regionalisations, arranged in a toroidal grid, each 

cell of the grid is populated at start with different regionalisations produced with a greedy stochastic 

hierarchical aggregative procedure. GEA then applies group-based mutation and crossover operators to 

produce a new regionalisation within each grid cell, ranks it using its global objective function (Eq. 1), 

and removes the one of the less successful regionalisations from each cell. At a lower frequency, a 

regionalisation from one cell is crossed with a regionalisation from a cell adjacent in the grid. The 

process continues until no improvement of the best result in the whole grid is found for a certain 

number of iterations or a maximum computation time is reached. Figures S3 and S4 in the 

Supplementary Material illustrates GEA data structures and algorithm. 

As happens with any other functional regionalisation method, GEA results can include cases of the 

deficiencies commented in Section 1.3. Casado-Díaz et al. (2017b) attributed the presence of cohesion-

misallocated BSUs in the results of a method that precisely optimises (global) cohesion to the nature of 

the grouping optimisation process: reallocating any of these BSUs to its optimal LMA would cause a 

slight drop in the interaction index between other BSUs and their respective LMAs, an effect that once 

aggregated in the global objective function offsets the improvement in interaction from the reallocated 



BSU, and so the method keeps such BSUs misallocated. The existence of autonomy-misallocated 

BSUs is intrinsic to this problem due to the conflict between autonomy and cohesion: since this 

method maximises cohesion, some or many BSU could show suboptimal autonomy and optimal 

cohesion. Fixing one would break the other. Autonomy-misallocated BSUs are bad only when the 

potential gain in autonomy is great and the potential loss in cohesion is small. Convenience LMAs 

seem to arise from the previous two issues. 

In order to address these limitations, we propose to wrap GEA into a pre-processing layer and a post-

processing layer, to form a three-step method that deals with the issues with different approaches 

(Figures S5 and S6 in the Supplementary Material illustrates the original and the proposed 

methodologies): 

1. A hierarchical aggregation of BSUs, driven by percentage of commuters, merges pairs of areas 

that share great amounts of their workers. This introduces a form of BSU-level, soft constraint that 

minimises the appearance of autonomy-misallocated BSUs as well as convenience LMAs in GEA 

results. 

2. GEA is applied to the pre-processed matrix of flows. Constrained by the aggregated network, the 

search focuses on producing more suitable regionalisations. Reducing the search space dimension 

accelerates the computation as well. 

3. A greedy local optimisation algorithm applied to the GEA results performs simple reassignments 

of misallocated BSUs in order of potential interaction gain, subject to constraints of cohesion and 

autonomy at both global and BSU level. This stage corrects the remaining issues at local level and 

allows reconsideration of the mergers done in first step. 

3.2.1. Pre-processing layer 

In order to reduce the occurrence of autonomy-misallocated BSUs, the pre-processing layer follows a 

simple principle: merge the pair of adjacent BSUs that maximise Eq. (6) if it exceeds a given threshold 

1 - Amin (e.g. for Amin=66.7% we get 33.3%), and in that case recalculate commuting flows to and from 

the new combined area and repeat. 

The motivation is as follows: If the share of commuters of a BSU that work in a given region is d, the 

maximum within-region autonomy for that BSU if it is not allocated to that region will be 1 – d. By 

setting the minimum threshold at 1 - Amin, it is ensured that every BSU with such a strong dependence 

to another BSU (or subset of BSUs) will be allocated to the same LMA. 



The algorithm can be briefly described as follows: 

Step 1: find the pair of adjacent BSUs a and b that maximises Eq. (6). 

Step 2: if w(a, b)> 1 - Amin, merge a and b and update the adjacency and commuting matrices 

accordingly. 

Step 3: if there was any merge in last iteration, go back to step 1. 

The complete pseudo-code of the pre-processing algorithm is included in the Supplementary Material, 

Method 1, as well as a diagram, Figure S7. Figure S1 includes an example of how the method 

transforms the data. 

