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New stochastic comparisons based on tail
values at risk

Abstract

In this paper we provide a new criterion for the comparison of claims, when we
have conditional claims arising in stop loss contracts or contracts with franchise de-
ductible. These stochastic comparisons are made on the basis of the Tail Value at
Risk (also known as conditional tail expectation), just for a fixed level and beyond. In
particular, we explain the interest of comparing these quantities, study some preserva-
tion properties and, in addition, we provide sufficient conditions for its study. Finally
we illustrate its usefulness with some examples.

Keywords: Value at Risk, residual claims, stochastic orders.
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1 Introduction and motivation

Let X be a random risk that represents, for example, the future claims of an insurance

company with distribution function F . The Value at Risk of X for some prescribed con-

fidence level p ∈ (0, 1) (or, simply, quantile at p), is denoted as VaR[X; p] (or F−1(p) for

the sake of simplicity), and given by

VaR[X; p] = inf{x : F (x) ≥ p}, for all p ∈ (0, 1). (1)

In this context, this value is the maximum claim which can occur with 100p% confidence

over a certain period of time; see, for instance, Hürlimann (2002, 2003). The VaR is

nowadays the most commonly used measure of risk, but it does not give any information

about the claim amount beyond the VaR level. However, the Value at Risk is not a coherent

risk measure as it does not satisfy the subadditivity property. An alternative to the VaR,

given in Hürlimann (2003) is the Tail Value at Risk. It is denoted as TVaR and defined by

TVaR [X; p] =
1

1− p

∫ 1

p

VaR[X;u]du, for all p ∈ [0, 1).

It can be interpreted as the average claim an insurance company will suffer in case of

(extreme) situations where claims exceed the predefined confidence level p ∈ (0, 1). It is

well known that the Tail Value at Risk is a coherent risk measure. For continuous random

variables, it holds that

TVaR [X; p] = E[X | X > VaR[X; p]],

which is also known as the conditional tail expectation or expected shortfall of X. It

is important to note that the Basel Committee on Banking Supervision in January 2016

wishes to carry out a key reform consisting of:

“a shift from Value-at-Risk (VaR) to an Expected Shortfall (ES) measure of

risk under stress. The use of ES will help to ensure a more prudent capture of

“tail risk” and capital adequacy during periods of significant financial market

stress”.

See Embrechts et al. (2014) for further information about this discussion.
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The Value at Risk and the Tail Value at Risk are used in the theory of stochastic orders

to provide stochastic comparisons between random risks. For example, if Y is another

random risk with quantile VaR[Y ; p], and it holds that

VaR[X; p] ≤ VaR[Y ; p], for all p ∈ (0, 1),

then X is said to be smaller than Y in the usual stochastic order, denoted as X ≤st Y .

Another well-known stochastic comparison based on the Tail Value at Risk is the in-

creasing convex order which holds if, and only if,∫ 1

p

VaR[X;u]du ≤
∫ 1

p

VaR[Y ;u]du, for all p ∈ (0, 1). (2)

In this case, X is said to be smaller than Y in the increasing convex order and it is

denoted as X ≤icx Y (see, for example, Berrendero and Cárcamo, 2012). Two general

references for further information on stochastic orderings are Shaked and Shanthikumar

(2007) and Belzunce, Mart́ınez-Riquelme and Mulero (2016).

However, in some situations we are not faced with the comparison of the whole random

claims X, but with residual random claims. Next, we describe two situations where these

residual claims appear.

Let us consider a company confronted with a risky business over some time period, and

let the random variable X represent the claims that the company incurs at the end of the

period. Suppose now that the company insures itself against heavy claims, that is, against

claims above some deductible t. Then, the claim that the reinsurer experiences (if it does)

is known as residual claims at time t and is given by

Xt = [X − t | X > t], for all t < uX ,

where uX is the right endpoint of the support of X. This is called a stop-loss contract with

deductible t.

The residual claims also arise when a franchise deductible is incorporated to the con-

tract. In this case, the insurer pays only the part of the claim which exceeds the amount

t and if the size of the claim falls below this amount, then the claim is not covered by

the contract and the insured receives no indemnification. Finally, in life insurance these
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conditional random variables appears as the residual life for a person who has survived up

to time t, and are usually represented in terms of life tables.

If we denote the survival function of X as F (t) = P [X > t], for all t in the support of

X, the survival function of Xt is given by

F t(x) =
F (x+ t)

F (t)
, for all x > 0,

and is well defined for all t < uX , even if t is not in the support of X, and is of interest not

only in insurance issues but also in other many areas of applied probability and statistics

such as actuarial studies, biometry, survival analysis, economics and reliability. A useful

tool to provide properties of X is the expectation of Xt, which is called the mean residual

life function, and is given by

m(t) = E[X − t | X > t],

for all t < uX (and 0, elsewhere) provided the expectation exists. In insurance this value

represents the expected claims from t, i.e., the expected cost of the claims from t assumed

for the reinsurance company.

Some stochastic orders have been defined in terms of comparisons between residual

claims. On one hand, if

Xt ≤st Yt, for all t such that F (t), G(t) > 0,

then X is said to be smaller than Y in the hazard rate order, denoted as X ≤hr Y . On the

other hand, if

Xt ≤icx Yt, for all t, (3)

then X is said to be smaller than Y in the mean residual life order, denoted as X ≤mrl Y .

In the continuous case, (3) is related to the comparison of the mean residual life functions,

that is, they are equivalent to

m(t) ≤ l(t), for all t,

where l be the mean residual life function of a random variable Y (for further information,

see Shaked and Shanthikumar, 2007).

Besides the survival function and mean of residual claims, some other quantities of

interest have been considered in the literature. Given p ∈ (0, 1), an alternative to the mean
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residual life is the percentile residual life function which is defined by VaR[Xt; p], for all

t < uX . For instance, the median residual life function is obtained when p = 0.5 (see Lillo,

2005, for a complete study of the median residual life function and related aging notions).

