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Abstract This work is devoted to the study of wormhole
solutions in the framework of gravitational decoupling by
means of the minimal geometric deformation scheme. As an
example, to analyze how this methodology works in this sce-
nario, we have minimally deformed the well-known Morris–
Thorne model. The decoupler function f (r) and the θ -sector
are determined considering the following approaches: (i) the
most general linear equation of state relating the θμν compo-
nents is imposed and (ii) the generalized pseudo-isothermal
dark matter density profile is mimicked by the temporal com-
ponent of the θ -sector. It is found that the first approach leads
to a non-asymptotically flat space-time with an unbounded
mass function. To address this issue we have matched both
the wormhole and the Schwarzschild vacuum solutions, via a
thin-shell at the junction surface. Using the second approach,
it can be seen that, on one hand, the solution for γ = 1 does
not give place to a bounded mass and it presents a topologi-
cal defect at large distances; on the other hand, the wormhole
manifold is asymptotically flat in the γ = 2 case. In order
to satisfy the flare-out condition, we have found restrictions
on the value of the α parameter, which is related with the
amount of exotic matter distribution. Finally, the averaged
weak energy condition has been analyzed by using the vol-
ume integral quantifier.

1 Introduction

Within the wide range of solutions that Einstein’s field equa-
tions possess, for example those representing stellar interiors
[1], black holes [2] and cosmological scenarios [3], there are
very particular ones that describe the connection between
two very distant regions or between parallel Universes. At
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the beginning these objects were known as the Einstein–
Rosen bridge and were developed in order to explain the
particle problem in GR, more precisely to try to explain
fundamental particles such as electrons in terms of space-
time tunnels threaded by electric lines of force [4]. How-
ever, the major problem was the instability of these geometric
structures. This means that the bridge is not able to remain
open long enough for an object to pass through it (not even
a photon). After that, the pioneering works by Morris and
Thorne [5,6] presented the minimum conditions to obtain
a traversable wormhole space-time (Although the wormhole
name was coined by Wheeler [7]). These objects have opened
the intriguing and exciting possibility of time travel (theoreti-
cally speaking) in relatively short time periods. However, the
existence of wormhole space-times requires to meet certain
conditions such as [8]: (i) connect two infinite or asymptoti-
cally flat regions, (ii) the gravitational field inside the throat
should be weak enough to allow a safe traversability (and
to preclude the formation of event horizons), (iii) the matter
distribution supporting the throat must be exotic. In particu-
lar, it must violate the null energy condition which basically
states that a repulsive gravitational force holds the wormhole
throat open.

The appearance of exotic matter seems to be a necessary
condition to build up a well posed wormhole solution in the
arena of General Relativity (GR from now on), regardless
of whether it is a static or a dynamic solution [9,10]. In
this concern, some authors have investigated the possibil-
ity of using dark matter/fluid such as phantom energy or
Chaplygin gas to construct wormholes structures [11–19].
However, sometimes it is desirable to avoid the so-called
exotic matter. In this sense, the thin-shell formalism [20,21]
has been posed as an attractive approach to build wormhole
space-times, since the exotic matter is confined into a finite
region [22–30]. In a broader context, the thin-shell procedure
has been used to build wormholes with cylindrical symme-
try [31,32], spherically symmetric wormholes in the light
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of linear [33] as well as non-linear electrodynamics [34–36].
Moreover, wormhole solutions with other type of symmetries
have been investigated in [37–39] and also the possibility to
obtain a traversable Schwarzschild-like wormhole has been
considered [40]. Furthermore, recently [41] was studied and
analyzed the behavior of wormhole structures in the realm of
dark matter profiles, dark matter Bose–Einstein condensates
[42] and non-linear equation of state [43], respectively.

The study of wormholes not only is carried out within the
framework of GR. Recently there has been a growing interest
in studying such solutions in the arena of Brans–Dicke theory
[44,45], f (R)-gravity [46–53], f (R, T )-gravity [54–58],
Einstein–Cartan theory [59] and extra dimensions [60,61].
The advantage of these modified or extended gravity the-
ories is that the energy conditions can be satisfied for the
usual matter sector due to the corrections introduced by the
additional fields into the theory. Furthermore, in the con-
text of a gravitational theory including torsion and a non-
minimally coupled scalar field (scalar–tensor teleparallel the-
ory), the existence of Lorentzian wormhole solutions were
explored in Ref. [62]. In a broader scenario, traversable and
asymptotically flat wormholes supported by GUP corrected
Casimir energy along with two different equations of state
were obtained in [63].

In recent years, the gravitational decoupling by means
of minimal geometric deformation (MGD hereafter), was
developed to study the inclusion of local anisotropies within
the brane-world scenario and extended to the framework
of stellar interiors in GR [64–74]. However, this versatile
tool goes beyond the study of these seminal proposals. In
this regard, black hole, modified gravity theories, cosmol-
ogy, Dirac stars and thermodynamic scenarios, among oth-
ers, have been developed within the MGD approach [75–104]
(and references therein).

Taking into account these successful applications, in the
present article we investigate the incidence of gravitational
decoupling through MGD on wormhole space-times. Specif-
ically, we have deformed the well-known Morris–Thorne
(M–T hereinafter) solution [5,6] to see how MGD works
in this context. Interestingly, as the interpretation of the new
ingredients (the so-called θ -sector) introduced by the MGD
approach is still open [84], in the present study we have
solved the field equations by interpreting this sector as dark
fluids (dark energy and dark matter), although the normal
matter regime is included, too. To do this, we have firstly
related the components of the θ -sector by means of a general
linear equation of state (EoS) and, secondly, we have imposed
the temporal component of the θμν source to mimic a gener-
alized pseudo-isothermal dark matter density profile (see the
seminal work [105] for further details in considering this den-
sity profile). This information allows us to close the θ -system
determining the full θμν tensor (and, consequently, the full
energy–momentum tensor of the solution) and the decoupler

function, f (r), therefore closing the problem at least from
a mathematical point of view. This approach motivates and
also allows to support the idea that these type of solutions
can be constituted by the dark sector, which dominates our
Universe [11–19,41–43]. Even more, it provides a possible
interpretation of the contribution introduced by MGD.

The article is organized as follows: in Sect. 2 traversable
wormholes generalities are presented; Sect. 3 describes the
field equations and gravitational decoupling, explaining how
MGD is applied in this context. Sect. 4 depicts the result-
ing wormhole models. Sects. 5 and 6 analyze the geometry
and the matter distribution of the solutions. Finally Sect. 7
concludes the work.

The mostly positive signature {−,+,+,+} is employed
throughout the article and units where the coupling constant
κ ≡ 8 π G

c4 is equal to 1 are assumed.

2 Wormhole anatomy

In this section, the conditions to build a traversable and
asymptotically flat wormhole space-time are revisited. To
have a more complete vision about it then see the follow-
ing Refs. [5,6,8]. In Schwarzschild-like coordinates xμ ≡
(t, r, θ, ϕ) the most general line element describing a worm-
hole geometry is given by

ds2 = −e2Φ(r)dt2 + dr2

1 − b(r)
r

+ r2dΩ2, (1)

where Φ is the so-called red-shift function and b the shape
function. As we are considering a spherically symmetric and
static solutions both Φ and b are purely radial functions.
Then, the minimal requirement to be satisfied for the worm-
hole geometry given by (1) are:

1. The throat size connecting the regions is defined by a
global minimum radius r = r0. In this respect, the radial
coordinate is defined in the interval r ∈ [r0,+∞).

2. There are two coordinates patches covering the range r ∈
[r0,+∞). Each patch covers an asymptotically flat region
of the wormhole throat, and both match at r0.

3. The red-shift function Φ must be finite everywhere, for
r ≥ r0, in order to avoid an event horizon, so eΦ(r) > 0
for all r > r0. Moreover,

lim
r→+∞ Φ(r) = Φ0,

where Φ0 is finite and real.
4. The flare-out condition must hold

b(r) − b′(r)r
b2(r)

> 0,
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at or near the throat r = r0.
5. The above condition implies that for all r ≥ r0: b(r0) = r0

and b′(r0) ≤ 1, where the equality holds only at the throat
(weak equality). Furthermore, for all r > r0 ⇒ b(r) < r .

