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ABSTRACT15

We require Spatio-temporal information about rice for executing and planning di-16

verse management practices. In this regard, data obtained from Synthetic Aperture17

Radar (SAR) sensors are well suited for tracking morphological developments of18

rice across its phenology stages. This study proposes different target characteriza-19

tion parameters from polarimetric SAR data for rice phenology mapping. Six C-band20

Radarsat-2 images acquired over Vijayawada, India, are used for complete analysis.21

It is known that polarimetric information provides excellent sensitivity for identify-22

ing crop phenology stages. Hence, in this study, we assessed phenology classification23

results using a scattering-type parameter and scattering powers for full-polarimetric24

(FP) and extracted dual-polarimetric (DP) SAR data. Here, we utilized the real25

4×4 Kennaugh matrix elements to derive these parameters equivalently for the two26

polarimetric modes (i.e., FP and DP). We obtained better overall classification accu-27

racy for each phenology stages using the proposed parameters than the existing ones28

from FP and DP SAR data. We noted that the overall classification accuracy using29

the DP SAR data was only marginally lower than the FP SAR data. This marginal30

difference in the accuracies could be due to the absence of the cross-polarized com-31

ponent in the DP SAR data. We also demonstrate the usefulness of the scattering32

powers from DP SAR data for rice phenology monitoring.33

KEYWORDS34

Supervised classification; Dual Co-pol; Radarsat-2; Phenology mapping; Full35

polarimetry; Model-free decomposition; Information content36

CONTACT Subhadip Dey. Email: sdey2307@gmail.com Microwave Remote Sensing Lab, Centre of Studies

in Resources Engineering, Indian Institute of Technology Bombay, Mumbai, India

This is a previous version of the article published in International Journal of Remote Sensing. 2021, 42(14): 5519-5543. https://doi.org/10.1080/01431161.2021.1921876

https://orcid.org/0000-0002-4979-0192
https://orcid.org/0000-0002-6496-7283
https://orcid.org/0000-0001-6720-6108
https://orcid.org/0000-0001-8407-7125
https://orcid.org/0000-0002-4216-5175
https://orcid.org/0000-0003-1006-0018
https://orcid.org/0000-0002-8002-5341
https://doi.org/10.1080/01431161.2021.1921876


1. Introduction37

Rice is an important global crop and is a staple food grown in the Indian subconti-38

nent. Having the requirement of large volumes of water, rice cultivation practice is39

generally concentrated in moderate to high rainfed areas. Throughout its cultivation40

period, it is essential to monitor several critical phenological stages to maximize rice41

productivity. These critical phenological stages include tillering, flowering and grain42

filling periods (Lampayan et al. 2015; Mahajan, Bharaj, and Timsina 2009). Hence, it43

is vital to monitor the dynamics of rice growth during these phenological stages over44

large production regions.45

Synthetic Aperture Radar (SAR) data provide valuable information to character-46

ize the development of rice canopies at different phenological stages. Previous studies47

have obtained good results for rice monitoring and mapping using X-band (Corcione48

et al. 2016; Yuzugullu, Erten, and Hajnsek 2015; Küçük, Taşkın, and Erten 2016;49

De Bernardis et al. 2015; Erten et al. 2016; Koppe et al. 2013), and C-band sen-50

sors (Zhang et al. 2014; Bouvet, Le Toan, and Lam-Dao 2009; Lopez-Sanchez et al.51

2014; Yang et al. 2017; Tian et al. 2018). The radar backscattering coefficient has52

proven to be a good indicator of rice phenological changes. Le Toan et al. (1989) utilized53

dual-polarized C-band airborne SAR data to investigate the temporal backscatter re-54

sponse (σ0
HH and σ0

VV) from rice fields. Temporal variations of σ0
HH and σ0

VV assisted in55

mapping rice fields according to the time of sowing and phenological stages. Similarly,56

radar backscatter changes over time are indicative of the phenological development of57

rice (Kurosu, Fujita, and Chiba 1995).58

Several other studies confirmed that the temporal response of co-polarized (i.e.,59

HH and VV) backscatter coefficients aptly capture the phenological evolution of60

rice (Le Toan et al. 1997; Koay et al. 2007; Bouvet, Le Toan, and Lam-Dao 2009).61
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More recently, Torbick et al. (2017) utilized the VV and VH backscatter coefficients62

of Sentinel-1 C-band SAR data to map the spatial variation of phenological stages for63

rice producing regions of Myanmar. Backscatter values for a given polarization are64

useful for inferring structural information of a target, but offer limited understanding65

of the diverse scattering mechanisms. Such features describe the complex interactions66

of the electromagnetic (EM) wave between the soil and crop and within the canopy67

itself. In this respect, often, scattering mechanisms are often distinguished by different68

scattering power decomposition techniques.69

Freeman and Durden (1998) paved the way for model-based decomposition tech-70

niques by introducing a three-component scattering power decomposition. Later Ya-71

maguchi et al. (2011) proposed the four-component approach incorporating the helix72

scattering model as a fourth component. Furthermore, Cloude and Pottier (1997)73

and Touzi (2006) decomposed the average covariance or coherency matrices with74

eigenvalue-eigenvector based decomposition techniques to provide a unique solution to75

discriminate scattering mechanisms. These decomposition methods have received con-76

siderable attention over the last decade. Li et al. (2012) utilized the Freeman-Durden,77

Cloude-Pottier, and the Touzi decomposition parameters to map and monitor rice78

crops. The study showed that the decomposition parameters enhanced the ability to79

monitor rice due to changes in the scattering phase centre with plant maturity. The80

Freeman-Durden decomposition produced the highest classification accuracy (83 %)81

for rice identification, compared to the Touzi (82 %) and the Cloude-Pottier (80 %)82

decompositions.83

Lopez-Sanchez et al. (2014) investigated the differential variations of the scattering84

power components from the Freeman-Durden decomposition with rice growth stages.85

Unique signatures obtained from these scattering powers at each growth stages help86
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to identify rice phenology. However, the Freeman-Durden decomposition power com-87

ponents are sensitive to the orientation of targets, and the volume scattering model88

uses an ensemble of uniformly distributed dipoles. Therefore, this particular volume89

model assumption may be seldom valid for all phenology stages for different crops.90

Lopez-Sanchez, Ballester-Berman, and Hajnsek (2012), and Lopez-Sanchez, Cloude,91

and Ballester-Berman (2012) investigated the importance of the dual co-polarized92

TerraSAR-X data for monitoring rice phenological stages. The phase and correlation93

between the two channels (HH and VV) provided valuable information with respect94

to crop growth development. In their study, the Cloude α parameter from the dual co-95

pol X-band SAR data showed significant sensitivity with rice development, where the96

scattering mechanisms distinctly responded to phenological changes. Lopez-Sanchez,97

