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Abstract Several heuristic optimization algorithms have been applied to solve en-
gineering problems. Most of these algorithms are based on populations that evolve
according to different rules and parameters to reach the optimal value of a function
cost through an iterative process. Different parallel strategies have been proposed
to accelerate these algorithms. In this work, we combined coarse-grained strategies,
based on multi-populations, with fine-grained strategies, based on a diffusion grid, to
efficiently use a large number of processes, thus drastically decreasing the comput-
ing time. The Chaotic Jaya optimization algorithm has been considered in this work
due to its good optimization and computational behaviors in solving both the con-
strained optimization engineering problems (seven problems) and the unconstrained
benchmark functions (a set of 18 functions). The experimental results show that the
proposed parallel algorithms outperform the state-of-the-art algorithms in terms of
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optimization behavior, according to the quality of the obtained solutions, and effi-
ciently exploit shared memory parallel platforms.

Keywords optimization · constrained engineering problem · Jaya algorithm · chaotic
map · parallel algorithms · OpenMP

1 Introduction

In many fields of science and engineering, and many procedures in each area, the
optimization of a function may be required. These functions are called objective or
cost functions. The particular characteristics of such a function depend on the specific
process it models. Depending on these characteristics, the optimization process can
be a complex one, which may lead, for example, to high computational costs, or may
even mean that it cannot be optimized using a deterministic mathematical procedure.

When an optimization problem can be solved using a deterministic method, it
ensures that the optimization process generates a sequence of points that tend to the
optimal value. That is, the optimization problem is solved as a linear algebra prob-
lem, in which the gradient of the objective function is usually used. Although these
methods make it possible to solve a large number of optimization problems, even for
large-scale problems, they are not always effective, either because they require ex-
cessive computing time to obtain the solution, or because the result obtained in the
available time is not of the required quality.

When deterministic methods do not meet the requirements, or there is no deter-
ministic method to solve an optimization problem, they can be replaced by meta-
heuristic optimization methods, whereby the solutions obtained are acceptable, and
the computational cost is reasonable. These methods aim to reach the optimum value
of the function by meeting the computing time requirement. If the solution obtained is
not the optimal value of the function, the solution obtained in the available computing
time must be acceptable.

A wide range of meta-heuristic optimization algorithms is based on populations.
These populations are modified iteratively to obtain new generations, whose objec-
tive is that they evolve towards the optimum of the function. Both the speed of ap-
proaching the optimum and how close to that optimal value it can get, depends on
the process of the generation of new populations, i.e. on the heuristic optimization
algorithm used.

Heuristic optimization methods have been proposed in which rules govern the
generation of new populations based on physical processes, natural phenomena or
mathematical functions, among others. Although it cannot be formally demonstrated
that the optimum values thus obtained are the real solution to the problem, they have
been experimentally proven to be robust.

Some of the proposed algorithms that have proven to be effective in several areas
of science and engineering are: genetic algorithms (GA) [26] which reflect the pro-
cess of natural selection; differential evolution (DE) [49] which attempts to iteratively
improve a candidate solution for a given measure of quality; the evolutionary strategy
(ES) algorithm [59] which was based on the processes of mutation and selection seen
in evolution; genetic programming (GP) [31] and evolutionary programming (EP) [7]
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which were based on the choice of individuals for reproduction (crossover) and mu-
tation; the biogeography-based optimisation (BBO) algorithm [35] which improves
solutions stochastically and iteratively; the gravitational search algorithm (GSA) [54]
based on Newtons law of gravity; the grenade explosion method (GEM) algorithm [1]
based on the characteristics of the explosion of a grenade; the ant colony optimization
(ACO) algorithm [16] which imitates the foraging behaviour of ant colonies; the par-
ticle swarm optimization (PSO) algorithm [48] based on the social behavior of fish
schooling or bird flocking; the artificial bee colony (ABC) algorithm [30] inspired by
the foraging behavior of honey bees; the firefly (FF) algorithm [64] inspired by the
flashing behavior of fireflies; the shuffled frog leaping (SFL) algorithm [17] which
imitates the collaborative behavior of frogs; the teaching-learning-based optimiza-
tion (TLBO) algorithm [52] based on the processes of teaching and learning; the Jaya
algorithm [51] based on geometric distances and random processes; and the SCA
algorithm [41] based on the sine and cosine trigonometric functions; among others.

The success of these algorithms depends on the ability to avoid being trapped in
local minima, the speed of approaching the optimum, and how close to the optimum
they can get. Depending on the function to be optimized, the optimization behavior
of these methods varies. Besides, many of these methods require the correct setting
of the control parameters of the optimizing method to ensure appropriate behavior,
and this setting is not general but dependent on the function to be optimized. The
non-optimal setting of these parameters can either cause a weak quality solution or
increase the computational cost drastically, as more generations are required to im-
prove the quality of the solution. Some algorithms such as TLBO, Jaya or SCA are
free of control parameters.

These methods have shown their effectiveness in real-world applications. For ex-
ample, in [46], GA was used in the path planning strategy for mobile robot navigation
in static and dynamic environments. In [63] DE was used to develop a parallel ma-
chine scheduling that minimizes both the makespan and total energy consumption. A
strategy to perform batch-mode active learning on multi-label data through an evo-
lutionary approach, formulated as a multi-objective problem, was presented in [55].
In [60], a feature selection strategy based on GP was proposed and worked well with
both balanced and unbalanced data. A learning mechanism for radial basis function
networks based on BBO was presented in [5]. In [43] GSA is used for exergy opti-
mization of the Bushehr nuclear power plant. A data clustering technique to divide a
dataset into a few unsupervised data analysis partitions based on GEM was presented
in [22]. The ACO was used in [42] to solve an advanced version of the vehicle rout-
ing problem called the fleet management system. In [28] PSO was used to improve
the quality of the video for giving effective results in the video analysis process. The
quadratic assignment problem was solved in [15] using ABC. In [32] a constrained
multi-objective function is defined for privacy-preserving in social networks, and this
function was solved by combining fuzzy clustering and FF. In [9] SFL is proposed
to minimize the makespan when solving the distributed hybrid flow shop scheduling
problem. In [45] both TLBO and Jaya were used to obtain the minimum cost of a
reinforced concrete counterfort retaining wall. And, in [13] SCA is used to solve a
short-term hydrothermal scheduling problem, among others.
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All these algorithms include randomness in the generation of new populations, so
chaos theory can be used to improve these algorithms. The chaos systems can replace
the pseudo-random number generators (PRNGs) in producing the required random
number sequences, or to perform a local search, or to generate the control parameters
of the optimizing method [56]. Some meta-heuristic optimization algorithms have
been successfully improved using chaos, for example in [20,23], chaos was applied
to the FF algorithm; in [36,65] it was applied to GA algorithms; in [27,40], it was
applied to the SA algorithm; in [58,62], it was applied to the BBO algorithm; in [29,
47], it was applied to the DE algorithm; in [2], it was applied to ABC algorithm; and
in [21], it was applied to the GSA algorithm.

This paper’s main contribution is to develop a suitable algorithm that improves
the quality of the obtained solution when solving engineering design problems, ful-
filling on the one hand that it is free of configuration parameters and on the other hand
that it is algorithmically as simple as possible. These two assumptions may lead to an
increase in the number of iterations required to achieve these objectives. Since this
increase of iterations could cause an increase in the required computational cost, we
designed improved multi-level parallel algorithms, combining coarse and fine grain
strategies, based on the chaotic C-Jaya algorithm [18] and a diffusion grid (see, for
example, [3,4]). On the one hand, multi-level parallel algorithms increase the par-
allel scalability of the proposed parallel algorithms and the number of concurrent
processes used efficiently. To meet this objective, the parallel behavior of the multi-
level parallel algorithm is optimized by working with process teams at the inner level
instead of using nested parallelism. On the other hand, using both the chaotic map to
replace randomness and a diffusion grid is intended to boost the optimization’s per-
formance, attending to the solution’s quality in solving real-world engineering design
problems.