6. To ensure the asymptotic behavior, the shape functionb(r)
must fulfill

lim
r→+∞ b(r) = finite.

7. The previous requirement implies that the mass of the
wormhole over long distances matches with the Schwarzs-
child mass ı.e, b = 2M .

3 Field equations

The starting point are the Einstein field equations, which are
given by

Gμν ≡ Rμν − R

2
gμν = Tμν, (2)

As said before we are interested in including new compo-
nents into the energy–momentum tensor which provide new
insights about the material content threading the throat of the
wormhole. So, following [74] a simple way to do that is by
writing

Tμν = T̃μν + αθμν, (3)

where T̃μν is representing the so-called seed energy–momentum
tensor, α is a dimensionless coupling constant and θμν is the
new material sector which in principle could be a scalar, vec-
tor or tensor field. With the above prescription (3) at hand and
considering the spherically symmetric and static line element
(1), the set of Eq. (2) reads

ρ̃ + αθ0
0 = b′

r2 , (4)

p̃r − αθ1
1 = − b

r3 , (5)

p̃t − αθ2
2 = b − rb′

2r3 . (6)

At this point some comments are pertinent. First, the system
of Eqs. (4)–(6) does not depend on the red-shift function
Φ. This is because we are looking for traversable wormhole
solutions (small or vanishing tidal forces), then to ensure this
condition we have taken Φ = 0. In addition this condition
also guarantees that the solution does not have event horizons.
Second, the seed energy–momentum tensor is describing an
imperfect fluid distribution. It explicitly reads

T̃μν = (ρ̃ + p̃t )UμUν + gμν p̃t + ( p̃r − p̃t ) χμχν, (7)

with ρ̃ is the energy–density, p̃r and p̃t being the pressures
in the principal directions ı.e, the radial and tangential ones,

respectively. The four-velocity of the above fluid distribution
is characterized by the time-like vector U ν . Moreover χν is
a unit space-like vector in the radial direction (orthogonal to
U ν), ı. e., χν = √

1 − b/rδν
r . The quantities at the left hand

side of the Eqs. (4)–(6) can be denoted as the total or effective
thermodynamic variables

ρ ≡ ρ̃ + αθ0
0, (8)

pr ≡ p̃r − αθ1
1, (9)

pt ≡ p̃t − αθ2
2. (10)

However, the main point to be analyzed here are the effects
introduced by the θ -sector into the structure.

3.1 Gravitational decoupling by MGD

To split the complex set of Eqs. (4)–(6), we implement the
gravitational decoupling by means of MGD (see [74] for
further details). In this case the minimally deformed shape
function b(r) is given by

b(r) �→ b̂(r) + α f (r), (11)

being b̂ the original shape function and f (r) the decoupler
function. Putting Eq. (11) into the set (4)–(6), we obtain the
following system of equations

ρ̃ = b̂′

r2 , (12)

p̃r = − b̂

r3 , (13)

p̃t = b̂ − r b̂′

2r3 , (14)

subject to the following conservation equation

∇μT̃
μ
ν = 0 → − p̃′

r + 2

r
( p̃t − p̃r ) = 0. (15)

The second set of equations is given by

θ0
0 = f ′

r2 , (16)

θ1
1 = f

r3 , (17)

θ2
2 = r f ′ − f

2r3 . (18)

Along with the following conservation law

∇μθμ
ν = 0 →

(
θ1

1

)′ − 2

r

(
θ2

2 − θ1
1

)
= 0. (19)

The fact of both parts, namely T̃μν and θμν are independently
conserved means that they are related gravitationally. More-
over, it should be noted that the conservation of the θ -sector
is a consequence of the conservation of Gμν and T̃μν . As it
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is well-known Bianchi’s identities invoke

∇μG
μ
ν = 0, (20)

then from Eqs. (2) and (3) one has

∇μT̃
μ
ν + α∇μθμ

ν = 0. (21)

Nevertheless, the first term in the left member of the above
equation, is equal to zero. Since T̃μν corresponds to the usual
matter sector its conservation comes from the underlying
symmetries of the theory. In this case the symmetries of
the theory correspond to the 4-dimensional space-time dif-
feomorphism ı.e, general coordinate transformations. Then
taking into account the previous considerations finally one
obtains ∇μθ

μ
ν = 0. Of course, if one considers the effective

Tμν , it is evident that ∇μT
μ
ν = 0. It is worth mentioning

that Eqs. (15) and (19) are the hydrostatic equation describ-
ing the balance of the configuration. As can be seen there
is a missing term in both expressions. Specifically, the term
proportional to Φ ′ is absent. Indeed as we have considered
Φ = 0 this term is not present. However, when the red-shift
function is not taken to be constant then the missing term is
restored introducing into the system a gravitational gradient
(related with tidal forces).

To close the discussion of this section, we remark that in
order to preserve part of the wormhole structure described in
Sect. 2 the decoupler function introduced in Eq. (11) must sat-
isfy f (r0) = 0. This is so because the non-deformed shape
function b̂ already meets the condition b̂(r0) = r0. In the
next section we provide some examples of wormhole struc-
tures by extending the M–T model with the aforementioned
methodology.

4 Specific solutions

As said before we considered as a seed space-time the well-
known M–T wormhole solution [5,6]. This wormhole space-
time is described by the following metric

ds2 = −dt2 + dr2

1 − r2
0
r2

+ r2dΩ2. (22)

It is clear from (22) that Φ = 0 and b(r) = r2
0 /r . Geo-

metrically speaking this solution reproduces an asymptoti-
cally flat space-time when r → +∞ and satisfies the flare-
out condition. Besides, the matter distribution threading the
throat violates the NEC as expected in the framework of GR
[9,10]. Nevertheless, it would be desirable that the minimally
deformed solution can be supported by a minimal amount of
exotic matter distribution, in contrast with usually occurs in
the GR scenario, where large amounts of exotic matter are
necessary to hold the wormhole structure. Of course, it will
not be completely possible to avoid the use of exotic matter

but, as said before, the MGD could act as an exotic matter reg-
ulator. To check these facts, in the next sections we explore in
details about the geometric and matter distribution behavior.

4.1 Model # 1: linear equation of state

To solve the system (16)–(18) we impose the following equa-
tion of state (EoS from now here) relating the components of
the θ -sector

θ1
1 = ωθ0

0 + β, (23)

where ω and β are constant parameters, dimensionless and
with units of length−2, respectively. So, from Eqs. (16)–(17)
one arrives at the following first order differential for f (r),

f ′ − ω r f − β

ω
r2 = 0. (24)

The solution of (24) is given by

f (r) = β

1 − 3ω
r3 + r1/ωC1, (25)

being C1 an integration constant with units of length(ω−1)/ω.
Hence, the extended shape function (11) is

b(r) = r2
0

r
+ α

(
β

1 − 3ω
r3 + r1/ωC1

)
. (26)

Therefore the complete deformed space-time is given by

ds2 = −dt2 + dr2

1 − r2
0
r2 − α

r

(
β

1−3ω
r3 + r1/ωC1

)

+r2dΩ2. (27)

4.2 Model # 2: dark matter density profile

Here to close the system (16)–(18) we consider a generalized
form of the pseudo-isothermal (PI) density profile of dark
matter. Explicitly it reads

θ0
0(r) = a

[
1 +

( r
b

)2
]−γ

, (28)

where a (km−2), b (km) and γ are non-zero positive con-
stants. The limit case γ = 1 corresponds to the original PI
profile proposed for the first time by Kent [105]. Now, by
equating Eqs. (16) and (28) one obtains the following first
order ordinary differential equation in f (r)

f ′ − a

[
1 +

( r
b

)2
]−γ

r2 = 0, (29)

whose solution is given by

f (r) = a

3
2F1

[
3

2
, γ ; 5

2
;− r2

b2

]
r3 + C2, (30)
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where 2F1 is the usual Gaussian or ordinary hypergeometric
function and C2 is an integration constant. Hence from (11)
one has

b(r) = r2
0

r
+ α

(
a

3
2F1

[
3

2
, γ ; 5

2
;− r2

b2

]
r3 + C2

)
, (31)

then the full space-time is described by

ds2 = −dt2 + dr2

1 − r2
0
r2 − α

(
a
3 2F1

[
3
2 , γ ; 5

2 ;− r2

b2

]
r2 + C2

r

)

+r2dΩ2. (32)

5 Geometric analysis

Once the decoupler function f (r) is known the full θ -sector
can be obtained from Eqs. (16)–(18) and then the problem
is solved. In this section we analyze the implications on the
M–T wormhole solution introduced by the new components
{ f, θμν}. We start this analysis by studying the geometric
structure of the resulting solutions reported in the previous
section.