3.2.3. Local optimisation layer 

The final step of local optimisation aims at solving all the issues highlighted in Section 1.3 that could 

remain in the regionalisation produced by the GEA method. For that, it overrides the global objective 

function and focus on reaching a proper balance between global quality and local adequateness. The 

formulation of the rules that drive this process is relatively complex to address more complicated and 

ambiguous trade-offs between weighted interaction and absolute commuting dependence of BSUs and 

LMAs. The process is as follows: 

Phase 1: Ranking of BSUs. 

All BSUs are ranked in descending order of potential cohesion increase (PCI), i.e. the increase of Eq. 

(5) if BSU was reallocated to the best adjacent LMA. All BSUs are marked as unchecked. BSUs with 

positive PCI are cohesion-misallocated. 

Phase 2: Main loop. 

Consider the unchecked BSU with maximum positive PCI. If the reallocation of the current BSU 

would break validity of the receiving LMA, the BSU is marked as checked and next one is 

considered. Otherwise, the reallocation is evaluated if any of the following conditions is met: 

 the current (donor) LMA would be valid after reallocation or is already invalid, or 

 the BSU is not the only one in the current LMA and its interaction with that LMA is minimal 

(<0.0001), or 

 reallocating the BSU increases its within-region autonomy from below to above Amin, or by 

more than 1-Atar (i.e. >25% with the validity parameters used in this work). 

In other words, the reallocation is tentatively performed if the BSU has no significant interaction 



with the rest of its LMA and was allocated to it by convenience (excluding LMAs formed solely by 

the BSU considered, which are always kept if valid), in which case the reallocation is allowed to 

break validity of the donor LMA, or if the increase in within-region autonomy for the BSU is 

significant (enough to get it above Amin or as big as to prevent reaching Atar). 

This process affects the PCI and autonomy of other BSUs. Some of those might become 

misallocated, so a process begins to check whether the new result is preferable (except when the 

donor LMA was invalid before reallocation, in that case the reallocation is accepted directly without 

further checks): for every BSU affected by the last reallocation (any BSU in the affected LMAs or 

sharing commuters with them), calculate worst (maximum) and best (minimum) PCI change, and 

final maximum PCI among the affected BSUs. The reallocation is definitely accepted if: 

 the new maximum PCI is smaller than before reallocation (none of the affected BSUs is now in 

a worse state than the initially reallocated BSU was) and one of the following two conditions 

are met: 

 the global fitness, Eq. (1), is greater now and the best PCI change is greater in absolute 

value than the worst change, or 

 the within-region autonomy, Eq. (6), of the reallocated BSU has increased in more than 1-

Atar. 

If this process breaks the validity of the original LMA, it is considered a convenience LMA, divided 

into its internally contiguous groups of constituent BSUs, and the BSUs of groups that cannot 

constitute a valid LMA are reallocated to their best adjacent LMA, in descending order of PCI, until 

all the remaining group are again valid LMAs or disappear. All the BSUs affected by the reallocation 

are marked as unchecked, to be considered again for reallocation if they are cohesion-misallocated. 

Finally, the BSU considered in this iteration (reallocated or not) is marked as checked and the loop 

begins again, until all BSUs with positive PCI are checked. 

The complete pseudo-code of the optimisation algorithm is included in the Supplementary Material, 

Method 2, as well as a diagram, Figure S8. 

4. Results and discussion 

In this section we analyse the results of applying the proposed methodology to a real case study – the 

definition of LMAs for Spain using the latest commuting data, 2011 – and compare them with the 

results obtained by GEA without the proposed extra layers. All the algorithms were written in C and 



run in an Intel i5-2500 CPU at 3.3 GHz with 16 GB of RAM over Ubuntu 18.04. 

4.1. Pre-processing layer results 

In this section we compare the GEA results of regionalising Spain using the original flow matrix and 

the compacted matrix produced by the pre-processing algorithm. We produced two sets of 20 

independent GEA results, each set fed with each matrix. 