The remainder of this paper is organized as follows. Section 2 presents a brief
description of the Jaya algorithm and the 2D chaotic map used here. In Section 3, the
multi-level parallel algorithms are explained in detail. In Section 4, we analyze the
performance of the proposed parallel algorithms in terms of both optimization and
parallel behavior, and finally, Section 5 concludes the paper.

2 Preliminaries

In this section, we briefly describe the Jaya algorithm, including its modification
when using the 2D chaotic map, and also present the 2D chaotic map.

2.1 Jaya algorithm

The Jaya algorithm was first introduced and analyzed in the optimization of con-
strained and unconstrained functions in [51]. The outstanding behavior of this algo-
rithm was shown in the first comparative studies presented in [51] and [53], and they
have been confirmed in many subsequent papers. It is worth noting that this algorithm
does not require the pre-setting of any specific parameters. Since the Jaya algorithm
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is a population-based optimization algorithm, both the population size and the stop
criterion are to be set.

The global optimum search strategy deployed in the Jaya algorithm is based on
moving towards the current population optimum while avoiding the worst individual
in the population. For the population evolving, new individuals are created following
Eq. (1). In that equation, x is the individual to be replaced if the new individual (xnew)
improves x, xbest and xworst are the best and worst individual in the population, and
rand1 and rand2 are two uniformly distributed random numbers in the range [0, 1].
The cost function to be optimized defines the number of variables for each individual
in the population, and for each variable, two new random numbers (rand1 and rand2)
must be obtained.

xnew = x+ rand1 (xbest − |x|)− rand2 (xworst − |x|) (1)

In the iterative procedure of the Jaya algorithm, shown in Algorithm 1, Eq. (1) is
applied to all individuals in the population. Note that the dimension of MinV alue,
MaxV alue, rand, rand1, rand2 and individuals xi, xbest, xworst and xnew depends
on the number of variables of the function to be optimized.

Algorithm 1 Jaya algorithm
1: Set population size
2: Set stopping criterion
3: for i = 1 to PopulationSize {Create Initial Population X:} do
4: xi = MinV alue+ (MaxV alue−MinV alue) ∗ rand[0,1]
5: Compute Fcost(xi)
6: end for
7: while (NOT stopping criterion) do
8: Search for xbest and xworst

9: for i = 1 to PopulationSize do
10: xnew = xi + rand

[0,1]
1

(
xbest −

∣∣xi
∣∣)− rand

[0,1]
2

(
xworst −

∣∣xi
∣∣)

11: Check bounds MinV alue
12: Check bounds MaxV alue
13: Compute Fcost(xnew)
14: if Fcost(xnew) < Fcost(xi) then
15: xi = xnew

16: end if
17: end for
18: end while

A possible problem with heuristic optimization algorithms is getting trapped in a
local minimum, which is minimized by increasing the population diversity. The use
of a chaotic map increases this diversity, accelerating the speed of convergence on
the one hand, and improving the exploration of the search domain on the other. The
chaotic map used in this work is briefly described below, the chaotic proof of which
is reported in [18].
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2.2 2D chaotic map

The process of searching for the optimum in heuristic optimization algorithms is
based on two phases, the exploitation phase and the exploration phase. The former
is related to the radius of convergence and the latter to the ability to explore differ-
ent regions of the search space. To balance both phases, the chaotic map presented
in [18] generates new individuals using three individuals instead of using only the
best and worst individual in the population, as generated in the original Jaya algo-
rithm (see Algorithm 1). The additional individual is randomly selected from the
current population. On the other hand, each new individual is generated by choosing
an equation from three possible options (see Eqs. (2), (3) and (4)). In these equations
xbest, xworst and xrand are the best individual, the worst individual and the random
individual respectively, SF (scaling factor) is an integer value equal to one or two,
and {chi, i = 1, 2, . . . 5} are chaotic variables obtained from the 2D cross chaotic
map and fall in the range [0, 1].

xnew = ch1xrand + ch2
(
xold − ch3xrand

)
+ ch4 (xbest − ch5xrand) (2)

xnew = ch1xrand + ch2
(
xold − ch3xrand

)
+ ch4 (xworst − ch5xrand) (3)

xnew = ch1xbest + ch2 (xrand − SFxbest) (4)

Algorithm 2 describes the process of generating the 2D chaotic map, where r1 =
0.2, s1 = 0.3, m = i and maxDim = 500. Note that the 2D map values are
in [−1, 1], thus the absolute value of the numbers extracted is calculated to obtain
values in [0, 1].

Algorithm 2 2D Chaotic map
1: Initialise r1, s1 and maxDim
2: for i = 1 to maxDim do
3: ri+1 = cos(m ∗ arccos(si))
4: si+1 = 16r5i − 20r3i + 5ri
5: end for

The partially random process for selecting the equation to generate a new indi-
vidual is detailed in Algorithm 3, in which the number of elements of each chi, i =
1, 2, . . . 5 depends on the number of variables in the cost function.

3 Multi-level parallel algorithms

The multi-level parallel proposals presented in this work are based on both the Jaya
optimization algorithm presented in Section 2.1 and the proposed use of the chaotic
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Algorithm 3 Generation of new individuals
1: rnd1int and rnd2int are integer random numbers.
2: a = min(rnd1int, rnd

2
int)

3: b = max(rnd1int, rnd
2
int)

4: ch6 are randomly selected chaotic values.
5: Select between Eqs. (2), (3) or (4):
6: if ch6 < a then
7: xnew = ch1xrand + ch2

(
xold − ch3xrand

)
+ ch4 (xbest − ch5xrand)

8: end if
9: if a < ch6 < b then

10: xnew = ch1xrand + ch2

(
xold − ch3xrand

)
+ ch4 (xworst − ch5xrand)

11: end if
12: if ch6 > b then
13: xnew = ch1xbest + ch2 (xrand − SF xbest)
14: end if

map explained in Section 2.2. The first parallel level (outer-level) exploits the coarse-
grained parallelism, while the second parallel level (inner-level) exploits the fine-
grained parallelism.

A general flowchart of the multi-level parallel algorithms is shown in Fig. 1. Note
that the total number of processing threads used depends on both the number of outer
processing threads (outNt) and the number of inner processing threads (innNt).
For example, if outNt in Fig. 1 equals 6, and innNt in the same figure equals 3,
the total number of concurrent processing threads will be 18. That is, once the outer
parallel region has been generated, each outer processing thread spawns its own team
of processing threads in its own inner parallel region.

3.1 Outer-level parallel algorithms

Two parallel coarse-grained algorithms based on multi-population (called CP-CJaya
and NCP-CJaya) have been used as outer-level parallel algorithms. These algorithms
were presented in [38]. In both parallel algorithms, the whole population was split
between the processing threads. Therefore, the size of the initial population limits the
maximum number of processing threads to be used, as the sub-populations must meet
the required minimum size.

In the parallel algorithm CP-CJaya, synchronization points are used to share in-
formation between sub-populations. In contrast, the algorithm NCP-CJaya has no
synchronization points, i.e. the synchronization point P OUTER in Fig. 1 is imple-
mented only in the CP-CJaya algorithm, while this synchronization point is removed
for the NCP-CJaya. The results presented in [38] showed that the NCP-CJaya al-
gorithm significantly improves the CP-CJaya algorithm regarding parallel behavior.
In contrast, the CP-CJaya algorithm slightly improves NCP-CJaya regarding opti-
mization behavior. However, the NCP-CJaya algorithm requires the use of large pop-
ulations to increase the number of processing threads. Some slight improvements
have been applied to the coarse-grained algorithms presented in [38]. For example,
as shown in Fig. 1, the sub-population of each (outer-level) thread is generated by
the thread itself, instead of the sequential thread which used to calculate the size of
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Fig. 1 General flowchart of the proposed multi-level parallel algorithms.
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the sub-populations of all the threads. Note that the size of the sub-population may
vary for each thread. To avoid load imbalance, the size of all sub-populations should
be the same, or similar, for all outer-level processes. A detailed description of both
methods, CP-CJaya and NCP-CJaya, can be found in [38], which are the methods
used at the outer-level of the multi-level parallel algorithm.