5.1 Model #1

As mentioned previously, all the decoupler functions f (r)
must be zero at the throat ı.e, f (r0) = 0. This is so because
the seed model already meets the condition b(r0) = r0. So,
from Eq. (25) we have

f (r0) = β

1 − 3ω
r3

0 + r1/ω
0 C1 = 0, (33)

from which we get

C1 = − β

1 − 3ω
r3−1/ω

0 . (34)

Then we have

b(r) = r2
0

r
+ αβ

1 − 3ω

(
r3 − r1/ωr3−1/ω

0

)
. (35)

It is clear that b/r = 0 when r → +∞. This means that at
large distances the Minkowski space-time is not recovered
or equivalently the model is not asymptotically flat. Further-
more, the observed mass M of this model is not finite in such
limit. In fact, from Eq. (4) the mass function m(r) of the
wormhole can be easily obtained by a standard procedure
[8] as follows

4π

∫ r

r0

(
ρ̄ + αθ0

0

)
r2dr = 4π

∫ r

r0

b′(r)dr (36)

therefore,

m̃(r) ≡ 4π

∫ r

r0

(
ρ̄ + αθ0

0

)
r2dr, (37)

is the usual mass, whereas the integral on the right hand side
in the Eq. (36) gives place to

4π

∫ r

r0

b′(r)dr = 4π (b(r) − r0) , (38)

where the condition at the wormhole throat, b(r0) = r0, was
employed.1 In this way, one can define the total wormhole
mass as an effective one as follows

m(r) ≡ 4π

[∫ r

r0

(
ρ̄ + αθ0

0

)
r2dr + r0

]
= 4πb(r). (39)

In the limit r → +∞ the above expression should be finite,
that is,

lim
r→+∞m(r)=4π

[
r0+

∫ ∞

r0

(
ρ̄ + αθ0

0

)
r2dr

]
=M. (40)

So, by virtue of Eq. (39) the mass function associated in this
case reads

m(r) = 4πr2
0

r
+ 4παβ

1 − 3ω

(
r3 − r1/ωr3−1/ω

0

)
, (41)

which is unbounded as r → +∞. To cure the problem at
large distances and make the solution asymptotically flat
with a bounded mass one needs to join at some r∗ > r0

the wormhole geometry with the vacuum space-time given
by the Schwarzschild solution

ds2 = −
(

1 − 2MSch

r

)
dt2 +

(
1 − 2MSch

r

)−1

dr2

+r2dΩ2, (42)

where MSch represents the Schwarzschild mass. Then at the
junction interface Σ ≡ r = r∗ one has
(

1 − b(r)

r

) ∣∣∣∣
r=r∗

=
(

1 − 2M

r

) ∣∣∣∣
r=r∗

⇒ b(r∗) = 2M,

(43)

where at the surface Σ the total mass M of the wormhole
coincides with the Schwarzschild mass MSch and r∗ > r0.
So, the space-time is defined by

ds2 = −dt2 + dr2

1 − r2
0
r2 − αβ

r(1−3ω)

(
r3 − r1/ωr3−1/ω

0

)

+ r2dΩ2

for r0 ≤ r ≤ r∗,

(44)

and

ds2 = −dt2 + dr2

1 − b(r∗)
r

+ r2dΩ2 for r > r∗, (45)

1 It should be noted that there is an extra 4π factor on the right member
of Eq. (38) instead of a factor of 1/2 due to the units employed, κ = 8πG

c4

is equal to 1 [8].
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being b(r∗) = 2M . As we will see later, the above technique
not only ensures the asymptotically flat behavior of the solu-
tion, but also confines the exotic matter within a finite region.

Despite having an unbounded mass, we must ensure that
it is at least positive defined. Then, from expression (41) it is
clear that the first member in the right hand side is positive
everywhere, however the sign of the second one depends on
the sign of the parameters {α, β, ω}, since the term inside
the round parenthesis is always positive. As we shall see
later, the EoS parameter ω will be constrained to represent
some cosmic-like matter distribution. Therefore, ω will take
both positive and negative values. So, to guarantee a positive
defined wormhole mass M , we have the following possibil-
ities

α > 0 and β > 0 ⇒ ω < 3, (46)

α < 0 (α > 0) and β > 0 (β < 0) ⇒ ω > 3. (47)

As can be seen the value ω = 1/3 is not allowed. Now, to
be a traversable wormhole solution, the flare-out condition
must hold at the throat of the structure. Hence,

(
b(r) − rb′(r)

b2(r)

) ∣∣∣∣
r=r0

> 0 ⇒ αβr2
0 + 2ω

ω
> 0. (48)

From the above inequality and taking into account Eqs. (46)–
(47), we can bound the dimensionless constant parameter α.
Thus, we are left only with two free parameters {β, ω}. Of
course, the magnitude and sign of α strongly depends on the
magnitude and sign of {β, ω}.

5.2 Model # 2

Following the same steps as before, from Eq. (30) one has

f (r0) = 0 ⇒ C2 = −a

3
2F1

[
3

2
, γ ; 5

2
;− r2

0

b2

]
r3

0 . (49)

Then, the deformed space-time is given by

ds2 = −dt2 + r2dΩ2

+ dr2

1 − r2
0
r2 − α a

3r

(
2F1

[
3
2 , γ ; 5

2 ;− r2

b2

]
r3 − 2F1

[
3
2 , γ ; 5

2 ;− r2
0
b2

]
r3

0

) .

(50)

In this case the flare-out condition reads

(
1 + r2

b2

)−γ(
− 9ar5α + 3r

(
1 + r2

b2

)γ

(
6r2

0 − a r3
0r α 2F1

[
3

2
, γ ; 5

2
;− r2

0

b2

]

+ a r4 α 2F1

[
3

2
, γ ; 5

2
;− r2

b2

]))

(
3r2

0 − a r3
0r α 2F1

[
3

2
, γ ; 5

2
;− r2

0

b2

]

+ a r4 α 2F1

[
3

2
, γ ; 5

2
;− r2

b2

])−2

> 0.

(51)

Next, evaluating Eq. (51) at r = r0 one gets

α <
2

ar2
0

(
1 + r2

0

b2

)γ

. (52)

For this model the mass function is given by

m(r) = 4πr2
0

r
+ α

2aπ

3

(
2F1

[
3

2
, γ ; 5

2
;− r2

b2

]
r3

− 2F1

[
3

2
, γ ; 5

2
;− r2

0

b2

]
r3

0

)
. (53)

As we are considering the space parameter {a, b, γ } to be
positive, it is clear from (53) that the mass function m(r)
is positive defined everywhere if and only if α > 0. Then,
combining this fact with the Eq. (52) one has the

0 < α <
2

ar2
0

(
1 + r2

0

b2

)γ

, (54)

which assures m(r) > 0. Although, the Eq. (52) is positive,
since a should be positive in order to ensure a positive defined
θ -sector density θ0

0 given by Eq. (28). Moreover, as was
mentioned in Sect. 2 (points 4 and 5), the flare-out condition
implies at the wormhole throat b′(r)|r=r0 ≤ 1.