The preprocessing of the matrix flow took a few seconds, with estimated complexity O(n log n). The 

initial merger of BSUs, using the parameter threshold of 33.33% minimum dependency (this threshold 

value is taken from the LMA validity criteria, it is not a parameter to be set independently), reduced the 

number of BSUs from 8,116 to 4,975 (4,642 were composed of a single BSU). See Figure S9 in the 

Supplementary Materials. The mergers of BSUs concentrate on areas around large employment centres 

and sporadically in some urban regions where BSUs don’t have a clear dominant centre or whose main 

attractor is not contiguous so no merger is possible. The biggest change is the combined region formed 

around Madrid (consisting of 262 municipalities), whose size is comparable to the Madrid LMA with 

the original methodology with 2001 data (Martínez-Bernabéu et al. 2012), with a noticeable growth 

southwards. 

The restriction parameters on LMA’s minimum autonomy and population were set to the values used in 

the 2001’s exercise (Amin = 66.7%; Atar = 75%; Pmin = 20,000; and Ptar = 100,000), that are also a sort 

of international standard (Coombes et al. 2012, Franconi et al. 2017). 

We tested different values for the evolutionary parameters of GEA that influence its search efficiency: 

rows and columns of the grid of cells, number of regionalisations per cell, frequency of migration 

between cells, and the stopping condition. Few grid cells of few individuals in a non-square grid, with 

infrequent migration between cells and long execution times were the more successful. We used a grid 

of 5×2 cells, 3 regionalisations per cell, probability of migration between cells per generation 0.001, 

and termination after 2 hours of execution. When applying this methodology to other datasets, the rule 

of thumb is to start with small values (faster results) and try bigger values until best results do not vary. 

Figure S10 of the Supplementary Material shows the whole maps of the best result from each set. The 

compacted matrix, with 38.7% fewer nodes (BSUs), allows on average 2.4 GEA iterations for the same 

time. This implies a significant speed-up for large case studies, such as those using smaller resolution 

of the commuting matrix (e.g. census districts or mobile phone cell grids as BSUs), or analysing 

several countries together, e.g. delineating transnational LMAs in the European Union (see Coombes et 

al., 2012). 



Table 1 shows key quality statistics (Martínez-Bernabéu et al., 2020) calculated over each set of 

regionalisations. The first two rows correspond to the best outcome of each set, and the next two lines 

to the average of the 20 outcomes in each set. The last two rows correspond to the optimised 

regionalisations (see Section 4.2). The first statistic (#LMA) is the number of LMAs identified. 

Provided the same level of autonomy is reached, a larger number of LMAs implies better levels of 

cohesion and detail. The second statistic (Agbl) is the global autonomy, the ratio of residents that work 

in the same LMA they reside in; higher is better, but in conflict with cohesion. The number of LMAs 

resulting from all these exercises is quite similar, in the range [290-306]. The average values in the 

outcomes based on the compacted matrix show slightly fewer LMAs (although in its best result the 

value reached in this indicator is among the highest). However, the pre-processing layer results in a 

considerable improvement of the global autonomy indicator, even for outcomes with a comparable 

number of LMAs. This increase of autonomy is also noticeable for individual LMAs. To analyse the 

less autonomous LMAs without being subject to the influence of outliers (as happens with the 

minimum), the third statistic displayed is the first decile of LMA autonomy. The better values for 

compacted results imply that the increase in global autonomy has not been achieved only through the 

expansion of the largest LMAs at the expense of smaller ones: the autonomy levels of almost all LMAs 

are either comparable to those in the original case or have improved. 

Table 1: Regionalisation quality statistics 

REGIONALISATION #LMAs Agbl 
ALMA 

1st 

decile 

#BSU 

aut-mis 

ABSU 

1st 

decile 
#ABSU<.5 Cohesion 

#BSU 

coh-mis 
Area 

max. 

Original (best) 298 89.35% 73.76% 666 57.14% 461 .036095 267   9612 

Compacted (best) 302 91.79% 74.33% 565 59.26% 382 .036069 359 12168 

Original (mean) 301.7 89.95% 74.06% 700 57.47% 446 .035905 297   9684 

Compacted (mean) 294.3 92.01% 74.59% 561 60.46% 345 .035645 342 12357 

Original (best) opt. 286 89.49% 73.64% 603 57.85% 436 .035804 162   9419 

Compacted (best) opt. 290 91.79% 74.30% 563 58.56% 408 .036038 173 10302 

The autonomy levels of each BSU within its LMA are also better for compacted results, as indicated by 

the next three statistics in Table 1: the number of autonomy-misallocated BSUs (#BSU aut-mis) is 

lower; the first decile of BSU autonomy (ABSU 1st decile) is greater, and the number of BSUs with less 

than 50% autonomy in its LMA (#ABSU<0.5) is lower. 



