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Síntesis en castellano

Introducción

Una obra musical se escribe en una partitura como un medio para establecer
un marco de referencia común con el que los músicos puedan interpretarla. Sin
embargo, las partituras no siempre están disponibles para los músicos, así que
persiste la necesidad de transcribir aquella música que escuchan para poder
interpretarla con sus instrumentos. Sin embargo, las aplicaciones potenciales
de un sistema capaz de hacer transcripción automática son mucho más am-
plias, como las de asistencia en la composición, ayuda en el aprendizaje musical
inspeccionando interpretaciones, o permitiendo el análisis musical de improvi-
saciones de jazz entre otras. La Transcripción Musical Automática (en inglés
Automatic Music Transcription, AMT) es una tarea del campo de la Recuperación
de Información Musical (en inglés, Music Information Retrieval, MIR) cuyo obje-
tivo es convertir señales de audio en una forma de notación musical a través de
medios computacionales.

En una partitura escrita en notación musical moderna, los sonidos se repre-
sentan mediante notas que se colocan en un pentagrama, que está compuesto
de 5 líneas horizontales proyectando la evolución del tiempo de izquierda a de-
recha. La posición vertical de una nota en el pentagrama determina su altura o
frecuencia, y la forma de la nota determina su valor o duración. El silencio se
representa por una figura especial distinta según su valor o duración. Un pen-
tagrama empieza por una clave, que define la referencia de frecuencia para las
notas escritas en él. Tras la clave, el compás determina la métrica del tempo, y
la armadura indica qué notas deben ser alteradas de acuerdo con la tonalidad
de la pieza musical. Basado en el compás de la pieza musical, las notas y los
silencios se dividen en grupos de igual duración, también llamados compases,
separados por una barra vertical. Las notas cuya duración traspasa el límite de
un compás se unen a otra nota del compás siguiente de la misma altura a través
de una línea curva llamada ligadura. Pero esto es tan sólo lo más básico, ya que
una partitura contiene información adicional para indicar cambios de dinámica,
que afectan al volumen y frecuencia de las notas, y de tiempo, que afecta a la
duración de las mismas.

La mayoría de la música que escuchamos hoy en día es polifónica, en la que
coexisten sonidos de diferentes notas musicales de forma simultánea. Por otro
lado tenemos la música monofónica, en la que en cada instante solo está sonan-
do la misma nota de una o varias fuentes de sonido. La transcripción de música
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polifónica es una tarea de una gran complejidad incluso para músicos experi-
mentados. Esto es debido principalmente a que las ondas acústicas procedentes
de distintos instrumentos se superponen en el medio aéreo, provocando una
pérdida de información que es crucial para poder realizar la transcripción, y
que ha de compensarse mediante un amplio conocimiento a priori del lenguaje
musical utilizado, o de otra música similar perteneciente al mismo estilo.

Esta pérdida de información se manifiesta principalmente en la dificultad
de identificar las frecuencias fundamentales de los instrumentos que están so-
nando, que en última instancia determinan las notas de la partitura en términos
musicales. Cada sonido de un instrumento contribuye individualmente a la on-
da acústica con su frecuencia fundamental y con múltiplos de la misma (2x, 3x,
etc.), llamados armónicos. La distribución de amplitudes y fases de los armóni-
cos determinan el timbre particular de un instrumento. Al mezclarse frecuencias
fundamentales y armónicos de distintos instrumentos en una única onda acús-
tica, el proceso de extracción de las notas (o frecuencias fundamentales) de cada
fuente de sonido de forma independiente se convierte en un gran reto.

Este problema se agrava debido a que la música, que se puede definir como
el arte de combinar los sonidos en el tiempo, típicamente se forma a base de
patrones comunes en el dominio del tiempo y de la frecuencia, que generan un
efecto agradable en las personas. Estos patrones crean un ritmo particular, que
hace que las notas de los instrumentos tiendan a comenzar a la vez, y una armo-
nía concreta, que provoca que las notas emitidas compartan entre sí armónicos
y frecuencias fundamentales. Sorprendentemente, esta relación de sonidos difi-
culta la tarea de extraer las notas individualmente a partir del audio, en mayor
medida que si el audio estuviese formado por sonidos aleatorios o estadística-
mente independientes.

Además, una partitura musical sólo es una guía del compositor para repro-
ducir su obra, y está expuesta a múltiples matices de interpretación influen-
ciados por la personalidad del músico, su estado de ánimo, cultura, contexto
histórico, etc. La notación musical es un lenguaje muy particular, que ha evolu-
cionado en el tiempo junto con el arte de la música, y como cualquier lenguaje
creado por el ser humano contiene ambigüedades (e.g., diferentes formas de
representar el mismo sonido), simplificaciones (e.g., elementos orientados a re-
ducir la cantidad de símbolos), redundancias (e.g., símbolos para mejorar la
legibilidad de la partitura), intención implícita (e.g., asunciones basadas en el
tipo de obra musical) y en general muchos grados de libertad que dan lugar
a diferentes expresiones musicales. En conclusión, esto hace que no haya una
única forma de convertir una partitura en audio y viceversa, dificultando tanto
la transcripción monofónica como la polifónica.

Sin embargo, sabemos que un músico experto es capaz de realizar la trans-
cripción musical de una manera bastante notable, asumiendo que se puede
escuchar la pieza musical varias veces y que se está familiarizado con el estilo
de la misma. Esta habilidad es una de las formas más convincentes de inte-
ligencia que existen, teniendo en cuenta los retos de los que hemos hablado.
Wolfgang Amadeus Mozart era ampliamente conocido por su extraordinaria
capacidad de transcripción musical. A él se le atribuye la transcripción del Mi-
serere de Allegri, una obra coral de 5 voces que el Vaticano guardaba en secreto,
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después de escucharla dos veces en 1770 durante la semana santa (única vez al
año en la que se podía escuchar). Esta anécdota evidencia de manera clara que
la transcripción musical automática puede llegar a ser factible únicamente con
la información extraída de la onda acústica, junto con el conocimiento previo
de cómo se reproduce una partitura, o lo que es lo mismo, con un modelo de
lenguaje musical predeterminado.

El Aprendizaje Automático (en inglés, Machine Learning) es un campo de
las Inteligencia Artificial que estudia algoritmos creados a partir de la expe-
riencia, en vez de a partir de la programación explícita. Esta experiencia se
obtiene normalmente de un conjunto de datos con numerosos ejemplos, que
se utilizan para crear un modelo estadístico que pueda ser capaz de tomar de-
cisiones a partir de nuevos ejemplos nunca vistos. En la aproximación típica de
aprendizaje supervisado, los ejemplos están formados por características y eti-
quetas, y el modelo estadístico constituye una función que conecta el espacio
de características con el espacio de etiquetas, que son el objetivo del aprendi-
zaje. Para que esta conexión sea posible, es necesario tener suficientes ejemplos
que representen adecuadamente la distribución de ambos espacios, y que exis-
ta una correlación entre ambos de manera que las características contengan la
información necesaria para generar la etiqueta más probable. La posibilidad de
utilizar redes neuronales profundas dentro del Aprendizaje Automático, llama-
do Aprendizaje Profundo o Deep Learning en inglés, ha permitido la resolución
de tareas con una precisión que resulta inalcanzable por los programas conven-
cionales basados en reglas.

Una aproximación útil para la resolución de problemas consiste en la des-
composición en varios subproblemas más pequeños, que se pueden resolver
de manera más fácil y cuyas soluciones intermedias se unen para producir la
solución final. El Aprendizaje Profundo también puede ser utilizado para la
resolución de problemas de extremo a extremo, que implica que la descompo-
sición del problema se delega al proceso de aprendizaje y no tiene por qué ser
expuesta de forma explícita. Esto supone una gran ventaja frente a sistemas de
resolución de problemas basados en múltiples etapas o subproblemas, ya que
los errores de una etapa no se propagan a la siguiente. El área de reconocimiento
del habla es un claro ejemplo de cómo los métodos extremo a extremo basados
en Aprendizaje Profundo han superado ampliamente cualquier enfoque previo
basado en la descomposición del problema en varias etapas de procesamiento
[1].

