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Abstract

We propose to allocate the cost of a minimum cost spanning tree by deining a 

claims problem and using claims rules, then providing easy and intuitive ways to 

distribute this cost. Depending on the starting point that we consider, we deine two 

models. On the one hand, the benefit-sharing model considers individuals’ costs to 

the source as the starting point, and then the beneit of building the eicient tree is 

shared by the agents. On the other hand, the costs-sharing model starts from the 

individuals’ minimum connection costs (the cheapest connection they can use), 

and the additional cost, if any, is then allocated. As we prove, both approaches pro‑

vide the same family of allocations for every minimum cost spanning tree problem. 

These models can be understood as a central planner who decides the best way to 

connect the agents (the eicient tree) and also establishes the amount each agent has 

to pay. In so doing, the central planner takes into account the maximum and mini‑

mum amount they should pay and some equity criteria given by a particular (claims) 

rule. We analyze some properties of this family of cost allocations, specially focus‑

ing in coalitional stability (core selection), a central concern in the literature on cost 

allocation.

Keywords Minimum cost spanning tree problem · Claims problem · Cost sharing 

rules · Core selection

1 Introduction

Consider a group of individuals who want to be connected to a water supply, or a 

telephone or cable TV network. These individuals are located at diferent places, 

and they have some (diferent) ixed costs of linking with any other individual or 
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linking to the source. The purpose of the group is to be connected to the source 

at the cheapest possible way (the minimum cost spanning tree). The allocation of 

this cost among the individuals in the network, once the optimal spanning tree is 

obtained, is an issue deeply studied in the literature, where diferent solutions have 

been proposed: Bird rule (Bird 1976), Kar (Kar 2002), Folk (Feltkamp et al. 1994; 

Bergantiños and Vidal‑Puga 2007), Cycle-complete (Trudeau 2012), or the Serial 

cost sharing rule (Moulin and Shenker 1992).

The present paper aims to deine new methods of sharing the cost of the optimal 

network by associating a claims problem to each minimum cost spanning tree situa‑

tion and then using claims rules to allocate the total cost.

Claims problems are characterized by an endowment (to be distributed among the 

agents) and a claim from each agent (the maximum amount to be allocated to this 

agent). We propose two diferent approaches: the benefit-sharing and costs-sharing 

models. In the irst model the endowment is the beneit obtained from cooperation 

when the minimum cost spanning tree is built and agents’ claims are the diference 

between their cheapest cost of connecting to the source and their cheapest connec‑

tion cost. The alternative model establishes that individuals initially pay the cost of 

their cheapest connection. Then, the endowment is the additional cost that must be 

satisied to cover the cost of the eicient tree, being the claims deined as in the pre‑

vious model. Although both models provide diferent points of view, we will show 

that no matter which view you choose, since both approaches provide the same fam‑

ily of allocations for sharing the minimum cost of the network.

Even though both mcst and claims problems involve a population of n agents, 

their dimensionalities are very diferent. In a minimum cost spanning tree problem, 

there is a source � , and the problem is deined by the costs for connecting every 

individual to the source; thus a minimum cost spanning tree problem is determined 

by (n + 1)n∕2 numbers. In a claims problem, there is an endowment and a claim for 

each agent; thus a claims problem is determined by n + 1 numbers. Therefore, trans‑

lating a minimum cost spanning tree problem into a claims problem involves some 

“loss of information” and there are many ways to proceed.

On the other hand, this translation beneits from the simplicity and tradition of 

claims rules (equal gains, equal losses, proportional gains/losses, etc.), that might 

be found in the rich literature which originated with the seminal paper by (O’Neill 

1982).

In real‑world situations, when there is a conlict of interest in carrying out a joint 

project, the simplicity of the solution is important for the agents to reach an agree‑

ment. In this sense, our proposal has the appeal of an easy and intuitivemechanism 

to convince the agents involved in the joint project about the equity of the solution.

Our proposal provides a bridge between the literature on claims problems and 

that on sharing the cost in network problems. As far as we know, only Driessen 

(1994) links both problems, although he analyzes the other way: transforms a claims 

problem in a minimum cost spanning tree problem.

The paper is organized as follows. In the next section we present both the mini‑

mum cost spanning tree problem and the claims problem. Section 3 introduces the 

two mentioned approaches to associate a claims problem with a minimum cost 

spanning tree situation and we prove that both models provide the same family of 
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allocations. In Sect. 4 we discuss some properties of the allocations provided by our 

model. Section 5 analyzes the coalitional stability of the proposed allocations. Some 

inal comments in Sect. 6 conclude the paper.