The sixth indicator in Table 1, average BSU-LMA interaction (Cohesion), shows similar values for 

both sets, slightly better for the original results, as expected since solving autonomy-misallocated 

BSUs takes a toll on average cohesion. The only indicator for which the original results are clearly 

superior is the number of cohesion-misallocated BSUs (seventh indicator, #BSU coh-mis). This seems 

unavoidable, since autonomy-misallocated BSUs in the original results are cohesion-misallocated in 

the compacted results, and vice versa. However, as indicated by the similar values of cohesion, the 

trade-off is better for the compacted results: the increase in autonomy of cohesion-misallocated BSUs 

compensates for the reduction in cohesion. 

Overall, compacted results show a considerable improvement in autonomy at all resolution levels, for 

both LMAs and BSUs. BSUs are more dependent on their LMAs and less on other LMAs. Moreover, 

such improvement is reached while maintaining a similar number of LMAs and average cohesion. This 

is actually an achievement since better local characteristics of the BSUs were expected to cost a 

worsening of global interaction and number of LMAs. 

The last statistic in Table 1, the area of the largest LMA (Area max.), reflects the most visual effect of 

using the compacted matrix: the southward expansion of Madrid LMA (see Figure S11 in the 

Supplementary Material). This could be an undesired result if it wasn’t justified by the change in 

commuting patterns from 2001 to 2011, but the proposed layer of final optimisation is able to correct 

any allocation forced by the pre-processing layer, as shown in subsection 4.2. 

A more fine-grained examination of the results, at individual LMA and BSU level, also favours the 

compacted results: The “worst” allocations of BSUs in the compacted results correspond to 

municipalities in the lowest ranks of population for which there is no alternative LMA that could 

improve their local characteristics (they show functional dependence to far, non-adjacent LMAs), 

while the original results include some grievous misallocations with immediate solutions. The same 

applies to convenience LMAs, much less frequent in the compacted results, precisely because the 

merged BSUs prevent those borderline solutions. Figure 1 (a) illustrates this: In the original results, the 

municipality Albocàsser is included in a LMA whose population is just above the threshold (20,429) 

and has a relatively tortuous shape. Albocàsser has low autonomy within that LMA (45.78%), which 

would be much greater if reallocated to the neighbouring LMA of Castelló de la Plana (86.12%). The 

interaction index also favours Castelló de la Plana (0.02539 vs. 0.02059). However, the reallocation 

breaks validity of Alcalà de Xivert LMA, and the reallocation of the remaining BSUs causes a net loss 

of the objective function even if less BSUs are misallocated. This is an example of a convenience LMA 

formed to get a marginal gain in the objective function in expense of worse local characteristics. Such 



objective function’s artefact is avoided by the pre-processing layer because Albocàsser is merged to 

Castelló de la Plana. 

Another improvement of the compacted results is that certain urban regions are ensured to form a 

single LMA, comparable to FRs defined for other purposes such as functional urban areas (OECD, 

2012). The best example is the case of Barcelona (Figure 1b), a metropolitan area that articulates a 

single large LMA in the compact results but is divided into two LMAs in the original results. Such 

single LMA encloses most commuting interaction between its constituent BSUs. A subdivision of a 

large FR could be useful for specific purposes1, provided the strong interaction between both regions is 

appropriately acknowledged and taken into account, but for certain analysis it is preferable to use the 

single region framework. 

                                                 

1 In the provided research data, we report the results of replicating the study by Martínez-Bernabéu and Casado-Díaz 

(2016) to subdivide large enough LMAs into microclusters, to increase territorial detail in microdata files for 

econometric analysis. 



 

Figure 1: (a) Convenience LMA of Alcalà de Xivert in the original results does not 

appear in the compacted results; (b) The metropolitan area of Barcelona is divided in 

the original results and kept together in the compacted results. 