Objetivos

A pesar de que la meta final de la transcripción musical automática es producir
una partitura correcta, debido a la gran complejidad del problema, la comu-
nidad científica alude con frecuencia el término Automatic Music Transcription
(AMT) para referirse a la obtención de un objetivo intermedio [2]. La referencia a
AMT más extendida que podemos encontrar en la literatura se llama estimación
de múltiples alturas, cuya meta es la extracción de todas las frecuencias funda-
mentales en cada instante de tiempo. En el siguiente nivel de la transcripción
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musical automática, la meta es identificar qué notas musicales (no frecuencias)
están siendo reproducidas por los instrumentos en cada instante. Las notas mu-
sicales, caracterizadas por su nombre, tiempo de comienzo y de fin, se colocan
en una notación musical llamada pianola (en inglés, piano-roll), que es una repre-
sentación en dos dimensiones de la música donde el eje de ordenadas contiene
todas las alturas posibles de menor a mayor frecuencia, y el eje de abscisas
muestra la evolución de las notas en el tiempo. El siguiente paso natural ha-
cia la meta final de la transcripción musical automática es el de identificar la
fuente de sonido de cada nota, con el fin de obtener un piano-roll por cada ins-
trumento, lo cual permitiría la transcripción de fragmentos de audio donde dos
instrumentos emiten la misma nota a la vez. Esta tarea está estrechamente rela-
cionada con la separación de distintas fuentes de audio.

Todos estos niveles de la transcripción musical automática han mostrado un
éxito muy limitado en la literatura científica, y siguen siendo considerados pro-
blemas abiertos, principalmente debido a los retos intrínsecos del solapamiento
armónico para música polifónica que hemos visto previamente. Por otro lado,
el piano-roll no resulta una notación útil para que un músico pueda interpretar o
analizar fácilmente la música representada. Por tanto, la necesidad de un siste-
ma que produzca una partitura musical a partir del audio, que es la meta final
de la transcripción musical automática, sigue prevaleciendo.

Para lograr obtener una partitura completa, una aproximación consiste en
procesar el piano-roll para darle un sentido musical al nombre de las notas (e.g.,
elegir entre Sol] o La[) y convertir los tiempos de inicio y fin de las notas en
una duración canónica (e.g., elegir entre ˇ “( ‰ ‰ o ˇ “ ). Además, se deben identifi-
car otras estructuras musicales como el compás, la armadura, la posición de las
barras de compás, los silencios, calderones, símbolos que afectan a la dinámi-
ca y la expresión musical, etc. Y finalmente, las reglas de formato de partitura
deben aplicarse, como las que regulan la colocación de notas en pentagramas,
claves, ligaduras, repeticiones, corchetes, etc. Existen varias herramientas que
convierten un fichero de tipo MIDI, que almacena la información musical en un
formato similar al piano-roll, en una partitura. Sin embargo, todavía están lejos
de funcionar de manera totalmente autónoma, requiriendo de mucha interven-
ción manual para producir la partitura deseada.

Otra aproximación, que es la que hemos seguido en esta tesis doctoral, tra-
ta de solucionar el problema en un único paso, aprendiendo la relación directa
entre audio y partitura a partir de muchos ejemplos. El propósito de esta tesis
es crear un esquema de referencia que realice la transcripción musical automá-
tica de extremo a extremo o de manera holística, es decir sin múltiples fases
de procesamiento, gracias a la capacidad de las redes neuronales profundas.
A esta tarea la llamamos Audio a Partitura (en inglés, Audio-to-Score, A2S). La
entrada a nuestro esquema de referencia es la señal acústica representando un
fragmento musical, y la salida es la secuencia de símbolos que se pueden obte-
ner directamente en la partitura de música correspondiente.

Para lograr dicho propósito, nos planteamos los siguientes objetivos:

1. Buscar una arquitectura basada en redes neuronales, donde la entrada
es la representación de una señal acústica de una longitud variable, y la
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salida es una secuencia de caracteres también de longitud variable que
representa su partitura.

2. Evaluar exhaustivamente el método propuesto para música monofónica,
probando diferentes representaciones de entrada y de salida, y analizando
el origen de los principales errores en la partitura estimada.

3. Validar el método propuesto con música polifónica, donde al reto de pro-
ducir una partitura válida a partir del audio, presente también en la trans-
cripción monofónica, se le añade el reto de detectar múltiples frecuencias
simultáneas con solapamiento de armónicos.

Trabajos

Publicación I

Referencia:

• Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. An End-
to-end Framework for Audio-to-Score Music Transcription on Monopho-
nic Excerpts. In Proceedings of the 19th International Society for Music In-
formation Retrieval Conference, pages 34–41, Paris, France, September 2018.
ISMIR

Este trabajo presenta un nuevo esquema de referencia para realizar transcrip-
ción musical automática de sonido a partitura, incluyendo la formulación del
problema extremo a extremo con redes neuronales. Con el fin de probar la
viabilidad del método, nos basamos en la arquitectura de una red neuronal
Convolucional-Recurrente (Convolutional Recurrent Neural Network en inglés, CRNN)
ya aplicada con éxito en el campo de reconocimiento del habla, que aunque sea
una tarea diferente a la que estamos tratando resulta conveniente por utilizar
los mismos tipos de datos a la entrada y a la salida. Tal y cómo se hace también
en reconocimiento del habla, para poder entrenar con datos de entrada y salida
no alineados en el tiempo nos apoyamos en el algoritmo Connectionist Temporal
Classification (CTC) [5]. Como formato de entrada utilizamos el espectrograma
del audio obtenido con la Transformada de Fourier de Tiempo Corto (Short-
Term Fourier Transform en inglés, STFT) y para la salida creamos nuestro propio
formato simple de codificación de partitura para música monofónica.

Para entrenar el modelo creamos un conjunto de datos de música monofóni-
ca a partir de la base de datos RISM (Répertoire International des Sources Musicales)
[9], que es un catálogo de manuscritos de música clásica europea principalmen-
te del periodo comprendido entre los años 1500 y 1800. En el catálogo de RISM
no se almacena el contenido de las partituras, sino que contiene pequeños ex-
tractos (incipits en inglés) de algunas obras en formato de partitura digital. Estos
extractos son utilizados habitualmente como parte de los índices de contenido
de los manuscritos originales. En total se han usado más de 70.000 pequeños
fragmentos de este tipo, generando el audio a partir de los mismos mediante
herramientas de síntesis MIDI. Para esto se ha usado un sonido de piano como
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instrumento, y un tiempo de negra aleatorio en cada ejemplo para conseguir
variabilidad en el tempo.

Con respecto a la evaluación del método que proponemos, y dado que no
existe ninguna métrica específica para convertir una señal de audio a partitura
(A2S), nos apoyamos en las métricas utilizadas con anterioridad en el recono-
cimiento del habla. Estas miden la distancia de edición entre la secuencia de
caracteres de salida estimada y la salida esperada, tanto a nivel de palabras
Word Error Rate (WER) como a nivel de caracteres Character Error Rate (CER).
Además hemos añadido una métrica ideada para evaluar sistemas de AMT ba-
sados en piano-roll como salida [7] y la hemos adaptado a nuestro caso particular
de A2S. Dicha métrica mide los errores de altura de las notas (Ep) los errores de
duración de notas y silencios (Ed), los errores de notas y silencios no contabiliza-
dos (Em) y los errores de notas y silencios sobrantes (Ee). Los resultados revelan
que el método es capaz de aprender la tarea de AMT en nuestro entorno limi-
tado, validando que esta aproximación al problema de AMT es prometedora y
por tanto merece la pena profundizar más en la investigación.

Publicación II

Referencia:

• Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. A Holistic
Approach to Polyphonic Music Transcription with Neural Networks. In
Proceedings of the 20th International Society for Music Information Retrieval
Conference, pages 731–737, Delft, The Netherlands, November 2019. ISMIR

Con el fin de probar que el método propuesto también puede funcionar con
audio polifónico, en este trabajo se ha entrenado el modelo con música polifóni-
ca extraída del repositorio de partituras digitales humdrum-data [13]. En concreto
se ha elegido música de 4 voces de las corales de Bach y de los cuartetos de cuer-
da de Haydn, Mozart y Beethoven. Para el experimento con las corales de Bach
utilizamos audio previamente sintetizado con una fuente de sonido de órgano
de tubos con muy alta calidad, y usando una coral completa por cada muestra
de entrenamiento, obteniendo casi 6 horas de audio en total. Previamente se ha
ido eliminando del audio de forma manual las repeticiones de secciones musi-
cales, ya que no proporcionan información nueva y alargan innecesariamente
el tamaño de las muestras de entrenamiento. Para el experimento con el con-
junto de datos formado por los cuartetos de cuerda, se ha dividido cada una de
las obras en fragmentos más cortos de 3 a 6 compases, que se han sintetizado
con distintas fuentes de sonido MIDI según la tesitura del instrumento para el
que fue escrito (violín, viola o violonchelo). En este caso se ha elegido para cada
fragmento un tiempo de negra aleatorio dentro del rango esperado según el ti-
po de composición (por ejemplo, Allegro, Adagio, etc.). Con esta aproximación
se han obtenido más de 20 horas de audio en total.

