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Abstract1

We present a method to approximate, with controlled and arbitrarily small error, mul-2

tiple intregrals over the unit cube [0, 1]d by a single variable integral over [0, 1]. For3

this, we use the so called δ-uniform curves, which are a particular case of α-dense4

curves. Our main result improves and extends other existing methods on this subject.5

Keywords Multiple integrals · Numerical integration · Numerical methods ·6

δ-uniform curves · α-dense curves · Quasi-monte carlo methods7

Mathematics Subject Classification Primary 26A42 · 65D30 · 82B80; Secondary8

26A30 · 26A069

1 Introduction10

To set the notation, we put I := [0, 1] and
(

R
d , ‖ · ‖

)

is the Euclidean space. It is11

known that many mathematical problems, raised from engineering, physical sciences,12

etc., require to compute an integral of the form13

∫

I d

f (x1, . . . , xd)dx1 · · · dxd , (1.1)14
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ANNALI DELL’UNIVERSITA’ DI FERRARA

for a given continuous function f : I d −→ R. In general, the above integral can15

not be solved analytically and therefore, numerical methods have to be applied to16

approximate its value. For a general background and concrete references on this topic,17

see, for instance, the books [1,13,14,22].18

In this paper we present a numerical method to approximate the integral (1.1) by a19

single variable one, that is,20

∫

I d

f (x1, . . . , xd)dx1 · · · dxd ≈
∫ 1

0

g(t)dt, (1.2)21

for a suitable continuous function g : I −→ R, where the symbol ≈ will have a precise22

meaning (see Theorem 3.1). This dimensionality reduction is possible by using the so23

called δ-uniform curves, explained in detail in Sect. 2. It is worth to mention some24

important properties of such method, namely:25

(1) Only the continuity of the function f is required.26

(2) An explicit upper bound for the error, depending on the function f and the param-27

eter δ of the used curve, is provided. If some numerical method is used to compute28

the single variable integral in (1.2), then the upper bound for the error is given in29

terms of f , δ and the error of the used method.30

(3) From a deterministic point of view, we will obtain the value of the integral (1.1)31

with a prescribed approximation error.32

In Sect. 4, to illustrate our results and the reliability of the proposed method, we33

provide some numerical examples. In particular, in Sect. 4.2, the dimensionality reduc-34

tion suggested in (1.2) will be justified when a quasi-Monte Carlo method is used to35

compute these integrals.36

2 ˛-dense curves and ı-uniform curves37

Let (E, d) be a metric space and BE the class of non-empty and bounded subsets of38

E . In 1997 the concepts of α-dense curve and densifiable set were introduced in [16]:39

Definition 2.1 Let α ≥ 0 and D ∈ BE . A continuous mapping γ : I −→ (E, d) is40

said to be an α-dense curve in D if it satisfies the following conditions:41

(1) γ (I ) ⊂ D.42

(2) For any x ∈ D, there is y ∈ γ (I ) such that d(x, y) ≤ α.43

If for every α > 0 there is an α-dense curve in D, then it is said to be densifiable.44

Note that, given D ∈ BE , there is always an α-dense curve in D for any α ≥45

Diam(D), the diameter of D. Indeed, fixed a point x0 ∈ D, the mapping γ (t) := x046

for all t ∈ I is an α-dense curve in D whenever α ≥ Diam(D). However not every47

subset of a metric space, even connected and compact , is densifiable:48

Example 2.1 (see [18]) In the Euclidean plane, there is not any α-dense curve, for49

0 < α < 1, in the set:50

D :=
{

(x, sin(1/x)) : x ∈ [−1, 0) ∪ (0, 1]
}

∪
{

[0, y] : y ∈ [−1, 1]
}

,51
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ANNALI DELL’UNIVERSITA’ DI FERRARA

for 0 < α < 1.52

If D is a connected, compact and locally connected set, by the Hahn-Mazurkiewicz53

theorem (see [24]), there exists a continuous mapping γ : I −→ (E, d) such that54

γ (I ) = D and, in particular, if D := I d then γ is called a space-filling curve (again,55

[24]). Since γ obviously satisfies the conditions of Definition 2.1 for α = 0, such γ is56

a 0-dense curve in D. Therefore the α-dense curves generalize the space-filling curves57

(see also [15]).58

Example 2.2 The cosines curve. For each positive integer k, the mapping γk : I −→59

R
d given by60

γk(t) :=
(

t,
1

2

(

1 − cos(kπ t)
)