4.2. Local optimisation results 

We apply the automatic optimisation process to the best result of each of the sets of LMAs obtained in 

the previous section, requiring less than a minute of computations and an estimated time complexity of 

O(n log n). Again, there is no need to set any parameter, which are determined by the LMA validity 

criteria. The inclusion of the results for the original matrix allows us to compare the effects on results 

with different characteristics. For the compact case, this process caused the reallocation of 544 BSUs: 

216 are corrections of misallocations and 318 due to the dismembering of 12 LMAs that became 

invalid in terms of size or autonomy after the reallocation of certain BSUs. 

Las two rows of Table 1 show the relevant statistics of the optimised results. The optimisation layer 

caused a 4% reduction in the number of LMAs for both results. Those 12 LMAs lost some of its BSUs 

during the optimisation process and became invalid LMAs (the increase observed in local indicators 

for the reallocated BSU was sufficiently large to justify the invalidation of its original LMA according 

to the rules described in Section 3.2). The remaining BSUs of such invalid LMAs were reallocated to 



neighbouring LMAs. Most of these BSUs had the maximum interaction with the dismembered LMA, 

their reallocation invariably causes a loss of cohesion due to the dilution of their commuting flows 

within a bigger population. This happens even when the “new” LMA absorbs all the remaining BSUs 

in block (and thus all its internal interaction). That is precisely what made GEA produce such results in 

first place: although it assigned some BSUs to a “wrong” LMA (wrong in terms of such specific BSUs’ 

local indicators), its outcome maximised the objective function. 

The local optimisation had different effects on each of the two results. The optimised original result 

shows small gains in the autonomy statistics, an improvement in the number of cohesion-misallocated 

BSUs (-39.3%), and a negligible loss of cohesion (-0.000291, -0.8%). In turn, the compacted optimised 

result shows stable global autonomy and cohesion, a noticeable reduction in the number of cohesion-

misallocated BSUs (-48.2%), and small losses in BSU autonomy in the lower population range. This 

disparity makes sense, because the original results had more room for autonomy improvement due to 

the objective function maximising cohesion, while in the compacted results the merged BSUs during 

the pre-processing ensured fewer autonomy-misallocated BSUs and, since the local optimisation uses 

the non-compacted matrix, those BSUs can be reallocated when the gains justify it. This happens 

especially in the southern parts of the Madrid LMA, where many BSUs with strong dependence 

towards the Madrid metropolitan area have stronger interaction to the much smaller LMAs southwards. 

Overall, while the number of autonomy-misallocated BSUs remains almost unchanged, there is a great 

reduction in the number of cohesion-misallocated BSUs (-48.2%). The net loss in cohesion, much 

smaller than for the non-compacted results (-0.000031, -0.09%), is explained by the trade-off between 

the interaction gained from the optimisation of BSU allocation and the interaction lost due to the 12 

LMAs that were eliminated during the process. 

The most visible effect of the optimisation in the compacted results is the great reduction of Madrid 

LMA’s area, which becomes comparable to the size and shape of this LMA in the original results (See 

Figure S12 of the Supplementary Material). This dispels doubts about the pre-processing layer 

introducing a bias towards larger areas. 

To complete this analysis, the LMAs that were eliminated by the optimisation process were reviewed 

individually to assess whether such changes are actually preferred. A detailed assessment of the 

interactions and autonomies of the BSUs affected by the LMA eliminations confirmed that the 

optimised regionalisation with fewer LMAs is actually preferable. 



 

Figure 2: The optimisation process eliminates the convenience LMAs of Torrijos (a) 

and Morella (b) and reallocates their BSUs to the best adjacent LMAs. 

Figure 2 (a) depicts the case of Torrijos LMA, the largest eliminated LMA (57,570 inhabitants) that 

was completely absorbed by Talavera de la Reina LMA in the optimisation process. Torrijos LMA had 

several misallocated BSUs. After the reallocation of such BSUs to their optimal LMA (Talavera de la 

Reina), Torrijos LMA no longer satisfied the minimum autonomy. Arguably, it is a convenience LMA 

formed by two relatively independent clusters of BSUs each of which failed to meet the minimum size 

and autonomy requisites to qualify as a valid LMA. The final LMA produced by the optimisation, a 

combination of both LMAs (Torrijos and Talavera de la Reina), has much better autonomy indicators 

and still qualifies as a sufficiently integrated and cohesive region. 