Muchas de las partituras digitales en formato **kern [6] que utilizamos con-
tenían errores de cuantificación de las notas, que hubo que arreglar de forma
manual con el fin de limpiar los datos de entrenamiento y no perjudicar el pro-
ceso de aprendizaje. Los repositorios con estas partituras digitales corregidas se
han dejado disponibles en el dominio público.
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En ambos casos, para generar las características del audio usado como entra-
da de la red se ha usado la Transformada de Fourier de Tiempo Corto, aplicando
después un agrupamiento logarítmico de los intervalos de frecuencia alineados
con las octavas de la música tonal con la que estamos trabajamos. La salida
del modelo propuesto es directamente una secuencia de símbolos en formato
**kern, incluyendo los caracteres de presentación como el tabulador para cam-
biar de voz y el salto de línea para avanzar en el tiempo.

En este caso se ha seguido utilizando la misma arquitectura basada en redes
CRNN del trabajo anterior, aunque modificada para soportar secuencias más
largas de salida. El algoritmo de CTC nos impone un número de caracteres en
la salida menor o igual al número de ventanas (frames) de audio de entrada.
Por tanto para poder entrenar con partituras polifónicas, con una mayor den-
sidad de caracteres por segundo, una opción sería aumentar artificialmente el
número de ventanas del audio de entrada, suponiendo un coste computacional
innecesario. Para evitarlo, se ha incrementado el número de pasos de la etapa
recurrente mediante el desdoble de las características extraídas del audio en la
etapa convolucional, manteniendo un número de ventanas más adecuado en la
entrada. Además se han ajustado todos los hiperparámetros con respecto a la
publicación anterior para mejorar al máximo los resultados y acelerar la con-
vergencia en la fase de entrenamiento.

Los resultados revelan unos valores de Word Error Rate (WER) y Character
Error Rate (CER) mejores de lo esperado teniendo en cuenta que el modelo tiene
que resolver el reto del solape de armónicos característico de la transcripción
polifónica. Además hay que considerar que para el caso particular de la tarea
de transcripción musical de audio a partitura con música polifónica existe un
nuevo reto que hay que resolver, que consiste en colocar las notas estimadas en
la voz correcta. Cada voz tiene un rango de notas distinto, que facilita la coloca-
ción de las notas estimadas por orden de altura. Pero muchas veces en una obra
musical las voces se cruzan, generando una situación de ambigüedad. Para re-
solver esta ambigüedad el modelo debería discriminar en base al timbre de cada
nota, lo que se corresponde directamente con otro problema de identificación de
armónicos, o al seguimiento de voces característico del estilo de música en cues-
tión, que precisa del conocimiento aportado por un sólido modelo de lenguaje
musical. Este hallazgo refuerza la idea de que el enfoque extremo a extremo
es más adecuado que los enfoques tradicionales para resolver el problema de
AMT de forma fiable.

Publicación III

Referencia:

• Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. Data re-
presentations for audio-to-score monophonic music transcription. Expert
Systems with Applications, 162:113769, 2020

En este trabajo ponemos el foco en la evaluación del método propuesto en
la Publicación I, realizando numerosos experimentos con más de 300.000 frag-
mentos de música monofónica sintetizada con distintos timbres y aplicando
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también variabilidad en el tempo. Por un lado se ha evaluado el sistema con
distintas representaciones de entrada y de salida, realizando un estudio compa-
rativo exhaustivo. Por otro lado se han analizado individualmente los errores
de transcripción para comprender mejor su origen.

Tipos de representaciones de entrada evaluadas:

• Señal acústica (Raw waveform). En este caso se utiliza la onda acústica di-
rectamente como entrada del modelo, dividiéndola en fragmentos con una
ventana temporal de un tamaño fijo, y usando SincNet [8] como primera
capa de la red neuronal. SincNet extrae características de estos fragmen-
tos de audio aprendiendo filtros paso-banda como parte del proceso de
entrenamiento del modelo.

• STFT. Es el espectrograma que se obtiene con la Transformada de Fourier
de Tiempo Corto (STFT en inglés).

• LogSTFT. Es el espectrograma basado en STFT al cual se le aplica un banco
de filtros con espaciado logarítmico, de manera que los intervalos de fre-
cuencia se alinean con los intervalos de las notas musicales. El objetivo es
conseguir un número fijo de intervalos de frecuencia dentro de cada una
de las octavas.

• CQT. Es el espectrograma que se obtiene al aplicar la transformada CQT
(Constant-Q Transform) [15], donde los tamaños de ventanas temporales
varían en función de los intervalos de frecuencia. El objetivo de esta trans-
formada es conseguir que la resolución en frecuencia sea constante en
todos los intervalos, con el coste de una peor resolución temporal para
las frecuencias más bajas.

Tipos de representaciones de salida evaluadas:

• CTC-friendly. Es una notación de música creada específicamente para faci-
litar la decodificación del algoritmo de CTC, orientada a música monofó-
nica.

• Basada en PAE. Esta notación está basada en el formato PAE (Plaine And
Easie code) [3], añadiendo espacios para crear artificialmente palabras que
permitan medir el error WER como en el resto de representaciones de sa-
lida. También ha sido necesario asegurar que los símbolos para cambiar
de octava y de duración de las notas aparecen siempre en el mismo orden,
y justo antes de la primera nota o silencio al que afectan para evitar am-
bigüedades en la representación. El formato PAE sólo puede representar
un único pentagrama, así que no es adecuado para las necesidades de la
música polifónica.

• Basada en Kern. Esta notación está basada en la representación **kern [6]
del formato Humdrum, que soportan el amplio espectro de partituras con
notación moderna, incluyendo varios pentagramas representando voces,
ornamentación, cambios de tempo y dinámica, etc.
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Para este trabajo hemos empleado la misma arquitectura basada en redes
CRNN con CTC en la salida, pero se ha ajustado el tamaño de la red convolu-
cional en función del número de características del audio de entrada. El objetivo
de este ajuste es conseguir que todas las representaciones de entrada generen el
mismo número de características antes de la etapa recurrente. De esta manera
ninguna representación de entrada obtiene una ventaja con respecto a las demás
en cuanto a capacidad de aprendizaje.

En cuanto a las métricas de evaluación, utilizamos las mismas que en el pri-
mer trabajo; por un lado tenemos las heredadas de la tarea de reconocimiento
automático del habla, como son el WER y el CER, y también las heredadas
del enfoque de AMT basado en una salida de piano-roll que hemos adaptado
a nuestro problema. Además clasificamos todos los errores en la salida de for-
ma individual para analizar cuales son las estructuras musicales que son más
difíciles de identificar correctamente por nuestro modelo.

Los mejores resultados se han dado con la combinación de representación de
entrada LogSTFT y de representación de salida CTC-friendly. No obstante lo más
interesante de los resultados, fue comprobar que incluso para el caso de músi-
ca monofónica, la tarea de A2S presenta el reto de identificar correctamente el
valor de las notas (e.g., ˘ “ , ˇ “ , ˇ “( , etc.) que está relacionado con su duración. No
obstante, la duración real del valor de las notas varía dentro de unos márgenes
razonables de una pieza a otra, e incluso entre dos interpretaciones distintas de
la misma pieza. Esto hace que la estimación de dichos valores, llamada cuan-
tificación de notas, sea una tarea de gran dificultad que requiere un contexto
mayor de audio para ser resuelta.