The main goals of the proposed work are: (i) to achieve the parallel performance
of the NCP-CJaya algorithm; (ii) to achieve the optimization performance provided
by the use of the chaotic map (cf. Section 2.2); and (iii) to be able in increasing the
number of processing threads without hampering the rest of the objectives. To achieve
these goals, we developed multi-level parallel algorithms, using a fine-grained strat-
egy at the inner-level, as explained below.

3.2 Inner-level parallel algorithms

In the multi-level parallel methods developed, whether using the CP-CJaya method
or the NCP-CJaya method as the outer-level algorithm, each outer thread spawns
its inner parallel region. The threads of each inner parallel region process the sub-
population of the external generating thread (the master thread of the inner parallel
area), where the synchronization point SP INNERTid of Fig. 1, which is used to
obtain the best and the worst individual of the sub-population, is imperative. Fine-
grained parallel proposals, due to synchronisation processes, often present problems
of parallel scalability, similar to the behavior of the CP-CJaya algorithm. Worthy of
note is that the actual behavior also depends on the features of the cost function to be
optimized.

It is mentioning that the best and worst individuals in the Jaya algorithm are em-
ployed to ensure the population evolution (see. Algorithm 1). When the 2D chaotic
map is used, an additional, randomly selected individual is also required (see Algo-
rithm 2). The use of the third individual improves the behavior of the exploration
phase of the heuristic process during optimization.

It should be noted that when using only either the CP-CJaya algorithm or the
NCP-CJaya algorithm, the third individual (random individual) used is the same for
the whole population. In contrast, the proposed fine-grained algorithm uses a dif-
ferent individual when generating each new individual. Efficient development of the
inner-level algorithm requires the sub-population to be stored in a grid structure. This
grid structure is used to perform a diffusion process, in which the random individual
used to generate a new element is different in the generation of each new individual.
Fig. 2(a) shows the grid created for a sub-population of 60 individuals, organized in
a grid of ten rows by six columns. The random individual used to generate a new
individual is selected from the eight available neighbors, as shown in Fig. 2(b) for
the individual (1, 2). Individuals located at the edges of the grid do not have eight
neighbors, as is the case with the element (5, 0), as shown in Fig. 2(b).

The selection of a random element (among the eight neighbors) for the generation
of each new individual can increase the computational cost of the algorithm without
providing any advantage. To avoid this problem, we randomly select the relative po-
sition of the neighbor to be used for the whole population (cf. Algorithm 4).
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(a) (b)

Fig. 2 Diffusion grid (10× 6).

Algorithm 4 Neighbour Selection
1: Select a random number ri ∈ {−1, 0, 1}
2: Select a random number rj ∈ {−1, 0, 1}
3: while ((ri = 0) ∧ (rj = 0)) do
4: Select ri ∈ {−1, 0, 1}
5: Select rj ∈ {−1, 0, 1}
6: end while

Fig. 3(a) shows the relative selection of the neighbor when the neighbor used as
a random individual. The neighbor does not exist for some individuals; for example,
the individuals (2,−1) and (10, 1). To solve this problem, a symmetric extension has
been made, as shown in Fig. 3(b).

Algorithm 5 shows the inner-level parallel algorithm implemented. This algo-
rithm is executed by all outer threads, each of them spawning a nested parallel region
of innNt threads.

4 Numerical experiments

In this section, both the parallel performance of the proposed multi-level parallel al-
gorithms and the behavior of the optimization when solving constrained engineering
problems are analyzed. The algorithms proposed here were implemented in the C
programming language, using the GCC v.4.8.5 [19]. The multi-level parallel algo-
rithms were designed for multicore platforms using the OpenMP API v3.1 [44]. The
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(a) (b)

Fig. 3 Neighbour selection ri = 1 and rj = −1.

Algorithm 5 Inner-level algorithm.
1: Outer thread oT
2: Shared memory: sub-populationoT , roTi , roTj , ioTbest, ioTbest, ioTworst and joTworst

3: Obtain roTi , roTj (cf. Algorithm 4)
4: Thread oT spawns inner parallel region (innNt threads):
5: for i = 0 to subpopSizeoTi − 1 do
6: for j = 0 to subpopSizeoTj − 1 do
7: Compute the new individual xnew (cf. Algorithm 3)
8: if F (xnew) < F (x(i,j)) then
9: x(i,j) = xnew

10: if F (xnew) < F (x(ioTbest,j
oT
best)) then

11: ioTbest = i

12: joTbest = j
13: end if
14: end if
15: if ((i = ioTworst) ∧ (j = joTworst)) then
16: Mark for search new worst FlagWorstoT = true
17: end if
18: end for
19: end for
20: if FlagWorstoT = true then
21: Update ioTworst and joTworst
22: end if
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multicore platform used was equipped with two Intel Xeon Gold 6140 processors,
each of which contained eighteen 2.3 GHz processing cores. The operating system
was CentOS Linux 7.6.

4.1 Benchmark sets

First, 18 well-known unconstrained functions are used to analyze the parallel behav-
ior of the proposed parallel algorithms, as listed in Table 1 and described in Table 2.
Note that the optimization behavior for unconstrained numerical functions has been
analyzed in [18,39].

Table 1: Benchmarks, dimensions and domains.

Id. Name Dim. (V) Domain (Min, Max)
F1 Sphere 30 −100, 100
F2 SumSquares 30 −10, 10
F3 Beale 2 −4.5, 4.5
F4 Easom 2 −100, 100
F5 Zakharov 10 −5, 10
F6 Schwefel problem 1.2 10 −100, 100
F7 Rosenbrock 30 −30, 30
F8 Branin 2 x1 : −5, 10;x2 : 0, 15
F9 Bohachevsky 1 2 −100, 100
F10 Booth 2 −10, 10
F11 Michalewicz 2 2 0, π
F12 Bohachevsky 2 2 −100, 100
F13 Bohachevsky 3 2 −100, 100
F14 GoldStein-Price 2 −2, 2
F15 Hartman 3 3 0, 1
F16 Ackley 30 −32, 32
F17 Langermann 2 2 0, 10
F18 Langermann 10 10 0, 10

Table 2: Benchmarks objective functions.

Id. Function

F1 f =

V∑
i=1

x2i

F2 f =
V∑
i=1

ix2i

F3 f = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2

+(2.625− x1 + x1x
3
2)

2

F4 f = − cos(x1) cos(x2) exp
(
−(x1 − π)2 − (x2 − π)2

)
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Table 3 Constrained engineering problems.

Id. Name Type
CEF1 Pressure vessel design Minimisation
CEF2 Welded beam design Minimisation
CEF3 Three bar truss design Minimisation
CEF4 Tension-compression spring design Minimisation
CEF5 Speed reducer design Minimisation
CEF6 Belleville spring design Minimisation
CEF7 Rolling element bearing design Maximisation

F5 f =

V∑
i=1

x2i +

(
V∑
i=1

0.5ixi

)2

+

(
V∑
i=1

0.5ixi

)4

F6 f =

V∑
i=1

 i∑
j=1

xj

2

F7 f =

V−1∑
i=1

(
100(xi+1 − x2i )2 + (xi − 1)2

)
F8 f =

(
x2 − 5.1

4π2x
2
1 +

5
πx1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10

F9 f = x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7
F10 f = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2

F11 f = −
2∑
i=1

sinxi

(
sin

(
ix2i
π

))20

F12 f = x21 + 2x22 − 0.3 cos(3πx1) cos(4πx2) + 0.3
F13 f = x21 + 2x22 − 0.3 cos(3πx1 + 4πx2) + 0.3
F14 f =

[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)

][
30 + (2x1 − 3x2)

2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)
]

F15 f = −
4∑
i=1

ci exp

− 3∑
j=1

aij(xj − pij)2


F16 f = −20 exp

−0.2
√√√√ 1

V

V∑
i=1

x2i

− exp

(
1
V

V∑
i=1

cos(2πxi)

)
+ 20 + e

F17
F18 f = −

5∑
i=1

ci

exp
− 1

π

V∑
j=1

(xj − aij)2
 cos

π V∑
j=1

(xj − aij)2


Optimization performance for constrained functions will be analyzed by solving
the constrained engineering problems listed in Table 3, in the scenarios of minimiza-
tion and maximization.