Cloude, and Ballester-Berman (2012) introduced a model-based decomposition tech-98

nique for dual co-polarimetric SAR data. The decomposition technique estimates a99

random volume component plus a polarized contribution of the scattered wave (a100

rank-1 mechanism). This technique provides useful polarimetric information on rice101

morphology at different phenological stages.102

In a separate study, Ullmann, Schmitt, and Jagdhuber (2016) proposed a two-103

component decomposition technique for dual co-pol data. The approach is adapted104

from the Yamaguchi decomposition. The data is decomposed into two scattering con-105

tributions: surface and double-bounce under the assumption of a negligible vegetation106

scattering component in the Tundra environment. Hence, this decomposition technique107

might not provide adequate information for diffused, or the volume scattering compo-108

nent for crops. In another study, Dey et al. (2020a) proposed unsupervised clustering109

schemes for full and compact polarimetric SAR data using the target scattering-type110

parameter (Dey et al. 2020). Their study utilized this scattering-type parameter along111
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with the scattering entropy to characterize different phenological stages of rice. The112

work highlighted the advantages of the novel clustering schemes for phenology classi-113

fication for both full and compact polarimetric SAR data.114

In the existing dual co-pol decomposition techniques proposed by Ullmann, Schmitt,115

and Jagdhuber (2016) and Lopez-Sanchez, Cloude, and Ballester-Berman (2012), the116

power components are either: (1) two polarized power components, or (2) a volume117

plus a polarized power component. Therefore, a target in an image can not be uniquely118

characterized using these techniques. In addition, none of these methods consider a119

measure of the degree of polarization of the scattered wave. The degree of polarization120

essentially indicates the total polarized scattered component from a target. Thus, it121

may provide additional information about the morphology of the target.122

In this study, we propose a model-free scattering power decomposition framework123

uniformly for full-polarimetric (FP) and dual co-polarimetric (DP) SAR data. The124

technique utilizes information about the polarization state of the scattered wave in125

terms of the Barakat degree of polarization (Barakat 1977) and the Kennaugh matrix126

elements. Moreover, the scattering-type parameters for both FP and DP SAR data ob-127

tained from this technique are roll-invariant (i.e., independent of the target orientation128

angle about the radar line of sight).129

We use these power components to classify different phenological stages of rice. The130

phenology classification accuracy is compared with scattering powers obtained from131

other existing decomposition techniques. In summary, this study focuses on:132

• Proposal of a framework utilizing the Kennaugh matrix to describe the novel133

target scattering-type parameter from FP and DP SAR data.134

• Utilization of this parameter in the proposal of a novel model-free 3 component135

scattering power decomposition for DP SAR data.136
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• Application of the scattering-type parameter and the power components for rice137

phenology classification.138

• Comparison of the classification accuracy utilizing the DP parameters with FP139

SAR data.140

2. Study area141

The study area is located near the city of Vijayawada in the state of Andhra Pradesh,142

India (16°24′6.2′′N, 8°41′2.4′′E) as shown in Figure 1 (Mandal et al. 2019). The climatic143

zone varies from sub-humid to humid within the study area, with mostly clayey soil144

texture in this region. The spatial coverage of this test site is ≈ 25 km× 25 km. Rice is145

a major crop grown in this area. Depending on the variety and cultivation practices,146

the sowing period of rice varies from mid-June to mid-July. However, in general, cul-147

tivation starts after the pre-monsoon rain and rice is harvested during mid-December.148

The average field size is ≈ 60 m× 60 m. In each field, two sampling locations were cho-149

sen for in-situ measurements. Information about the crop growth stage, management150

practices, and biophysical parameters was noted during a field campaign which was151

conducted from June to December 2019.152

[Figure 1 about here.]153

3. Satellite data sets and pre-processing154

Fine Quad Wide (FQW) mode Radarsat-2 images were acquired from July to Novem-155

ber 2019 over the test site, as shown in Table 1. These images were multilooked by156

a factor of 2 × 3 pixels in the range and azimuth directions, respectively, to generate157

≈ 15 m× 15 m square pixel images. During rice cultivation typically many adjacent158
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fields are cultivated together. Therefore, the region appears homogeneously cropped,159

even though each individual parcel’s size is small. Hence, a 3 × 3 boxcar filter (Lee160

and Pottier 2009) was applied to reduce speckle. Dual co-polarimetric (DP) SAR data161

(HH-VV) were extracted from the FP data and are subsequently co-registered with a162

Root Mean Square Error (RMSE) ≤ 0.25 m.163

[Table 1 about here.]164

4. In situ measurement procedures165

In this study, 40 in-situ field measurements were analyzed. Soil moisture was mea-166

sured in each field for two sampling locations. These locations were arranged in two167

parallel transects along the row direction, with a separation between each transect168

of ≈ 40 m. Theta-probes were used to collect moisture measurements. The soil was169

saturated during the majority of the season due to irrigation and rainfall events.170

Vegetation measurements were gathered at two points in each field. The location171

of these points was driven by the spatial heterogeneity of plant growth within the172

fields. At each point, the Plant Area Index (PAI), plant height, and phenology173

were measured using non-destructive methods. The PAI was determined using hemi-174

spherical digital photography, with ten photos collected at each sample point along175

two transects separated by 2 m. Photographs were taken using a wide-angle lens176

mounted on a digital camera. All photos were post-processed using the CanEYE soft-177

ware (https://www6.paca.inra.fr/can-eye), which calculates an estimate of the178

PAI. Descriptions of distinct phenology stages of rice are shown in Table 2 and the179

statistics of different bio-physical and soil parameters are given in Table 3.180

[Table 2 about here.]181
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[Table 3 about here.]182

The morphological developments of rice across its various phenological stages are183

shown in Figure 2. The growth stages of rice usually consist of three major phases:184

vegetative, reproductive, and maturity. In the test site, the cultivation time of rice de-185

pends mainly on rainfall events. The growing period of rice varies from 100 days to 140186

days, depending on the varieties of rice. Short-duration cultivation lasts for 100-120187

days, medium-duration for 120-140 days, and long-duration for almost 160 days (Ad-188

hikari et al. 2011). The vegetative phase begins with the germination of the seeds and189

ends with fully developed plants. In this period, the number of tillers increases and190

stems elongate. The germination phase consists of seed and radicle development. The191

onset of the first tiller defines the initiation of the tillering stage. During booting,192

the upper part of the stem becomes thick, and flag leaf development begins. During193

this period, the majority of plants remain vertical, known as the erectophile struc-194

ture. Subsequently, panicle emergence and heading stages are observed. During this195

period, significant leaf inclination and increased random structures are visible. The196

fruit development stage starts when the grain appears and later becomes milky fol-197

lowing the complete development of anthers. In the subsequent stage, dough followed198

by the ripening condition of rice leads to the final harvest. During the late-ripening199

period, the plant-water content drops, and rice appears to be dry. The fully grown200

structure of rice becomes random as grains become heavy, while the number of leaves201

decreases (Moldenhauer and Slaton 2001).202

[Figure 2 about here.]203
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5. Methodology204