Relacionado con la cuantificación de notas, la información métrica de la
partitura es otra de las estructuras musicales más difíciles de identificar correc-
tamente por nuestro modelo. Esto incluye el compás de la obra (e.g., 4

4 , 3
4 , 6

8

, etc.), y la localización exacta de las barras de compás y silencios (e.g., < , > ,
? , etc.). La información métrica es fundamental para generar compases de la
misma duración a partir de las notas estimadas, y tiene un gran impacto en la
interpretación ya que determina implícitamente las notas que se acentúan den-
tro de cada compás. La información métrica no está codificada explícitamente
en cada ventana de audio, y al igual que ocurre con la cuantificación de notas,
sólo se puede inferir a partir del contexto completo del audio y del modelo de
lenguaje musical aprendido.

Conclusiones

Esta tesis doctoral presenta un nuevo enfoque en el área de la transcripción mu-
sical automática (AMT), definiendo la tarea de Audio-to-Score (A2S), que realiza
la transcripción musical de extremo a extremo gracias a la capacidad de modela-
do de problemas que nos ofrecen las redes neuronales profundas. Este enfoque
va un paso más allá de los sistemas de transcripción tradicionales, que están ba-
sados en predecir notas musicales en el formato de tiempo-frecuencia llamado
(piano-roll). Las principales ventajas del enfoque propuesto frente a los métodos
tradicionales son las siguientes:
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• La salida es una partitura válida de música que puede ser directamente
interpretada por músicos o analizada por musicólogos.

• La aproximación extremo a extremo evita que los errores de una etapa se
propaguen a la siguiente.

• No precisa de anotaciones de alineamiento temporal entre el audio de en-
trada y la partitura de salida, dado que se aprende por el modelo de forma
implícita.

• Mediante la aproximación extremo a extremo se aprende también un mo-
delo de lenguaje musical que ayuda a reducir los errores de transcripción
de manera global.

Los resultados sobre audio monofónico, donde no existe el problema de so-
lapamiento de armónicos, muestran que el origen de la mayoría de errores está
relacionado con la información métrica de la partitura tales como la duración de
notas y silencios, la estimación del compás de la obra y la colocación de barras
de compás. Dado que esta información no está codificada explícitamente en la
señal de audio, la estimación correcta de esta información requiere un potente
modelo de lenguaje musical previamente aprendido. La representación de en-
trada que ha obtenido los mejores resultados es el espectrograma con intervalos
de frecuencia en escala logarítmica y alineados con las octavas musicales. La
mejor representación de salida obtenida fue la que se creó específicamente para
facilitar la decodificación Connectionist Temporal Classification (CTC) de nuestro
modelo, tal y como se pretendía.

Los resultados sobre audio polifónico, a pesar de la naturaleza limitada de
los experimentos, revelan que el método propuesto también es capaz de apren-
der a superar cada uno de los retos de AMT en el dominio del tiempo (e.g.
cuantificación de notas) y en el dominio de la frecuencia (e.g. solapamiento de
armónicos), pudiendo predecir las frecuencias fundamentales que determinan
las notas y adicionalmente su asignación a la voz correspondiente.

Aunque la formulación de A2S presentada en esta tesis doctoral todavía es-
tá lejos de ser resuelta de una manera satisfactoria, creemos que los resultados
arrojados por los experimentos abren una nueva vía de investigación en el cam-
po de transcripción musical automática. A pesar de ello, existen dos factores
importantes que en la actualidad limitan el progreso de la tarea A2S:

1. Aunque existen muchas grabaciones de audio con su correspondiente par-
titura digital, los requisitos de nuestro esquema de referencia con la for-
mulación actual (i.e., fragmentos cortos de audio real polifónico con su
correspondiente notación musical) limitan la cantidad de datos que pue-
den usarse para entrenar los modelos.

2. No existe una métrica de evaluación estándar para A2S con música poli-
fónica que pondere los errores en base a su impacto musical, en lugar de
tener en cuenta solo la distancia de edición entre la partitura digital es-
timada y la esperada. Una métrica adecuada también nos permitiría una
comparación más precisa entre distintos métodos.
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Además de trabajar para superar estos factores limitantes, existen otras vías
por las cuales este trabajo puede tener continuidad:

1. Añadiendo un modelo de lenguaje en el decodificador, que puede mejorar
sustancialmente los resultados al asegurar que la salida es sintácticamente
y gramáticamente correcta desde un punto de vista musical. Este modelo
de lenguaje puede entrenarse de manera no supervisada utilizando úni-
camente partituras digitales que están disponibles en el dominio público
en grandes cantidades.

2. Evaluando modelos autoregresivos con mecanismos de atención, como
por ejemplo la arquitectura Transformer [16], para así evitar la limitación
impuesta por CTC que impide tener secuencias de salida de mayor longi-
tud que el número de ventanas de audio presentes en la entrada.

3. Aumentando la cantidad de datos para mejorar la robustez de los mo-
delos entrenados, aplicando diversas transformaciones al sonido como la
mezcla con ruido añadido, variaciones de frecuencia y rango dinámico,
síntesis de audio con varias fuentes de sonido distintas por cada tipo de
instrumento, etc.

4. Creando un conjunto de datos específico para la tarea A2S que utilice
audio real, después de trocear grabaciones de audio existentes automá-
ticamente mediante una herramienta de seguimiento de partituras (Score
Following en inglés).

Del mismo modo que el procesamiento de lenguaje natural (Natural Langua-
ge Processing (NLP en inglés) ha experimentado un importante salto cualitativo
en los últimos años gracias al uso de modelos más grandes como GPT-3 [4], la
tarea A2S también podría beneficiarse si tuviéramos a nuestra disposición tal ca-
pacidad de cómputo. Las redes neuronales de mayor tamaño pueden procesar
secuencias más largas,lo que permitiría entrenar directamente con grabaciones
de audio real y su correspondiente partitura completa disponible en el domi-
nio público. Recopilar los datos con esta aproximación es menos costoso, lo
cual podría incrementar el tamaño de las muestras de entrenamiento en varios
ordenes de magnitud. En definitiva, al incrementar la cantidad de datos de en-
trenamiento y el tamaño de los modelos de redes neuronales seríamos capaces
de aprender mejores modelos de lenguaje musical, que puede ser la clave que
permita solventar algunos de los retos que son intrínsecos a la transcripción
automática de música.
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Preface

Given that most of the research conducted as part of this thesis has been pub-
lished in international peer-reviewed journals and conferences, this dissertation
is arranged as a thesis by publication. This means that the core of the work is pre-
sented as reprints of such publications, keeping their original format.

The set of papers that form the body of work of this thesis are (in chronolog-
ical order of publication):

1. Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. An End-
to-end Framework for Audio-to-Score Music Transcription on Monophonic
Excerpts. In Proceedings of the 19th International Society for Music Information
Retrieval Conference, pages 34–41, Paris, France, September 2018. ISMIR

2. Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. A Holistic
Approach to Polyphonic Music Transcription with Neural Networks. In
Proceedings of the 20th International Society for Music Information Retrieval
Conference, pages 731–737, Delft, The Netherlands, November 2019. ISMIR

3. Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. Data rep-
resentations for audio-to-score monophonic music transcription. Expert
Systems with Applications, 162:113769, 2020

Following the guidelines of the doctoral school of Universidad de Alicante
for writing thesis as compilation of papers, this document is organized as fol-
lows:

- Part I: Introduction. An initial section introducing the background of the
thesis and a description of the set of contributions within the context of
the thesis project.

- Part II: Published work. The compilation of papers that are already pub-
lished.

- Part III: Conclusions. Summary of the contributions, general conclusions,
and some lines about future research.

Considering that each paper presented in Part II is completely self-contained,
Part I merely puts into context the research carried out without giving a deep
insight into the background and related works. Similarly, the analysis of the
results achieved can be found in the corresponding section on each publication,
thus Part III only covers the most important conclusions of the whole work.
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Chapter 1

Introduction

A musical piece can be written in a music score notation, as a means to set a
common framework for musicians at the time of its performance. However,
music scores are not always available to music practitioners, so there is still a
need for them to transcribe the music they listen to and wish to play or analyze.
But the potential applications of an automated system capable of doing music
transcription are much broader, such as aiding at music composition, helping
in music learning by inspecting performances, or carrying out music analysis of
jazz improvisations among others.

Automatic Music Transcription (AMT) is a Music Information Retrieval (MIR)
field that aims at converting audio signals into a form of musical notation using
computational means. Considering the complexity of this problem, most AMT
methods perform multi-pitch detection followed by a post-processing stage that
extracts the notes and other components of a music score. The purpose of this
thesis is to create a framework that performs AMT in an end-to-end fashion.
The input of the proposed model is the audio waveform representing a music
fragment, and the output is the sequence of symbols (i.e., a digital score) that
can be rendered into the corresponding human-readable score.