Pressure vessel design problem

The design problem of the pressure vessels, shown in Fig. 4, is a structural design
problem. The design consists of determining four variables: the thickness of the shell
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Fig. 4 Pressure vessel design problem.

(ds), the thickness of the heads (dh), the internal radius (R) and the length (L) of the
cylindrical section. The optimization problem consists of minimizing the financial
cost by meeting the non-linear stress constraints and yield criteria. Furthermore, both
thicknesses (ds and dh) are not continuous variables, but integer multiples of 0.0625
inches. The optimisation problem can be defined as in Eq. (5).

Pressure vessel design problem:

F = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3

x1 = ds, x2 = dh, x3 = R, x4 = L

Constraints:
g1 = −x1 + 0.0193x3 ≤ 0

g2 = −x2 + 0.00954x3 ≤ 0

g3 = −πx23x4 − (4/3)πx33 + 1296000 ≤ 0

g4 = x4 − 240 ≤ 0

0.0625 ≤ x1, x2 ≤ 99 ∗ 0.0625
10 ≤ x3, x4 ≤ 240

(5)

Welded beam design problem

This problem, shown in Fig. 5, consists of minimizing the cost of manufacturing and
assembling the welded beams by considering the welding work, the cost of material
and labor. The design consists of determining four variables; the thickness of the weld
(h), the length of the welded joint (l), the width of the beam (t), and the thickness of
the beam (b). The optimization problem definition is shown in Eq. (6), where τ(x)
is the shear stress in the weld, τmax the allowable shear stress of the weld, σ(x) the
normal stress in the beam, σmax the allowable normal stress for the beam material,
Pc(x) the bar buckling load, P the load, δ(x) the beam end deflection and δmax the
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Fig. 5 Welded beam design problem.

allowable beam end deflection. Auxiliary functions and constant values are given in
Eq. (7).

Welded beam design problem:

F = 1.10471x21x2 + 0.04811x3x4(14.0 + x2)

x1 = h, x2 = l, x3 = t, x4 = b

Constraints:
g1 = τ(x)− τmax ≤ 0

g2 = σ(x)− σmax ≤ 0

g3 = x1 − x4 ≤ 0

g4 = 0.10471x21 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

g5 = 0.125− x1 ≤ 0

g6 = δ(x)− δmax ≤ 0

g7 = P (x)− Pc(x) ≤ 0

0.1 ≤ x1, x4 ≤ 2.0

0.1 ≤ x2, x3 ≤ 10.0

(6)
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Fig. 6 Three bar truss design problem.

Auxiliary functions and constant values of welded beam problem:

τ(x) =

√
(τ ′)2 + 2τ ′τ ′′

x2
2R

+ (τ ′′)2; τ ′ =
P√
2x1x2

; τ ′′ =
MR

J

M = P
(
L+

x2
2

)
;R =

√
x22
4

+

(
x1 + x3

2

)2

J = 2

{
√
2x1x2

[
x22
12

+

(
x1 + x3

2

)2
]}

σ(x) =
6PL

x4x23

δ(x) =
4PL3

Ex3xx4

Pc(x) =
4.013E

√
x2
3x

6
4

36

L2

(
1− x3

2L

√
E

4G

)
P = 6000lb;L = 14in; δmax = 0.25in;E = 30e+ 6psi;G = 10e+ 6psi

τmax = 13600psi;σmax = 30000psi

(7)

Three bar truss design problem

When a three-bar truss structure is designed, the goal is the minimization of the vol-
ume of the structure, as shown in Fig. 6. The design variables of the cost function are
the cross-sections of the structural members. Since, a symmetrical three-bar structure
is considered, only cross-sections A1 and A2 are optimized, where A3 = A1 . The
optimization problem definition is shown in Eq. (8), where l is the length, P the load,
and σ the stress limit.
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Fig. 7 Tension-compression spring design problem.

Three bar design problem:

F = (2.0
√
2.0x1 + x2) ∗ l;

x1 = A1 = A3, x2 = A2

Constraints:

g1 =

( √
2.0x1 + x2√

2.0x21 + 2.0x1x2

)
P − σ ≤ 0

g2 =

(
x2√

2.0x21 + 2.0x1x2

)
P − σ ≤ 0

g3 =

(
1.0√

2.0x2 + x1

)
P − σ ≤ 0

P = 2.0, l = 100.0, σ = 2.0

0.0 ≤ x1, x2 ≤ 1.0

(8)

Tension-compression spring design problem

The design variables of the problem of minimizing the weight of the tension-compression
spring, shown in Fig. 7, are the wire diameter (d), the mean coil diameter (D) and
the number of active coils (N ). The constraints are related to the minimum deflection,
shear stress, surge frequency, diameter and design variables, as can be seen in Eq. (9).
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Fig. 8 Speed reducer design problem.

Tension-compression spring design problem:

F = (x3 + 2.0)x2x
2
1

x1 = d, x2 = D,x3 = N

Constraints:

g1 = 1.0−
(

x32x3
71785x41

)
≤ 0

g2 =
4.0x22 − x1x2

12566(x2x31 − x41)
+

1.0

5108x21
− 1.0 ≤ 0

g3 = 1.0−
(
140.45x1
x22x3

)
≤ 0

g4 =
x2 − x1
1.5

− 1.0 ≤ 0

0.05 ≤ x1 ≤ 2.0

0.25 ≤ x2 ≤ 1.3

2.0 ≤ x3 ≤ 15.0

(9)

Speed reducer design problem

The goal of the speed reducer design problem, shown in Fig. 8, is to minimize the
weights of the speed reducer. The constraints are related to the bending stress of the
gear teeth, surface stress, transverse deflections of the shafts and stresses in the shafts.
The design variables are the face width (b), the module of teeth (m), the number of
teeth in the pinion (z), the length of the first shaft between bearings (l1), the length
of the second shaft between bearings (l2), the diameter of the first shaft (d1) and the
diameter of the second shaft (d2). The problem is formulated in Eq. (10). Note that
the number of teeth in the pinion (z) is an integer, while the rest of the variables are
continuous.
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Speed reducer design problem:

F = 0.7854x1x
2
2

(
3.3333x23x

2
3 + 14.9334x3 − 43.0934

)
− 1.508x1

(
x26 + x27

)
+ 7.4777

(
x36 + x37

)
+ 0.7854

((
x4x

2
6

)
+
(
x5x

2
7

))
x1 = b, x2 = m,x3 = z, x4 = l1, x5 = l2, x6 = d1, x7 = d2

Constraints:

g1 =
27.0

x1x22x3
− 1.0 ≤ 0

g2 =
397.5

x1x22x
2
3

− 1.0 ≤ 0

g3 =
1.93x34
x2x3x46

− 1.0 ≤ 0

g4 =
1.93x35

x2x3X − 74
− 1.0 ≤ 0

g5 =

√(
745.0x4

x2x3

)2
+ 16900000

110.0x36
− 1.0 ≤ 0

g6 =

√(
745.0x5

x2x3

)2
+ 157500000

85.0x37
− 1.0 ≤ 0

g7 =
x2x3
40.0

− 1.00 ≤ 0

g8 =
5.0x2
x1

− 1.00 ≤ 0

g9 =
x1

12.0x2
− 1.00 ≤ 0

g10 =
1.5x6 + 1.9

x4
− 1.00 ≤ 0

g11 =
1.1x7 + 1.9

x5
− 1.00 ≤ 0

2.6 ≤ x1 ≤ 3.6; 0.7 ≤ x2 ≤ 0.8

17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3; 7.8 ≤ x5 ≤ 8.3

2.9 ≤ x6 ≤ 3.9; 5.0 ≤ x7 ≤ 5.5

(10)

Belleville spring design problem

A Belleville spring, shown in Fig. 9, should be designed with minimum weight. In
this problem, the design variables are the thickness of the spring (t), the height of the
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Fig. 9 Belleville spring design problem.

spring (h), the external diameter of the spring (De), and the internal diameter of the
spring (Di). The problem is formulated in Eq. (11), where S is the allowable strength,
E is the modulus of elasticity for the spring material, µ is the Poissons ratio, δmax
is the maximum deflection, Pmax is the maximum load acting on the spring, H is
the overall height of the spring and Dmax is the maximum outside diameter of the
spring. Some functions definitions and constant values are given in Eqs. 12 and 13.