Franco-Pereira et al. (2011) considered the comparison between the percentile residual

life functions of two random variables and proposed the family of the percentile residual life

orders, denoted as p-rl order. In particular, for p ∈ (0, 1), given two random variables X

and Y with percentile residual life functions VaR[Xt; p] and VaR[Yt; p], respectively, then

X ≤p-rl Y ⇔ VaR[Xt; p] ≤ VaR[Yt; p], for all t. (4)

An interesting property in Franco-Pereira et al. (2011) is the comparison between the

TVaR’s in their Theorem 5.1. More specifically, if X and Y are two random variables such

that X ≤p−rl Y , for all q ∈ [p, 1), then∫ 1

q

VaR[Xt;u]du ≤
∫ 1

q

VaR[Yt;u]du,

or, equivalently, TVaR[Xt; p] ≤ TVaR[Yt; p].

As we have noticed previously, it is more interesting from an applied and a theoretical

point of view, to provide comparisons in terms of the tail values at risk instead of the values

at risk. Also, in contrast with the criteria provided by Franco-Pereira et al. (2011), it is

more reasonable to provide a comparison not for a fixed level p0 but for p0 and beyond.

From previous considerations, in this paper we propose a new family of stochastic orders

indexed by p0 ∈ (0, 1), called in general the p0-tvar-rl order, that is based on the comparison

of the tail values at risk of the residual claims from p0 and beyond and for all deductibles

t. The paper is organized as follows. In Section 2, we define the p0-tvar-rl order and study

their main properties, relationships with other known stochastic orders through different

examples and counterexamples and provide some closure results. Sufficient conditions for

this order to hold are stated in Section 3 and applications to some theoretical examples

are given. In Section 4, we illustrate the previous examples with real datasets. Finally, in

Section 5, we give a brief summary of the work.

From now on, we will follow the notation in Denuit et al. (2005). Besides, given two

random variables X and Y , we denote the cumulative distribution functions by F and G,

the survival function by F and G, and the corresponding values at risk by F−1 and G−1.
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Besides, we will denote the corresponding residual lives by Xt = [X − t | X > t] and

Yt = [Y − t | X > t] and their values at risk by F−1t and G−1t , respectively.

2 Definition and properties of the p0-tvar-rl order

From the motivations of the previous section, we provide the definition of the following

criterion to compare risks. For the rest of the paper, we assume that the considered random

variables have finite means, which ensures the existence of the measures considered in the

comparisons.

Definition 2.1 Let X and Y be two random variables with right endpoint of their supports

uX and uY , respectively, and p0 ∈ (0, 1). We say that X is less than Y in the Tail value at

Risk from p0 of the residual life order, denoted by X ≤p0-tvar-rl Y , if

TVaR[Xt; p] ≤ TVaR[Yt; p], for all p ∈ [p0, 1) and t < uX , uY ,

or, equivalently,∫ 1

p

F−1t (u)du ≤
∫ 1

p

G−1t (u)du, for all p ∈ [p0, 1) and t < uX , uY .

Given a random variable X with distribution function F and right endpoint of its

support uX , it is easy to see that

F−1t (p) = F−1(p+ (1− p)F (t))− t, for all t < uX and p ∈ (0, 1). (5)

Therefore, X ≤p0-tvar-rl Y if, and only if,∫ 1

p

F−1(u+ (1− u)F (t))du ≤
∫ 1

p

G−1(u+ (1− u)G(t))du, (6)

for all t < uX , uY and p ∈ [p0, 1), with p0 ∈ (0, 1).

The p0-tvar-rl order satisfies some desirable closure properties that are given in the

following propositions. Recall that, given a sequence of random variables {Xn : n =

1, 2, . . . } with distribution functions Fn and F , respectively, then Xn is said to converge in

distribution to X, denoted by Xn
d−→ X, if limn→+∞ Fn(x) = F (x) for all x at which F is

continuous.
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Theorem 2.2 (Closure under convergence in distribution) Let {Xn : n = 1, 2, . . . }

and {Yn : n = 1, 2, . . . } be two sequences of positive continuous random variables such that

Xn
d−→ X and Yn

d−→ Y . Assume that Xn and X have a common interval support for all

n ∈ N and limn→∞E[Xn] = E[X] (and, analogously, for Yn and Y and their expectations).

If Xn ≤p0-tvar-rl Yn, then X ≤p0-tvar-rl Y .

Proof. Given that Xn
d−→ X and limn→∞E[Xn] = E[X], we have that

lim
n→+∞

∫ +∞

x

F n(y)dy =

∫ +∞

x

F (y)dy, for all x, (7)

where Fn is the distribution function of Xn, for all n ∈ N (see Müller, 1996). The same

reasoning holds also for Yn and Y .

Moreover, from Xn
d−→ X, we have that

lim
n→+∞

F−1n (x) = F−1(x), for all x ∈ (0, 1), (8)

and

lim
n→+∞

F−1n,t (x) = F−1t (x), for all x ∈ (0, 1), (9)

where Fn,t (Gn,t) is the distribution function of Xn,t = [Xn − t | Xn > t] (Yn,t = [Yn − t |

Yn > t]), for all n ∈ N (see van der Vaart, 1998, and Lemma 4.2 in Franco-Pereira et al.,

2011, respectively).

From (7), (8), (9) and∫ 1

p

F−1n,t (u)du =

∫ +∞

F−1
n,t (p)

F n(t+ y)

F n(t)
dy + (1− p)F−1n,t (p),

it follows that

lim
n→+∞

∫ 1

p

F−1n,t (u)du =

∫ 1

p

F−1t (u)du.

Therefore, if Xn ≤p0-tvar-rl Yn,∫ 1

p

F−1t (u)du = lim
n→∞

∫ 1

p

F−1n,t (u)du ≤ lim
n→∞

∫ 1

p

G−1n,t(u)du =

∫ 1

p

G−1t (u)du,

for all p ≥ p0. �

Next, we give the closure under transformations. Recall the following lemma from

Barlow and Proschan (1975).
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Lemma 2.3 (Barlow and Proschan, 1975, p. 120) Let W be a measure on the inter-

val (a, b), not necessarily nonnegative. Let h be a nonnegative function defined on (a, b). If∫ b
t
dW (x) ≥ 0 for all t ∈ (a, b) and if h is increasing, then

∫ b
a
h(x)dW (x) ≥ 0.