As this point, it is instructive to analyze the behavior of
the form function (31) at very large distances. To do this, we
shall fix γ = 1 and γ = 2 (see below for further details). So,
for γ = 1 the form function (31) becomes

b(r) = r2
0

r
+ α

[
r − arctan

( r
b

)
− r0 + arctan

(r0

b

)]
ab2,

(55)

and for γ = 2,

b(r) = r2
0

r
+ α

[
arctan

( r
b

)

2b
− r

2
(
b2 + r2

) + r0

2
(
b2 + r2

0

)

− arctan
( r0
b

)

2b

]
ab4,

(56)
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where we have used the following relation between the hyper-
geometric function and the elementary arctan fucntion

arctan(x)

x
= 2F1

[
1

2
, 1; 3

2
;−x2

]
. (57)

Evidently, when r → +∞ then arctan(r) → π/2. Thus
from (55), it is clear that b(r) is not finite at large distances,
consequently the mass function is not bounded, although pos-
itive defined (M → +∞). Therefore, as done with the model
#1, it is necessary to perform a surgery with the outer vac-
uum space-time to cure this problem. Moreover, in this case
the resulting space-time does not reproduce the Minkowski
space-time in the mentioned limit. Concretely for Eq. (55)
one obtains

lim
r→+∞

b(r)

r
= α, (58)

thus

ds2 = −dt2 + dr2

(1 − α)
+ r2dΩ2, (59)

which is not the usual flat space, unless α = 0. However,
the space-time given by (59) describes a space-time with a
solid angle deficit (or excess) [40]. This can be seen directly
by making the rescaling R2 = r2

1−α
. Then the metric (59)

becomes

ds2 = −dt2 + dR2 + αR2dΩ2. (60)

In this fashion the asymptotic metric (60) exhibits explicitly
the presence of a solid angle deficit for 0 < α < 1, and
a solid angle excess for α < 0 (this case is discarded due
to Eq. (54)). It is remarkable to note that the solid angle
of a sphere of unity radius is now 4 π (1 − α) < 4 π for
0 < α < 1, and 4 π (1 − α) > 4 π for α < 0. It is clear
that the topological defect at large distances is introduced by
the MGD grasp. Conversely, the Eq. (56) yields to a bounded
mass and asymptotically flat space-time.

5.3 Asymptotic flatness analysis

As has already been discussed, both models #1 and #2 give
place to non-asymptotically flat wormholes. As depicted in
Figs. 1 and 2 , the dimensionless shape function (solid line)
tends to infinity when the radial coordinate, r , increases. In
contrast, the GR limit α → 0 (solid black line), which corre-
sponds to the non-deformed M–T solution (22), exhibits an
asymptotically flat behavior with increasing r . Therefore, the
following question arises: are all minimally deformed solu-
tions non-asymptotically flat? In principle it is not possible
to provided an answer to this claim. However, the analysis
of the properties of any asymptotically flat space-time makes
possible to obtain valuable information about this issue. As it
is well-known, the metric tensor, gμν , of any asymptotically

flat space-time goes as

gμν = ημν + O(1/r), (61)

when r → +∞, being ημν the Minkowski metric [106].
As the Ricci scalar involves second derivatives of the metric
tensor, the Ricci scalar behaves as

R = O(1/r3) (62)

when r → +∞. By taking advantage of this information,
Eqs. (1) and (11) imply that the Ricci scalar reads

R(r) = 2

r

(
b′(r) + α f ′(r)

)
, (63)

where we have considered that the red-shift function, Φ(r),
is zero. Therefore, to assure an asymptotically flat wormhole
space-time, f ′(r) should be at least of order of O(1/r2). Of
course, from the very beginning and knowing the metric ten-
sor behavior (61) one can choose f (r) = O(1/r) (assuming
that the seed shape function b(r) already satisfies this condi-
tion, as it is done in this case by the choiceb(r) = r2

0 /r ). Nev-
ertheless, this procedure implies that one is fixing the decou-
pler function, f (r), by hand in order to close the θ -sector
(16)–(18). On the contrary, if f (r) is obtained by assuming
a specific behaviour for the θ -sector (or by imposing some
relation between its components), it is not possible to predict
the behavior of the minimally deformed shape function at
large distances. This information can be only revealed after
the system of Eqs. (16)–(18) has been solved. Therefore,
the (non-) asymptotically flat behaviour depends on how the
θ -sector is closed. Interestingly, it is possible to satisfy at
least the flare-out condition at the wormhole throat regard-
less of the non-asymptotically flat behavior of the solutions.
As it is shown in Figs. 1 and 2 , the flare-out condition at
the throat ı.e., b′(r0) < 1 (dashed lines) is satisfied in all
cases for both models. The M–T flare-out condition is also
illustrated (dashed black curve). It should be noted that the
flare-out condition at the wormhole throat is satisfied because
the constant parameter α satisfies certain constraints imposed
by (48) and (52) for the models #1 and #2, respectively. This
signals that MDG is quite involved on this fundamental fea-
ture of wormhole structures.

5.4 The embedding diagram

Since we are dealing with spherically symmetric and static
wormhole solutions, from the general line element (1) one
can get relevant information about the form of the wormhole
structure [8]. Focusing on an equatorial plane, ϕ = π/2, the
solid angle element dΩ2 reduces to

dΩ2 = dφ2. (64)
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Fig. 1 The trend of the dimensionless shape function b(r)/r0 and the
dimensionless flare-out condition b′(r)r0 evaluated at the wormhole
throat against the radial coordinate r (km), for the model #1. The black
curves represent the pure GR counterpart of the model ı.e., the Morris–
Thorne (M–T) wormhole space-time. These curves were obtained by
using the numerical values provided in Table 3

Fig. 2 The trend of the dimensionless shape function b(r)/r0 and the
dimensionless flare-out condition b′(r)r0 evaluated at the wormhole
throat against the radial coordinate r (km), for the model #2. The black
curves represent the pure GR counterpart of the model ı.e., the Morris–
Thorne (M–T) wormhole space-time. These curves were obtained by
using the numerical values provided in Table 5

Besides, by fixing t = constant, the line element (1) becomes

ds2 = dr2

1 − b(r)
r

+ r2dφ2. (65)

To visualize this equatorial plane as a surface embedded in
an Euclidean space, it is convenient to introduce cylindrical
coordinates as

ds2 = dz2 + dr2 + r2dφ2, (66)

Fig. 3 The figure shows the 2-dimensional wormhole embedding dia-
gram for the model #1. The vertical axis has been re-scaled by a factor
1033

Fig. 4 The figure shows 2-dimensional wormhole embedding diagram
for the model #2. The vertical axis has been re-scaled by a factor 109

or, equivalently,

ds2 =
[

1 +
(
dz

dr

)2
]
dr2 + r2dφ2. (67)

Now, comparing (65) and (67), one obtains

dz

dr
= ±

(
r

b(r)
− 1

)−1/2

, (68)

where the function z = z(r) defines the embedded surface
[5,6,8]. Interestingly, when r → +∞ the expression (68)
leads to

dz

dr

∣∣∣∣
r→+∞

= 0, (69)

which tells us that the embedding diagram provides two
asymptotically flat patches. Of course, this is not the case
as was pointed out before. In addition, note that the integra-
tion of Eq. (68) can not be done analytically. Therefore, a
numerical treatment has been done in order to illustrate the
wormhole shape given in Figs. 3 and 4, the 2-dimensional
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Fig. 5 The figure shows the three dimensional wormhole embedding diagram for the model #1 case ωb = 4/5 (left diagram) and γ = 1 (middle
diagram) and γ = 2 (right diagram) for model #2

embedding diagram (the z(r) function) versus the radial coor-
dinate r for both models. Furthermore, the 3-dimensional
hyper-surfaces are shown in Fig. 5. The left one corresponds
to the model #1 for ωb = 4/5 and the middle and right ones
for the model #2. The 2-dimensional and 3-dimensional dia-
grams corroborate the non-asymptotically flat nature of the
solutions.