2  Preliminaries

2.1  Minimum cost spanning tree problem

A minimum cost spanning tree (hereafter mcst) problem involves a inite set of 

agents, N = {1, 2,… , n}, who need to be connected to a source �. We denote by N
�
 

the set of agents and the source and the elements in N
�
 are called nodes. There is an 

undirected complete graph connecting the nodes in N
�

. Any pair of nodes, i, j ∈ N
�
 , 

i ≠ j, are connected by an edge eij = (i, j) and cij ∈ ℝ+ represents the cost of direct 

link, the arc eij , between any pair of nodes i, j ∈ N
�

. We denote by � = [cij] the sym‑

metric cost matrix, where cii = 0 , for all i ∈ N
�
 . The mcst problem is represented 

by the pair (N
�

,�) , and the goal is to connect all the agents to the source (directly 

or through other agents) in the cheapest possible way. The solution to this problem, 

widely studied, is obtained by means of a spanning tree.

A network over N
�
 is any subset of N

�
× N

�
 . A spanning tree over N

�
 is a net‑

work p with no cycles that connects all elements of N
�

. We denote by P(N
�
) the set 

of all spanning trees over N
�
 . We can identify any spanning tree with a predecessor 

map p ∶ N → N
�
 so that j = p(i) is the agent (or the source) to whom i connects in 

her way towards the source. This map p deines the edges e
p

i
= (i, p(i)) in the tree. In 

a spanning tree each agent is connected to the source � , either directly, or indirectly 

through other agents. Moreover, given a spanning tree p,  there is a unique path from 

any agent i to the source given by the arcs (i, p(i)), (p(i), p2(i)),… , (pt−1(i), pt(i) = �), 

for some t ∈ ℕ. The cost of building the spanning tree p is the sum of the cost of the 

arcs in this tree:

Prim (1957) provides an algorithm which solves the problem of connecting all the 

agents to the source such that the total cost of the network is minimum.1 This opti‑

mal tree may not be unique. Denote by m a spanning tree with minimum cost and by 

Cm(N�,�) its cost (in what follows, when there is no confusion, we simply write Cm ). 

That is, for all spanning tree p ∈ P(N
�
)

Cp =

n
∑

i=1

cip(i).

1 This algorithm has n steps, as much as the number of agents. First, we select the agent i with smallest 

cost to the source, such that ci� ≤ cj�, for all j ∈ N. In the second step, we select an agent in N⧵{i} with 

the smallest cost either to the source or to agent i,  who is already connected. We continue until all agents 

are connected, at each step connecting an agent still not connected to a connected agent or to the source.
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A game with transferable utility, TU game, is a pair (N,  v) where N is the set of 

agents and v ∶ 2
N
→ ℝ is known as the characteristic function and it satisies 

v(∅) = 0 . Sh(N, v) denotes the Shapley value (Shapley 1953) of (N, v). Bird (1976) 

associated a TU game (N, v
−) to each mcst problem (N

�
,�) deining for each coali‑

tion S ⊆ N , v−(S) = C
m(S�,�) ; that is, the cost of the optimal spanning tree when only 

agents in S are involved. This is known as the property rights approach, because the 

agents in S assume that the rest of the players are not present, or that they cannot use 

the connections of agents outside S to lower the cost.

Through this work we will follow an alternative approach in which it is 

assumed that agents in a coalition S can connect the source through agents out‑

side this coalition. This context is known as non-property rights. In this case, the 

characteristic function is deined by v+(S) = min {v
−(T) ∶ S ⊆ T} . As pointed out 

in Bogomolnaia and Moulin (2010), the core of the non-property rights coopera‑

tive game (N, v
+) is included in the corresponding core of the TU game (N, v

−) . 

Therefore, our approach is more demanding in terms of coalitional stability.

Once a minimum cost spanning tree m is selected, an important issue is how 

to allocate the cost Cm among the agents, that is deined by means of a sharing 

rule (or simply, a solution). In order to deine a sharing rule it is important to 

decide if members of a coalition can freely connect the source through individu‑

als outside their coalition. In our non-property rights approach the non‑nega‑

tivity in the agents’ allocations is a natural requirement (see Bogomolnaia and 

Moulin (2010)). Then, a sharing rule � is a function that proposes for any mcst 

problem (N
�

,�) an allocation

Among the mentioned sharing rules in mcst problems, Bird, Folk and Serial solu‑

tions are non‑negative. We will compare our proposals with these solutions.

The Bird rule (Bird 1976) (B) is deined for each i ∈ N  as B
i
((N

�
,�)) = c

im(i). 