Theorem 2.4 (Closure under transformations) Let X and Y be two random vari-

ables and φ be an increasing and convex function. Then, X ≤p0-tvar-rl Y if, and only if,

φ(X) ≤p0-tvar-rl φ(Y ).

Proof. For a random variable X with distribution function F and a strictly nondecreas-

ing and continuous function φ, let φ(X)t be the residual life of φ(X), for t < uφ(X). Then,

the Value at Risk of φ(X)t, denoted as F−1φ,t , is given by

F−1φ,t (u) = φ(F−1(u+ (1− u)F (φ−1(t))))− t.

Let Y be another random variable with distribution function G such that X ≤p0-tvar-rl Y

for a certain p0 ∈ (0, 1). From Definition 2.1 and (6), we have∫ 1

p

F−1(u+ (1− u)F (t))du ≤
∫ 1

p

G−1(u+ (1− u)G(t))du,

for all t < uX , uY (F (t), G(t) > 0) and p ∈ [p0, 1). Let t′ := φ−1(t) such that F (t′), G(t′) >

0, then we want to prove that∫ 1

p

φ(F−1(u+ (1− u)F (t′)))du ≤
∫ 1

p

φ(G−1(u+ (1− u)G(t′)))du,

or, equivalently,∫ 1

p

[
φ(G−1(u+ (1− u)G(t′)))− φ(F−1(u+ (1− u)F (t′)))

]
du ≥ 0, (10)

for all p ∈ [p0, 1).

It is known that, given an increasing and convex function φ, then φ is continuous and

there exists a positive and increasing function l such that

φ(b)− φ(a) =

∫ b

a

l(v)dv. (11)

From (11), the expression in (10) can be written as∫ 1

p

[
φ(G−1(u+ (1− u)G(t′)))− φ(F−1(u+ (1− u)F (t′)))

]
du

=

∫ 1

p

∫ G−1(u+(1−u)G(t′))

F−1(u+(1−u)F (t′))

l(v)dvdu. (12)
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First, let us note a lower bound for (12). On one hand, let us suppose that F−1(u +

(1− u)F (t′)) ≤ G−1(u+ (1− u)G(t′)), then it holds that

∫ G−1(u+(1−u)G(t′))

F−1(u+(1−u)F (t′))

l(v)dv ≥

l(F−1(u+ (1− u)F (t′)))
[
G−1(u+ (1− u)G(t′))− F−1(u+ (1− u)F (t′))

]
.

On the other hand, if F−1(u+ (1− u)F (φ−1(t))) > G−1(u+ (1− u)G(φ−1(t))), then

∫ G−1(u+(1−u)G(t′))

F−1(u+(1−u)F (t′))

l(v)dv = −
∫ F−1(u+(1−u)F (t′))

G−1(u+(1−u)G(t′))

l(v)dv ≥

l(F−1(u+ (1− u)F (t′)))
[
G−1(u+ (1− u)G(t′))− F−1(u+ (1− u)F (t′))

]
.

Therefore, we have∫ 1

p

∫ G−1(u+(1−u)G(t′))

F−1(u+(1−u)F (t′))

l(v)dvdu ≥∫ 1

p

l(F−1(u+ (1− u)F (t′)))
[
G−1(u+ (1− u)G(t′))− F−1(u+ (1− u)F (t′))

]
du.

Now, let us consider

dW (u) =
[
G−1(u+ (1− u)G(t′))− F−1(u+ (1− u)F (t′))

]
du,

and

h(u) = l(F−1(u+ (1− u)F (t′)))I(p < u).

By hypothesis, we have that ∫ 1

p

dW (u) ≥ 0,

and, given that l and I(p < u) are nondecreasing functions, h is also nondecreasing. Finally,

from Lemma 2.3, ∫ 1

p

l(u)dW (u) ≥ 0.

�

Next, we give relationships between the new order and some of the previously defined

stochastic orders. Some of the proofs follow easily and are ommitted.
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Proposition 2.5 Let X and Y be two random variables such that X ≤p0-tvar-rl Y for

p0 ∈ (0, 1), then X ≤q-tvar-rl Y , for all q ∈ [p0, 1).

Proposition 2.6 Let X and Y be two random variables such that X ≤p-rl Y for all p ∈

[p0, 1), then X ≤p-tvar-rl Y , for all p ∈ [p0, 1).

Proposition 2.7 Let X and Y be two random variables. Then, X ≤mrl Y if, and only if,

X ≤p0-tvar-rl Y for all p0 ∈ (0, 1).

Proof. Let us recall that X ≤mrl Y is equivalent to Xt ≤icx Yt, t < uX , uY (see, for

example, Belzunce, Mart́ınez-Riquelme and Mulero, 2016). From (2), if Xt ≤icx Yt, we

have ∫ 1

p

F−1(u+ (1− u)F (t))du ≤
∫ 1

p

G−1(u+ (1− u)G(t))du, for all p ∈ (0, 1).

The proof follows from (6). On the other hand, X ≤0-tvar-rl Y implies Xt ≤icx Yt, for all

t < uX , uY , that is, X ≤mrl Y . �

Next, we show that the hazard rate order implies the p0-tvar-rl , for all p0 ∈ (0, 1). The

proof follows easily by taking into account that ≤hr implies ≤mrl.

Proposition 2.8 Let X and Y be two random variables such that X ≤hr Y , then X ≤p0-tvar-rl
Y , for all p0 ∈ (0, 1).

Now it is natural to wonder if X ≤p0-tvar-rl Y , for p0 ∈ (0, 1), implies X ≤hr Y . Un-

fortunately, the answer is negative as we can see in the following counterexample which is

based on Remark 3.7 and Counterexample A.1 in Franco-Pereira et al. (2011).