, . . . ,
1

2

(

1 − cos(kd−1π t)
)

)

for all t ∈ I ,61

is a
√

d−1
k

-dense curve in I d , as it is proved in [7, Proposition 9.5.4, p. 144]; see also62

Fig. 1.63

Other examples of α-dense curves and their applications, can be found in [11,12,64

16,17,27] and references therein.65

As it was proposed by Wiener [28, pp. 16–17], the space-filling curves could be66

used to reduce Lebesgue integration in higher dimensions to Lebesgue integration67

in one dimension. Therefore, it seems reasonable to think that the α-dense curves68

could be used to reduce the integral (1.1) to a single variable one, because as we have69

pointed out above, these curves generalize the space-filling curves. In fact, this idea70

has been successfully used in [3,4,8,10,19–21] to obtain, under suitable conditions,71

the approximation stated in (1.2).72

For instance, if f : I d −→ R is positive and of class C1, then the inequality73

∣

∣

∣

∫

I d

f (x1, . . . , xd)dx1 · · · dxd −
π

2

∫ 1

0

∣

∣

∣
sin(kdπ t)

∣

∣

∣
f
(

γk(t)
)

dt

∣

∣

∣
≤ O

(1

k

)

, (2.1)74

is proved in [21], where γk(t) is the
√

d−1
k

-dense curve of Example 2.2. If f is Lips-75

chitzian, with Lipschitz constant equal to L , then in [4] is stated that76

∣

∣

∣

∫

I d

f (x1, . . . , xd)dx1 · · · dxd −
∫ 1

0

f
(

γk(t)
)

dt

∣

∣

∣
≤

Ld

k
, (2.2)77

for a suitable α-dense curve γk in I d .78

Our goal is to provide an approximation of type (1.2) requiring only the continuity79

of the function f . For this, we will need certain class of α-dense curves, introduced in80

[12], which have suitable properties related with the definite integrals. Before to give81

a formal definition of these curves, we recall the concept of δ-mesh. Given δ > 0, and82

a cube K ⊂ R
d , by a δ-mesh in K we mean a partition of K into subcubes of the form83

[i1δ, (i1 + 1)δ] × · · · × [idδ, (id + 1)δ], where i1, . . . , id are integers.84
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ANNALI DELL’UNIVERSITA’ DI FERRARA

Fig. 1 The graphs of γ2−k+1 of Example 2.2 (blue) and γ2k of Lemma 2.1 (red), for k = 2 (left) and k = 3

(right)

Definition 2.2 (see [12, Definition 3.1]) Given an integer N and δ := 1/N , a contin-85

uous mapping γ : I −→ I d is said to be a δ-uniform curve in I d if there exists a86

δd -mesh of I , M, a δ-mesh of I d , N , and a biyective mapping ϕ : M −→ N such87

that γ (J ) ⊂ ϕ(J ) for every J ∈ M.88

From the above definition is clear that a δ-uniform curve in I d is, in particular, a89

δ
√

d-dense curve in I d . Indeed, as the diameter of a subcube C of the δ-partition of I d
90

is δ
√

d, given x ∈ C as there is a subinteval J of I such that γ (J ) ⊂ C , in particular91

we can take t ∈ I such that ‖x − γ (t)‖ ≤ δ
√

d .92

In [12, Lemma 3.1] was proved the existence of δ-uniform curves in I d for arbitrarily93

small δ > 0:94

Lemma 2.1 Given an integer k ≥ 1, the mapping γ2k : I −→ R
d given by95

γ2k (t) :=
(

t, min
{

|kt + 2i | : i ∈ Z
}

, . . . , min
{

|kd−1t + 2i | : i ∈ Z
}

)

for all t ∈ I ,96

is a 2−k-uniform curve in I d .97

We show in Fig. 1 the graph of some δ-uniform curves in I 2 given in the above98

theorem.99

In Sect. 4, we provide an alternative expression of the mapping used in Lemma 2.1.100

3 Themain result101

We start this section by recalling the notion of modulus of continuity (see, for instance,102

[26]):103

Definition 3.1 Let (X , d) and (Y , d ′) be metric spaces and h : (Y , d) −→ (Y ′, d ′).104

The modulus of continuity of h of order ε > 0 is given by105

ω(h; ε) := sup{d ′(h(x), h(y)) : x, y ∈ X , d(x, y) ≤ ε}.106
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ANNALI DELL’UNIVERSITA’ DI FERRARA