As mentioned in Bergantiños and Vidal‑Puga (2007) the idea of this rule is sim‑

ple: agents connect sequentially to the source following Prim’s algorithm and 

each agent pays the corresponding connection cost. The Serial rule (Moulin 

and Shenker 1992) (S) proposes to distribute the cost of each arc among the 

individuals that actually use it in her (unique) path joining the source. In both 

cases, if there are more than one spanning tree minimizing the total cost, then 

the solutions propose the average of the corresponding sharing in all these trees. 

Finally, the Folk rule (Feltkamp et al. 1994; Bergantiños and Vidal‑Puga 2007) 

(F) assigns to each agent i ∈ N  the amount given by the Shapley value of the 

non-property rights cooperative game, F
i
((N

�
,�)) = Sh(N, v+).

Cm =

n
∑

i=1

cim(i) ≤ Cp =

n
∑

i=1

cip(i).

�(N
�

,�) = (�
1
, �2,… , �

n
) ∈ ℝ

n

+
, such that

n
∑

i=1

�
i
= C

m
.
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2.2  Claims problems

Given a inite set of agents N = {1, 2,… , n}, a claims problem appears when 

some endowment should be distributed among these individuals, who demand 

more than what is available. It is formally deined by a vector (E, d) ∈ ℝ+ ×ℝ
n

+
, 

where E denotes the endowment and d is the vector of agents’ demands, such 

that the agents’ aggregate demand is greater than or equal to the endowment, 
∑

i∈N di ≥ E.

A claims rule � is a function that associates with each claims problem (E, d) 

a distribution of the total endowment among the agents (efficiency), such that no 

agent is allocated neither a negative amount (non-negativity), nor more than their 

claim (claim-boundedness):

Many claims rules have been proposed in the literature (see Thomson (2019) for 

formal deinitions, properties and references), among which it is worth mentioning 

the Proportional (Pr), the Constrained Equal Awards (Cea), the Constrained Equal 

Losses (Cel), or the Talmud (T). These solutions are deined as: for each claims 

problem (E, d), let R denote the sum of the agents’ claims, R =
∑

i∈N
d

i
. Then, for all 

i ∈ N , the above mentioned claims rules are deined as:

• Pr
i
(E, d) =

E

R
d

i.

• Cea
i
(E, d) = min

{

d
i
, �
}

 , where � is selected such that 
∑

i∈N Ceai(E, d) = E.

• Cel
i
(E, d) = max

{

d
i
− �, 0

}

 , where � is selected such that 
∑

i∈N Cel
i
(E, d) = E.

• T
i
(E, d) = Cea

i

(

min

{

E,
1

2
C

}

,
1

2
c

)

+ Cel
i

(

max

{

0, E −
1

2
C

}

,
1

2
c

)

.

A way to address this kind of situations is by analyzing the part of the individu‑

als’ demand that is not satisied. Speciically, given a claims problem (E, d),  the 

dual problem (L,  d) is deined by focusing on the losses the agents have with 

respect to their claims, where L denotes the total loss the agents incur, L = R − E. 

Given a claims rule �, its dual rule �D shares losses in the same way that � shares 

gains (Aumann and Maschler 1985):

The Cea and Cel rules are dual of each other. A claims rule � is self-dual if �D = � . 

The Proportional and Talmud rules are self‑dual.

3  Mapping mcst problems into claims problems

As aforementioned, we aim to deine a mapping M that associates mcst situations 

with claims problems under two alternative approaches.

0 ≤ �i(E, d) ≤ di∀i ∈ N,

n
∑

i=1

�i(E, d) = E.

�
D

i
(L, d) = d

i
− �

i
(E, d), i = 1, 2,… , n.
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• The benefit-sharing approach considers that each individual is initially allocated 

her maximum possible rational cost, that is, fully paying her cheapest way to 

connect to the source (rational individuals would never pay more than this cost, 

since agents’ goal is to connect the source at the minimum possible cost). Then, 

the savings obtained through cooperation are distributed among the individuals. 

Our argument is as follows:

  As individuals want to be connected to the source, they are willing 

to pay the cost of their connection to the source. In total, an amount that we 

denote by C
�
 is contributed. But those funds are not yet used, and the net-

work is not yet built. Then, as the network will be common owned, agents want 

their connections in the optimal network to be their cheapest ones and claim 

to reduce their contribution to this minimum amount, and demand the extra 

cost d
i∗, to be returned. If agents agree to cooperate, then everybody can be 

connected with a total cost of Cm and a network might thus be built for this 

amount. The benefit of cooperation is E = C
�
− C

m
. Finally, if the agents 

agree on how the benefit of cooperation is shared, the minimum cost spanning 

tree is built.

  Then, the pair (E, d∗) clearly deines a claims problem.