Belleville spring design problem:

F = 0.07075πx21 − x22x3
x1 = De, x2 = Di, x3 = t, x4 = h

Constraints:

g1 = S −
(

4.0Eδmax
1.0− µ2α(x)x21

)(
γ(x)x3 + β(x)

(
x4 −

δmax
2.0

))
≥ 0

g2 =

[(
x4 −

δmax
2.0

)
(x4 − δmax)x3 + x33

](
4.0Eδmax

1.0− µ2α(x)x21

)
− Pmax ≥ 0

g3 = δ(x)− δmax ≥ 0

g4 = H − x4 − x3 ≥ 0

g5 = Dmax − x1 ≥ 0

g6 = x1 − x2 ≥ 0

g7 = 0.3− x4
x1 − x2

≥ 0

2.0 ≤ x1, x2 ≤ 12.1

0.2 ≤ x3, x4 ≤ 2.0

(11)
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Auxiliary functions and constant values of belleville spring design problem:

K(x) =
x1
x2

β(x) =

(
6.0

π ln(K(x))

)(
K(x)− 1

ln(K(x)
− 1.0

)
α(x) =

(
6.0

π ln(K(x))

)(
K(x)− 1

K(x)

)2

γ(x) =

(
6.0

π ln(K(x))

)(
K(x)− 1

2.0

)2

a(x) =
x4
x3

δ(x) = fa(a(x))a(x)

S = 200000.0;E = 2.0;µ = 0.3;Dmax = 12.01;E = 30e

Pmax = 5400.0; δmax = 0.2

(12)

a = < 1.4 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 >

fa(a) = 1.0 1.0 0.85 0.77 0.71 0.66 0.63 0.60 0.58 0.56 0.55 0.53 0.52 0.51 0.51 0.5

(13)

Rolling element bearing design problem

The rolling element bearing design problem is a maximization problem aimed at
maximizing the dynamic load capacity of a rolling element bearing. This problem,
shown in Fig. 10, has five decision variables, namely pitch diameter (Dm), ball diam-
eter (Db), number of balls (Z), curvature radius coefficient of inner raceway groove
(fi = ri/Db), curvature radius coefficient of outer raceway groove (fo = ro/Db),
and ri and ro are the inner and outer ring groove curvature ratio. It also has five
constraints constants, KDmin, KDmax, ε, e and ψ, as formulated in Eq. (14).
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Fig. 10 Rolling element bearing design problem.

Rolling element bearing design problem:

F = fcx
2/3
3 x1.82 ; if x2 ≤ 25.4

F = 3.647fcx
2/3
3 x1.42 ; if x2 > 25.4

x1 = Dm, x2 = Db, x3 = Z, x4 = fi, x5 = fo

Constraints:

g1 =
φ0

2 sin−1 x2

x1

− x3 + 1 ≥ 0

g2 = 2.0x2 − x6(D − d) ≥ 0

g3 = x7(D − d)− 2.0x2 ≥ 0

g4 = x10Bw − x2 ≥ 0

g5 = x1 − 0.5(D + d) ≥ 0

g6 = (0.5 + x9)(D + d)− x1 ≥ 0

g7 = 0.5(D − x1 − x2)− x8x2 ≥ 0

g8 = x4 − 0.515 ≥ 0

g9 = x5 − 0.515 ≥ 0

x6 = KDmin, x7 = KDmax, x8 = ε, x9 = e, x5 = ψ

(14)
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Auxiliary functions and constant values of rolling element bearing design problem:

γ =
Dbcosα

Dm

fc =37.91

1 +

[
1.04

(
1− γ
1 + γ

)1.72(
fi(2fo − 1)

fo(2fi − 1)

)0.41
]10/3

−0.3

{(
γ0.3(1− γ)1.39

(1 + γ)1/3

)(
2fi

2fi − 1

)0.41
}

T = D − d− (2.0x2)

φ0 = 2π − 2 cos−1

((
D−d
2 − 3T

4

)2
+
(
D
2 −

T
4 − x2

)2 − (d2 + T
4

)2
2
(
D−d
3 − 3T

4

) (
D
2 −

T
4 − x2

) )
D = 160; d = 90;Bw = 30;α = 0

90.0 ≤ x1 ≤ 150.0

10.5 ≤ x2 ≤ 31.5

4 ≤ x3 ≤ 50

0.515 ≤ x4, x5 ≤ 0.6

0.4 ≤ x6 ≤ 0.5

0.6 ≤ x7 ≤ 0.7

0.3 ≤ x8 ≤ 0.4

0.02 ≤ x9 ≤ 1.0

0.6 ≤ x10 ≤ 0.85

(15)

4.2 Thread affinity of multi-level parallel algorithms

Thread affinity can be defined as the method used to determine the policy for as-
signing the threads to the processing units (or cores). Since a multi-level parallel
algorithm has been designed using nested parallelism, it is crucial to explicitly define
the thread affinity to exploit the parallel platform efficiently.

As earlier mentioned, the used parallel platform was equipped with two proces-
sors, both being multi-core. Fig. 11 shows the thread placement when the thread
binding affinity is set to close (Fig. 11(a)), and spread (Fig. 11(b)), considering a
platform with two processors of only six cores. There are applications where there is
no significant difference in computing performance between the two strategies, but,
depending on the application, in particular, the pattern of memory usage and synchro-
nizations, one strategy or the other may be advisable.

However, by using a parallel multi-level strategy (through nested parallelism),
the use of a close strategy on the outer level causes the inner level threads to be
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(a) (b)

Fig. 11 Outer level affinity approaches.

(a) (b)

Fig. 12 Multi-level affinity approaches.

separate, as can be seen in Fig. 12(a). In Fig. 12, each thread is labeled by a tuple
i(j), where j is the identification of the outer thread and i is the identification of the
inner one. Therefore, this figure shows a multi-level strategy with six outer threads
and two inner threads in each outer parallel region, i.e., a total of 12 threads.

The most convenient thread placement for our parallel algorithms is shown in
Fig. 12(b), in which the outer threads are placed following the spread strategy, while
the inner threads are placed following the close strategy. OpenMP thread affinity
policies have been used to set this thread placement.

4.3 Parallel performance analysis using nested parallelism

To analyze the parallel performance of the proposed multi-level parallel algorithms,
first we make use of the 18 functions mentioned above. As stated in Section 3, the
outer algorithms used in the proposed multi-level parallel were characterized in [38].
Tables 4 and 5 show the speed-up values when a total of 12 processes are used in the
multilevel parallel algorithm, but varying the number of both the outer and inner pro-
cesses. In both tables, the population size equals 240, and 30 independent executions
are carried out with 50,000 iterations in each of them. As can be seen, the results are
significantly worse than those obtained in [38], i.e. using the outer (one-level) paral-
lel algorithm. This is mainly due to the use of the OpenMP nested regions, but also
to the use of the diffusion grid, which changes the storage structures and therefore
the computing performed. Note that each outer thread generates and destroys an in-
ternal region in each of the 50,000 iterations, increasing the parallel overhead. This
also implies that the number of synchronizations grows, since the nested parallel ar-
eas indicate additional synchronization points at the end of it. In these algorithms, the
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(outNt, innNt)
(6,2) (4,3) (3,4) (2,6)

F1 2.7 2.0 1.8 1.5
F2 2.9 2.0 2.1 1.5
F3 0.4 0.2 0.2 0.2
F4 0.4 0.3 0.2 0.2
F5 1.0 0.8 0.7 0.5
F6 3.7 2.4 2.4 1.8
F7 1.7 1.4 1.3 1.1
F8 0.3 0.2 0.2 0.1
F9 0.2 0.2 0.1 0.1
F10 0.2 0.1 0.1 0.1
F11 0.6 0.4 0.4 0.3
F12 0.2 0.2 0.1 0.1
F13 0.2 0.2 0.1 0.1
F14 0.2 0.1 0.1 0.1
F15 0.5 0.4 0.3 0.2
F16 1.2 0.9 0.8 0.7
F17 0.8 0.5 0.5 0.4
F18 1.3 1.0 1.0 0.7

Table 4 Speed-up for multi-level parallel algorithm using nested parallelism and CP-CJaya as the outer
algorithm. Population size = 240, Runs = 30, and Iterations = 50000.