6 Matter distribution analysis

In this section we analyze the effective matter distribution
and its behavior. In this concern, the so-called energy condi-
tions (ECs) are thoroughly studied in order to impose some
constraints on the space parameter {α, β, ω}, to obtain a
wormhole solution threading by a minimum amount of exotic
matter distribution in the present scenario ı.e., gravitational
decoupling by means of MGD. Moreover, as the above mod-
els are not asymptotically flats, we investigate the presence
of surface stresses at the junction interface, where if there are
surface stresses on the hyper-surface Σ , one has a thin shell,
otherwise the junction interface denotes a boundary surface.

6.1 Energy conditions

As was pointed out before, in working out wormhole struc-
tures in the GR scenario the so-called ECs are violated. This
fact seems to be a necessary condition to build up a well
posed wormhole structure in the framework of GR [9,10].
This unusual situation occurs since the radial pressure pr is
negative and greater in magnitude than the energy–density
ρ. Then

ρ + pi ≥ 0, i ∈ {r, t}, (70)

is not satisfied neither at the wormhole throat nor beyond it.
The situation get worse when the energy–density is negative
too. Hence, the WEC, expressed as

ρ + pi ≥ 0, i ∈ {r, t} and ρ ≥ 0, (71)

is also violated. This kind of matter is known as exotic. From
the physical point of view, a negative radial pressure can
be interpreted as an anti-gravitational force which holds the
wormhole throat open. In this regard, negative pressures are
widely accepted at either a classical or quantum level. Con-
versely, a negative energy–density is not plausible (at least
classically [107]). However, the main aim here is not only
to analyze the NEC and WEC but also the strong (SEC) and
dominant energy conditions (DEC), which read

ρ +
∑
r,t

pi ≥ 0, (72)

ρ ≥ |pi |, (73)

respectively.
Now using the full geometry of the wormhole solutions

and with the help of Eqs. (16)–(18), (23) and (28) we
can determine the full components of the effective energy–
momentum tensor (3) for each model.

For the model #1 we have imposed the most general linear
EoS (23) to close the θ -sector, obtaining the decoupler func-
tion f (r) given by Eq. (25). Next, to check the feasibility of
satisfying all the energy conditions (at least at the wormhole
throat), we will consider several values for the parameter ω.
Specifically, we will take values corresponding to cosmic flu-
ids, for example baryonic matter, phantom and quintessence
fields, cosmological constant, and so on. Of course, the EoS
of any cosmic fluid does not has the form given by (23) (actu-
ally this corresponds to the case β = 0), for this reason we
will call each of these cases phantom-like field and use the ωp

symbol to make the corresponding reference, for example. At
this point, it is worth mentioning that in the realm of worm-
hole solutions within the framework of GR, it is not possible
to satisfy at the same footing both, the flare-out condition and
the ECs. However, the introduction of the pair {θμν, f } could
in principle reduce the usage of exotic matter to a minimal
amount, leading to a partial violation of the energy condi-
tions. Furthermore, a negative definite energy density could
be avoided. In order to test the possibility of simultaneously
satisfying both the flare-out condition and the ECs, we con-
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Table 1 The general constraints on α, obtained from the energy conditions for the model #1, by considering both positive and negative EoS
parameter ω

EoS parameter Energy conditions

ρ + pr ≥ 0, ρ + pt ≥ 0 ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0 ρ − |pr | ≥ 0, ρ − |pt | ≥ 0 ρ +∑r,t pi ≥ 0

ω > 0 α ≤ − 2ω

βr2
0

, α ≤ 0 α ≤ − ω

βr2
0

, α ≤ − 2ω

βr2
0

, α ≤ 0 α ≤ − 2ω

βr2
0

, α ≤ − 4ω

βr2
0

Saturated ∀α

ω < 0 α ≥ − 2ω

βr2
0

, α ≥ 0 α ≥ − ω

βr2
0

, α ≥ − 2ω

βr2
0

, α ≥ 0 α ≥ − 2ω

βr2
0

, α ≥ − 4ω

βr2
0

Saturated ∀α

Table 2 The numerical constraints imposed on α by the energy conditions and the flare-out condition, for different values of the EoS parameter ω

α-Constraints at the wormhole throat

EoS Parameter ρ + pr ≥ 0, ρ + pt ≥ 0 ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0 ρ − |pr | ≥ 0, ρ − |pt | ≥ 0 ρ +∑r,t pi ≥ 0 Flare-out

ωb = 4
5 α ≤ −3.555, α ≤ 0 α ≤ −1.778, α ≤ −3.555, α ≤ 0 α ≤ −3.555, α ≤ −2.370 Saturated α > −3.555

ωc = −1 α ≥ 4.444, α ≥ 0 α ≥ 2.222, α ≥ 4.444, α ≥ 0 α ≥ 4.444, α ≥ 2.962 Saturated α < 4.444

ωq = − 2
3 α ≥ 2.962, α ≥ 0 α ≥ 1.481, α ≥ 2.962, α ≥ 0 α ≥ 2.962, α ≥ 1.975 Saturated α < 2.962

ωp = − 4
3 α ≥ 5.925, α ≥ 0 α ≥ 2.962, α ≥ 5.925, α ≥ 0 α ≥ 5.925, α ≥ 3.951 Saturated α < 5.925

sider the following options for the EoS parameter ω known
for some types of matter, fluid and field cosmic distributions
[108,109],

– baryonic-like matter: 0 < ωb < 1,
– cosmological constant-like fluid: ωc = −1,
– quintessence-like field: −1 < ωq < − 1

3 ,
– phantom-like field: ωp < −1.

In this case the radiation-like matter corresponding to ωr =
1/3 is not allowed, since as was previously noticed, the mass
function (41) becomes singular. Before in going into the
analysis, it is instructive to present the explicit form of the
effective thermodynamic quantities describing the energy–
momentum tensor of the matter distribution threading the
wormhole solution. So, one has

Model #1:

ρ = − r2
0

r4︸︷︷︸
ρ̃

+α

(
r3−ωr−3+ω − 3ω

)

ω (3ω − 1)
β

︸ ︷︷ ︸
θ0

0

, (74)

pr = −r2
0

r4︸︷︷︸
p̃r

−α

⎡
⎢⎢⎢⎢⎣

(
r3−ωr−3+ω − 3ω

)

(3ω − 1)
β + β

︸ ︷︷ ︸
θ1

1

⎤
⎥⎥⎥⎥⎦

, (75)

pt = r2
0

r4︸︷︷︸
p̃t

−α
β

2 (1 − 3ω)

(
2ω + (ω − 1) r3−ω

0 r−3+ω
)

ω︸ ︷︷ ︸
θ2

2

.

(76)

In Table 1 we have placed the constraints on the constant α, in
order to satisfy the ECs. In this analysis we have considered
as an example the case when β > 0 and both positive and
negative ω. The case β < 0, will not be considered here.
However, if one wants to do it, the procedure runs in the same
way like in the considered case. Next, taking into account the
above assumptions from the flare-out condition we get

ω > 0 ⇒ α > − 2ω

βr2
0

, ω < 0 ⇒ α < − 2ω

βr2
0

. (77)

In Table 2 are summarized the numerical values for the
coupling α in order to meet the flare-out and ECs. In obtain-
ing these numerical values at the throat of the wormhole
structure, we have considered in all cases β = 0.45 (km−2)

and the size of the wormhole throat r0 = 1 (km), for differ-
ent values of the EoS parameter ω mentioned in Table 2. As
was anticipated, it is not possible to satisfy at the same time
the mentioned conditions. This fact can be observed from the
second and sixth columns of Table 2, where α is subject to
fulfill the ECs or the flare-out condition at the throat of the
wormhole. In this regard, as we are interested on traversable
wormholes, it is obvious that the flare-out condition must be
satisfied. So, to fulfill it, we have taken for each ω appro-
priate values for α. These values were considered by taking
into account the constraints placed in Table 2. Specifically,
these values are shown in Table 3 for each EoS parameter ω.
It is worth mentioning that the chosen numerical values for
α, do not deviate too much from the values that satisfy the
NEC, WEC and DEC in the radial direction. This in order
to control the violation of the ECs at the throat of the worm-
hole. As can be seen in Figs. 6 and 7 , for each case under
consideration, the violation of the NEC, WEC and DEC in
the radial direction occurs only at the throat, and beyond
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Table 3 The numerical values for α, taking into account different
choices for the EoS parameter ω and for β = 0.45 (km−2) and
r0 = 1 (km)