• The cost-sharing approach proposes that individuals pay initially the cost of their 

cheapest connection. The remaining cost (whenever the cheapest connections do 

not deine a spanning tree) is then distributed among the individuals. Under this 

approach the argument is as follows:

  In order to provide a common network, individuals are asked for 

an initial contribution that equals their minimum connection cost. But those 

funds, Cmin , are not enough to connect all individuals to the source, and the 

network is not yet built. If the agents agree to cooperate, then everybody can 

be connected with a total cost of Cm and a network might thus be built. The 

additional cost that remains to be distributed is the differenceE
o
= C

m
− C

min . 

Now agents may connect to the source, and their extra contribution cannot 

be greater than the difference between their connection cost to the source and 

their minimum connection cost, that we have denoted by d
i∗ . Finally, if the 

agents agree on how the additional cost is distributed, the minimum cost span-

ning tree is built.

  Then, the pair (E
o
, d∗) clearly deines a claims problem.

In both models the claim of each individual is determined by

d
i∗
≡ c∗

i�
− ci∗

for all i ∈ N, d∗ = (d1∗
, d2∗

,… , dn∗
), ci∗

= min
j∈N�,j≠i

{

cij

}

,

c∗
i�
= min

Pi�

{

∑

e∈Pi�

c(e)

}

Pi� ∶ path joining agentiwith the source�.
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Note that the actual cost for individuals to connect to the source is c∗
i�

 , since they can 

choose to use their direct connection edge (i,�) or to use any path P
i�

 . We will refer 

to c∗
i�

 as the individual i’s rational connection cost to the source.

3.1  Model 1: sharing the beneit of cooperation

We consider throughout this sub‑section that the starting points are the rational con‑

nection cost to the source, c∗
i�

, the most an individual is willing to pay. If a min‑

imum cost spanning tree with cost Cm is implemented, the beneit of cooperation 

E = C
�
− C

m
, C

�
=
∑

i∈N
c
∗

i�
, shall be returned. We assume that no individual will 

pay less than their minimum connection cost, so the claim di∗
 represents the amount 

they request to be returned from their initial payment c∗
i�

. Then, we deine a map M1 

associating to any mcst problem (N
�

,�) the claims problem M1(N
�

,�) = (E, d∗) , 

where E = C
�
− C

m
 and di∗

= c∗
i�
− ci∗.

Deinition 1 For any claims rule � the associated‑1 sharing rule for mcst problems 

�
�

1
 is deined for any mcst problem (N

�
,�) and all i ∈ N by:

As previously mentioned, a claims rule fulills non-negativity, which has a natu‑

ral interpretation in the mcst context: no individual should be allocated an amount 

greater than their rational connection cost to the source; and claim‑boundedness 

meaning that no individual should be allocated an amount below their cheapest con-

nection cost.

3.2  Model 2: sharing the extra cost

We now consider that individuals initially pay their corresponding minimum con‑

nection cost c
i∗

, so the total amount paid is Cmin =
∑

i∈N
c

i
∗

. If a minimum cost span‑

ning tree with cost Cm is implemented, there is an extra cost, E
o
= C

m
− C

min , that 

must be distributed among the agents. As we assume that no individual can pay 

more than their rational connection cost to the source, the claim of individual i is 

di
∗

= c∗
i�
− ci∗. Obviously, this claims problem is well deined, since the aggregated 

claim exceeds the endowment, 
∑n

i=1
d

i∗
≥ Eo. Then , we deine a new map M2 asso‑

ciating to any mcst problem (N
�

,�) the claims problem M2(N
�

,�) = (E
o
, d

∗
).

Deinition 2 For any claims rule � the associated‑2 sharing rule for mcst problems 

�
�

1
 is deined for any mcst problem (N

�
,�) and all i ∈ N by:

In Example  1 we compute the allocations obtained by applying our models with 

diferent claims rules, and compare them with the ones provided by some mcst shar‑

ing rules.

(�
�

1
)i(N�,�) = c∗

i�
− �i(M

1(N�,�)).

(�
�

2
)i(N�,�) = ci

∗

+ �i(M
2(N�,�)).
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Example 1 Let us consider the mcst problem deined by

Remark 1 Although the direct cost of joining agent 2 to the source is 10 units, under 

our non‑property rights approach the rational cost is 5 units through agent 1. Then, 

c
∗

2�
= 5 . Analogously, the rational cost of joining agent 3 to the source � is 6 units, 

c
∗

3�
= 6 . The rational cost of each arc, when diferent from the direct cost, appears in 

brackets in the picture.

The minimum cost spanning tree is given by function m deined as:

In order to apply claims rules, the beneit of cooperation is E = C
�
− C

m
= 8. On 

the other hand, c
∗
= (1, 1, 2), c

∗ = (4, 5, 6) , so the claims are d∗ = (3, 4, 4), and 

E
o
= 3. Table 1 shows the obtained results.