In polarimetric SAR, the 2× 2 complex scattering matrix S contains complete polari-205

metric information about backscattering from targets for each pixel. It is expressed206

in the backscatter alignment (BSA) convention in the linear horizontal (H) and linear207

vertical (V) polarization basis as,208

S =

 SHH SHV

SVH SVV

 ⇒ k = V ([S]) =
1

2
tr(SΨ), (1)

where V (·) is the vectorization operator on the scattering matrix, Ψ is the corre-209

sponding basis matrix, and tr is the sum of the diagonal elements of the matrix. Each210

element of the matrix represents the backscattering response of the target at a specific211

polarization. The matrix’s diagonal elements represent the co-polarized scattering in-212

formation, while the off-diagonal terms represent the cross-polarized information. In213

the monostatic backscattering case, the reciprocity theorem constrains the scattering214

matrix to be symmetric (i.e., SHV = SVH).215

The multi-looked Hermitian positive semi-definite 3× 3 coherency matrix T is ob-

tained from the averaged outer product of the target vector kP (derived using the

Pauli basis matrix, ΨP) with its conjugate (i.e., T = 〈kP · k∗TP 〉). Similarly, the 3 × 3

covariance matrix C is obtained from the averaged outer product of the target vec-

tor kL (derived using the Lexicographic basis matrix, ΨL) with its conjugate (i.e.,
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C = 〈kL · k∗TL 〉).

ΨP =


√

2

1 0

0 1

 √
2

1 0

0 −1

 √
2

0 1

1 0


 , (2)

ΨL =

2

1 0

0 0

 2
√

2

0 1

0 0

 2

0 0

0 1


 . (3)

In this study, we utilize the 4×4 real Kennaugh matrix K to describe backscattering216

that is expressed in terms of the elements of the T matrix as,217

kij =
1

2
tr(T η4i+j), where η4i+j = (−1)(−δ3j) A (σi ⊗ σj)A∗T, (4)

where kij is an elements of K, each σi is one of the four Pauli basis matrices and218

∗ represents the complex conjugate. Here, η is a set of sixteen 4 × 4 matrices (the219

generators of the group SU(4) plus the unit matrix) indexed by i and j as the elements220

of K. These matrices represent a generalization of the Pauli matrices in C4, i.e., the221

4-dimensional complex space (Cloude 1986). The 4 × 4 matrix formed from the four222

Pauli vectors is the unitary matrix A given as,223

A =
1√
2



1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0


, and δij =


0 i 6= j

1 i = j

(5)

where δij is the Kronecker delta function indexed by i and j. Like the conventional224

degree of polarization (Born and Wolf 2013), the nD Barakat degree of polarization mn225
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similarly characterizes the state of polarization (or purity) of an EM wave described226

by the n× n coherency matrix T (Barakat 1977). The expression of mn is given as,227

mn =

√
1− nn |T|

trn(T)
, 0 ≤ mn ≤ 1. (6)

In this study, T is either the 3×3 or the 2×2 coherency matrix for FP (HH|HV|VH|VV)228

or DP (HH|VV) SAR data, respectively. It can be shown that the Barakat degree of po-229

larization is linked to the polarimetric contribution of the Shannon entropy (Réfrégier230

et al. 2004). Here the subscript (or superscript) n denotes either FP or DP SAR data231

depending on the coherency matrix dimension.232

In order to derive the scattering-type parameter θn from the FP or DP SAR data,233

let us first consider two free variables, η1 and η2 as,234

η1 = tan−1

(
k11 − k44

2mn k11

)
and η2 = tan−1

(
k11 + k44

2mn k11

)
, (7)

where k11 and k44 are the elements of the Kennaugh matrix, K. It may be noted,235

that
k11 − k44

2mn k11
denotes the fraction of power scattered from the regular part of a236

target with respect to the total polarized power, and
k11 + k44

2mn k11
denotes the fraction of237

scattered power from the irregular part of a target with respect to the total polarized238

power (Huynen 1970). Hence, by using a simple relationship, we obtain,239

tan θn = tan (η1 − η2)

=
4mn k11 k44

k2
44 − (1 + 4m2

n) k2
11

(8)

where k11 = (T11 + T22 + T33)/2 and k44 = (−T11 + T22 + T33)/2 for FP SAR data,240
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and k11 = (T11 + T22)/2 and k44 = (−T11 + T22)/2 for DP SAR data. Tii for i = 1, 2, 3241

are the diagonal elements of T.242

Utilizing θn ∈ [−45°, 45°], we split the polarized part of the total power, i.e., 2mn k11,

into two components: even-bounce (Pnd ), and odd-bounce (Pns ) scattering powers using

a geometrical factor (1±sin 2θn). The diffused (i.e., depolarized) scattering power, (Pnv )

is obtained as the depolarized part of the total power:

Pnd = mn k11 (1− sin 2θn) , (9)

Pnv = 2 k11 (1−mn) , and (10)

Pns = mn k11 (1 + sin 2θn) . (11)

Variations of (1− sin 2θn) and (1 + sin 2θn) for θn ∈ [−45°, 45°] is shown in Figure 3.243

The two extremes of θn are labelled as Ps and Pd. It can be noted from Figure 3(a)244

that for (1 + sin 2θn): Ps = 2.0 and Pd = 0.0. These values indicate that (1 + sin 2θn)245

characterizes the odd-bounce scattering component. In contrast, it can be noted from246

Figure 3(b) that for (1 − sin 2θn): Ps = 0.0 and Pd = 2.0. These values indicate that247

(1− sin 2θn) characterizes the even-bounce scattering component.248

[Figure 3 about here.]249

The following special cases are of particular interest:250

Complete depolarization: mn = 0, then Pnd = Pns = 0, and Pnv = 2 k11.251

Pure even-bounce: mn = 1, and θn = −45° with Pns = Pnv = 0, and Pnd = 2 k11.252

Pure odd-bounce: mn = 1, and θn = 45° with Pnd = Pnv = 0, and Pns = 2 k11.253

Therefore, the advantages of this proposed decomposition technique can be sum-254

marized as:255
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• The proposed decomposition technique is model-free, i.e., no prior assumption256

on the type of scatterer existing within the scene is assumed. This is unlike the257

conventional model-based decomposition techniques in the literature.258

• It can be noted that the scattering-type parameter θn, along with the scattering259

powers, Pnd , Pns and Pnv are roll-invariant (i.e., independent of target orientation260

angle about the radar line of sight).261

• The scattering power components are non-negative and the total power (2 k11)262

is conserved for any polarization state263

For the sake of convenience, in the following text, we address the proposed FP decom-264

position as MF3CF and the DP decomposition as MF3CD.265

6. Results and Discussion266

This section presents the temporal analysis for diverse rice growth stages using the267