Counterexample 2.9 Let us fix p0 ∈ (0, 1) and consider X(p0) with distribution function

given by

Fp0(t) =


0, t < p0,

t, p0 ≤ t < 1,

1, t ≥ 1,
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that is, X(p0) is a mixture of a uniform distribution on (p0, 1) with probability 1 − p0,

and a degenerate random variable at p0 with probability p0. Let us denote as F−1p0,t the

corresponding Value at Risk of X(p0)t, which is the residual life of X(p0). Now, let Y be a

uniformly distributed on (0, 1) random variable and let G−1t be the Value at Risk of Yt. For

any p ∈ [p0, 1), it can be seen that

F−1p0,t
(p) =


p− t, t < p0,

p(1− t), p0 ≤ t < 1,

0, t ≥ 1,

and

G−1t (p) =


p− t, t < 0,

p(1− t), 0 ≤ t < 1,

0, t ≥ 1.

It can be seen that X(p0) ≤p-rl Y , for all p ∈ [p0, 1), which implies X(p0) ≤p0-tvar-rl Y .

However, X(p0) �hr Y . Note also that E[X(p0)] =
p20+1

2
> E[Y ] = 1

2
, then the p0-tvar-rl

order does not preserve expectations.

In light of the previous counterexample, any stochastic order that preserves expectations

cannot be implied by the p0-tvar-rl order. In particular, the p0-tvar-rl order does not imply

the stochastic, the increasing convex and the mean residual life orders.

To finish with the study of the possible relations between this new criteria and other

orders, we show that the usual stochastic order does not imply the p0-tvar-rl order, as we

can see in the following counterexample.

Counterexample 2.10 Under the assumptions of Counterexample 2.9, let Fp0 and G be

the distribution functions of X(p0) and Y , respectively. It is easy to see that Fp0(t) ≤ G(t)

for all t, i.e., Y ≤st X(p0). However, Y �p0-tvar-rl X(p0). In fact, if t ∈ (0, p0), we have

that ∫ 1

p

F−1p0,t
(u)du <

∫ 1

p

G−1t (u)du.

In fact, the previous condition holds if, and only if,∫ 1

p

(u− t)du <
∫ 1

p

u(1− t)du ⇔
∫ 1

p

(ut− t)du = −2t(p− 1)2 < 0,
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which is always true.

In Counterexample A.2 in Franco-Pereira et al. (2011) it is shown that, for any p ∈

(0, 1), the mean residual life order does not imply the p-rl order. Since X �p-rl Y , we have

that X �p0-tvar-rl Y for any p0 ≤ p.

Finally, we give the following relationship among the new order and the icx order of

certain random variables.

Proposition 2.11 Let X and Y be two random variables with finite means and right end-

point of their supports uX and uY , respectively. If max
{
Xt, F

−1
t (p0)

}
≤icx max

{
Yt, G

−1
t (p0)

}
,

for all t < uX , uY , then X ≤p0-tvar-rl Y .

Proof. Given a random variable X with distribution function F , let us consider Xp =

max {X,F−1(p)}, for all p ∈ (0, 1) and let F−1p be its corresponding Value at Risk at p.

Then, it is easy to see that

F−1p (q) =

 F−1(p), if 0 < q < p,

F−1(q), if p ≤ q < 1.
(13)

From (13), the expectation of Xp is given by

E[Xp] =

∫ 1

0

F−1p (u)du =

∫ p

0

F−1(p)du+

∫ 1

p

F−1(u)du

= pF−1(p) +

∫ 1

p

F−1(u)du. (14)

Furthermore, the Tail Value at Risk of Xp is given by

TVaR[Xp; q] =


1

1−q

(∫ 1

p
F−1(u)du+ F−1(p)(p− q)

)
, if 0 < q < p,

1
1−q

∫ 1

q
F−1(u)du = TVaR[X; q], if p ≤ q < 1.

Now, let X and Y be two random variables with distribution function F and G, respec-

tively. From (2), we have that Xp ≤icx Yp, for p ∈ (0, 1), if, and only if, the two following

two conditions hold

(i)
∫ 1

p
F−1(u)du+ F−1(p)(p− q) ≤

∫ 1

p
G−1(u)du+G−1(p)(p− q), for all 0 < q < p, and

(ii) TVaR[X; q] ≤ TVaR[Y ; q], for all p ≤ q < 1.

Therefore, we have TVaR[X; q] ≤ TVaR[Y ; q], for all p ≤ q < 1. �
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3 On sufficient conditions for the p0-tvar-rl order

Let X and Y be two random variables with distribution functions F and G, and right

endpoint of their supports uX and uY , respectively. For t < uX , uY , let

Ht(p) = G−1t (p)− F−1t (p)

= G−1(p+ (1− p)G(t))− F−1(p+ (1− p)F (t)),

for all p ∈ [0, 1). Given p0 ∈ (0, 1), from Definition 2.1 and (6), X ≤p0-tvar-rl Y if, and only

if,

Lt(p) =

∫ 1

p

Ht(u)du ≥ 0, (15)

for all t < uX , uY and p ∈ [p0, 1).

It is apparent that in order to have the p0-tvar-rl order, it is sufficient to assure that

Lt(p) ≥ 0, from a certain p0 and for all t < uX , uY .

For a fixed t < uX , uY , we have that

Lt(0) = E[Yt]− E[Xt], (16)

which, obviously, can be positive or negative. In particular, if it is positive [negative] for

all t, then X ≤mrl [≥mrl]Y . Moreover, it holds that

lim
p→1−

Lt(p) = 0. (17)

Next, we provide sufficient conditions for the p0-tvar-rl order of two random variables.