EoS parameter α

ωb = 4
5 −3.450

ωc = −1 4.350

ωq = − 2
3 2.900

ωp = − 4
3 5.850

it they are satisfied. Furthermore, in the inside panels it is
observed that the magnitude of such violation is minimal in
relation to the GR picture. On the other hand, interestingly the
remaining ECs are satisfied for all r ∈ [r0,+∞). Regarding,
the individual behavior of the thermodynamic parameters
{ρ, pr , pt }, a positive definite density ρ is exhibited every-
where, although it is not bounded, which contrast the fact
of not having a bounded mass. Instead, the radial pressure
pr is negative throughout its domain, acting as a repulsive
gravitational force, helping to keep the object’s throat open.
Concerning the tangential pressure pt , it is positive at the
throat, but then it becomes negative. It should be noted that
the amount of exotic matter is greatly reduced when ω moves
from 4

5 to − 4
3 . This indicates that a phantom-like field com-

bined with the MGD scheme as an exotic matter regulator,
is the best option to build up wormhole solutions supported
by a small amount of exotic matter. This point will be clear
soon, when the exotic matter quantifier will be calculated.

Model #2:
In this case the energy–momentum tensor is being char-

acterized by the following thermodynamic variables

ρ = − r2
0

r4︸︷︷︸
ρ̃

+α

[
1 +

( r
b

)2
]−γ

a
︸ ︷︷ ︸

θ0
0

, (78)

pr = −r2
0

r4︸︷︷︸
p̃r

−α

[
a

3

(
2F1

[
3

2
, γ ; 5

2
;− r2

b2

]
− 2F1

[
3

2
, γ ; 5

2
;− r2

0

b2

]
r3

0

r3

)]

︸ ︷︷ ︸
θ1

1

, (79)

pt = r2
0

r4︸︷︷︸
p̃t

−α

[
a

6

(
3

(
1 + r2

b2

)−γ

+ 2F1

[
3

2
, γ ; 5

2
;− r2

0

b2

]
r3

0

r3 − 2F1

[
3

2
, γ ; 5

2
;− r2

b2

])]

︸ ︷︷ ︸
θ2

2

. (80)

The analysis of the matter content in this case, was carried
out by considering positive integer values for γ . Specifically,
we have considered the genuine PI dark matter profile cor-
responding to γ = 1 and a generalized case by imposing
γ = 2. In Table 4, we have depicted the general constraints

on α at the wormhole throat imposed by the ECs, while by
using the numerical data presented in Table 5 for different
values of the space parameter {a, b, γ } and setting again the
wormhole throat value r0 = 1, in Table 6 are displayed the
concrete numerical bounds Again, the NEC, WEC and DEC
in the radial direction are violated at the wormhole throat,
although are satisfying beyond it, what is more all are satu-
rated as illustrates Fig. 8. In comparing both cases, namely
γ = 1 and γ = 2 it is clear from the upper and lower left
panels in Fig. 8 that for γ = 1 the violation of the NEC and
WEC is greater than the γ = 2 case. The same scenario is
observed in the upper and lower right panels regarding the
DEC. Nevertheless, in such situation for γ = 1 the DEC in
the radial direction is saturated away the throat, while for
γ = 2 there is a small fluctuation (the red curve takes nega-
tive values) before reaching the saturation. It is important to
stress that the Eq. (28) assures the monotonically decreasing
behavior of ρ yielding to a bounded density and consequently
to a finite bounded mass at very large distances. Moreover,
the same trend is exhibited by the radial pr and tangential pt
pressures as well as by the ECs. This is complete agreement
with the asymptotically flat behavior, where at large radial
coordinate, at least ρ and pr should tend to zero [108]. It is
evident that the modified PI dark matter profile offers a best
scenario than the original PI (γ = 1).

As it is observed on Tables 1 and 4 for the models #1
and #2 respectively, the α parameter can be taken to be 0
in order to satisfy the energy conditions. However, as it was
mentioned above, the case α = 0 reduces to the GR case.
In this situation the pure GR case (the seed solution given
by (22)) is described by the original Morris–Thorne solution
[5,6]. As it is well-known, this space-time is supported by

an exotic matter distribution in the GR scenario [5,6]. Even
more, if the energy conditions are satisfied then the flare-
out condition will not and vice-versa [9]. So, in both cases,
namely pure GR and GR + MGD, it is not possible for both
the energy conditions and the flare-out one to be satisfied at
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Fig. 6 The density ρ, radial pressure pr , tangential pressure pt , NEC,
WEC and SEC for the model #1, using different values for the EoS
parameter ω and α showed in Table 3. Besides, in building these

curves against the dimensionless coordinate r/r0 we have fixed β =
0.45 (km−2) and the wormhole throat size r0 = 1

the same footing [9]. Then, in order to explore new features
of this space-time under the minimally deformation process,
we have taken α = 0 for both models (see Tables 3, 5).

6.2 The exoticity parameter, χ

It is clear from previous discussions that the minimally
deformed M–T wormhole solution is driven by an exotic
matter distribution. Interestingly, the θ -sector, interpreted as
dark matter/energy distribution, greatly reduces the magni-
tude of the violation of the energy conditions, in contrast with
the pure GR case [5,6]. To check the feasibility of the MGD
ingredients as exotic matter contributors which support the
wormhole structure, one can use the so-called “exoticity”
parameter, χ [5,6], which is defined as

χ = pr − ρ

|ρ| , (81)

or, in terms of the shape function b(r),

χ = b − rb′

r |b′| . (82)

This dimensionless parameter signals the presence of exotic
matter if χ > 0. Of course, it can be seen from Eq. (81) that
this requirement is satisfied if

|pr | > |ρ|. (83)

Equivalently, from Eq. (82) one gets

|b| > |rb′|. (84)

In Figs. 9 and 10 we have plotted the exoticity parameter,
χ , for both models. As it can be shown, χ is positive at the
wormhole throat in both cases. Therefore, the minimally M–
T wormhole is driven by an exotic matter distribution, as
previously established. This implies that the θ -sector, repre-
senting the dark sector of the Universe, can be used to build
up wormhole structures in the framework of GR+MGD sup-
ported by a small amount of exotic matter.
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Fig. 7 The dominant energy condition along the radial and tangential directions for the model #1 against the dimensionless coordinate r/r0 and
different values mentioned in the Table 3, considering β = 0.45 (km−2) and the wormhole throat size r0 = 1

Table 4 The general constraints on α, obtained from the energy conditions for the model #2, taking into account that the space parameter {γ, a, b}
is positive defined

Energy conditions

ρ + pr ≥ 0, ρ + pt ≥ 0 ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0 ρ − |pr | ≥ 0, ρ − |pt | ≥ 0 ρ +∑r,t pi ≥ 0

α ≥ 2
ar2

0

(
1 + r2

0
b

)γ

, α ≥ 0 α ≥ 1
ar2

0

(
1 + r2

0
b

)γ

, α ≥ 2
ar2

0

(
1 + r2

0
b

)γ

, α ≥ 0 α ≥ 2
ar2

0

(
1 + r2

0
b

)γ

, α ≥ 4
ar2

0

(
1 + r2

0
b

)γ

Saturated ∀α ≥ 0

Table 5 The selected numerical values for the coupling α for some values of γ , a and b, and considering the wormhole throat r0 = 1 (km)

γ a (km−2) b (km) α

1 0.8 25.0 1.500

2 0.4 12.5 4.500

Table 6 The numerical data on the constraints for α corresponding to model #2 obtained by fixing the numerical values depicted in Table 5

α-Constraints at the wormhole throat
γ ρ + pr ≥ 0, ρ + pt ≥ 0 ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0 ρ − |pr | ≥ 0, ρ − |pt | ≥ 0 ρ +∑r,t pi ≥ 0 Flare-out