MF3CF and MF3CD decomposition parameters obtained from the Radarsat-2 full-268

pol and extracted dual co-pol dataset. Figures 4 and 8 show the temporal variation269

of θFP and θDP for different phenology stages of rice in this region. These values of270

θFP and θDP, along with the scattering power components, are used for supervised271

classification of rice phenological stages (as shown in Figures 7 and 11). We used the272

bootstrap sampling procedure with 600 trees with a maximum depth of 10 trees for273

classification using the random forest (RF) technique. The out of bag error starts274

to saturate beyond 600 trees. Several studies reported in the literature (Lawrence,275

Wood, and Sheley 2006; Dey et al. 2020b) confirms this fact. Tables 4 and 6 present276

an analysis of the clustering accuracies. The confusion matrix for full pol is given in277

Figures 6(a), 6(b), 6(c), 6(d), and for dual pol is given in Figures 10(a), 10(b), 10(c).278
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To compare the effectiveness of MF3CD’s powers for classification, we first conduct279

its analysis with MF3CF’s powers, proposed in Dey et al. (2020) for FP SAR data.280

[Figure 4 about here.]281

6.1. Full-polarimetric SAR data282

Utilizing MF3CF, we compute the scattering-type parameter, θFP from the full-283

polarimetric C-band Radarsat-2 SAR data. The spatial variation of θFP as a function284

of rice phenology is shown in Figure 4. In total, 4 sample fields (F1, F2, F3 and F4)285

are used for the trend analysis of θFP (Figure 5). The temporal trend in θFP, PFP
d ,286

PFP
s and PFP

v indicates phenological development of rice.287

At the beginning of the cultivation season, most of the fields were bare and smooth.288

Hence, on 06 June 2019, θFP ranges between [30°, 40°], which indicates odd-bounce289

scattering, with some variations due to differences in surface roughness in different290

fields.291

The degree of polarization (mFP) during this period is also high and varies between292

0.7 to 0.9. These high values are due to the fairly smooth field condition at this early293

stage. Hence, predominant odd-bounce scattering power is evident from Figure 5.294

Therefore, PFP
s is the dominant scattering power that varies ≈ 70 % to 80 %.295

In contrast, PFP
d and PFP

v values are fairly low early in this season. These low values296

of the scattering power components obtained from MF3CF are due to the absence of297

crop structure and a high coherent scattering mechanism. However, an anomaly in298

the values of θFP, mFP and PFP
s is observed in field F3. The exception in the values299

of these two parameters might be due to the moderate roughness condition, which300

occurred due to ploughing.301

On 24 July 2019, rice entered the early tillering stage. With the onset of rice mor-302
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phology, θFP begin to decrease. At this stage, the values of θFP are ≈15° for most of303

the fields. These low values of θFP are due to foliage growth, which must have slightly304

increased randomness in the scattering phenomenon.305

However, for field F2, it is observed that the value of θFP is ≈ 0°, i.e., the high306

amount of randomness present in the scattered wave. Rice growth in this field was307

more advanced. As a result the large number of tillers may explain this low value of308

θFP. The PAI was around 0.9 m2 m−2 during this active tillering stage.309

The increase in scattering randomness further affects the overall polarization struc-310

ture of the backscattered wave. The degree of polarization is lower as compared to 06311

June 2019. During this period, mFP varies between 0.6 to 0.8 depending on the growth312

characteristics in different rice fields. Although the values of mFP are low, the crops313

were still sparsely distributed. Hence, the scattering from the water surface beneath314

the crops was dominant during this period. As a consequence, this high backscatter315

from the water surface leads to a dominant PFP
s power component.316

On the other hand, the interaction of the wave with crop stems and the water surface317

generated a small increment in the PFP
d power component. Besides, the amount of318

diffused power component has also increased substantially due to the emergence and319

development of the crops. During this period, the proportion of PFP
s power was ≈ 60 %,320

while the proportion of PFP
d and PFP

v powers were ≈ 16 % and ≈ 24 %, respectively.321

θFP continues to decrease on 17 August 2019 when the majority of rice fields were322

in their advanced tillering stage. At this stage, the values of θFP are ≈ −16°, which323

indicates a change in the scattering mechanisms. This shift in the scattering mechanism324

is mainly due to the emergence and development of rice plants. The appearance of even-325

bounce scattering is due to the combined backscattering effect from the crop stem and326

the underlying water surface.327
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[Figure 5 about here.]328

During this period, the vertical structure of the crop and the underlying water329

jointly enhanced the degree of polarization of the scattered wave. However, differences330

in the trend of mFP are observed among F1, F2, F3 and F4 fields. A slight increase331

in the values of mFP is evident for F1 and F3 fields from Figure 5, while a decrease is332

observed for fields F2 and F4. The increase in mFP for F1 and F3 fields is likely due333

to the development of prominent vertical crop structure. In contrast, the decrease for334

F2 and F4 fields might be due to the non-homogeneous growth of the plants, where335

some canopies were more advanced than others.336

Rice was cultivated 4-6 days earlier in the F2 and F4 fields than the F1 and F3337

fields. Hence, the canopy cover in fields F2 and F4 was higher relative to F1 and F3.338

Nevertheless, the crop growth in each field, except F2 has led to a dominance of PFP
d339

power during scattering.340

At this stage of development, the value of PFP
d is ≈ 53 %, while the value of PFP

v is341

≈ 26 %. In field F2, the complex crop geometry might have produced a high amount342

of diffused power component. It is important to note that from the date onwards, PFP
v343

shows an increasing trend for most fields.344

The remaining phenological stages are dominated by even-bounce scattering, due to345

the interaction of the wave with stems and the water surface. This feature was earlier346

reported by Lopez-Sanchez et al. (2014) while analyzing Cloude alpha and the phase347

difference between the HH and VV channels.348

During this period, some fields showed variations in θFP between −5° and 10° due349

to leaf and foliage development. These stems and leaves have increased scattering350

randomness, which is well characterized by θFP as multiple bounce effects.351

Like 17 August 2019, a variation in the values of mFP is observed depending upon352
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the crop morphological conditions. The complex structure of the leaves and foliage353

might have also increased the diffused power component, PFP
v . However, the PFP

d354

power is yet dominant due to the interaction of the electromagnetic wave with the355

stem and water.356

In particular, significant multiple bounces are observed during the advanced re-357

productive stage of rice. At this time, the emergence of flowers contribute to a more358

random crop geometry. Hence, on 04 October 2019, θFP varies within ≈ [−14°, 14°].359