We observe that the solutions deined by using the usual claims rules propose 

reasonable allocations of the total cost. The Serial solution is retrieved (in this 

example) through the Cea or Cel claims rules. We also note that �1 and �
2
 coin‑

cide when applied to Proportional or Talmud rules. This is a direct consequence 

of duality properties in claims rules, since these rules are self‑dual, and it is for‑

mally established in the following result.

m(1) = � m(2) = 1 m(3) = 1; C
m
= 7; C

�
= 15; C

min = 4.

Table 1  Proposals obtained by applying mcst solutions and claims rules in Example 1

Bird Serial Folk �Pr

1
�Cea

1
�Cel

1
�T

1
�Pr

2
�Cea

2
�Cel

2
�T

2

�1 4 4/3 13/6 20/11 4/3 2 2 20/11 2 4/3 2

�
2

1 7/3 13/6 23/11 7/3 2 2 23/11 2 7/3 2

�
3

2 10/3 16/6 34/11 10/3 3 3 34/11 3 10/3 3
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Proposition 1 For any mcst problem (N
�

,�) ∈ N
n
 and any claims rule �,

Proof Let us consider the associated claims problems

By deinition of �D,

Then,

and duality is obtained.   ◻

Consequently we obtain that if a claims rule � is self dual, for any mcst problem 

(N
�

,�) both models propose the same distribution of the total cost.

In particular, the Proportional or Talmud rules provide the same allocation with the 

pessimistic and the optimistic model.

Therefore, the two models propose the same family of cost allocations. Then, 

hereinafter we will only analyze the model deined by M1
.

4  Properties

Bergantiños and Vidal‑Puga (2007) provide a very exhaustive normative study 

on the solutions of mcst problems. They present a list of properties that a solution 

should satisfy and compare, among others, the Bird and Folk solutions in terms of 

the properties that satisfy.2

In this section we analyze if some of these properties are fulilled by the solutions 

we have deined through claims rules. The property of coalitional stability (core 

selection) is analyzed in the next section. We irst briely introduce the properties.

�
�

1
(N�,�) = �

�D

2
(N�,�).

(E, d∗) = M
1(N

�
,�), (E

o
, d∗) = M

2(N
�

,�).

�i(E, d∗) = di∗
− �

D

i

(

∑

i∈N

di∗
− E, d∗

)

= di∗
− �

D

i
(E

o
, d∗).

(�
�

1
)
i
(N�,�) = c

∗

ii
− �

i
(E, d

∗
) = c

∗

ii
−

(

d
i
∗

− �D

i
(E

o
, d

∗
)
)

= c
i
∗

+ �D

i
(E

o
, d

∗
) = (�

�D

2
)
i
(N�,�)

�
�

1
(N�,�) = �

�

2
(N�,�).

2 They show that the Folk solution satisies all properties we introduce, whereas the Bird solution fails 

to fulill Continuity, Cost monotonicity and Population monotonicity. On the other hand, it is known that 

the Serial solution does not fulill the crucial property of Individual rationality. Also, it can be shown that 

this solution does not fulill Continuity, Cost monotonicity, nor Population monotonicity.
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INDIVIDUAL RATIONALITY: A sharing rule � for mcst problems satisies Individual 

Rationality if for each problem (N
�

,�), and all i ∈ N, �i(N�
,�)i ≤ c∗

i�
.

CONTINUITY: A solution � for mcst problems satisies Continuity if � is continuous 

function of the cost matrix �.

POSITIVITY: A solution � for mcst problems satisies Positivity if for each problem 

(N
�

,�), and all i ∈ N, then �i(N�
,�) ≥ 0.

SYMMETRY: A solution � for mcst problems satisies Symmetry if for each prob‑

lem (N
�

,�), whenever individuals i, j ∈ N are such that cik = cjk, for all k ∈ N
�

, then 

�i(N�
,�) = �j(N�

,�).

COST MONOTONICITY: A solution � for mcst problems satisies Cost Monotonicity 

if for any two problems (N
�

,�), (N
�

,��), such that cij < c�
ij
 for some i ∈ N , j ∈ N

�
 

and c
kl
= c

�
kl

 otherwise, �i(N�
,�) ≤ �i(N�

,��).

It is clear that, for any claims rule � , our proposal fulills these properties.

Proposition 2 For any claims rule � the solution �
�

1
 satisfies Individual Rational-

ity, Continuity and Positivity. In addition, �
�

1
 satisfies Symmetry if the claims rule is 

symmetric and satisfies Cost monotonicity if the claims rule is claims monotonic.3

An additional property that has been considered for solutions of mcst problems is:

POPULATION MONOTONICITY: A solution � for mcst problems satisies Population 

Monotonicity if for each problem (N
�

,�), and all S ⊂ N , �i(N�
,�) ≤ �i(S�

,�) for 

all i ∈ S.