Clearly, h is uniformly continuous on X if, and only if, limε→0+ ω(h; ε) = 0.107

Our main result is the following:108

Theorem 3.1 Let f : I d −→ R be continuous, and ε > 0. Then,109

∣

∣

∣

∣

∫

I d

f (x1, . . . , xd)dx1 · · · dxd −
∫ 1

0

f
(

γ2k (t)
)

dt

∣

∣

∣

∣

≤ ω

(

f ;
√

d

2k

)

,110

for every k > 1, being γ2k a 2−k-uniform curve in I d .111

Proof Fixed k > 1, divide I into 2dk subintervals of side-length 2−k , put I j for112

j = 1, . . . , 2dk , and I d into 2k subcubes of side-length 2−k , put C j for j = 1, . . . , 2k .113

That is,114

I d =
2k
⋃

j=1

C j , I =
2dk
⋃

j=1

I j ,115

with C j and I j as above. Also, for each integer m > k divide each subcube C j into116

2d(m−k) subcubes, put I d
i, j for i = 1, . . . , 2d(m−k), of side-length 2−m . So,117

I d =
2k
⋃

j=1

C j =
2k
⋃

j=1

2m−k
⋃

i=1

I d
i, j .118

Then, we have two partitions of I d , one of 2k subcubes and other of 2m subcubes,119

which we write as C and Id , respectively.120

By the continuity of f , we have121

∫

I d

f (x1, . . . , xd)dx1 · · · dxd = lim
m

1

2dm

2m
∑

id=1

· · ·
2m
∑

i1=1

f
(

xi1 , . . . , xid

)

. (3.1)122

where each (xi1 , . . . , xid
) is a point in the subcube I d

i, j (for instance, its center), for123

some 1 ≤ j ≤ 2k and 1 ≤ i ≤ 2m−k .124

Noticing the properties of γ2k and the partitions C and Id , by dividing each interval125

I j into 2m equal subintervals, for every integer m > k we can take a set of points126

{t1, . . . , t2d(m−k)} ⊂ I j , for some 1 ≤ j ≤ 2dk , such that127

{γ2k (t1), . . . , γ2k (t2d(k−m))} ⊂ γ2k (I j ) ⊂ C j = I d
1, j ∪ · · · ∪ I d

2m−k , j
.128

Therefore, from the above considerations, for each (xi1 , . . . , xid
) ∈ I d

j we can take129

t j ∈ I j such that130

‖(xi1 , . . . , xid
) − γ2k (t j )‖ ≤

√
d

2k
. (3.2)131
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ANNALI DELL’UNIVERSITA’ DI FERRARA

Also, as f (γ2k (t)) is continuous, its integral over I is given by the formula132

∫ 1

0

f
(

γ2k (t)
)

dt =
2dm
∑

j=1

f
(

γ2k (t j )
)

. (3.3)133

So, from (3.1), (3.2) and (3.2) we conclude134

∣

∣

∣

∣

∫

I d

f (x1, . . . , xd)dx1 · · · dxd −
∫ 1

0

f
(

γ2k (t)
)

dt

∣

∣

∣

∣

≤ lim
m

1

2dm

2dm
∑

j=1

ω

(

f ;
√

d

2k

)

= ω

(

f ;
√

d

2k

)

,

135

because of (3.2), | f (xi1 , . . . , xid
)− f (γ2k (t j ))| ≤ ω

(

f ;
√

d

2k

)

for each (xi1 , . . . , xid
) ∈136

I d
j and t j ∈ I satisfying (3.2). The proof is now complete. ⊓⊔137

Let us note that, the uniformly continuity of f on I d implies limk ω

(

f ;
√

d/2k
)

=138

0 and hence139

lim
k

∣

∣

∣

∣

∫

I d

f (x1, . . . , xd)dx1 · · · dxd −
∫ 1

0

f
(

γ2k (t)
)

dt

∣

∣

∣

∣

= 0.140

Therefore, the approximation provided by the above result can be arbitrarily small.141

On the other hand, in general we will need to approximate the single variable142

definite integral of Theorem 3.1, denoted by fk(t), by some numerical method, that is143

to say144

∫ 1

0

fk(t)dt ≃ Q( fk, N ),145

and we use the letter N in the notation because of, generally, such numerical methods146

evaluate the integrand fk(t) in a given number N of points of the interval I (see the147

references given in Sect. 1). By setting148

E( fk, N ) :=
∣

∣

∣

∣

∫ 1

0

fk(t)dt − Q( fk, N )