During this period, although the PFP
d power is slightly higher than other power com-360

ponents, a shift in the dominancy between PFP
d and PFP

v powers begins during this361

stage of growth.362

The amount of PFP
d power is 40 % to 60 %, while the PFP

v power is 20 % to 40 %.363

As the crop matures on 21 November 2019, θFP is centred on 0°. The dominance of364

PFP
v power is evident for all fields, and mFP decreases due to an increase in scattering365

randomness. θFP fluctuates around 0°, with the exception of field F4. During this366

period, most crop stems start to incline, although for some fields the crops remain367

vertical and the stem–water interaction generates a moderate amount of even-bounce368

power. At this time, the proportion of PFP
v power is 40 % to 60 %, while PFP

d and PFP
s369

powers are ≈ 30 % and ≈ 20 %, respectively.370

We used these three scattering power components, PFP
s , PFP

d and PFP
v to classify371

different phenological stages of rice with the multi-temporal C-band Radarsat-2 SAR372

dataset. In this analysis, we used the powers obtained from the An3D decomposi-373

tion (An, Cui, and Yang 2010), F3D (Freeman and Durden 1998), Y3D (Yamaguchi374

3-component decomposition) techniques and compared the classification with the pow-375

ers obtained from the proposed FP method.376

[Figure 6 about here.]377
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The phenology classification accuracies with the RF classifier are provided in Table 4378

using the MF3CF, An3D, F3D and Y3D three-component full-polarimetric decom-379

position techniques. We have particularly limited the classification comparison with380

conventional three-component decomposition techniques since the proposed decompo-381

sition technique generates only three scattering power components.382

Table 5 details the global measures aggregated from Table 4. It can be noticed383

from Table 4, that the producer’s accuracy (PA) for all bare fields using MF3CF384

is 100 %. In contrast, the PA using F3D, Y3D and An3D are 85.41 %, 89.61 % and385

79.17 %, respectively. This misclassification might be due to marginal confusion aris-386

ing between bare field condition, early tillering and booting stages which is evident387

from Figure 6(a), Figure 6(c) and Figure 6(b)). The assumptions of particular volume388

models in the model-based decomposition techniques might have raised the marginal389

confusion among the phenological stages. During this period, significant odd-bounce390

and volume scattering power components might have increased the confusion among391

these stages.392

The user’s accuracy (UA) using MF3CF is slightly low (94.11 %). This indicates393

that other phenology classes are misclassified as a bare field class (Figure 6(d)). As a394

consequence, Figure 7 maps the majority of the fields as bare, while a few fields are395

more phenologically advanced depending upon date of sowing.396

[Table 4 about here.]397

[Table 5 about here.]398

During early and advanced tillering stages, the PA drops to 82.92 % and 86.11 %,399

respectively. This decrease might be due to the similarity in the scattering mechanisms400

and the power components between the early tillering stages and advanced tillering.401
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A similar reduction in PA is also evident for F3D, An3D and Y3D.402

The similarity between scattering mechanisms and the corresponding power com-403

ponents from the advanced tillering stage and the booting stage impacted the user’s404

and producer’s accuracy, which is apparent in Figure 6(d). This effect is also ob-405

served for other decomposition techniques in Figure 6(a), Figure 6(b) and Figure 6(c).406

Consequently, misclassifications with other phenological stages were also evident (Fig-407

ure 6(d)). This is indicated by the user’s accuracy as shown in Table 4.408

In contrast, the PA using the powers from the F3D, Y3D and An3D techniques for409

early and advanced tillering stages are 78.04 %, 80.48 %, 80.48 %; and 69.44 %, 80.61 %,410

91.67 %, respectively. As stated earlier, the confusion between the early tillering and411

bare field condition is marginal for An3D and Y3D due to comparable scattering power412

components. However for F3D, the confusion is higher between these two stages, as413

well as between the advanced tillering and maturity stages. This could be due to414

the high value of volume scattering computed by the F3D technique. For all these415

three model-based decomposition techniques, the average reduction in UA and PA is416

around 2 % and 7 %, respectively, as compared to bare field condition. It can be noted417

that the differences between the PA of MF3CF and other techniques are marginal.418

This small difference might be due to the advancement of crop growth which could419

be partially accredited to the volume models assumed in those techniques. However,420

based on different volume scattering models in those decomposition techniques, the421

PA varies from one technique to another. For MF3CF, the PFP
v component is due to422

the depolarized component of the scattering wave. Hence, in this case, the power com-423

ponents of MF3CF are able to capture the scattering characteristics from distributed424

crop structures. As a consequence, the PA gets improved as compared to F3D, An3D425

and Y3D.426
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An anomaly in the accuracy between MF3CF and An3D techniques is evident dur-427

ing the advanced tillering stages compared to the bare field and early tillering stages428

(Figure 6(b)). The PA and UA using the An3D technique are marginally higher than429

that of the proposed method. This anomaly might be due to the combination of PFP
d ,430

PFP
s and PFP

v scattering power components in a unique manner. During this transi-431

tion period from an early tillering to the booting stage, the amount of polarized and432

depolarized power components generates uncertainty in the classification among early433

tillering, advanced tillering and booting stage using the proposed technique.434

During the booting stage, the scattering signature from rice is majorly comparable435

to the advanced tillering stage as the crop attains a semi-rigid structure. Hence, the PA436

using MF3CF is 82.06 %, while the UA is 86.48 %. On the other hand, the PA for F3D,437

Y3D and An3D are 69.23 %, 79.92 % and 82.06 %, while the UA is 71.04 %, 76.92 %438

and 82.06 % respectively. It may be noted that during this period, the PA and UA for439

MF3CF and the F3D, Y3D, and An3D techniques are comparable, which could be due440

to similar scattering power components during this period. In particular, F3D, Y3D441

and An3D misclassify most of the booting stage crops as being in an advanced tillering442

stage because of the high volume scattering power computed by these methods during443

these two stages.444

[Figure 7 about here.]445

At the flowering stage, both PA and UA have increased as opposed to the booting446

stage. The PA and UA at this stage are 95.46 % and 95.47 % respectively using the447

MF3CF technique. In contrast, the PA and UA using the An3D method are 90.90 %448

and 93.02 %, using the F3D are 81.81 % and 87.80 %, and using the Y3D are 88.63 %449

and 90.69 %, respectively. This increase in the accuracies might be due to the devel-450
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opment of the anther in the rice. Most of the time, the flowering stage consists of451

heading and flowering stages as flowering begins after a day heading stage completed.452

Therefore, the fully visible panicle as well as the fully open flower which are ready to453

shed pollen on each other for pollination makes this separable from booting and other454

phenological stages.455

During the maturity stage, both UA and PA records 100 % using MF3CF technique.456

These accuracies at the maturity stage essentially indicate that the RF classifier has457

had no confusion with other phenology stages. However, confusion of the maturity458

stage with other advanced phenology stages is evident in Figure 6(a), Figure 6(b) and459