The following example shows that �
�

1
 does not fulill this property.

Example 2 Let us consider the mcst problem with n = 5 individuals depicted in the 

following igure (as the graph should be complete, we consider that the costs of the 

arcs not shown are all equal to 10).

3 A claims rule � is symmetric if for any claims problem (E, d),  di = dj implies �i(E, d) = �j(E, d). On 

the other hand, a claims rule is claims monotonic if an increase in an agent’s claim does not harm her. 

Most of claims rules in the literature, and all we have introduced, satisfy these properties.
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There are several trees with minimum cost. We consider

Throughout easy computations we obtain Cm = 2 , C
�
= 5 , E = 3 , and the claims 

vector d∗ = (1, 1, 1, 1, 1). Therefore, for any (anonymous) claims rule �

If we consider the coalition S = {3, 4, 5} and the mcst problem (S
�

,�) , our model 

allocates 
1

3
 to each agent in S (for any anonymous claims rule), contradicting Popula‑

tion monotonicity.

5  Coalitional stability

In a mcst problem, cooperation is necessary in order to implement the optimal tree. 

Then, coalitional stability is required to prevent that groups of individuals may have 

incentives to build their own network and then a minimum cost spanning tree would 

not be implemented. To this end, a cooperative game associated with a mcst prob‑

lem has been introduced so that, for each coalition S ⊆ N, the characteristic function 

represents the cost of connecting all individuals in this coalition to the source. For‑

mally, given the mcst problem (N
�

,�) and a coalition S ⊆ N, the (monotonic) cost of 

connecting this coalition to the source is (in our non‑property context):

where Cm(T) is the cost of the eicient tree of the problem (T
�

,�|
T
). The core asso‑

ciated to a mcst problem is then deined by:

In Example 1 the characteristic function is:

Although all the allocations we obtained in this example (Table  1) belong to the 

core, this is not true in general. In Example 2, the total amount allocated to coalition 

S is 6/5, which is greater than v(S) = 1 . So, no allocation in the core can be obtained 

in this example by using (anonymous) claims rules throughout our approach.

The following result shows a necessary and suicient condition, in terms of the 

mcst cost matrix, ensuring that the allocation provided by �
�

1
 belongs to the core 

of the monotonic cooperative game, regardless of the claims rule � used in its 

deinition.

m(1) = � m(2) = 1 m(3) = 4 m(4) = 5 m(5) = �

(�
�

1
)i = c

∗

i�
−

E

5
=

2

5
, i = 1, 2, 3, 4, 5

v(S) = min
{

C
m
(T) ∶ S ⊆ T ⊆ N

}

co(N
�

,�) =

{

� ∈ ℝ
n ∶

∑

i∈S

�i ≤ v(S), ∀S ⊆ N,
∑

i∈N

�i = v(N) = C
m

}

.

v({1}) = 4; v({2}) = v({1, 2}) = 5; v({3}) = v({1, 3}) = 6; v({2, 3}) = v({1, 2, 3}) = 7.
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Theorem 1 Given a mcst problem (N
�

,�) , if

for any claims rule � the allocation (�
�

1
)i(N�,�) = c∗

i�
− �i(E, d

∗
), i ∈ N, belongs 

to the core of the monotonic cooperative game associated with the mcst problem. 

Conversely, if for any claims rule �, the allocation (�
�

1
)(N�,�) belongs to the core, 

Condition (1) is fulfilled.

Proof First we consider S ⊆ N such that v(S) ≠
∑

i∈S
c
∗
i�

 . We need to prove that, for 

any claims rule �,

We know that any claims rule � satisies non-negativity and claim-boundedness, 

which implies that for all S ⊆ N,

Note that E −
∑

i∉S
d

i∗ =
∑

i∈S
c
∗

ii
+ c

i∗ − C
m
 and then

from Condition (1). Let us consider now a coalition S ⊆ N such that v(S) =
∑

i∈S
c
∗
i�

 . 

As 
(

�
�

1

)

i
≤ c

∗
i�

 , obviously 
∑

i∈S
(�

�

1
)i(N�,�) ≤ v(S). So, for any claims rule � , �

�

1
 is 

in the core of the monotonic cooperative game.