∣

∣

∣

∣

,149

we have the following consequence of Theorem 3.1:150

Corollary 3.1 Let f : I d −→ R be continuous. Then, fixed k ≥ 1 and N ≥ 1 the151

inequality152

∣

∣

∣

∣

∫

I d

f (x1, . . . , xd)dx1 · · · dxd − Q
(

fk, N
)

∣

∣

∣

∣

≤ ω

(

f ;
√

d

2k

)

+ E( fk, N ), (3.4)153
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ANNALI DELL’UNIVERSITA’ DI FERRARA

is satisfied, with fk(t) := f (γ2k (t)) and γ2k as in Theorem 3.1.154

Proof Noticing Theorem 3.1 and the definition of E( fk, N ), we have155

∣

∣

∣

∣

∫

I d

f (x1, . . . , xd)dx1 · · · dxd − Q( fk, N )

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

I d

f (x1, . . . , xd)dx1 · · · dxd −
∫ 1

0

f
(

γ2k (t)
)

dt

∣

∣

∣

∣

+
∣

∣

∣

∣

∫ 1

0

f
(

γ2k (t)
)

dt − Q( fk, N )

∣

∣

∣

∣

≤ ω

(

f ;
√

d

2k

)

+ E( fk, N ),

156

and so, the inequality (3.4) follows. ⊓⊔157

For instance, a quasi-Monte Carlo method method can be used to approximate the158

single variable integral of Theorem 3.1 and then159

Q( fk, N ) :=
1

N

N
∑

i=1

fk(ti ), (3.5)160

where ti ∈ I , i = 1, . . . , N , are points of a so called low discrepancy sequence. As it161

is known, the price of this robust, simple and direct method is that it can be extremely162

slow. In particular, if ti := (2i − 1)/2N , for i = 1, . . . , N , the approximation error is163

given by (see, for instance, [22, Theorem 2.10])164

E( fk, N ) = ω

(

fk;
1

N

)

. (3.6)165

Of course, the approximation method (3.5) can be used in multiple integrals, that166

is to say, the approximation167

∫

I d

f (x1, . . . , xd)dx1 · · · dxd ≃ Q( f , N ) :=
1

N

N
∑

i=1

f
(

xi

)

, (3.7)168

holds, where xi ∈ I d , i = 1, . . . , N , as above, are the points of a low discrepancy169

sequence. However, for multivariate functions the approximation error depends on170

the dimension d of the problem (see [6,9,13,22]), in the sense that for a fixed N the171

error approximation E( f , N ) increases with d (generally, in a exponential way). This172

phenomena is often called curse of dimension.173

So, with the approximation proposed in Corollary 3.1 taking Q( fk, N ) as in (3.5),174

in general, we obtain a more effective approximation than the approximation (3.7).175

In other words, the proposed dimensionality reduction is justified, at least, for quasi-176

Monte Carlo methods. This fact will be illustrated, by some numerical examples, in177

Sect. 4.2.178

Certainly, the quasi-Monte Carlo methods are used in dimension d ≫ 2 and some179

authors could consider formula (3.5) is not a quasi-Monte Carlo method in the strict180
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ANNALI DELL’UNIVERSITA’ DI FERRARA

sense. However, in order to do not introduce new notations and terminology, we will181

include approximations like (3.5) in the class of the quasi-Monte Carlo methods.182

4 Some numerical examples183

In this section we provide some numerical examples to illustrate our results, and more184

specifically, the method proposed in Corollary 3.1.185

In order to state a more practical formula for the α-dense curve of Lemma 2.1, let186

us note that fixed the integers k and d, as min
{
∣

∣

∣
2k( j−1)t + 2i

∣

∣

∣
: i ∈ Z

}

∈ I for every187

t ∈ I and j = 2, . . . , d, we have188

−1 ≤ 2k( j−1)t + 2i ≤ 1,189

or equivalently,190

i ∈
[

−1 − 2k( j−1)t

2
,

1 − 2k( j−1)t

2

]

.191

Now, as the above interval has length 1 we find one or two possible values for i .192