1 α ≥ 2.504, α ≥ 0 α ≥ 1.252, α ≥ 2.504, α ≥ 0 α ≥ 2.504, α ≥ 1.669 α ≥ 0 α < 2.504

2 α ≥ 5.064, α ≥ 0 α ≥ 2.533, α ≥ 5.064, α ≥ 0 α ≥ 5.064, α ≥ 3.376 α ≥ 0 α < 5.064

123



  426 Page 14 of 19 Eur. Phys. J. C           (2021) 81:426 

As was discussed before, a key element in studying traver-
sable wormhole solutions is the flare-out condition. Follow-
ing [5,6], this condition can be rewritten at the wormhole
throat, r0, in terms of χ0 = χ(r0) as follows

χ0 = pr0 − ρ0

|ρ0| , (85)

where ρ0 and pr0 stand for ρ0 = ρ(r0) and pr0 = pr (r0),
respectively. Therefore, the flare-out condition written in
terms of the exoticity parameter demands that χ0 should
be strictly positive at the throat. This condition, coming
from Eq. (83) evaluated at r = r0, is satisfied as shown
in Figs. 9 and 10. Interestingly, if one uses Eq. (82) instead
of (81), the requirement for the flare-out condition is also
meet. Of course, as we know that b(r0) = r0 and b′(r0) < 1,
b(r0) − r0b′(r0) is always positive.

6.3 Volume integral quantifier

An important point to be considered at this stage, is the so-
called volume integral quantifier given by

IV ≡
∫

[ρ(r) + pr (r)] dV . (86)

The above integral provides valuable information on the total
amount of averaged null energy condition (ANEC) violat-
ing matter distribution in the space-time [110–112] (also see
[113] for further analysis on this subject). Imposing a cut-
off of the energy–momentum tensor at r∗ > r , in spherical
coordinates the integral IV becomes [110,111],

IV =
[
r

(
1 + b(r)

r

)
Ln

(
e2Φ

1 − b(r)/r

)]r∗
r0

−
∫ r∗

r0

[
r − b′(r)

]
Ln

(
e2Φ

1 − b(r)/r

)
dr

=
∫ r∗

r0

[r − b(r)]

[
Ln

(
e2Φ

1 − b(r)/r

)]′
dr. (87)

For the model #1 described by the form function (35), the
Eq. (87) can be evaluated without specifying the numerical
values for any parameter, yielding to

IV = r
− 1

ω
0

(1 − 3ω)ω

[
2

3
β α ω r∗ r

1
ω

0 + β α r
1
ω∗ r3

0 (ω − 1) ω

+ 2ω

r∗
r

2+ 1
ω

0 (1 − 3ω) − 2

3
β α ω r

1+ 1
ω

0 − β α r
3+ 1

ω
0 (ω − 1) ω

− 2ω r
1+ 1

ω
0 (1 − 3ω)

]
.

(88)

Taking the limit r∗ → r0 in (88), one verifies that IV → 0,
which reflects arbitrary small quantities of energy condition

violating matter. Next, the evaluation of (87) for the model
#2 with γ = 1 leads to

IV = 2
r2

0

r∗
+ a b3 α arctan

[
b

r∗

]
− a b2 α

(
b arctan

[r0

b

]

− r0

)
Lnr∗ + i

2
a b2 α

(
Li2

[
− ir∗

b

]
− Li2

[
ir∗
b

])

− 2r0 − a b3 α arctan

[
b

r0

]
+ a b2 α

(
b arctan

[r0

b

]

− r0

)
Lnr0 − i

2
a b2 α

(
Li2

[
− ir0

b

]
− Li2

[
ir0

b

])
,

(89)

where Lis(z) is the polylogarithmic function, which for real
or complex s and complex z subject to |z| < 1 is defined by

Lis(z) =
∞∑
n=1

zn

ns
. (90)

So, the terms in (89) involving this object becomes

i

(
Li2

[
− ir∗

b

]
− Li2

[
ir∗
b

])
= 2

r∗
b

, (91)

and

i

(
Li2

[
− ir0

b

]
− Li2

[
ir0

b

])
= 2

r0

b
. (92)

Again, in the limit r∗ → r0 one getsIV → 0, confirming that
to support this wormhole structure it is necessary only a small
amount of ANEC violating matter distribution. Similarly, for
γ = 2 we have

IV = 2
r2

0

r∗
− a b4 α r∗

2
(
b2 + r2∗

)

− a b3 α arctan

[
b

r∗

]
+ a b3 α

2
(
b2 + r2

0

)

×
[(

b2 + r2
0

)
arctan

[r0

b

]
− b r0

]
Ln r∗

− i

4
a b3 α

(
Li2

[
− ir∗

b

]
− Li2

[
ir∗
b

])

− 2r0 + a b4 α r0

2
(
b2 + r2

0

)

+ a b3 α arctan

[
b

r0

]

− a b3 α

2
(
b2 + r2

0

)
[(

b2 + r2
0

)
arctan

[r0

b

]
− b r0

]
Ln r0

+ i

4
a b3 α

(
Li2

[
− ir0

b

]
− Li2

[
ir0

b

])
,

(93)

which tends to zero when r∗ → r0.
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Fig. 8 The thermodynamic variables and energy conditions against the dimensionless variable r/r0, for the model #2, taking the numerical data
presented in Table 5

6.4 Surface stresses

Given that the models #1 and #2 (the case γ = 1) have
not a bounded mass and taking into account that #1 does
not reproduce the Minkowski space-time when r → +∞,
it is necessary to do a surgery at some point r∗ > r0 with
the vacuum Schwarzschild space-time to cure this pathology.
Thus the manifolds given by models #1 and #2 are describing
the inner M− space-time valid from r ≥ r0 up to r ≤ r∗
and the Schwarzschild solution describes the outer manifold
M+ valid for all r > r∗. In this regard, on the junction
interface Σ : r = r∗ in principle these manifolds could
induce surface stresses ı.e, a surface energy–density σ and a
surface pressure P . If the junction contains surface stresses,
we have a thin shell, and if no surface stresses are present, the
junction interface is denoted a boundary surface. To analyze
the presence of surface stresses on the junction surface we
shall employ the Israel–Darmois formalism [20,21].

The extrinsic curvature across the surface Σ is character-
ized by the symmetric extrinsic curvature tensor Ki j (also
known as the second fundamental form) given by

K±
i j = −nμ

(
∂2xμ

∂ξ i∂ξ j
+ Γ ν±

αβ

∂xα

∂ξ i

∂xβ

∂ξ j

)
, (94)

where the (±) superscripts correspond to the exterior and
interior space-times, respectively. Besides, ξ i = {τ, θ, ϕ} are
the intrinsic coordinates on Σ and τ is the proper time on
the hyper-surface. It should be noted that due to spherical
symmetry the computation is considerable reduced, namely
Ki

j = (
K τ

τ , K
θ
θ , K

θ
θ

)
. Then the energy–momentum ten-

sor Si j induced on Σ is given by the Lanczos equations, as
follows

Si j = − 1

8π

(
[Ki

j ] − δi j [K ]
)

, (95)

where [X ] = X+ − X− expresses the discontinuity in the
second fundamental form and K ≡ Ki

i denotes the trace of
the extrinsic curvature tensor. In terms of the surface energy–
density σ and pressure P the energy–momentum tensor Si j
reads

Si j = diag (−σ,P,P) . (96)
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So the Lanczos equations (95) can be expressed as2

σ = − 1

4π
[K θ

θ ], (97)

P = 1

8π

([K τ
τ ] + [K θ

θ ]
)
. (98)

Now, using (94), the non trivial components of the extrinsic
curvature tensor for the line elements (1) and (42) are given
by [13]

K τ+
τ = M

r2∗
√

1 − 2M
r∗

, (99)

K θ+
θ = r∗

√
1 − 2M

r∗
, (100)

K θ−
θ = r∗

√
1 − b(r∗)

r∗
. (101)