Conversely, let us suppose that for some coalition S ⊆ N , v(S) ≠
∑

i∈S
c
∗
i�

 and 

Cm −
∑

i∉S
c

i∗ > v(S). Consider the constrained dictatorial claims rule, �CD , in 

which the irst agents to receive their claims are those outside S; that is, we con‑

sider a permutation � such that �(1),�(2),… ,�(n − s) ∉ S , where s denotes the 

number of agents in S. Under our model, the claims rule provides the cost alloca‑

tion �i = c
∗
i
− �

CD

i
(E, d∗) , 

∑

i∈N �i = C
m

. If we analyze the endowment E and the 

demands of agents not in S, we obtain two possibilities: 

(a) E ≥
∑

i∉S
d

i∗ ; or       (b) E <

∑

i∉S
d

i∗

In the irst case, �CD

i
(E, d∗) = d

i∗ , so �
i
= c

i∗ for all i ∉ S . Then,

(1)
Cm −

∑

i∉S

c
i∗ ≤ v(S) for all S ⊆ N such that v(S) ≠

∑

i∈S

c∗
i�

∑

i∈S

(�
�

1
)i(N�,�) ≤ v(S).

∑

i∈S

�i(E, d∗) ≥ max

{

E −
∑

i∉S

di∗
, 0

}

.

∑

i∈S

(�
�

1
)i(N�,�) =

∑

i∈S

c
∗

i�
−
∑

i∈S

�i(E, d∗) ≤
∑

i∈S

c
∗

i�
− max

{

E −
∑

i∉S

di∗
, 0

}

≤
∑

i∈S

c
∗

i�
−

(

E −
∑

i∉S

di∗

)

= C
m
−
∑

i∉S

ci∗ ≤ v(S)
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and the allocation is not in the core.

The second case implies �CD

i
(E, d∗) = 0 , so �i = c

∗
i�

 for all i ∈ S . This allocation 

only can be in the core if v(S) =
∑

i∈S
c
∗
i�

 , a contradiction. So, the allocation is nei‑

ther in the core in this case.   ◻

Checking Condition (1) may require as much calculus as directly testing that the 

allocation provided is in the core. Nevertheless, it is important to emphasize that 

this condition only depends on the data of the mcst problem and once it is checked, 

it remains valid for any claims rule. In order to interpret Condition (1), it says that, 

for any coalition S, there is some chance of obtaining beneits from cooperation even 

in the case that individuals outside S pay only their minimum connection cost (the 

minimum they can pay under our approach); or, all members in S pay her rational 

connection to the source, which is at the same time their minimum connection cost.

The suicient and necessary condition obtained to guarantee coalitional stability 

may seem quite technical. However, it is useful from an operational point of view, 

since it allows us to identify sub‑classes of mcst problems where the solution we 

propose is always a core selection, for every claims rule.

5.1  Some special classes of mcst problems

In this section we show some classes of mcst problems so that Condition (1) is 

always fulilled and the allocation �
�

1
(N�,�) belongs to the core of the monotonic 

cooperative game, for any claims rule �.

5.1.1  2−mcst problems

Let us consider the so‑called 2−mcst problems (Estévez‑Fernández and Reijnierse 

2014; Subiza et al. 2016) in which the connection cost between two diferent indi‑

viduals (houses, villages, ...) can only take one of two possible values (low and high 

cost). Moreover, we consider problems (N
�

,�) such that cij = k1, i, j ∈ N , i ≠ j, 

ci� = k
2
, with 0 ≤ k1 ≤ k2. It is easy to check that Condition (1) is fulilled. Our 

model proposes, for any claims rule �, the allocation

which belongs to the core (it coincides with the Folk solution).

5.1.2  Information graph games

A related scenario appears when analyzing information graph games (Kuipers 

1993). This games can be formalized in the following way.

∑

i∈S

�i = C
m
−
∑

i∉S

ci∗ > v(S)

(�
�

1
)i(N�,�) = k2 −

n − 1

n
(k2 − k1) i = 1, 2,… , n,
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A set of customers N are all interested in a particular piece of information. 

A subset Z of N, called the informed set, already possesses this information. 

Other customers may purchase the information from a central supplier for a 

ixed price, say 1, or they may share the information with a friendly customer, 

who already has the information.

This situation can be represented by an undirected graph and the information graph 

game in a minimum cost spanning tree problem, where the cost of an arc is 0 or 1, 

by depending if one of the agents in the arc belong to Z. In this case, set N can be 

decomposed in disjoint components, N =
(
⋃r

t=1
Ut

�
⋃

(
⋃s

t=1
Ct

�

 , such that: 

1. For each i ∈ U
t
 , |U

t
| = 1 , c

i∗ = c
∗
i�
= 1.

2. For each i ∈ U
t
 , |U

t
| > 1 , c

i∗ = 0 , c∗
i�
= 1.

3. For each i ∈ C
t
 , c

i∗ = c
∗
i�
= 0.