Specifically, the possible values for i are i :=
⌊

−2k( j−1)t
2

⌋

if 2k( j−1)t is not an odd193

integer, and i :=
⌊

±1−2k( j−1)t
2

⌋

otherwise, where ⌊a⌋ stands for the nearest integer to194

a. Therefore, we can use the following expression for the j-th coordinates of γ2k (t),195

for j = 2, . . . , d196

min

{

∣

∣

∣
2k( j−1)t + 2

⌊−1 − 2k( j−1)t

2

⌋
∣

∣

∣
,

∣

∣

∣
2k( j−1)t + 2

⌊−1 + 2k( j−1)t

2

⌋
∣

∣

∣
,

∣

∣

∣
2k( j−1)t + 2

⌊−2k( j−1)t

2

⌋
∣

∣

∣

}

,

(4.1)197

which can be computed very quickly with any suitable software.198

As the computational complexity of the computation of the minimum given in (4.1)199

is an O(3), the computational complexity of the computation of γ2k ((2i − 1)/N ) is200

an O(3(d − 1)) = O(d). In particular, if we use a quasi-Monte Carlo method (3.5)201

to approximate the single variable integral of Theorem 3.1 the time complexity is an202

O(d N ).203

The multiple integrals ι j of the below examples have been computed with the204

software ®Maple. The used notation is the following:205

– ε is the absolute error, that is, ε := |ι j − ι̃ j |, where ι̃ j is the approximation of ι j206

obtained with the indicated method in each case.207

– C.T. is the computational time, in seconds.208
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4.1 Comparison with other˛-dense curves209

In this section we compare the efficiency, to approximate multiple definite integrals,210

of the δ-uniform curve of Lemma 2.1 with other α-dense curves. For this goal, we211

consider the integrals212

ι1 :=
∫

I 2

xy

1 + xy
dxdy, ι2 :=

∫

I 2
y sin

(

2π(x + y)
)

dxdy,

ι3 :=
∫

I 2
exp(|x − y|)dxdy, ι4 :=

∫

I 3
xyzdxdydz

ι5 :=
∫

I 3
exp(−(x + y + z)2)dxdydz,

ι6 :=
∫

I 3
(x + y − z)2(x sin(2π y) + y cos(2πx) + xyz)2dxdydz,

(4.2)213

and approximate them by the single variable integral214

∫ 1

0

g(t)dt, (4.3)215

g(t) being the composition of f (the integrand of the above integrals) with the fol-216

lowing α-dense curves:217

– Cosines curve. In this case, g(t) :=
∣

∣sin
(

28dπ t
)
∣

∣ f (γ28(t)) where γ28(t) is the218 √
d−1

28 -dense curve in I d of Example 2.2 (see [21]). This curve is used only for219

positive and of class C1 integrands.220

– Hilbert curve. We take g(t) := f (γ28(t)), γ28(t) being the 8-th approximation221

of the Hilbert space-filling curve (see [2,24]). As we have pointed out in Sect. 2,222

some space filling curves can be used to reduce multiple integrals to single variable223

integrals.224

– δ-Uniform curve. Here, g(t) := f (γ28(t)), γ28(t) being the δ-uniform curve of225

Lemma 2.1, with δ := 2−8.226

Also, the integral (4.3) is approximated by the quasi-Monte Carlo method proposed227

in (3.5)–(3.6).228

1

N

N
∑

i=1

g
(2i − 1

2N

)

.229

We show in Table 1 the obtained results, for the indicated values of N .230

As we can see, in most cases the (absolute) error approximation ε is smaller for231

approximations obtained with the δ-uniform curve than those obtained with the cosines232

and Hilbert curves. Also, for N = 5000 the C.T. of the δ-uniform curve is significantly233

smaller than the C.T. of the cosines curve.234
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Table 1 Approximations of the integrals ι j , j = 1, . . . 6, given in (4.2) by some types of α-dense curves

Integral N Cosines curve Hilbert curve δ-Uniform curve

ε C .T. ε C .T . ε C .T.