Figure 6(c). Hence, a lower estimate of PA and UA are apparent during this stage.460

These lower values might to due to the similarity in volume scattering components461

during these stages.462

Therefore, the above classification accuracy in terms of PA and UA states that463

MF3CF decomposition parameters outperform the F3D, Y3D and An3D methods for464

rice phenology classification. We also observe this difference in the accuracies in terms465

of the overall accuracy and the kappa coefficient (κ).466

The overall accuracy using MF3CF is 91.17 %, while the overall accuracy using the467

F3D, Y3D and An3D methods are 76.89 %, 84.03 % and 82.77 %, respectively. Besides,468

κ using the MF3CF is 0.91, whereas, it is 0.82 for the An3D, 0.73 for the F3D and469

0.81 for the Y3D methods. Although the p-value for both methodologies affirms the470

rejection of the null hypothesis, the p-value of MF3CF is much smaller than An3D, F3D471

and Y3D. An analysis-ready temporal phenological map of rice is shown in Figure 7.472

Therefore, the high κ and the p-value in Table 5 suggests that classification using473

MF3CF holds excellent promise.474
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6.2. Dual co-polarimetric SAR data475

This section utilizes the obtained target characterization parameters from the proposed476

MF3CD decomposition technique to classify rice phenological stages. To evaluate the477

performance of these scattering power components for rice phenology classification, we478

extracted the DP data from Radarsat-2 FP SAR data. The variations of θDP across479

all phenological stages of rice are shown in Figure 8. The variations of θDP, mDP and480

MF3CD scattering power components, were considered for the same four rice fields,481

as used for the analysis of the FP data.482

[Figure 8 about here.]483

At the initial stages of crop development (i.e., early leaf development), scattering484

from the soil usually dominates. Hence, θDP is ≈ 30° to 42°. The high values of θDP are485

due to the presence of co-polarized correlations with the absence of the cross-polarized486

component.487

As discussed in the earlier section, some of the fields had a small amount of surfaces488

roughness. The overall θDP varies from 18° to 42°. However, due to the presence of489

moderately smooth to smooth soil surface in most of the fields, the percentage of490

polarized scattering power components has greatly increased.491

In particular, the interaction of EM waves with soil is dominated by the single-492

bounce scattering type, and therefore, the surface scattering power increases during493

this period. mDP ranges between 0.6 to 0.8, and the proportion of PDP
s power ranges494

between 60 % to 80 %.495

However, the PDP
v power varies from field to field depending on the surface rough-496

ness. For example, ≈ 40 % of the diffused power component is apparent in a few fields497

where the soil surface condition was somewhat rough.498
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Tillering started on 24 July 2019, but the crop density was very low at this period,499

and hence, the scattering from the soil surface was still dominant. However, crop500

emergence has slightly increased scattering randomness. Consequently, the values of501

θDP has decreased compared to 06 June 2019. During this period, it varies from 15°502

to 30°.503

Due to this increase in randomness, the values of mDP has also decreased, and504

it ranges from 0.5 to 0.6. These low values of mDP influenced the scattering power505

components significantly. During this period, the proportion of PDP
s is similar to PDP

v .506

Besides, the amount of PDP
d power has also increased due to the interaction of the EM507

wave with the stem–water configuration.508

[Figure 9 about here.]509

At the advanced tillering stage on 17 Aug, θDP reveals a significant contribution510

of the even-bounce scattering mechanism. As stated earlier, this increase in the even-511

bounce scattering is due to the wave interaction among the rice stem and surface512

water.513

Even-bounce scattering mechanism is apparent throughout the flowering stage. Be-514

sides, mDP values decreased from 24 July 2019 to 17 August 2019. However, through-515

out the phenology cycle, the cross-polarization component increases. Therefore, the516

absence of this cross-polarization component has lowered the values of mDP, in com-517

parison to mFP. The values of θDP and mDP during these periods are −5° to 30° and518

0.2 to 0.6.519

Starting from the advanced tillering stage, PDP
v powers prevails dominant. On 10520

Sep, rice advanced to the booting stage. During this stage, values of mDP have in-521

creased compared to 17 August 2019, which might be due to the presence of a weak522
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cross-polarization component.523

As a result, the magnitude of PDP
d powers has increased as compared to the previous524

date. A similar situation exists during the flowering stage on 04 Oct except for field525

F2. During this time, PDP
v and PDP

d powers coexists with significant proportion. For526

field F2, the PDP
v power is considerably higher than other components, which is due527

to high depolarization of the backscattered waves from this field.528

During the maturity stage, multiple scattering from the canopy and soil is more529

apparent. Hence, on 21 November 2019, θDP fluctuates from −8° to 10°. The multiple530

scattering from the fields has increased the amount of depolarization in the backscat-531

tered EM wave. mDP varies in the range of 0.2 to 0.4. As a result, the magnitude of532

PDP
v is very high in each field. The values of PDP

v ranges from 60 % to 80 %. Conversely,533

the values of PDP
s and PDP

d are significantly lower than 20 %.534

[Table 6 about here.]535

[Table 7 about here.]536

[Figure 10 about here.]537

Here we have shown rice phenology classification using the MF3CD scattering pow-538

ers: PDP
d , PDP

s and PDP
v from dual co-polarimetric SAR data. Additionally, the phenol-539

ogy classification accuracy is compared with the results obtained from FP SAR data.540

The producer’s and user’s accuracies are provided in Table 6 along with the global541

measurements in Table 7. We have also compared the proposed MF3CD technique’s542

classification accuracy with the existing decomposition technique for DP SAR data543

proposed by Ullmann, Schmitt, and Jagdhuber (2016) (U2D). Additionally, the ele-544

ments of the T2 coherency matrix (i.e. T11, T22 and |T12|) are also used for phenology545

classification.546
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It can be noted from Table 6, that the PA and UA for bare field condition (BF) are547

identical at 95.83 %, which is similar to the classification accuracies using MF3CF for548

FP data. However, the PA of MF3CD has decreased by ≈ 5 %, which might be due549

to the changes in the degree of polarization because of the absence of cross-polarized550

component in the coherency elements. On the other hand, the PA for U2D and T2551

matrix elements are 87.80 % and 82.92 %, respectively, while the UAs are 97.29 % and552

97.14 %, respectively. Hence, high UA essentially indicates that some pixels from other553

phenological stages are classified as the BF stage. From the confusion matrix shown554

in Figure 10(b) and Figure 10(a) we can observe a mixing among early transplanted555