Next from Eqs. (97)–(98) and with the extrinsic curvature
expressions (99)–(101), we obtain

σ = − 1

4πr∗

(√
1 − 2M

r∗
−
√

1 − b(r∗)
r∗

)
, (102)

P = 1

8πr∗

⎛
⎝ 1 − M

r∗√
1 − 2M

r∗

−
√

1 − b(r∗)
r∗

⎞
⎠ . (103)

The surface mass of the thin shell can be computed as

Mshell = 4 π r2∗ σ = r∗

(√
1 − b(r∗)

r∗
−
√

1 − 2M

r∗

)
, (104)

where M can be interpreted as the total mass of the system,
in this case being the total mass of the wormhole in one
asymptotic region [23]. From Eq. (104) one can solve for M ,
leading to

M = b(r∗)
2

+ Mshell

(√
1 − b(r∗)

r∗
− Mshell

2r∗

)
. (105)

Following the same approach as given in [22–26] we study
the surface stresses by introducing dimensionless parameters
ζ = 2M/r∗, b̄(ζ ) = b(r∗)/2 M , η = 8 π M σ and Π =
16 π M P . Therefore, Eqs. (102)–(103) become

η = ζ

(√
1 − ζ b̄(ζ ) −√1 − ζ

)
, (106)

Π = ζ

(
1 − ζ

2√
1 − ζ

−
√

1 − ζ b̄(ζ )

)
. (107)

To avoid a non-physical behavior one has the following con-
straint: 0 < ζ < 1. As at the junction interface the mass

2 Here, in order to keep a homogeneous notation with the literature
[22–26] we have considered the overall coupling constant κ to be 8π .

Fig. 9 The exoticity parameter χ against the dimensionless radial
coordinate r/r0. These curves were obtained by considering the val-
ues mentioned in Table 3, for the model #1

of the wormhole coincides with the Schwarzschild mass ı.e.,
M = MSch this implies b(r∗) = 2M . So, replacing this result
in the Eq. (102) (or Eq. (106)), it is not hard to show that the
surface density σ vanishes. Then, the thin shell is driven only
by pressure P . As it is appreciated, from Eq. (103) (or Eq.
(107)), this quantity is always positive, thus the thin shell is
threading by a normal matter distribution, that is, a matter
satisfying the ECs. This is corroborated in Fig. 11, where we
have displayed Π for model #1 and #2 for the case ω = 4/5
and γ = 1 (as an example), respectively. In doing that, we
have selected two different values for M , namely 0.5 and
2. As said before, in both cases the dimensionless pressure
Π on the hyper-surface Σ is positive defined. Therefore, all
ECs are satisfied.

The surgery process should also ensure that b(r∗)/r∗ <<

1 if the wormhole is to be used for traveling. This means
that r∗ is large enough but finite, hence the mass function for
every solution is also finite at large distances. Indeed

m(r∗) = 4πr2
0

r∗
+ 4παβ

1 − 3ω

(
r3∗ − r1/ω∗ r3−1/ω

0

)
(108)

and

m(r∗) = 4πr2
0

r∗
+ α

2aπ

3

(
2F1

[
3

2
, γ ; 5

2
;− r2∗

b2

]
r3∗

− 2F1

[
3

2
, γ ; 5

2
;− r2

0

b2

]
r3

0

)
, (109)

are bounded after surgery.

7 Concluding remarks

In this work we have studied the impact of gravitational
decoupling by means of minimal geometric deformation
scheme on wormhole space-times, specifically on the well
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Fig. 10 The exoticity parameter χ versus the dimensionless radial
coordinate r/r0. These curves were obtained by considering the val-
ues mentioned in Table 5, for the model #2

Fig. 11 The dimensionless pressure Π on the surface interface Σ

against the dimensionless parameter ζ . These curves were obtained by
considering {ω; α; r0; r∗ = { 4

5 ; −3.450; 1 (km); 1.05 (km)}, for the the
model #1 and {γ ; α; r0; r∗ = {1; 1.265; 1 (km); 2 (km)} for the model
#2

known Morris–Thorne wormhole model. We have faced the
problem using two approaches in order to determine the θ -
sector and the decoupler function f (r). Those are: (i) the
most general linear equation of state (23) depending on two
constant parameters {ω, β} was imposed and (ii) the tempo-
ral component of the θμν field ı.e, θ0

0 is was introduced in
order to mimic a generalized pseudo-isothermal dark matter
density profile (28), depending on three parameters {γ, a, b}.
These choices lead to solve an ordinary first order differ-
ential equation in f (r) (see Eqs. (24) and (29)). With the
deformation function expression at hand the system of equa-
tions (16)–(18) for each model, is completely determined.
Consequently, the effective thermodynamic quantities (8)–
(10) and the minimally extended form function b(r) (11)
are also obtained with the help of the seed wormhole space-
time, given by (22). As the seed solution already meets all the
requirements listed in Sect. 2, the new sector described by the

pair {θμν, f (r)} should satisfy some constraints to maintain
the wormhole anatomy. In this concern, the decoupler func-
tion f (r) must be vanish at the throat r0 of the wormhole
ı.e, f (r0) = 0. This is so because, the seed shape function
b̂(r), evaluated at the wormhole throat leads to r0. Besides,
one of the conditions to be a traversable wormhole struc-
ture connecting two regions is the fulfillment of the so-called
flare-out condition at the wormhole throat. Then, to meet the
flare-out condition, in each case the dimensionless coupling
constant α introduced by MGD has been restricted. As it
is well-known, by construction a wormhole in the realm of
GR can not satisfy at the same time the energy conditions
everywhere and the flare-out condition [9,10], and this case
is not the exception. Nevertheless, the MGD approach could
be understood in this context as an exotic matter regulator.
Of course, the presence of the so-called exotic matter, is a
necessary ingredient to support the wormhole structure, but
sometimes it is desirable to control the amount of this exotic
matter distribution, in order to have a small violation of the
energy conditions at the wormhole throat and its neighbor-
hood.

Regarding the wormhole geometry, we note that they are
non-asymptotically flat. Specifically, the ratio b(r)/r and the
mass function m(r) tends to infinity when r → +∞ for the
model #1. For model #2, the geometry tends at large dis-
tances to a finite space-time with a topological defect with
an unbounded mass function. To cure this issue, both mod-
els have been pasted with the Schwarzschild vacuum solu-
tion through a surgery process using the well-known Israel–
Darmois junction conditions [20,21] and the methodology
presented in [22–26]. The resulting solutions are described by
Eqs. (27) and (32) for r0 ≤ r ≤ r∗ and by the Schwarzschild
space-time for r > r∗. After performing this procedure, both
solutions become finite, their masses being bounded quan-
tities. Furthermore, at the junction interface we have a thin
shell confining the exotic matter inside the wormhole throat
in a finite region. It is worth mentioning that the thin shell is
supported by normal matter satisfying the energy conditions
since the surface density, σ , vanishes. Therefore, the energy
conditions are being only described by the lateral pressureP
which is always positive. The non-asymptotically flat behav-
ior of the models is based on how the θ -sector is solved. In
this sense, different forms of obtaining the pair {θμν, f } lead
to different wormhole geometries. One simple way to get
an asymptotically flat wormhole is to impose from the very
beginning the decoupler function f (r), assuring that f (r)
falls at least as O(1/r).

Interestingly, in light of the results here reported, we can
conclude that within the framework of GR with the applica-
tion of gravitational decoupling by MGD scheme, it is possi-
ble to build up well-posed wormhole solutions threading by a
small amount of exotic matter distribution. Furthermore, one
can restrict the dimensionless coupling constant α to control
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the violation of the energy conditions at the wormhole throat,
what is more a careful choice on α allows to satisfy the energy
conditions away the wormhole throat and also helps to have
a positive defined density everywhere. An important to point
to be highlighted, is the introduction of deformation on the
temporal component, in order to introduce a non vanishing
red-shift function and also the study concerning the stabil-
ity of the solutions against radial perturbations when large
quantities of mass are injected through the structure. These
issues will be addressed in future works.
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