ι1 500 0.0059350 0.63 0.0001943 0.31 0.0000104 0.09

1500 0.0059441 2.19 0.0000306 0.83 7E-07 3.00

5000 0.0059582 13.10 0.0000190 2.73 8E-07 0.12

ι2 500 – – 0.0010566 0.32 0 0.09

1500 – – 0.0002043 0.85 0 0.38

5000 – – 0 2.90 0 3.02

ι3 500 – – 0.0004331 0.51 0.0000147 0.10

1500 – – 0.0000031 0.82 0.0000059 0.65

5000 – – 0.0000302 2.96 8E-07 2.482

ι4 500 0.0000097 0.52 0.0004668 0.32 0.0000918 0.06

1500 0.0000109 1.47 0.0001659 0.84 0.0000051 0.19

5000 0.0000412 6.36 0.0000030 2.84 0.0000014 0.71

ι5 500 0.0208630 1.06 0.0003278 0.37 0.0000695 0.15

1500 0.0209796 2.47 0.0005819 1.45 7E-07 0.53

5000 0.0207839 43.63 0.0000460 3.85 0.0000010 4.72

ι6 500 0.0885380 3.20 0.0127937 0.37 0.0001390 0.21

1500 0.0547469 20.04 0.0022514 2.201 0.0000821 1.13

5000 0.0546944 83.19 0.0006028 11.05 0.0000317 12.81

4.2 Dimensionality reduction in quasi-Monte Carlo methods235

The purpose of this example is to justify the proposed dimensionality reduction com-236

mented in Sect. 3, when a quasi-Monte Carlo method is used, to approximate the237

multiple integral (1.2) by δ-uniform curves. For this we consider the integrals238

ι1 :=
∫

I d

2d

d
∏

i=1

xi dx1 · · · dxd ,

ι2 :=
∫

I d

(

d
∏

i=1

|1 − xi |
)

(

d
∑

i=1

(−1)x i
i

)

dx1 · · · dxd

ι3 :=
∫

I d

exp

⎛

⎝−
1

2

(

d
∑

i=1

xi

)2
⎞

⎠ dx1 · · · dxd , ι4 :=
∫

I d

d
∏

i=1

∣

∣

∣

∣

xi −
1

3

∣

∣

∣

∣

dx1 · · · dxd ,

(4.4)239

and approximate them the quasi-Monte Carlo method240
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Table 2 Comparison of the quasi-Monte Carlo method with and without the use of a δ-uniform curve for

the integrals given in (4.4)

Integral Dimension Formula (4.5) Formula (4.6)

ε C .T. ε C .T.

ι1 3 0.0012381 14.75 0.0001278 9.29

5 0.0047808 23.05 0.0011278 14.18

10 0.0604033 23.87 0.0102027 14.57

ι2 3 0.0000280 27.93 0.00000534 22.94

5 0.0000534 46.38 0.00003780 35.15

10 0.0000136 66.01 0.00000524 46.19

ι3 3 0.0002463 16.16 0.0000959 11.68

5 0.0001885 24.46 0.0000240 16.00

10 0.0001460 41.67 0.0000589 24.83

ι4 3 0.3453033 24.02 0.3452953 19.41

5 0.1613389 31.95 0.1613396 23.74

10 0.0214609 52.15 0.0214607 35.65

∫

I d

f (x1, . . . , xd)dx1 · · · dxd ≃
1

N

N
∑

i=0

f
(

xi

)

, (4.5)241

and the single variable integral of Corollary 3.1 is approximated also by the quasi-242

Monte Carlo method243

∫ 1

0

f
(

γ27(t)
)

dt ≃
1

N

N
∑

i=0

f
(

γ27(ti )
)

, (4.6)244

respectively, where γ27(t) is the 2−7-uniform curve of Lemma 2.1, and the points xi245

and ti are described below. We show the obtained results in Table 2. In each case, we246

take N := 104.247

Fixed an integer b ≥ 2 we recall that the radical inverse function (see, for instance,248

[9, Example 2.4]) is defined as249

φb(m) :=
∞
∑

i=1

mi

bi
for each integer m :=

∞
∑

i=1

mi b
i−1,250

where each mi ∈ {0, . . . , m −1} are the “coordinates” of the integer m in base b. From251

the above function, we can define the Halton sequence (see, for instance, [9, Example252

2.4])253

xi :=
(

φp1(i), . . . , φpd
(i)

)

, for i = 0, 1, 2, . . .254

123

SPI Journal: 11565 Article No.: 0363 TYPESET DISK LE CP Disp.:2021/4/12 Pages: 13 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

ANNALI DELL’UNIVERSITA’ DI FERRARA

Points (xi)4999i=0
for d = 2 Points γ

27 (ti)
4999

i=0
for d = 2

Points (xi)
4999

i=0
for d = 3 Points γ

27 (ti)
4999

i=0
for d = 3

Fig. 2 The points (xi )
N
i=0

and the transformed by γ27 (t) of the points (t)N
i=0

, for the indicated values of N

and d

where p j is the j-th prime, for j = 1 . . . , d. In Fig. 2 we show some points of Halton255

sequence and the sequence
(

γ27(ti )
)

i≥0
, with ti := φp2(i).256
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