Following Karlin (1968), p. 20, let f be a real function defined on I ⊆ R, the number of

sign changes of f in I is defined by

S−(f(x)) = sup{S−[f(x1), . . . , f(xm)]}

where S−[y1, . . . , ym] is the number of sign changes of the indicated sequence, zero terms

being discarded, and the supremum is extended over all sets x1 < x2 < · · · < xm ∈ I, and

for all m < +∞. Given two left continuous functions f and g defined on an interval I ⊆ R,

we will say that the point x0 ∈ I is a crossing point of f and g, if there exists ε1, ε2 > 0,

such that f(x) − g(x) > [<]0, for all x ∈ (x0, x0 + ε1) and f(x) − g(x) ≤ [≥]0, for all

x ∈ (x0 − ε2, x0), with strict inequality at some point. Recall that quantile functions are

left continuous.
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Proposition 3.1 Let X and Y be two random variables with finite means and right end-

point of their supports uX and uY , respectively. For a fixed t < uX , uY , let us assume that

S−(G−1t − F−1t ) ≥ 1 where the last sign change occurs from − to + with crossing point

pt ∈ (0, 1) (which is known as the up-crossing point). Then, Lt(p) ≥ 0, (at least) for all

p ≥ pt.

Proof. The proof follows easily by taking into account that Lt(p) =
∫ 1

p
Ht(u)du ≥ 0, for

all p ∈ [pt, 1), if Ht(p) ≤ 0, for all p ∈ [pt, 1). �

It is worth to mention that if Proposition 3.1 holds, then it could exist another p′t < pt

such that Lt(p) ≥ 0, for all p ≥ p′t.

From now on, let u = min{uX , uY } and T = (−∞, u), i.e., the set of all possible t’s; T1,

the set of all t’s such that F−1t (p) ≤ G−1t (p), for all p ∈ (0, 1); and T2 the set of all t’s for

which Proposition 3.1 holds, i.e., it exists pt ∈ (0, 1) such that Lt(p) ≥ 0, for all p ≥ pt.

Theorem 3.2 Let X and Y be two random variables with finite means and right endpoint

of their supports uX and uY , respectively. If T = T1 ∪ T2, then X ≤p0-tvar-rl Y , for some

p0 ∈ (0, 1). More specifically, X ≤p0-tvar-rl Y for

p0 = max{pt : t ∈ T2}.

Proof. Fixed t < uX , uY , if t ∈ T1, then Lt(p) ≥ 0, for all p ∈ (0, 1). Otherwise, if

t ∈ T2 holds, then Lt(p) ≥ 0, for all p ∈ (pt, 1). Therefore, Lt(p) ≥ 0 for all p0 ∈ (0, 1)

where p0 = max{pt : 0 < t < uX , uY } and we have that X ≤p0-tvar-rl Y . �

Remark 3.3 Given two random variables X and Y with distribution functions F and G,

respectively, Theorem 3.2 holds if, for each t ∈ T = (−∞, uX), it holds one of the following

sets of conditions:

(i) F−1(p+ (1− p)G(t)) ≤ G−1(p+ (1− p)F (t)), for all p ∈ (0, 1) (i.e., t ∈ T1), or

(ii) S−(G−1(p+(1−p)G(t))−F−1(p+(1−p)F (t))) ≥ 1 where the last sign change occurs

from - to + with crossing point pt ∈ (0, 1) (i.e., t ∈ T2).
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Therefore, the bivariate plot of

H∗ : (0, 1)× (−∞, uX) 7→ R

(p, t)  G−1(p+ (1− p)G(t))− F−1(p+ (1− p)F (t)),
(18)

could be a feasible approach to analyze the changes of sign of G−1t − F−1t , for each t. This

plot can be implemented using the VaRES package in R (www. r-project. org , R Core

Team, Vienna, Austria) which provides all the quantiles and distribution functions (see

Nadarajah, Chan and Afuecheta, 2017, for details).

To finish, the following examples illustrate Theorem 3.2 for different models of interest

in risk theory such as the Pareto, the loglogistic and the distorted distributions.

Example 3.4 (Pareto distributions) The Pareto distribution is a well-known suitable

model for many nonnegative socioeconomic variables. For example, this model is one of the

most important mathematical models for calculating excess of loss premiums in risk theory.

There are several univariate versions of the original distribution proposed by Vilfredo Pareto

in 1897. A random risk follows a generalized Pareto distribution, denoted by GPD(ξ, µ, σ)

for ξ, µ ∈ R and σ > 0, if its survival function is given by

F (x) =


(
1 + ξ x−µ

σ

)−1/ξ
, ξ 6= 0,

exp
(
−x−µ

σ

)
, ξ = 0,

for all x ≥ µ, if ξ ≥ 0, and µ ≤ x ≤ µ− σ/ξ, if ξ < 0 (see, for example, Arnold, 2014 and

2015). In particular, given ξ > 0 and t ∈ R, it holds that

F t(x) =

(
1 + ξ x+t−µ

σ

)−1/ξ(
1 + ξ t−µ

σ

)−1/ξ , for all t < uX , x ∈ R,

F−1t (p) =
σ

ξ

[
(1− p)−ξ

(
1 + ξ

t− µ
σ

)
− 1

]
− t+ µ, for all t < uX , p ∈ R.

Let X ∼ GPD(ξ, µX , σX) and Y ∼ GPD(ξ, µY , σY ) with ξ 6= 0. After a straightforward

computation, it follows that

Ht(p) = G−1t (p)− F−1t (p)

= (1− p)−ξ
(
σY
ξ
− σX

ξ
+ µX − µY

)
−
(
σY
ξ
− σX

ξ
+ µX − µY

)
,
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for all p ∈ (0, 1) and t < uX , uY .

It is easy to see that

Ht(0) = 0,

H ′t(p) = ξ(1− p)−ξ−1
(
σY
ξ
− σX

ξ
+ µX − µY

)
.

Therefore, F−1t (p) ≤ G−1t (p), for all p ∈ (0, 1) and t ∈ R, whenever ξ > [<]0 and σY −σX >

[<]ξ(µY − µX), and we have X ≤0-tvar-rl Y .