(outNt, innNt)
(6,2) (4,3) (3,4) (2,6)

F1 8.9 7.9 6.6 5.9
F2 9.0 7.9 6.6 5.9
F3 2.4 1.5 1.0 0.8
F4 2.5 1.5 1.0 0.8
F5 5.6 4.2 3.2 2.4
F6 9.4 8.6 7.3 6.5
F7 8.0 6.7 5.2 4.4
F8 1.9 1.2 0.8 0.6
F9 1.7 1.0 0.7 0.5
F10 1.5 0.9 0.6 0.5
F11 3.7 2.4 1.6 1.3
F12 1.6 1.0 0.6 0.5
F13 1.6 1.0 0.6 0.5
F14 1.6 1.0 0.6 0.5
F15 3.2 2.1 1.3 1.1
F16 6.5 4.9 3.4 2.8
F17 4.6 3.2 2.1 1.7
F18 6.7 5.2 3.9 3.1

Table 5 Speed-up for multi-level parallel algorithm using nested parallelism and NCP-CJaya as the outer
algorithm. Population size = 240, Runs = 30, and Iterations = 50000.

parallel for of OpenMP has been used. When the NCP-CJaya algorithm is used as the
outer algorithm, the speed-up values improve, but these parallel algorithms are use-
less for a considerable number of processes. It should be noted that the use of parallel
nested regions in OpenMP has an intrinsic overhead [14], depending on the charac-
teristics of those regions. If the computational load of these inner parallel regions is
not costly enough, it may make this type of parallel development unfeasible.
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Our parallel multi-level algorithms aim to increase the number of processes with-
out drastically decreasing the size of the sub-populations. In this way, the size of
the sub-populations to be used can be fixed, and the number of processes can be
increased. This goal will be met if the parallel scalability of the multi-level algo-
rithms behaves appropriately. Tables 4 and 5 show that the parallel performance of
the multi-level parallel algorithms is not satisfactory when nested parallelism is used.
As stated, this undesirable behavior is due to the overhead induced by a large number
of nested parallel regions to be generated. This unwanted behavior will be solved by
using process teams instead of nested parallel regions, as outlined below.

4.4 Parallel performance analysis using process teams

Parallel processing of parallel algorithms using process teams is similar to the pro-
cessing of algorithms using nested parallel regions. The main difference is that when
using process teams, all parallel processes will be generated only once, remaining ac-
tive during all the processing. However, when using nested parallel regions, the outer
threads generate and destroy the nested parallel regions for each new generation of
individuals. The process mapping remains unchanged from the procedure explained
in Section 4.2, when OpenMP thread affinity is used.

For this purpose, the parallel threads will have three identifiers: the global thread
identifier, which is a unique identifier; the process team identifier, which matches the
outer thread identifier; and the identifier within the process team, which matches the
thread identifier inside the nested regions. Algorithm 6 shows the computing of these
identifiers.

Algorithm 6 Thread identifiers computing
1: Number of process teams n0Teams
2: Number of process per team n0ThsxTeam
3: Number of threads NoTs = n0Teams × n0ThsxTeam
4: Sequential thread spawns parallel region of NoTs threads
5: Global thread identifier GTid (using omp get thread num() function)
6: Team identifier TTid = floor(n0TeamsTeam / n0ThsxTeam)
7: ID inside Team IDteam = (n0Teams % n0ThsxTeam)

As shown in Tables 6 and 7, when using process teams and the multi-level parallel
algorithms, the parallel scalability improves significantly with respect to using nested
parallel regions. Note that by using the NCP-CJaya algorithm (cf. Algorithm 7) in-
stead of the CP-CJaya algorithm (cf. Algorithm 6) as the outer algorithm, the speed-
up values are significantly improved. The two key results are that, on the one hand,
the average cost of the efficiency (higher than 87%) allows the NCP-CJaya parallel
algorithm, using both diffusion grid and process teams, to be applicable in real en-
gineering problems. On the other hand, the parallel behavior does not depend on the
number of process teams or the number of processes in each process team. Therefore,
it is possible to set the size of the sub-populations without being related to the parallel
behavior.
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(n0Teams , n0ThsxTeam)
(6,2) (4,3) (3,4) (2,6)

F1 9.2 9.1 9.1 9.1
F2 8.0 8.1 8.0 8.1
F3 4.4 6.0 5.6 5.8
F4 4.5 6.2 6.0 6.0
F5 6.9 6.3 6.4 6.5
F6 9.9 9.8 9.8 9.9
F7 7.6 9.4 8.0 8.9
F8 3.9 5.4 5.2 5.3
F9 3.5 4.9 5.1 5.0
F10 3.0 4.7 4.4 4.4
F11 5.8 6.7 6.6 6.8
F12 3.4 5.1 5.1 4.9
F13 3.3 4.9 5.0 4.9
F14 3.2 4.7 4.5 4.7
F15 7.1 7.1 6.9 7.1
F16 8.4 8.5 8.4 9.3
F17 7.1 8.3 8.2 8.3
F18 9.4 8.7 8.6 8.7

Table 6 Speed-up for multi-level parallel algorithm using process teams and CP-CJaya as the outer algo-
rithm. Population size = 240, Runs = 30, Iterations = 50000, and 12 processes.

(n0Teams , n0ThsxTeam)
(6,2) (4,3) (3,4) (2,6)

F1 10.8 10.8 10.8 10.8
F2 10.8 10.8 10.8 10.8
F3 10.5 10.1 9.1 9.8
F4 10.7 10.5 9.7 10.1
F5 9.9 10.3 10.0 11.1
F6 10.9 10.9 10.9 10.9
F7 10.9 10.9 10.7 10.8
F8 10.6 10.4 9.5 10.0
F9 10.5 10.3 10.3 10.4
F10 10.6 10.4 9.3 9.6
F11 10.5 10.3 9.8 10.3
F12 10.4 10.5 10.4 10.3
F13 10.2 10.4 10.3 10.2
F14 10.6 10.3 9.4 9.5
F15 10.7 10.7 10.0 10.4
F16 11.0 11.0 10.9 11.0
F17 10.9 10.8 10.4 10.6
F18 10.8 10.8 10.6 10.8

Table 7 Speed-up for multi-level parallel algorithm using process teams and NCP-CJaya as the outer
algorithm. Population size = 240, Runs = 30, Iterations = 50000, and 12 processes.

Moreover, by using NCP-CJaya as the outer algorithm and using process teams to
handle each sub-population, all synchronization points can be removed. This absence
of synchronization points allows, if necessary, each sub-population to be of a different
size, which causes an evident load imbalance, but provides load balancing by varying
the number of generations associated with each sub-population.

Tables 8 and 9 show the acceleration when 20 and 30 processes are used for
the most computationally expensive functions, efficiently exploiting the parallel ar-
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((n0Teams , n0ThsxTeam))
(10,2) (5,4) (4,5) (2,10)

F1 15.8 15.6 15.4 15.5
F2 15.5 15.3 15.3 15.3
F6 15.3 15.4 15.4 15.5
F7 15.0 14.8 14.7 14.6
F16 14.7 14.8 14.8 14.8
F17 14.4 14.2 14.1 13.6
F18 14.6 14.4 14.4 14.2

Table 8 Speed-up for multi-level parallel algorithm using process teams and NCP-CJaya as the outer
algorithm. Population size = 240, Runs = 30, Iterations = 50000, and 20 processes.