(ET) and BF stages. At this stage, this mixing might have increased the UA for these556

two techniques.557

The PA and UA during the early tillering stage are 80.48 % and 91.67 %, respectively,558

which could be due to the increase in the structural complexity of the crop. Besides,559

we describe the low accuracy of the early tillering stage by addressing the relative560

similarity in the values of PDP
s and PDP

v for the bare field, advanced tillering and561

maturity stages. The difference between the accuracies of MF3CD and MF3CF are562

marginal, which is due to similar depolarization structure and co-pol response. At this563

stage, the difference between UA of MF3CF and MF3CD is ≈ 2 % and PA is ≈ 3 %.564

We also observe a similar decreasing trend in the accuracies for U2D and T2. The565

PA and UA of U2D are 84.62 % and 80.49 % and PA and UA of T2 are 79.48 % and566

75.61 %, respectively. At the advanced tillering, booting, and maturity stages, a similar567

pattern in the scattered power components produces significant confusion among the568

stages (Figure 10(c)), thereby decreasing PA and UA. Besides, an exception in the569

accuracies using MF3CF and MF3CD is evident during the booting period. The UA570

and PA using MF3CD technique are marginally higher than the MF3CF technique.571
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However, the PA and UA for U2D and T2 are significantly lower during booting. This572

difference might be due to inadequate information about the scattering from a target573

acquired by DP SAR data.574

[Figure 11 about here.]575

During booting, the similar diffused power component creates confusion with the576

advanced tillering stage. Besides, being short duration booting and flowering stages577

arise alike polarimetric features in the co-pol response. However, coherence between578

the co-polar channels still exhibits a unique pattern compared to other phenological579

stages. This pattern might impact the scattering power components of the dual co-580

polarimetric data, which depends only on the co-polar coherence term in the absence581

of the cross-polar component. On the other hand, as discussed earlier, the flowering582

stage shows a significant difference due to anther and fully visible heads. The presence583

of these crop morphological features generates a difference in the scattering mecha-584

nism, which increases the UA and PA at the flowering stage. The PA at the flowering585

stage is 90.90 %, while UA is 93.02 %. Furthermore, ample diffused scattering power586

component created considerable confusion during rice phenology classification in later587

phenological stages. Similar increase is also evident for T2 elements and U2D de-588

composition technique. The PA of T2 elements and U2D are 82.06 % and 82.04 %,589

respectively, while UAs are 91.43 % and 91.43 %, respectively.590

However, at the maturity stage, although the PDP
v power is dominant, and the pat-591

tern of PDP
d and PDP

s powers might have produced high PA (100 %) and UA (70.60 %).592

In contrast, the absence of volume or diffused component in U2D and T2 elements has593

lowered the PA and UA. The PA and UA for T2 elements are 64.86 % and 46.16 %,594

respectively. The overall accuracy using MF3CD is 86.97 % with a κ of 0.84 (Table 7).595
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On the other hand, the overall classification accuracy using U2D and T2 elements596

are 76.47 % and 71.00 %, respectively. The analysis-ready map of rice phenology using597

MF3CD is shown in Figure 11. Therefore, it can be observed that the overall classifica-598

tion accuracy using our proposed MF3CD decomposition technique is comparable to599

FP data. These overall accuracy results infer the potential of employing our MF3CD600

decomposed scattering power components for rice phenology classification.601

7. Conclusions602

This study proposed a model-free scattering power decomposition framework for full-603

polarimetric (FP), and dual-polarimetric (DP) SAR data using the Kennaugh matrix604

elements kij : i, j = 1, 2, 3, 4. We used the k11 and k44 elements of the Kennaugh605

matrix and the nD Barakat degree of polarization to describe the scattering-type606

parameter. We then used the scattering-type parameter as a geometrical factor to607

compute the three scattering power components individually for full (MF3CF) and for608

dual co-pol (MF3CD) from the total scattered power. We utilized the full-pol (FP)609

and the extracted dual co-pol (DP) data from the C-band Radarsat-2 SAR data. The610

images were acquired through the entire expanse of rice development. The scattering611

power components vary with changes in rice phenology stages. The potential of these612

scattering power components was also assessed for characterizing rice growth condition.613

The analysis of the results shows that the proposed scattering power components614

are sensitive to rice phenology and hence useful to classify different rice phenology615

stages. The power components can discriminate rice growth stages due to scattering616

purity changes based on the development of unique canopy structures as the season617

progresses. The overall classification accuracy using the proposed power components618

for the FP SAR data is better than the An and Yang three-component, Freeman and619

27



Durden three-component, and Yamaguchi three-component decomposition techniques.620

The overall accuracy using the proposed power components for the DP SAR data is621

better than using only the matrix elements or the Ullmann two-component decom-622

position technique. Moreover, the overall accuracy (OA) of using the proposed power623

components for the DP SAR data is only marginally lower than the FP SAR data.624

Like the FP SAR data, this study demonstrates the potential of DP SAR data for625

efficient rice phenology classification. In this study the OA using MF3CF and MF3CD626

are 91.17 % and 86.97 %, respectively.627

Even though the results are quite encouraging, the study has some limitations based628

on the available data sets. On the one hand, a denser time series of SAR data might629

have reduced confusion between certain phenological stages, particularly booting and630

flowering. In addition to this, enhancing the classification algorithm might also im-631

prove the mapping of intermediate phenological stages. Further, dense temporal data632

throughout the season can assist better cultivation practices. Besides this, short revisit633

times are useful to monitor phenology information closely.634

On the other hand, the proposed decomposition technique is model-free. Therefore,635

the scattering power components are unique and unambiguous. Within the decom-636

position framework, the target characterization parameters and the scattering power637

components are roll-invariant. However, the proposed technique has a limitation based638

on the nature of the coherency matrix for dual co-pol SAR data. It is apparent that the639

framework can not be extended to obtain the target asymmetry component either in640

terms of the scattering power components or the target characterization parameters.641

Nevertheless, all the scattering power components of MF3CF and MF3CD are non-642

negative and stable (i.e., the scattering power components does not change abruptly643

with a small perturbation of the coherency matrix).644
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Please note that in this work, the studies were conducted in a semi-arid region.645

However, the cultivation and management practice of rice could differ around the646

globe. Therefore, one must expand this method for other sites and other types of647

crops. Future studies should also include radar images acquired at X- and L-band,648

such as the TerraSAR-X and ALOS-2 satellites. At high frequencies, X-band could649

discriminate the initial growth stages from advanced growth stages. However, at lower650

frequencies, we expect less sensitivity to the initial emergence of the plants, and,651

as such, L-band might be useful to discriminate more advanced phenology stages of652

crops. These multi-frequency analyses would lead to a better understanding of crop653

phenology to the farming user community.654
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Figure 1. Pauli RGB image acquired on 24 July, 2019 over the JECAM test site over Vijayawada, India.
Region 1 and region 2 are the example subsets of sampling locations within the study area. The yellow box

indicates the area over which the classification of rice phenology is performed.
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(a) Bare field (b) Early tillering (c) Advanced tillering