A particular case of the generalized Pareto distributions is the original Pareto distibu-

tion. Given a random variable X ∼ P (a, k), we have that

F (x) =


1, for all x ≤ k,(
k

x

)a
, for all x > k.

Given that, in this case, uX = +∞, we need to compute F t, and F−1t , for all t ≥ 0, and

the following cases are distinguished:

(i) If t < k, then

F t(x) =


1, for all x ≤ k − t,(

k

t+ x

)a
, for all x > k − t.

F−1t (p) =
k

(1− p)1/a
− t, for all p ∈ (0, 1).

(ii) If t ≥ k, then

F t(x) =


1, for all x ≤ 0,(

t

t+ x

)a
, for all x > 0.

F−1t (p) =
t

(1− p)1/a
− t, for all p ∈ (0, 1).

Let X ∼ P (aX , kX) and Y ∼ P (aY , kY ) with survival functions F and G, respectively,

such that aX , aY > 1 (in order to have finite means). Let us suppose that aXkX
aX−1

> aY kY
aY −1

(in

order to E[X] > E[Y ]).

If t < kX , kY ,

Ht(p) =
kY

(1− p)1/aY
− kX

(1− p)1/aX
, for all p ∈ [0, 1),

Ht(0) = kY − kX .
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If we suppose that kX > kY , then Ht(0) < 0. Moreover, if aX > aY > 1, then

lim
p→1−

Ht(p) = +∞.

Then, S− (Ht) ≥ 1 where the last sign change occurs from - to + with crossing point pt.

Under the notation in Theorem 3.2, t ∈ T2.

If kY < t < kX ,

Ht(p) =
t

(1− p)1/aY
− kX

(1− p)1/aX
, for all p ∈ [0, 1),

the situation is similar to the previous one, and t ∈ T2.

If kY < kX < t, and we suppose aX > aY > 1, we have

Ht(p) =
t

(1− p)1/aY
− t

(1− p)1/aX
> 0,

for all p ∈ [0, 1). Therefore, t ∈ T1.

To sum up, if

(i) aXkX
aX−1

> aY kY
aY −1

,

(ii) aX > aY > 1, and

(iii) kX > kY ,

then T = T1 ∪ T2 and, from Theorem 3.2, X ≤p0-tvar-rl Y , for some p0 ∈ (0, 1). Obviously,

for large values of aX and aY condition (i) reduces to condition (iii).

It is important to note that, in this case, it is possible to obtain explicit expressions for

the exact value of p0. In particular, X ≤p0-tvar-rl Y for

p0 = 1−
[
aX(aY − 1)kX
aY (aX − 1)kY

]aXaY /(aY −aX)

. (19)

Example 3.5 (Loglogistic distributions) The loglogistic distribution is widely used to

fit finance and risk data as the duration of claim for income protection insurance, natural

catastrophe claims and, of course, insurance claims. This distribution is closely related to

the logistic one which is widely used in statistical modeling, for example when we consider

extreme data (see Balakrishnan, 1992, for further details). A random variable follows a
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logistic distribution, denoted by X ∼ Logistic(µ, σ), with parameters µ ∈ R, σ > 0, if its

survival function is given by

F (x) =
1

1 + exp
(
x−µ
σ

) , for all x ∈ R.

If X ∼ Logistic(µ, σ), it holds that

F t(x) =
1 + exp

(
t−µ
σ

)
1 + exp

(
x+t−µ
σ

) , for all t ∈ R, x ∈ R,

F−1t (p) = σ log

[
p+ exp

(
t−µ
σ

)
1− p

]
+ µ− t, for all t ∈ R, p ∈ (0, 1).

Given X ∼ Logistic(µX , σX) and Y ∼ Logistic(µY , σY ), it follows that

Ht(p) = G−1t (p)− F−1t (p)

= σY log

p+ exp
(
t−µY
σY

)
1− p

− σX log

p+ exp
(
t−µX
σX

)
1− p

+ (µY − µX), (20)

for all p ∈ (0, 1) and t ∈ R.

Next, we consider two situations where X and Y share one of the parameters.

(i) If σX = σY := σ > 0, then

Ht(0) = 0,

H ′t(p) =
σ

p+ exp
(
t−µY
σ

) − σ

p+ exp
(
t−µX
σ

) .
If we assume that µX < µY , then Ht(p) ≥ 0, for all p ∈ (0, 1) and t ∈ R. From

Proposition 2.8, F−1t (p) ≤ G−1t (p), for all p ∈ (0, 1).

(ii) If µX = µY := µ ∈ R, (20) can be written as

Ht(p) = σY log

p+ exp
(
t−µ
σY

)
1− p

− σX log

p+ exp
(
t−µ
σX

)
1− p

 ,
for all p ∈ (0, 1) and t ∈ R.

Let us consider

h(σ) = σ log

[
p+ exp

(
t−µ
σ

)
1− p

]
, (21)

19



for all p ∈ (0, 1) and t ∈ R. Given that its derivative is given by

h′(σ) = log

[
p+ exp

(
t−µ
σ

)
1− p

]
−
(
t− µ
σ

)
exp

(
t−µ
σ

)
p+ exp

(
t−µ
σ

) ,
it is easy to see that (21) is increasing if, and only if,

log

[
p+ exp

(
t− µ
σ

)]
≥
(
t− µ
σ

)
exp

(
t−µ
σ

)
p+ exp

(
t−µ
σ

) + log(1− p),

or, equivalently,

p log

[
p+ exp

(
t− µ
σ

)]
+ exp

(
t− µ
σ

)
log

[
p+ exp

(
t− µ
σ

)]
≥
(
t− µ
σ

)
exp

(
t− µ
σ

)
+ p log(1− p) + exp

(
t− µ
σ

)
log(1− p).