((n0Teams , n0ThsxTeam))
(15,2) (10,3) (6,5) (5,6) (3,10) (2,15)

F1 22.8 22.2 22.0 21.9 21.8 22.3
F2 23.7 23.0 22.8 22.7 22.8 23.3
F6 22.7 22.8 22.7 23.0 23.0 22.8
F7 22.1 22.0 21.5 21.8 21.3 21.2
F16 21.6 21.9 21.8 21.8 21.7 21.7
F17 20.9 21.0 18.6 19.4 18.5 18.3
F18 21.7 21.6 20.8 21.1 20.9 20.6

Table 9 Speed-up for multi-level parallel algorithm using process teams and NCP-CJaya as the outer
algorithm. Population size = 240, Runs = 30, Iterations = 50000, and 30 processes.

chitecture. That is, the algorithm offers good parallel scalability, even though the
processing associated with the inner level has some drawbacks to exploit the paral-
lel platform efficiently. The main drawbacks are the memory storage structure of the
sub-populations and that this memory must be shared (i.e., global memory), to be ac-
cessed by all the processes in the same equipment. Despite this, maximum efficiency
values close to 80% are obtained when both 20 and 30 processes are used.

4.5 Optimisation performance analysis by solving constrained engineering problems

The optimisation behaviour will be analysed by applying the algorithms developed
to the real design engineering problems listed in Table 3.

Mainly three recent optimization algorithms will be used to perform the compar-
ative analysis with our proposal as well as other well-known ones. These algorithms
are also focused on resolving engineering design problems. These algorithms are a)
SSBSA [61] that modifies backtracking search optimization algorithm based on the
two strategies, the species evolution rule, and the simulated annealing principle; b)
MSFWA [24] a hybrid algorithm based on moth search and fireworks algorithm; c)
HMPA [8] a hybrid multi-population algorithm based on artificial ecosystem-based
and Harris Hawks optimization algorithm.

It is worth noting that after efficiently accelerating our algorithm, the main goal
is to analyze the improvement of our proposal’s exploitation capability, i.e., the qual-
ity of the obtained solution. Therefore, we will make a comparative analysis of the
obtained solutions by the reference algorithms used, then check if those solutions are
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CDE GA HMPA SSBSA CJAYA
x 1 0.812500 0.812500 ��

��0.778168 0.812500 0.812500
x 2 0.437500 0.437500 ���

�0.384649 0.437500 0.437500
x 3 42.098411 42.097400 40.319610 42.098497 42.098159
x 4 176.637690 176.654000 200.000000 176.635967 176.640714
g 1 -0.000001 -0.000020 0.000000 ���

�0.000001 -0.000006
g 2 -0.035881 -0.035891 0.000000 -0.035880 -0.035884
g 3 -3.705124 -24.759376 ���

�0.620248 -0.045299 -3.155467
g 4 -63.362310 -63.346000 -40.000000 -63.364033 -63.359286
f 6059.734106 6059.945646 5885.326000 6059.708265 6059.762489

Table 10 Comparison of the best solutions for the pressure vessel design problem.

feasible or not. That is, they meet all the constraints of the engineering design prob-
lem, including the constraints of the optimization problem and the allowed values of
some of the variables. Accordingly, we have only included references that provide
both the cost function and the solution’s design variables to analyze the constraints.
Moreover, only the design variables values have been taken from the references. The
value of the cost function and the value of the restrictions have been calculated to
validate the results and make them fully reliable correctly.

Table 10 compares the obtained best solutions for the pressure vessel design prob-
lem. The reference algorithms in Table 10 are SSBSA and HMPA. MSFWA does not
provide results for pressure vessel problem. In addition, the best results presented
in [61,33,25,12] are included in the same table. We note that in Table 10 and the
following ones, the best feasible result of the cost function will be marked in bold,
the infeasible values of both design variables and constraints will be crossed out. In
those algorithms in which some of their design variables are not feasible, or some
constraint has infringed, the cost function’s value will be grayed out instead of black.
In this case, our proposal does not obtain the best result, but it achieves the second-
best feasible result after the CDE method. It is mentioning that our method uses a
fixed penalty system and does not require configuration parameters. In contrast, the
CDE method modifies the penalty method, leading to an increase in the tuning pa-
rameters of the original differential algorithm (DE).

In addition to the three main reference algorithms (SSBSA, MSFWA, and HMPA),
the crow search algorithm (CSA) [6], the HPSO algorithm [25], and the GA algorithm
[12] are compared to the CJaya algorithm in Table 11, when solving the welded beam
design problem. The proposed algorithm (CJaya) achieves a feasible result that sig-
nificantly outperforms all other methods, whether they are feasible.

Table 12 compares the obtained best solutions for the three-bar truss design prob-
lem. The reference algorithms in Table 12 are SSBSA and MSFWA. HMPA does not
provide results for the three-bar truss design problem. Besides, the algorithms DEDS
[66], PSO-DE [34], and PSOSCALF [10] are added to extend the comparative study.
The proposed algorithm and the PSOSCALF algorithm reach the best feasible solu-
tion. At the same time, our proposal is more efficient since PSOSCALF proposes the
hybridization of three different methods: the particle swarm optimization algorithm,
the sine cosine algorithm, and the Levy flight algorithm. Moreover, the proposed al-
gorithm is free of tuning parameters.
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CSA HPSO GA HMPA MSFWA SSBSA CJAYA
x 1 0.205730 0.205730 0.205986 0.205729 0.201966 0.205731 0.168005
x 2 3.470489 3.470489 3.471328 3.253120 3.338861 3.470467 4.067010
x 3 9.036624 9.036624 9.020224 9.036623 9.085440 9.036624 10.000000
x 4 0.205730 0.205730 0.206480 0.205729 0.205506 0.205730 0.168007
g 1 -0.025400 -0.025400 -0.103050 ���

�724.6282 ���
�632.5804 -0.023906 -0.214219

g 2 -0.053122 -0.053122 -0.231748 ���
�0.099340 -289.2168 -0.053122 -1.249948

g 3 0.000000 0.000000 -0.000494 0.000000 -0.003540 ���
�0.000001 -0.000002

g 4 -3.432981 -3.432981 -3.430044 -3.452431 -3.438235 -3.432983 -3.536721
g 5 -0.080730 -0.080730 -0.080986 -0.080729 -0.076966 -0.080731 -0.043005
g 6 -0.235540 -0.235540 -0.235514 -0.235540 -0.235757 -0.235540 -0.236934
g 7 -12036.68 -12036.68 -12196.35 -12036.42 -12090.17 -12036.68 -5017.43
f 1.724856 1.724856 1.728225 1.695241 1.707948 1.724854 1.587138

Table 11 Comparison of the best solutions for the welded beam design problem.

DEDS PSO-DE PSOSCALF MSFWA SSSBA CJAYA
x 1 0.7886751300 0.7886751000 0.7886622460 0.7886729700 0.7886750000 0.7886925585
x 2 0.4082482800 0.4082482000 0.4082847470 0.4082544300 0.4082480000 0.4081990117
g 1 ((((0.000000018 ((((0.000000143 -0.000000001 -0.000000013 ((((0.000000509 -0.000000001
g 2 -1.464102 -1.464102 -1.464060 -1.464095 -1.464102 -1.464158
g 3 -0.535898 -0.535898 -0.535940 -0.535905 -0.535898 -0.535842
f 263.895841 263.895825 263.895844 263.895845 263.895776 263.895844

Table 12 Comparison of the best solutions obtained for the three-bar truss design problem.

CDE SDO HMPA MSFWA SSBSA CJAYA
x 1 0.05160900 0.05189800 0.05160800 0.05085632 0.05174300 0.05194400
x 2 0.35471400 0.36175200 0.35478800 0.36680200 0.35801700 0.36287300
x 3 11.41083100 10.74794600 11.40295000 9.83231005 11.21318700 10.93758000
g 1 -0.00003864 ((((0.02293804 -0.00005104 -0.01050210 ((((0.00000026 -0.00002290
g 2 -0.00018289 -0.00002921 ((((0.00003907 ((((0.07054573 ((((0.00000055 -0.00001987
g 3 -4.04862664 -4.18232932 -4.04991100 -4.39942800 -4.05634834 -4.06554970
g 4 -0.79793000 -0.79343067 -0.79788000 -0.78936950 -0.79581733 -0.79271400
f 0.01267024 0.01242088 0.01266495 0.01122512 0.01242088 0.01242088

Table 13 Comparison of the best solutions obtained for the tension-compression spring design problem.