Figure 2 (b) shows the case of Morella LMA, the most representative example of the LMAs deleted in 

the optimisation process (9 out of 12 cases): a small LMA that marginally meets the minimum size 

requisite, constituted by several sub-groups of internally cohesive BSUs that  have low levels of 

interaction among them, which has at least one heavily misallocated BSU whose reassignment 

invalidates the minimum size requirement. In the case of Morella, the original LMA could be divided 

into two cohesive areas, north-east and south-west, with the latter showing a great dependence from a 



neighbouring LMA. The optimisation performs a proper redistribution of the BSUs merging each part 

to a different LMA. 

5. Conclusions 

Providing statistics based on the appropriate FRs is important for academic research and policy 

making. In the case of labour force analysis, improving existing methods with new techniques is 

relevant to obtain LMAs’ delineations that better reflect their ideal form, in a context where the 

relevant stakeholders face the need of dealing with increasingly greater territories, varying spatial 

resolutions and unreliable data. 

The definition of this type of FR is tackled through the application of formal procedures that, for a 

given territory, group BSUs (such as municipalities or counties) into LMAs (i.e. produces a 

regionalisation), in such a way that each LMA is characterised by a high degree of autonomy in terms 

of travel-to-work (commuting) flows and the BSUs constituting it are characterised by having high 

levels of connection in terms of the same flows (high inner-interaction). This paper presents a three-

step methodology that provides results of high quality at the aggregate, global level (number, 

autonomy and cohesion of identified regions) as well as at the local level (autonomy and interaction of 

BSUs within LMAs), greatly improving the results of previous proposals. This is achieved through the 

addition of an initial pre-processing layer and a final greedy, multi-criteria local-optimisation layer to a 

state-of-the-art grouping evolutionary algorithm that maximise average inner-interaction.  

The comparison of the results obtained with and without the proposed extra steps, using the latest 

commuting data available for Spain, evidences the improvements achieved: The approach produces 

outcomes closer to the ideal of FRs in several aspects, especially in terms of BSU allocation (better 

trade-off between autonomy and interaction to its LMA), and the coherence of LMAs’ boundaries. For 

roughly similar numbers of LMAs, the outcome is characterised by greater shares of commuters 

between BSUs and their own LMA, fewer BSUs with significant commuting flows to external LMAs, 

significantly less autonomy-misallocated and cohesion-misallocated BSUs, and fewer convenience 

LMAs. Overall, LMA boundaries are more coherent with the expert expectations. Moreover, the 

complete regionalisation process is considerably faster and easier: The computations performed to 

produce the raw results require less time and the eventual necessity of a final step of manual 

adjustments requires significantly less effort. Therefore, less material and human resources are required 

to produce good regionalisations for greater regions in less time. All in all, the proposed methodology 

is closer to the ideal of an unsupervised automatic system for functional regionalisation. 



To conclude, a lesson from this study is that global objective functions are not perfect and inevitably 

show certain undesired biases that have no obvious solution, if at all. The present proposal deals with 

this by adding an implicit restriction on BSU allocation and by allowing a final optimisation stage that 

uses composite criteria based on individual BSU characteristics to complement the global objective 

function. This approach might be the only one to solve or alleviate the observed biases, but more 

research on such functions is required. The main limitation of this methodology is that it has not been 

tested on different territories. Although the Spanish case is quite heterogeneous in the characteristics of 

the BSUs (size, autonomy, commuting patterns) and can be considered as a relatively good test-bed, 

we cannot claim the methodology’s suitability to all kind of LMA regionalisations. In our research 

agenda we include the integration of the global and local optimisation approaches in a single-step 

method, and the performing of a systematic comparison of alternative objective functions and 

methodologies based on multiple national case studies. To do so, we are gathering commuting data for 

a set of representative case studies and comparable implementations of regionalisation algorithms, to 

build up a comprehensive test-bed for existing and future methodologies. 
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