Let us fix t ∈ R and p > 1− exp
(
t−µ
σ

)
and let

A := p log

[
p+ exp

(
t− µ
σ

)]
B := exp

(
t− µ
σ

)
log

[
p+ exp

(
t− µ
σ

)]
C :=

(
t− µ
σ

)
exp

(
t− µ
σ

)
D := p log(1− p) + exp

(
t− µ
σ

)
log(1− p)

In this case, we have that

A ≥ D

B ≥ C

and, therefore, h′(σ) ≥ 0. In particular, note that h is increasing for all p ∈ (0, 1) if

t ≥ µ and, consequently, Ht(p) ≥ 0, for all p ∈ (0, 1). For the rest of values of t it is

necessary to study the corresponding crossing points.

Let us consider X ∼ Logistic(0, 2) and Y ∼ Logistic(0, 5) as a particular example.

In this case, we use the graphical tool described in (18) which simplifies the analysis.

In Figure 1, we can see the corresponding function Ht(p) over p ∈ (0, 1) and t ∈
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pt

Figure 1: Ht(p) for X ∼ Logistic(0, 2) and Y ∼ Logistic(0, 5) with t ∈ (−20, 20) and

p ∈ (0, 1).

(−20, 20). It is easy to see that for t > 0, Ht(p) ≥ 0, for all p ∈ (0, 1), while for t < 0

the function suffers a change of sign from - to + in pt.

In order to analyze the pt values we can compute them numerically for different values

of t ∈ R. In Figure 2 we can see the pt values for t ∈ (−100, 100) and we realize that

this crossing point is always smaller than 1/2. In fact, limt→−∞ pt = 1/2. Given that

T = T1 ∪ T2, we can say that in this case X ≤0.5-tvar-rl Y .

The connection between the logistic and the loglogistic distributions is the following. If

X ∼ Logistic(µ, σ), then

X∗ = exp(X) ∼ LogLogistic(eµ, 1/s).

Therefore, if X and Y are two logistic distributions such that

X ≤p0-tvar-rl Y,

taking into account that the exponential function is increasing and convex and using this

fact in Theorem 2.4, it holds that

X∗ = exp(X) ≤p0-tvar-rl exp(Y ) = Y ∗,
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Figure 2: Ht(p) for X ∼ Logistic(0, 2) and Y ∼ Logistic(0, 5) with t ∈ (−20, 20) and

p ∈ (0, 1).

where X∗ and Y ∗ follow two loglogistic distributions.

Example 3.6 (Distorted distributions) Distorted distributions were introduced by Den-

neberg (1990) and Wang (1995, 1996) in the context of actuarial science for several variety

of insurance problems. A distortion function is a continuous, nondecreasing and piecewise

differentiable function h : [0, 1]→ [0, 1] such that h(0) = 0 and h(1) = 1. Given a random

variable X with finite mean and right endpoint of its support uX and a distortion function

h, the distorted random variable Xh induced by h has survival function given by

F h(x) = h
(
F (x)

)
,

for all x in the support of X, denoted by Supp(X).

If Xh is the distorted random variable induced by h, it holds that

F h,t(x) =
h(F (x+ t))

h(F (t))
, for all t < uX , x ∈ Supp(X),

F−1h,t (p) = F−1
(
1− h−1

[
(1− p)h

(
F (t)

)])
, for all t < uX , p ∈ (0, 1).

Given two distorted random variables Xh and Xl induced by h and l, respectively, it

follows that

Ht(p) = F−1l,t (p)− F−1h,t (p)

= F−1
(
1− l−1

[
(1− p)l

(
F (t)

)])
− F−1

(
1− h−1

[
(1− p)h

(
F (t)

)])
,
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for all p ∈ (0, 1) and t < uX .

On one hand, if h(t) ≥ l(t), for all t ∈ (0, 1), then F−1h,t (p) ≤ F−1l,t (p), for all t < uX

and all p ∈ (0, 1), and Xh,t ≤0-tvar-rl Xl,t. For example, let h(t) = tα and l(t) = tβ, for

0 < α < β, respectively. In this case, it holds that h(t) ≥ l(t), for all t ∈ (0, 1) and,

consequently, Xh ≤0-tvar-rl Xl.

A more interesting case is when h(t) 6≥ l(t), for all t ∈ (0, 1). From Theorem 3.2,

T = T1 ∪ T2 if, and only if, for each t < uX , one of the following conditions holds:

(i) F−1h,t (p) ≤ F−1l,t (p), for all p ∈ (0, 1), or

(ii) S− (Ht) ≥ 1 where the last sign change occurs from - to + with crossing point pt ∈

(0, 1).

Let f qh,l(p) = h−1((1− p)h(q))− l−1((1− p)l(q)), for q ∈ (0, 1), then (ii) is equivalent to

S−
(
f qh,l
)
≥ 1,

where the last sign change occurs from - to + with crossing point pt ∈ (0, 1). Taking into

account Remark 3.3, we can plot f qh,l over p ∈ (0, 1) and q ∈ (0, 1) and observe the sign

changes over q ∈ (0, 1). For example, in Figure 3, we show the plot of f qh,l(p) for h(t) = t0.45

and l(t) = 1− (1− t)2.75 and we can see that there are some q’s for which this function is

always positive (this case corresponds to t ∈ T1) and some other q’s for which there is a

sign change. Therefore, T = T1 ∪ T2.

4 Real data example

In this example of methodological nature we illustrate the previous ideas and results

through a real insurance dataset. AutoClaims is a dataset included in the package in-

suranceData (www.r-project.org, R Core Team, Vienna, Austria) and it contains the

claims experience from a large midwestern (US) property and casualty insurer for private

passenger automobile insurance. The dependent variable is the amount paid on a closed

claim, in (US) dollars (claims that were not closed by year end are handled separately) and

policyholders are categorized according to a risk classification system based on a rating
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Figure 3: f qh,l(p) for h(t) = t0.45 and l(t) = 1− (1− t)2.75, for all p ∈ (0, 1) and q ∈ (0, 1).

class of operator depending on age, gender, marital status, use of vehicle. Next, we focus

on the classes C1A, C1B, C71, C72, C7A, C7C, F11 and F71. From now on, let Y be the

corresponding claims for the F11 class. Our objective is to analyze if X ≤p0-tvar-rl Y where

X represents the corresponding claims for any of rest of classes.