Now, for each coalition S ⊆ N , if S intersects k components of type U
t
 , v(S) ≥ k and 

∑

i∉S
ci∗ ≥ r − k , whereas Cm = r . Therefore, condition (1) holds and, for any claims 

rule � , the solution �
�

1
 is in the core of the cooperative game.

5.1.3  Linear mcst problems

Another focal class of mcst problems in which Condition (1) is always satis‑

ied is given by linear msct problems. Let us consider a group of individuals 

N = {1, 2,… , n} situated in a row that wish to connect to a source � . The cost of 

connecting one individual with the next one is 1 unit. If an individual wants to con‑

nect to the source, she must do it through all its neighbors on the way towards the 

source and pay all costs.

Formally, for each i, j ∈ N, i ≠ j, the connection cost is c
ij = |i − j|. For each 

i ∈ N, the cost to the source is c
i�
= i.

The minimum cost spanning tree connects each individual to the next, and the 

irst one with the source, with a total cost Cm = n. It is easy to observe that Condi‑

tion (1) is fulilled, since for all S ⊆ N , |S| = s,

5.1.4  Bipersonal mcst problems

If there are just n = 2 agents

Cm = n,
∑

i∉S

c
i∗ = n − s, v(S) = max {i ∈ S} ≥ s.
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it is not hard to prove that Condition (1) is fulilled. Moreover, in this case, it can be 

proved that the Folk solution is obtained with our model, if we use the Talmud claims 

rule; that is,

5.2  Modifying the claims vector

Up to this point, we have ixed an estate E, the beneit of cooperation, and a vector of 

claims d∗ in order to apply our model. It is clear that other possibilities when deining 

the claim of each agent can be considered. The following result shows that the selection 

of the claims vector inluences that the inal allocation belongs to the core.

Proposition 3 Let us consider a mcst problem (N
�

,�). Let E = C
�
− C

m
 be the ben-

efit of cooperation and let c
�
=
(

c∗
1�

, c∗
2�

,… , c∗
n�

)

 be the vector of rational costs to 

the source. Then, there exists a claims vector d̂, such that for any claims rule � , 

��(N�,�) = c� − �(E, d̂) ∈ co(N�,�).

Proof To show the existence of the required claims vector, for each i ∈ N, consider 

d̂i = c∗
i�
− cim(i). Then, 

∑

i∈N d̂i = E, so (E, d̂) is a degenerated claims problem and 

for any claims rule � , �i(E, d̂) = d̂i and agent i is allocated the amount �i = c
im(i) , 

which is in the core of the cooperative game and coincides with the Bird solution if 

the minimum cost spanning tree is unique.   ◻

6  Final comments

The current paper explores a bridge between two independent problems that 

have been extensively analyzed in the literature: minimum cost spanning tree and 

claims problems. Speciically, we present new ways of allocating the cost of a 

network that are based on claims rules that share the beneit of cooperation. It is 

noteworthy that in our approach only two costs are used: the rational cost to the 

source and the cost to the cheapest edge (also the costs c
im(i) are used in order to 

compute Cm , the cost of the eicient tree). The aforementioned feature (ignoring 

most of the available information) links our proposals with the so‑called reduc-

tionism approach (Bogomolnaia and Moulin 2010).

�T

1
(N

�
,�) = F(N

�
,�).
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Our approach allows for easy and intuitive ways to distribute the cost of an 

optimal network among the involved agents. For instance, when using the pro‑

portional claims rule, our model proposes a proportional sharing of the beneit of 

cooperation, or a proportional distribution of the extra‑cost. Analogously, when 

using egalitarian claims rules, we propose an equal sharing of the beneit of coop‑

eration, or an equal sharing of the extra‑cost (subject that no agent pay more that 

their individual cost, nor a negative amount). Only the Bird, or Serial solutions 

are such easier methods. Nevertheless, the Bird solution can be seen as unfair and 

the Serial may propose for an agent a payment greater than its direct connection 

to the source. Let us observe the following example:

Then, Cm = 160 and the Bird proposal is B = (100, 60) (each agent pays their 

own connection); so, agent 1 does not obtain any gains from cooperation. The 

Serial solution is S = (50, 110) ; so, agent 2 pays more than connecting directly to 

the source. The Folk solution proposes an equal sharing of the cost, F = (80, 80). 

Our model proposes the following allocations, depending on the used claims 

rules:

As mentioned, a drawback of our proposal is that sometimes it fails to propose core 

allocations. A possible way to prevent coalitions leaving the group is to ind the core 

allocation closest to our selected proposal (see Giménez‑Gómez et al. (2020)). For 

instance, if the proportional criteria is assumed, and �Pr

1
 is not in the core, then we 

can obtain the allocation x in the core minimizing the distance d(x, �Pr

1
) , although 

we lose the simplicity and intuitive idea of the solution.
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