In a modern music score [14], sounds are represented by notes placed on a
staff, which comprises 5 horizontal lines representing the flow of time from left
to right. The vertical position of the note in the staff determines its pitch, and
the shape of the note symbol determines its duration. Silence is represented by
rest symbols, whose duration is also determined by its shape. A staff begins
with a clef symbol, which defines the pitch reference for the written notes. After
the clef, a time signature determines the metric information or rhythm, and a key
signature determines which note pitches must be altered according to the tonal-
ity of the musical piece. Based on the time signature, notes and rests are divided
in measures of equal duration using barlines. Notes whose duration go beyond
the current measure are joined with another note of the same pitch in the next
measure using a curved line named tie. Anyway, this is only the basics, as a
modern music score usually contains other information to indicate changes in
dynamics (i.e., affecting the volume of notes) and tempo (i.e., affecting the length
of notes).
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1.1 Main Challenges

Most of the music we listen today is polyphonic, which means that different
sound events can be played simultaneously. On the other hand we have mono-
phonic music, where only one pitch is playing at any given time. Polyphonic
music transcription is a very challenging task even for trained musicians, due to
the fact that sound waves from different sources are mixed together. This addi-
tion of waves implies a loss of information, which musicians need to complete
based on their own experience with the music they play, listen or create.

One of the main AMT challenges is identifying the fundamental frequencies
of all the sound events being produced by instruments, which determine the
pitches in music language terminology. Each individual pitch contributes to the
final audio waveform with its fundamental frequency together with its multi-
ples (2x, 3x, etc.), named harmonics. The distribution of harmonic amplitudes
and phases determines the particular timbre of an instrument. As fundamental
frequencies and harmonics merge into a single audio signal, extracting back the
fundamental frequencies of each independent source becomes a very demand-
ing task.

Another reason making polyphonic music transcription challenging is the
fact that sounds are not statistically independent in modern music. Music can
be defined as the art of combining sounds in time, which hints that sound waves
usually share common patterns in both time and frequency domains. These
patterns build a particular rhythm, where note onsets and offsets occur at the
same time, and a particular harmony, where notes share their fundamental fre-
quencies or harmonics. This note dependency makes the task of separating the
individual notes present in the audio signal more difficult than if they were
made of random sound events.

And last but not least, music symbols can only be a guideline to perform
a particular piece of music, and are subject to different interpretation nuances
based on the musician character, mood, culture, historical context, etc. Music
notation is a particular language that evolved together with the art of music,
and as any other human-made language contains ambiguities (e.g., different
ways of representing the same sound), simplifications (e.g., elements aimed at
reducing the total number of symbols), redundancies (e.g., symbols to improve
readability of the score), implicit intention (e.g., assumptions based on the type
of the piece) and in general many degrees of freedom that may lead to different
musical outcomes. In summary, there is no unique way to convert a music
score into sound waves, and vice versa. This particular challenge applies to
both monophonic and polyphonic music transcription.

Nevertheless, we know that expert musicians are capable of performing
music transcription fairly well, provided that they listen to the musical piece
several times and they are familiar with the style of the music being transcribed.
This ability is one of the most compelling traits of human intelligence consid-
ering the aforementioned challenges. Wolfgang Amadeus Mozart was highly
renowned by his extraordinary music transcription skills. He was allegedly
able to transcribe Allegri’s Miserere, a 5-voice choral piece the Vatican held in
secrecy, after hearing it twice on the Easter of 1770. This anecdote is a strong
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evidence of how AMT is feasible just with the information carried by the audio
waveform, together with prior knowledge of how written music should sound,
or in other words, with a predetermined music language model.

1.2 Research Background

Even though the ultimate goal of AMT is producing a music score, due to its
complexity, AMT is very often referred as methods aiming at some intermedi-
ate goal [2]. The most extended AMT objective that we can find in the literature
is called multi-pitch estimation, whose goal is to obtain all the fundamental
frequencies at any given time frame. In the next level of AMT, namely note
tracking, the goal is to identify which notes (rather than pitches) are being
played by instruments. The notes characterized by its pitch, onset and offset
times, are placed in a piano-roll music notation format, which is a 2-dimensional
representation of music where the y-axis contains all the possible notes ordered
by frequency and the x-axis provides the evolution of the notes in time. The next
natural step towards complete AMT is to identify the source of each note in or-
der to generate one piano-roll per instrument, which allows the transcription
of audio excerpts where two instruments are playing the same note simulta-
neously. This task is called stream level AMT, and is closely related to audio
source separation.

These levels of AMT have shown limited success in the literature and they
are still regarded as open problems, mainly due to the intrinsic challenge of
harmonic overlapping previously mentioned. Furthermore, piano-rolls are not
useful for humans to perform the underlying music they characterize, hence the
need to obtain a music score, the final goal of AMT, still prevails.

In order to satisfy this need, one approach is to try converting notes from
a piano-roll notation into a music score, by extracting pitch spellings (e.g., G]
or A[) and timing quantization (e.g., ˇ “( ‰ ‰ or ˇ “ ). Additionally, other music struc-
tures must be properly identified such as the time and key signatures, and the
location of barlines, rests, fermata, dynamics and expression symbols, etc. And
finally, typesetting rules must be obeyed, such as those regarding staves, clefs,
note ties, repetitions, note beaming, etc. There are many proprietary software
tools that convert MIDI files, a format that can store music in a piano-roll style,
into a music score. However, they are still far from being fully automated, re-
quiring a great deal of human intervention in order to render a valid score.

The other approach, which is the subject of this thesis, aims at solving the
audio-to-score problem in one step, by learning the direct mapping between
audio and score from many examples. Both approaches are depicted in Figure
1.1.

1.3 Proposed Approach

Machine Learning (ML) is the field of computer science that studies algorithms
created by experience, rather than by explicit programming. This experience
is normally obtained from data samples, which are used to build a statistical
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Figure 1.1: Overview of A2S approaches. Top: multi-step methods based on
piano-roll estimation. Bottom: end-to-end methods based on deep neural net-
works and the object of this thesis.
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model that is capable of making decisions on new unseen data samples. In the
typical supervised learning approach, samples are made of features and corre-
sponding labels, and the statistical model constitutes a function that maps the
input feature space to the output label space, which is the learning objective.
This mapping is possible provided that there are enough data samples to repre-
sent the input and output spaces, and that the information required to generate
the most probable label is somehow encoded in the input features. The possi-
bility of using deep neural networks for ML, called Deep Learning (DL), has
enabled a new set of applications that were previously unreachable with rule-
based conventional programs.

A useful approach to problem-solving involves decomposing the problem
into several smaller sub-problems, which can be solved independently, and
together produce the final solution. Interestingly, DL models can be used as
end-to-end problem-solvers, in the sense that the problem decomposition can
be automatically delegated to the learning process and does not have to be made
explicit. This is a clear advantage versus multi-step problem solvers, as the er-
rors in one step do not cascade to the next one. Automatic Speech Recognition
(ASR) is one example that shows how end-to-end DL methods outperform any
previous approach based on multiple processing stages [1].

In order to validate this end-to-end framework that performs AMT using
deep neural networks, we need a large amount of paired audio and score data
samples. In an ideal scenario, we could just use existing music recordings and
their published digital scores. Nevertheless, considering the typical duration of
recorded music is in the range of several minutes, the amount of memory and
computation required to process such long audio samples is as of today out of
our reach. Contrary to the analogous speech recognition task, where the audio
can be broken up by sentences or paragraphs as needed, music audio waves
cannot be easily split at desired locations of the score. Moreover, all existing
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datasets targeting the AMT task are based on piano-roll output representations
and lack music notation data to fulfill our purpose.

The scarceness of proper datasets, together with the lack of standard metrics
to formally compare results, hinder A2S progress and force researchers to work
on proof of concepts that are still far from being commercially viable solutions.
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Chapter 2

Contributions

This chapter outlines the main contributions of this thesis concerning the field
of Automatic Music Transcription (AMT). Since notation-level AMT is a fairly
unexplored area of research, the main focus of this thesis is to validate a par-
ticular framework to tackle the AMT problem rather than to improve existing
results or methods.