In addition to the three main reference algorithms (SSBSA, MSFWA, and HMPA),
the supply-demand-based optimization (SDO) [67] and the coevolutionary differen-
tial evolution (CDE) [33] algorithms are compared to the CJaya algorithm in Ta-
ble 13, when solving the tension-compression spring design problem. Our proposal
significantly outperforms all other feasible results reached by the tested algorithms.

Table 14 compares the obtained best solutions for the speed reducer design prob-
lem. The reference algorithms in Table 12 are SSBSA and HMPA. MSFWA does not
provide results for the three-bar truss design problem. Besides, the algorithms DEDS
[66], PSO-DE [34], and the modified differential evolution (MDE) [37] are included
to extend the comparison analysis. It is found that the proposed algorithm and the
MDE algorithm have the best feasible solution.

The SSBSA and the main references included in [61], i.e., the crow search algo-
rithm (CSA) [6], the mine blast algorithm (MBA) [57], the TLBO algorithm [52], and
the GA algorithm [11] are compared to the CJaya algorithm in Table 15 when solving
the Belleville spring design problem. On the one hand, our proposal achieves the best
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DEDS PSO-DE MDE HMPA SSBSA CJAYA
x 1 3.50000000 3.50000000 3.50001000 3.50000000 3.49999700 3.50000275
x 2 0.70000000 0.70000000 0.70000000 0.70000000 0.70000000 0.70000000
x 3 17.00000000 17.00000000 17.00000000 17.00000000 17.00000000 17.00000000
x 4 7.30000000 7.30000000 7.30015600 7.30000000 7.30000600 7.30000000
x 5 7.71531900 7.80000000 7.80002700 7.80000000 7.71531100 7.80000000
x 6 3.35021400 3.35021400 3.35022100 2.90000000 3.35021400 3.35042053
x 7 5.28665400 5.28668320 5.28668500 5.28668000 5.28665300 5.28689438
g 1 -0.07391528 -0.07391528 -0.07391793 -0.07391528 -0.07391449 -0.07391601
g 2 -0.19799850 -0.19799850 -0.19800082 -0.19799850 -0.19799784 -0.19799916
g 3 -0.49917180 -0.49917180 -0.49914393 -0.10795460 -0.49917061 -0.49929533
g 4 -0.90464390 -0.90147170 -0.90147081 -0.90147150 -0.90464413 -0.90148744
g 5 ((((0.00000060 ((((0.00000060 -0.00000541 ((((0.54178530 ((((0.00000061 -0.00018432
g 6 ((((0.00000026 ((((0.00000002 -0.00000100 ((((0.00000183 ((((0.00000083 -0.00011981
g 7 -0.70250000 -0.70250000 -0.70250000 -0.70250000 -0.70250000 -0.70250000
g 8 0.00000000 0.00000000 -0.00000286 0.00000000 0.00000086 -0.00000079
g 9 -0.58333330 -0.58333330 -0.58333214 -0.58333330 -0.58333369 -0.58333301
g 10 -0.05132589 -0.05132589 -0.05134472 -0.14383560 -0.05132667 -0.05128345
g 11 0.00000005 -0.01085237 -0.01085554 -0.01085282 0.00000095 -0.01082259
f 2994.4706 2996.3480 2996.3568 2896.2572 2994.4686 2996.5360

Table 14 Comparison of the best solutions obtained for the speed reducer design problem.

GA5 TLBO MBA CSA SSBSA CJAYA
x 1 11.067000 12.010000 12.0100000 12.010000 12.009971 12.010000
x 2 8.751000 10.030470 10.0304732 10.030473 10.030442 10.030464
x 3 0.208000 0.204143 0.2041430 0.204143 0.204143 0.204144
x 4 0.200000 0.200000 0.2000000 0.200000 ���

�0.199999 0.200000
g 1 2145.410858 0.505662 0.2590730 0.259073 0.494705 0.334706
g 2 39.750183 ((((-0.036223 ((((-0.0288228 ((((-0.028823 ((((-0.032427 0.028332
g 3 0.761538 0.779705 0.7797054 0.779705 0.779701 0.779701
g 4 1.592000 1.595857 1.5958570 1.595857 1.595858 1.595856
g 5 0.943000 0.000000 0.0000000 0.000000 0.000029 0.000000
g 6 2.316000 1.979530 1.9795270 1.979527 1.979529 1.979536
g 7 0.213644 0.198966 0.1989658 0.198966 0.198966 0.198966
f 2.121964 1.979674 1.9796716 1.979672 1.979668 1.979689

Table 15 Comparison of the best solutions obtained for the Belleville spring design problem.

result by satisfying all constraints and ranges of all variables. On the other hand, it is
significantly outperforming the GA method that presents a feasible solution.

For the rolling element bearing design problem, the genetic algorithm (GA) [50],
the TLBO algorithm [52], the mine blasting algorithm (MBA) [57], and the supply
demand-based optimization algorithm (SDO) [67] are compared in Table 16. None
of the three main algorithms (SSBSA, MSFWA, and HMPA)reach a feasible solu-
tion results for this problem. The proposed algorithm and the GA algorithm provide
similar feasible results for this problem.

5 Conclusions

We have developed multi-level parallel algorithms based on both multi-populations
and a grid diffusion using our 2D chaotic Jaya proposal. These algorithms have been
initially characterized in terms of parallel efficiency and scalability, obtaining an ef-
ficient and scalable algorithm based on the team process. These parallel algorithms
allow increasing the number of processes without degrading the parallel efficiency
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GA4 TLBO MBA SDO CJAYA
x1 125.717100 125.719100 125.715300 125.700000 125.719128
x2 21.423000 21.425590 21.423300 21.424905 21.425389
x3 11.000000 11.000000 11.000000 11.000000 11.000000
x4 0.515000 0.515000 0.515000 0.515002 0.515000
x5 0.515000 0.515000 0.515000 0.515930 0.515000
x6 0.415900 0.424266 0.488805 0.487755 0.500000
x7 0.651000 0.633948 0.627829 0.629992 0.678698
x8 0.300043 0.300000 0.300149 0.300039 0.300000
x9 0.022300 0.068858 0.097305 0.053510 0.020000
x10 0.751000 0.799498 0.646095 0.665982 0.850000
g1 0.000822 0.000004 0.000564 ((((-0.001272 0.000082
g2 13.733000 13.152560 8.630250 8.706960 7.850778
g3 2.724000 1.525180 1.101430 1.249630 4.658082
g4 1.107000 2.559350 ((((-2.040450 ((((-1.445445 4.074611
g5 0.717100 0.719100 0.715300 0.700000 0.719128
g6 4.857900 16.495400 23.610950 12.677500 4.280872
g7 0.002129 ((((-0.000022 0.000518 0.009240 0.000125
g8 0.000000 0.000000 0.000000 0.000002 0.000000
g9 0.000000 0.000000 0.000000 0.000930 0.000000
f 81841.511 81859.738 81843.686 81575.185 81858.318

Table 16 Comparison of the best solutions obtained for the rolling element bearing design problem.

and without decreasing the sub-populations to unacceptable sizes. The desired size
of the sub-populations can decide the number of outer and inner processes to be used
without degrading the parallel performance. Finally, we have proven that the pro-
posed algorithm has excellent behavior when solving engineering design problems.
It obtains feasible solutions that outperform the ones acheived by the state-of-the-
art algorithms. Since our proposal neither requires parameters tuning nor hybridizes
several algorithms, nor uses improvements in penalty mechanisms, it may require
more iterations to obtain the best feasible solution. Still, in terms of computational
complexity, it can be obtained early through our parallel proposals. As future lines,
we intend to hybridize several algorithms but without requiring any configuration
parameter.
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