First, let us see that X �hr Y . It is known that the definition of the hazard rate order

can be rewritten in terms of a property of the plot of the two survival functions. A subset

A of the Euclidean space is called star-shaped with respect to a point s if for every x ∈ A

we have that A contains the whole line segment between x and s. A real function f is

called star-shaped with respect to a point (a, b), if its epigraph is star-shaped with respect

to (a, b). Now, if we consider the plot of the points (F (t), G(t)) (in short P − P plot), we

have that X ≤hr Y , if and only if, the P̄ − P̄ plot is star-shaped with respect to (0, 0)

(see Müller and Stoyan, 2002, p. 9). In Figure 4 we give the empirical P − P plots of the

samples, that is, the plot of the points (F n(t), Gn(t)), where F n and Gn are the empirical

survival functions of X and Y , respectively. From the P−P plot, it is clear that the hazard

rate order does not hold. Now, it is natural to wonder if X ≤p0-tvar-rl Y for any p0 ∈ (0, 1).

As mentioned by Arnold (2005, p. 17) and references therein, the potential fields of

application for Pareto and/or Pareto related models includes modeling claim premiums.
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Figure 4: Empirical P − P plot.
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Parameters Test statistic

k a ak/(a− 1) K-S

C1A 4413.1532 3.5435 6148.175 0.1239

C1B 7360.4283 4.8540 9270.204 0.0893

C71 7204.7579 5.0193 8997.277 0.0974

C72 10548.676 5.8600 12719.15 0.1260

C7A 20830.5147 11.9036 22740.94 0.1068

C7C 17011.9103 8.7029 19220.39 0.1339

F11 2655.6875 2.3717 4591.691 0.1465

F71 68547.290 43.8327 70147.64 0.0875

Table 1: Fitted classical Pareto models.

One of the most used Pareto distributions is the classical one, mainly due to its small

number of parameters. Recall that in Example 3.4 we provide conditions for the comparison

between two classical Pareto distributions. In particular, if X ∼ P (aX , kX) and Y ∼

P (aY , kY ), X ≤p0-tvar-rl Y whenever aX > aY > 1, kX > kY and aXkX/(aX − 1) >

aY kY /(aY − 1).

Taking into account these ideas, first we fit a classical Pareto distribution for each of

the classes by using the R-package fitdistrplus. The computed parameters as well as the

corresponding values of ak/(a−1) are shown in Table 1. From the value of the corresponding

Kolmogorov-Smirnov statistic (see last column in Table 1), we can assume that our datasets

follow a Pareto distribution. It is worth to mention that other distributions could offer a

greater goodness of fit, but the aim of this example is to use our previous results.

Finally, it is easy to see that these values satisfy the conditions for X ≤p0-tvar-rl Y

where X represents the claims of C1A, C1B, C71, C72, C7A, C7C or F71 and Y represents

the corresponding claims of F11. Besides, Table 2 shows the p0 values for which it holds

X ≤p0-tvar-rl Y for each pair of claims, according to (19).
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C1A C1B C71 C72 C7A C7C F71

p0 0.8767 0.9615 0.9513 0.9827 0.9912 0.9906 0.9999

Table 2: p0 values.

5 Conclusions and some comments

Comparing assets in terms of their Value at Risk (VaR) or Tail Value at Risk (TVaR) is

one of the main tools in insurance in order to analyze the perform of risk assesment. Bank

risk managers follow the Basel Committee on Banking Supervision recommendations that

recently promoted shifting the quantitative risk metrics system from VaR to TVaR. In

particular, the use of the Tail Value at Risk (TVaR) offers more representative information

on risks. However, these comparisons do not consider the whole risk and, in some situations,

they are not necessary for all p (the focus is usually on large values of p).

In this paper, we have proposed a new family of stochastic orders indexed by p0 ∈ (0, 1),

that compares the tail values at risk of two conditional random variables from a certain

probability p0 and beyond. More precisely, given two random variables X and Y , it is said

that X is smaller than Y in the p0-tvar-rl order, denoted as X ≤p0-tvar-rl Y , if

TVaR[Xt; p] ≤ TVaR[Yt; p], for all t < uX , uY , and p ∈ [p0, 1),

where Xt and Yt are the residual lives of X and Y , respectively.

For two random risks X and Y , previous comparisons are of interest, for instance, when

insurance companies go to reinsurance companies to protect their capital against possible

large claims via a stop loss contract or when an insurance company offers a contract with

some franchise deductible. Besides, it is useful in medical research where the remaining

lifetime of the patients is considered.

According to Denuit et al. (2005, p. 89), the Wang risk measure, Cg, of a random

variable X is defined as

Cg(X) =

∫ +∞

0

g(F (x))dx,

where g is a nondecreasing distortion such that g(0) = 0 and g(1) = 1. The increasing

convex order (stop-loss), or equivalently, the comparison of the tails of the Value at Risk,
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can be characterized by comparing the Wang risk measures. More specifically, we have

that

TV aR[X, p] ≤ TV aR[Y, p], for all p ∈ (0, 1) if, and only if, Cg(X) ≤ Cg(Y ),

for any concave distortion g (see, for example, Denuit et al., 2005, pp. 152-154, Hong,

Karni and Safra, 1987, and Wang and Young, 1998). Unfortunately, we cannot extend this

characterization when comparing the TV aR’s from p0 on.

Along this work, we have shown relationships between the new order and some other

stochastic comparisons of interest in risk theory. In particular, it is worth to mention

that it is closely related to the p-rl and the mrl orders. In addition, we have provided

some preservation properties such as the closure under convergence and increasing convex

transformations, and sufficient conditions for this order to hold. Finally, some theoreti-

cal examples dealing with well-known risk models like the Pareto, the loglogistic and the

distorted distributions, and a real-data example were described from a methodological

perspective.
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