2.1 Audio-to-Score Formulation

We outline the Audio-to-Score (A2S) problem as a pattern recognition task. Let
X be the domain of audio files and Σ the alphabet symbols that can render a
valid score in western music notation. The aim of our A2S task is to find a
function that maps any audio file into a sequence of symbols, i.e., a function
f : X → Σ∗. The A2S task is therefore formulated as retrieving the most likely
sequence of music symbols ŝ given an x ∈ X :

ŝ = arg max
s∈Σ∗

P (s|x) (2.1)

A Convolutional Recurrent Neural Network (CRNN) is implemented to model
the posterior probability of equation 2.1, which has proven to be successful on
similar sequence translation tasks like, for instance, speech recognition [1]. The
input of our model is the audio information condensed in fixed time periods or
frames. The output is the vector of likelihoods of each symbol in the alphabet at
every input frame. Connectionist Temporal Classification (CTC) algorithm [5]
facilitates training such model, as it takes into account all possible alignments of
the likelihood vectors with the correct sequence of symbols, avoiding the hassle
of manually annotating alignments in the ground truth data.

As there are no standard metrics to evaluate the performance of an A2S
task, we adopt the metrics from the analogous speech recognition task, namely
Word Error Rate (WER) and Character Error Rate (CER). They measure the tran-
scription error by computing the edit distance between the prediction and the
ground truth, at the word-level and character-level respectively. The edit dis-
tance is not the best indicator of music score errors, as it does not take into
account their impact in terms of musical outcome. Nevertheless, we show that
these metrics provide a useful way not only to evaluate our results, as the edit
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distance is directly related to the number of manual operations needed to cor-
rect the output score, but also to compare our own experiments.

2.2 Data Acquisition

The lack of large corpora of short sample pairs suitable to train our A2S models
drove us into building our own data set. The approach we followed was to
search for databases of music scores already in symbolic form. Being able to
parse these scores gave us the flexibility to randomly split them into shorter
fragments, and create the corresponding audio using standard MIDI synthesis
tools. We sought to approximate some aspects of real audio by using different
timbres and tempos. We understand synthetic data is not ideal for AMT, but it
serves as a starting point to validate the feasibility of the A2S framework we are
proposing in the absence of more suitable datasets.

2.2.1 RISM

The RISM (Répertoire International des Sources Musicales) database [9] is a catalog
of over 1 million music manuscript sources, with an emphasis of western clas-
sical music from 1500 until 1800. The database does not include music scores in
printed form, but it contains incipits of some of the music sources. An incipit is
a small fragment extracted from the original score, normally found in sheet mu-
sic for indexing purposes. The incipits are stored using PAE [3] format, which
is a symbolic representation of one staff of music score.

The whole RISM database can be downloaded as a single XML file. We
built a library1 to parse this large XML file and extract the valid incipits from
it, together with other metadata such as the key signature and tonality, time
signature, clef and target instrument. The instrument metadata was used to
select the corresponding MIDI program for audio synthesis, while the rest of
the metadata were used to complement the incipit in order to create a complete
music score. Figure 2.1 shows the multiple steps required to obtain our ground
truth out of the RISM database (more details available in [12]).

Some of the incipits contained format errors, for example missing notes or
rests that led to scores with incorrect metric information. Errors in training data
act as noise, hurting the performance that can be achieved by machine learning
models. Thus, we had to parse incipits in order to verify that each measure of
the selected scores contained the correct number and lengths of notes and rests,
according to the time signature of the incipit. Another example of format errors
were ties placed between notes of different pitch (probably confused by slurs in
the original score), which we also had to properly detect and fix.

2.2.2 Humdrum-data

Humdrum-data [13] is a repository of digital music scores in **kern [6] repre-
sentation, a text-based file format that can render scores with multiple staffs.

1https://github.com/mangelroman/rism
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Data Preparation Pipeline

• Training dataset: 
• 308215k monophonic excerpts 
• Synthesized with random tempo and sound 

based on instrument 
• Train/validation/test split: 70/15/15

$ r [ e5!. f#5= e5= d5= c#5= 
b4= a4= | a4-. g#4= g#4! ,!

Symbolic 
Encoding

Audio 
Encoding

Score 
Parsing

Audio 
Synthesis

Data 
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RISM 
Online


Catalog
Filtering

Figure 2.1: Training data acquisition pipeline for RISM database.

We used this data source to extract 4-voice music scores in order to validate
our approach for polyphonic music. We created a **kern parser to split long
scores randomly without causing formatting errors. Some of these contribu-
tions were submitted to humextra repository, a popular open source library to
manage **kern files, and were accepted by its creator.2

As in the case of RISM database, many of the **kern scores we selected con-
tained note quantization errors that needed to be corrected to avoid adding
noise to our training data. Unfortunately, fixing these errors programmatically
was not a simple task, so we had to manually edit the scores one by one. 2.2
provides an example of the nature of manual fixes we had to apply. The fixed
scores are available in several public repositories.3,4,5 Some of these fixes were
also accepted in the official humdrum-data public repository.6

Since most scores from this database were missing metronome markings,
we used tempo indications made by the composer (e.g. Allegro, Adagio, etc.) in
order to later synthesize with a random tempo that is within the expected range.
Figure 2.3 depicts the data acquisition pipeline for humdrum-data repository
(more details available in [11]).

2.3 Input and Output Representations

We tested our A2S framework with different representations of input and out-
put data, and carried out a thorough comparative analysis to evaluate the per-
formance of our model considering all possible combinations (results and con-
clusions are fully detailed in [12]).

2.3.1 Input

• Raw audio. Raw audio waveforms were directly used as input by adding
SincNet [8] as the first layer of the model. SincNet layer extracts audio
features from waveforms by learning meaningful filters.

2https://github.com/craigsapp/humextra/pull/12
3https://github.com/mangelroman/humdrum-haydn-quartets
4https://github.com/mangelroman/humdrum-mozart-quartets
5https://github.com/mangelroman/beethoven-string-quartets
6https://github.com/craigsapp/bach-370-chorales/pull/1
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Figure 2.2: Common note quantization errors in humdrum-data repository that
required manual fix.
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• STFT. The magnitude spectrogram obtained from the Short Time Fourier
Transform.

• LogSTFT. A log-spaced filter bank was applied to the STFT magnitude
spectrogram, with the purpose of having a fixed number of bins per oc-
tave.

• CQT. Constant-Q transform [15] spectrogram, where window sizes in the
time domain vary in order to have a constant resolution for all frequency
bins at the expense of inaccurate time resolution for lower frequencies.

2.3.2 Output

• CTC-friendly. This is a semantic music notation we specifically created to
ease CTC decoding. It only supports monophonic music.

• PAE-based. This notation is based on the PAE [3] format, adding spaces
to artificially create words to match the other output representations. We
also had to ensure that changes of octave and duration applied to notes
always appear in the same order and right before each note, to avoid data
ambiguities. PAE can only represent one staff at a time, so it is not suitable
for most polyphonic notation requirements.

• Kern-based. This notation is based Humdrum **kern representation [6],
which supports the full spectrum of modern music scores, including mul-
tiple staffs, ornamentation, tempo markings, and dynamics.

2.4 Monophonic Audio-to-Score

We rigorously validated our A2S framework with more than 300,000 mono-
phonic audio excerpts extracted from the RISM database. Although mono-
phonic pitch estimation might be considered a solved problem given that it is
not affected by frequency overlaps, converting predicted pitches into a valid
score still presents some challenges that are worth addressing.

One of these challenges is note quantization, which consists of identifying
the length of notes (e.g., ˘ “ , ˇ “ , ˇ “( , etc.) based on the audio information, and
in relation to the rest of the predicted notes. The real duration of canonical
note lengths varies within a reasonable range from piece to piece, and even be-
tween different interpretations of the same piece. This makes note quantization
a much harder task than it may seem, requiring music language knowledge to
properly assign canonical note lengths to predicted notes.

Another important challenge is estimating the correct metric information of
the score, such as the time signature (e.g., 4

4 , 3
4 , 6

8 , etc.), along with the exact
placement of barline symbols and rests (e.g., < , > , ? , etc.). This metric informa-
tion is necessary to compose measures of equal time length out of the predicted
notes, which is a fundamental part of the score as it determines the beat of the
musical piece.
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Additionally, our A2S monophonic framework also predicted the clef and
the key signature, which aim at producing a more readable music score, but
have no effect on its musical outcome.