(d) Booting (e) Flowering (f) Maturity

Figure 2. Crop morphological characteristics across phenological stages
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(a) (b)

Figure 3. Variation of (a) 1 + sin 2θn and (b) 1− sin 2θn for θn ∈ [−45°, 45°].
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(a) 06 June 2019 (b) 24 July 2019 (c) 17 August 2019

(d) 10 September 2019 (e) 04 October 2019 (f) 21 November 2019

Figure 4. Variation in θFP through the rice season with in the extent marked in yellow colour in Figure 1
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(a) F1 (b) F2

(c) F3 (d) F4

Figure 5. Variation of mFP, θFP and MF3CF scattering power components over the rice growing seasons

41



(a) F3D (b) An3D

(c) Y3D (d) MF3CF

Figure 6. The confusion matrices (in %) among different phenological stages of rice (BF: Bare field, ET: Early
tillering, AT: Advanced tillering, B: Booting, F: Flowering, M: Maturity).
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(a) 06 June (b) 24 July 2019 (c) 17 August 2019

(d) 10 September 2019 (e) 04 October 2019 (f) 21 November 2019

Figure 7. Variations in clusters using the MF3CF scattering power components for the rice growing season

with in the extent marked in yellow colour in Figure 1

43



(a) 06 June 2019 (b) 24 July 2019 (c) 17 August 2019

(d) 10 September 2019 (e) 04 October 2019 (f) 21 November 2019

Figure 8. Variation in θDP through the rice season with in the extent marked in yellow colour in Figure 1
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(a) F1 (b) F2

(c) F3 (d) F4

Figure 9. Variation of mDP, θDP and MF3CD scattering power components over the rice growing season
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(a) T2 Elements (b) U2D

(c) MF3CD (d) MF3CF

Figure 10. The confusion matrices (in %) among different phenological stages of rice (BF: Bare field,
ET: Early tillering, AT: Advanced tillering, B: Booting, F: Flowering, M: Maturity)
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(a) 06 June 2019 (b) 24 July 2019 (c) 17 August 2019

(d) 10 September 2019 (e) 04 October 2019 (f) 21 November 2019

Figure 11. Variation of cluster using MF3CD scattering power components for the rice growing season with

in the extent marked in yellow colour in Figure 1

47



Table 1. Radarsat-2 data acquired for the Indian test site

Acquisition date Beam mode Incidence angle range (°) Orbit azimuth (m)× range (m)

06 June 2019

FQ15W

33.73–36.65

Ascending 4.73× 5.11

24 July 2019 33.73–36.65
17 August 2019 33.73–36.65

10 September 2019 33.73–36.65
04 October 2019 33.73–36.64

21 November 2019 33.73–36.64
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Table 2. Description of rice morphology at different growth stages

Date Growth stage Description

06 June 2019 Bare field (BF) Complete soil layer is exposed with no standing crop
24 July 2019 Early tillering (ET) 1 to 3 tillers detectable

17 August 2019 Advanced tillering (AT) Maximum number of tillers detectable
10 September 2019 Booting (B) Flag leaf sheath swollen
04 October 2019 Flowering (F) Anthers visible on most spikelets

21 November 2019 Maturity (M) Grain becomes hard and plants appear yellowish
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Table 3. Statistics (mean ± standard deviation) of bio-physical and soil parameters at different phenology

stages of rice. Here, PH: plant height, PAI: plant area index, SM: soil moisture and NA: No measurements
available

Date PH (cm) PAI (m2 m−2) SM (%) Growth stage

06 June 2019 NA NA 31.92± 6.10 Bare field
24 July 2019 22.30± 3.21 0.60± 0.10 Saturated Early tillering

17 August 2019 49.26± 7.12 1.86± 0.36 Saturated
Advanced
tillering

10 September 2019 96.16± 8.76 6.03± 0.80 Saturated Booting
04 October 2019 98.93± 4.76 6.16± 0.13 44.60± 0.72 Flowering

21 November 2019 99.32± 1.82 5.86± 0.62 41.16± 8.04 Maturity
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Table 4. Producer’s and User’s accuracy of phenology stages of rice for MF3CF, An3D, F3D and Y3D

decomposed power components using a RF classifier. BF: Bare field, ET: Early tillering, AT: Advanced tillering,

B: Booting, F: Flowering, M: Maturity, PA: Producer’s accuracy, UA: User’s accuracy

Methodology Phenology stage

BF ET AT B F M

PA

F3D(%) 85.41 78.04 69.44 69.23 81.81 73.33
An3D(%) 79.17 80.48 91.67 82.06 90.90 70.00
Y3D(%) 89.61 80.48 80.61 76.92 88.63 86.67

MF3CF(%) 100.00 82.92 86.11 82.06 95.46 100.00

UA

F3D(%) 87.23 80.00 73.43 71.04 87.80 57.89
An3D(%) 84.44 86.84 80.49 82.06 93.02 65.63
Y3D(%) 84.31 84.61 82.86 76.92 90.69 83.87

MF3CF(%) 94.11 94.44 77.60 86.48 95.47 100.00
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Table 5. Global Measures for FP decomposition techniques

Method Overall accuracy(%) κ p-value

F3D 76.89 0.73 1.76× 10−7

An3D 82.77 0.82 2.92× 10−7

Y3D 84.03 0.81 2.83× 10−8

MF3CF 91.17 0.91 1.84× 10−8
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Table 6. Producer’s and User’s accuracy of phenology stages of rice for MF3CD, U2D and T2 matrix elements

using a RF classifier. BF: Bare field, ET: Early tillering, AT: Advanced tillering, B: Booting, F: Flowering,

M: Maturity, PA: Producer’s accuracy, UA: User’s accuracy. The results are separately compared with MF3CF.

Methodology Phenology stage

BF ET AT B F M

PA

T2 Elements(%) 82.92 79.48 59.61 57.60 82.06 64.86
U2D(%) 87.80 84.62 64.28 65.00 82.04 75.67

MF3CD(%) 95.83 80.48 83.33 89.47 90.90 100.00

MF3CF(%) 100.00 82.92 86.11 82.06 95.46 100.00

UA

T2 Elements(%) 97.14 75.61 80.64 52.27 91.43 46.16
U2D(%) 97.29 80.49 81.82 63.41 91.43 54.90

MF3CD(%) 95.83 91.67 83.33 87.18 93.02 70.60

MF3CF(%) 94.11 94.44 77.60 86.48 95.47 100.00
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Table 7. Global Measures for DP decomposition techniques

Method Overall accuracy(%) κ p-value

T2 Elements 71.00 0.66 3.93× 10−8

U2D 76.47 0.79 2.76× 10−8

MF3CD 86.97 0.84 1.93× 10−8

MF3CF 91.17 0.91 1.84× 10−8
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