2.5 Polyphonic Audio-to-Score

We also evaluated our A2S framework on polyphonic music, where the chal-
lenges regarding multi-pitch estimation are present, together with the specific
challenges of the A2S task described in the previous section. On top of them,
there is one extra challenge of positioning predicted notes in the correct staff by
properly recognizing musical voicing.

We collected 4-voice music from Haydn, Mozart and Beethoven string quar-
tets, and trained our model with excerpts of them. Additionally, we also used
audio files from the Bach chorales, synthesized using a high quality pipe organ
sound font.7 We extracted the scores in **kern format from the humdrum-data
database, adding a total of more than 26 hours of polyphonic audio fragments.
By using **kern format as the output of our model, we can potentially support
any score that can be written in modern music notation.

One limitation imposed by the CTC function, is that the number of output
characters must be less or equal than the number of input frames. This creates
a problem for polyphonic audio, as the number of output symbols increases
by the number of voices, having the same number of input frames. One al-
ternative to overcome this issue can be to artificially increase the number of
input frames to enable more output characters. However, this hardly adds new
information to our model, hence no better performance, at the cost of consid-
erably more computation and memory requirements. The solution we devised
involved changing the CRNN architecture to double the number of features ex-
tracted from the convolutional block while keeping the same number of frames
in the input, thus meeting the maximum number of characters required for
polyphonic music scores.

In order to reproduce the results of this polyphonic A2S work, source code
and data are available in a public repository.8

7An example of such sound font can be found at https://www.hauptwerk.com
8https://github.com/mangelroman/audio2score
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ABSTRACT

In this work, we present an end-to-end framework for
audio-to-score transcription. To the best of our knowl-
edge, this is the first automatic music transcription ap-
proach which obtains directly a symbolic score from audio,
instead of performing separate stages for piano-roll estima-
tion (pitch detection and note tracking), meter detection or
key estimation. The proposed method is based on a Con-
volutional Recurrent Neural Network architecture directly
trained with pairs of spectrograms and their correspond-
ing symbolic scores in Western notation. Unlike standard
pitch estimation methods, the proposed architecture does
not need the music symbols to be aligned with their au-
dio frames thanks to a Connectionist Temporal Classifica-
tion loss function. Training and evaluation were performed
using a large dataset of short monophonic scores (incip-
its) from the RISM collection, that were synthesized to get
the ground-truth data. Although there is still room for im-
provement, most musical symbols were correctly detected
and the evaluation results validate the proposed approach.
We believe that this end-to-end framework opens new av-
enues for automatic music transcription.

1. INTRODUCTION

Automatic Music Transcription (AMT) is a very relevant
field within the Music Information Retrieval (MIR) com-
munity. This task can be defined as the automated pro-
cess of converting an audio recording into any kind of
musically-meaningful structured format. The usefulness of
this process is very broad, especially for MIR algorithms
such as content-based music search, symbolic music simi-
larity, or symbolic musicological analysis.

However, this is a challenging task and state-of-the-art
methods currently obtain a performance significantly be-
low a human expert. In order to obtain a complete score

c© Miguel A. Román, Antonio Pertusa, Jorge Calvo-
Zaragoza. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Miguel A. Román, An-
tonio Pertusa, Jorge Calvo-Zaragoza. “An End-to-End framework for
Audio-to-Score Music Transcription on monophonic excerpts”, 19th In-
ternational Society for Music Information Retrieval Conference, Paris,
France, 2018.

from a waveform, it is necessary to perform pitch detec-
tion, note onset/offset detection, loudness estimation and
quantization, instrument recognition, extraction of rhyth-
mic information, and time quantization [2].

Most music transcription systems focus on two of these
stages: pitch detection, where pitches at each time frame
of the audio are estimated, and note tracking [32], where
the estimations of the previous step are discretized into
sequences of 3-tuples (onset, offset, pitch). The output
in this case is a piano-roll, that is, a two-dimensional
representation of notes across time [2]. Multiple pitch
estimation techniques include spectrogram factorization
methods [1, 3, 28] and discriminative approaches, which
perform frame-by-frame pitch estimation using statistical
models [10], signal processing methods [23, 35], or ma-
chine learning techniques [4] including deep neural net-
works [17,27,30]. Some works also integrate musical lan-
guage models into the pitch estimation process to resolve
output ambiguities [27, 34].

Supervised learning approaches for piano-roll estima-
tion require the ground truth to be aligned for training.
Matching pitches frame by frame with their corresponding
waveform samples is a time-consuming task and, although
there are some efforts in this direction with datasets such as
MAPS [10], RWC [11] or MusicNet [29], currently there
are no very large AMT corpora. Beyond the difficulty of
performing an accurate annotation, frame-by-frame esti-
mation has some additional issues to be taken into account.
For example, when a whole note is played using a plucked
string instrument such as a guitar, the quick decay of its
harmonic amplitudes produces frames with a very low in-
tensity at the end of the note, causing ambiguities when
labeling the offset frames.

In addition, as pointed out in [2], AMT algorithms are
usually developed independently to carry out individual
tasks such as multiple pitch detection, beat tracking and in-
strument recognition. Some existing AMT methods, such
as the ones proposed in [19–21], also include rhythm esti-
mation and time quantization. Still, the challenge remains
to combine the outputs of the individual tasks to perform
joint estimation of all parameters, in order to avoid the cas-
cading of errors when algorithms are combined sequen-
tially.

In this work we intend to open a new framework to ad-
dress the AMT task. Our proposal is to consider end-to-
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end machine learning strategies, with which this task can
be carried out holistically. In other words, we aim at us-
ing a waveform as input, and directly obtaining a music
score at the output taking into account all its components
(pitches, note durations, time signature, key signature, etc.)
jointly.

The task of directly estimating a symbolic score from
audio is certainly different from that of estimating a piano-
roll. While piano-roll estimation aims to extract what has
been played from the audio as exact as possible, in the
score transcription task the goal is to obtain a symbolic rep-
resentation from what the musician read, which includes
abstracting away some information such as loudness.

For this, we address score estimation using Deep Neural
Networks. We specifically consider the use of a Convolu-
tional Recurrent Neural Network, which is responsible of
both processing the input spectrogram to extract meaning-
ful features and predict an output sequence that represents
the music contained in a given audio recording. Thanks
to the Connectionist Temporal Classification (CTC) loss
function, this kind of networks can be trained in terms
of pairs (input, output), without needing of dividing the
process into smaller stages or providing framewise annota-
tions. The idea is that the prediction is forced to be encoded
in terms of actual music-notation elements.

It is important to emphasize that the objective of this
work is not to outperform the accuracy of previous ap-
proaches, but to propose a framework with which to ad-
dress the AMT task. In order to demonstrate the feasibil-
ity of this formulation, our experiments are restricted to a
constrained scenario, using audio recordings from mono-
phonic scores that were synthesized using a piano. We are
aware that the main challenge in AMT is to deal with poly-
phonic real music. In a future work we plan to extend the
proposed approach to detect polyphonic scores, although
its effectiveness with sound mixtures is yet to be studied.

The evaluation results in this constrained scenario val-
idates the proposed framework and show that the the pro-
posed approach obtains reliable results, correctly detecting
most musical symbols.

The rest of the paper is organized as follows: the corpus
used for evaluation is described in Section 2; the holistic
neural framework proposed for the AMT task is described
in Section 3; the series of experiments carried out are de-
tailed in Section 4; and finally, the conclusions of the cur-
rent work are summarized in Section 5, pointing out some
interesting avenues for future work as well.

2. DATASET

In order to get the ground truth for our framework, we
used the RISM 1 collection [26], which currently contains
more than one million incipits (short monophonic music
excerpts). This corpus is very useful for music retrieval
tasks because of its size and the fact that it contains real
music written by human composers [31]. Spectrograms
from synthesized incipits are the inputs to our method, and

1 The complete set of RISM incipits can be downloaded from https:
//opac.rism.info/index.php?id=8&L=1&id=8

RISM 
dataset

(PAE)

Audio 
synthesis

Symbolic 
Encoding

STFT

End-to-end

CRNN 

Framework

Corpus Preprocessing Training

y

x

Figure 1: Data acquisition for training. RISM incipits are
converted into our music notation format and magnitude
spectrograms (Short-Time Fourier Transform, STFT) are
also computed from synthesized versions of the incipits.
The inputs of the proposed framework (x) are the symbolic
data and the outputs are the spectrograms (y). Frame-by-
frame alignment is not necessary.

their corresponding symbolic scores are the outputs. The
scheme of the proposed method can be seen in Figure 1.

2.1 Preprocessing

RISM incipits are formatted in Plaine & Easie Code (PAE).
We randomly selected a subset of 71,400 incipits in West-
ern notation and converted them into the music notation
format that can be seen in Table 1, where each symbol is
encoded using a single character. This notation is oriented
to represent the music as a language, similarly to what a
speech recognition system does. Following this analogy,
we consider a music note as a word (for example, C]4 ˇ “)
containing several characters from an alphabet set Σ that
can be seen in Table 1, and which is separated to other
words by blank spaces. Rests are represented in the same
way, with a word consisting of the rest symbol and its du-
ration. In addition to notes and rests, the alphabet set in-
cludes clefs, key and time signatures, measure bars and
note ties. Every musical symbol in Table 1 is encoded for
our framework using a single element (one character).

In order to get the audio files, the RISM PAE incipits
were converted into Music Encoding Initiative (MEI) for-
mat, and then translated again into MIDI using Meico 2 ,
which unlike Verovio 3 takes into account the key signa-
ture.

The synthesis from MIDI files was performed using
timidity with the piano program of the default soundfont,
obtaining monoaural audio files at 16kHz. Then, mag-
nitude spectrograms were calculated using a 64ms (1024
samples) Hamming window with a 16ms hop (256 sam-
ples). All incipits were synthesized using random tempo
values in the range [96-144] bpm in order to make the net-
work work with different speeds.

3. FRAMEWORK

We describe in this section the neural model that allows
us to face the AMT task directly from an audio signal to a
sequence of meaningful symbols.

2 https://github.com/cemfi/meico
3 http://www.verovio.org/index.xhtml
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Class Symbol Count Histogram
Global Blank 1,526,051
Clef G2 39,337

F4 4,414
C1 22,468
C3 1,981
C4 3,200

Key D[M 112
A[M 1,065
E[M 6,815
B[M 8,950
FM 11,599
CM 15,488
GM 10,309
DM 10,861
AM 4,933
EM 1,216
BM 52

Pitch A 87,323
B 88,004
C 95,190
D 100,014
E 80,780
F 75,579
G 84,953
[ 70,557
] 55,471
Rest 89,635

Octave 2 2,937
3 44,170
4 274,590
5 284,081
6 6,065

Duration ¯ 8,686
˘ “ 52,541
ˇ “ 172,933
ˇ “( 226,395
ˇ “) 72,124

ˇ “* 6,711

‰ 72,453
Tie 10,393

Time 4/4 27,855
2/2 13,848
3/4 11,595
2/4 7,569
6/8 4,950
3/8 2,916
3/2 1,199
12/8 592
6/4 417
4/2 305
9/8 154
Barline 245,239

Table 1: Symbols of the alphabet Σ. Notes are encoded
using words of three to five symbols (for example, C]4 ˇ “‰ ).

$ q c F]4 ˇ “( . G4 ˇ “) | A4 ˇ “ a4 ˇ “( . A4 ˇ “) A4 ˇ “( D5 ˇ “( C]5 ˇ “( B4 ˇ “( | A4 ˇ “ A4 ˇ “) B4 ˇ “) A4 ˇ “) G4 ˇ “) F]4 ˇ “. A4 ˇ “( | G4 ˇ “( . F]4 ˇ “) G4 ˇ “( A4 ˇ “( F]4 ˇ “( . E4 ˇ “) F]4 ˇ “( G4 ˇ “(

1

$ q c F]4 ˇ “( . G4 ˇ “) | A4 ˇ “ a4 ˇ “( . A4 ˇ “) A4 ˇ “( D5 ˇ “( C]5 ˇ “( B4 ˇ “( | A4 ˇ “ A4 ˇ “) B4 ˇ “) A4 ˇ “) G4 ˇ “) F]4 ˇ “. A4 ˇ “( | G4 ˇ “( . F]4 ˇ “) G4 ˇ “( A4 ˇ “( F]4 ˇ “( . E4 ˇ “) F]4 ˇ “( G4 ˇ “(

1

Figure 2: Example of a magnitude spectrogram (x) syn-
thesized from a RISM incipit (center). The symbolic en-
coding representation used for the CRNN (y) is shown be-
low, where the character ‘$’ is the G2 clef, ‘q’ is the key
signature DM, the symbol ‘c’ is used to encode 4/4 and
‘|’ represents the barline. Similarly to speech recognition,
words are separated by blank spaces.

Formally, let X = {(x1, y1), (x2, y2), ...} be our end-
to-end application domain, where xi is an audio recording
represented by its magnitude spectrogram, and yi denotes
its corresponding ground-truth sequence from a fixed al-
phabet set Σ.

The problem of AMT can be reformulated as retriev-
ing the most likely sequence of symbols ŷ given an input
spectrogram x. That is:

ŷ = arg max
y∈Σ∗

P (y|x) (1)

We formulate this statistical framework by means of Re-
current Neural Networks (RNN), as they allow handling
sequences [12]. Ultimately, therefore, the RNN will be re-
sponsible of producing the sequence of musical symbols
that fulfills Eq. 1. Nevertheless, on top of it, we add a Con-
volutional Neural Network (CNN), which learns how to
process the input signal to represent it in a meaningful way
for the task at issue [36]. Since both types of networks
consist of feed-forward operations, the training stage can
be carried out jointly by simply connecting the output of
the last layer of the CNN with the input of the first layer of
the RNN, which leads to a Convolutional Recurrent Neu-
ral Network (CRNN). A similar topology was previously
applied to drum transcription in [33], although not in an
end-to-end fashion.

Our work is conducted over a supervised learning sce-
nario. Therefore, it is assumed that we can make use of
a set T ⊂ X with which to train the model. Initially, the
traditional training mechanism for a CRNN needs to be
provided with the expected output for each frame of the in-
put. As introduced above, for each recording the training
set only contains its corresponding sequence of expected
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symbols, without any kind of explicit information about
their location within the input signal. This scenario can be
solved by means of the so-called Connectionist Temporal
Classification (CTC) loss function [13].

Given an input x, CTC provides a means to optimize the
CRNN parameters in order to directly output its correct se-
quence y. In other works, CTC directly optimizes P (y|x).
Since the ground-truth is not aligned at the frame level,
that is, it is unknown the alignment between the frames of
the recurrent part and the output symbols, CTC integrates
over all possible alignments. It only considers monotonic
alignments (left-to-right constraint), which is a valid as-
sumption in our task.

Although optimizing the aforementioned probability
is computationally expensive, CTC performs a local op-
timization using an Expectation-Maximization algorithm
similar to that used for training Hidden Markov Models
[24]. However, given that CTC integrates over all possible
alignments, its main limitation is that the cost of the op-
timization procedure grows rapidly with the length of the
sequences.

Note that CTC is used only for training. At the in-
ference stage, the CRNN still predicts a symbol for each
frame of the recurrent block. To indicate a separation be-
tween symbols, or to handle those frames in which there
is no symbol, CTC considers an additional symbol in the
alphabet that indicates this situation (blank symbol).

3.1 Implementation details

Finding the best instantiation of a CRNN for the case of
AMT is out of the scope of this work, but we are inspired
by the Deep Speech 2 [8] topology, which was especially
designed for the task of Automatic Speech Recognition
(ASR). Although ASR and AMT are different tasks they
are related, and so the use of this architecture allows us to
obtain valuable results without having to make an exhaus-
tive search of the best neural topology.

Nonetheless, we made small modifications to the orig-
inal architecture in order to adjust its behavior to AMT.
The specification of our neural topology is detailed in
Table 2. It consists of 2 convolutional layers and 3 recur-
rent layers. Convolutional layers are composed of convo-
lutional filters followed by Batch Normalization [16], and
the non-linear hard hyperbolic tangent (HardTanh) activa-
tion function [14]. Furthermore, bi-directional recurrent
layers are configured as Gated Recurrent Units (GRU) [7],
with Batch Normalization as well. On top of the last recur-
rent output, a fully-connected layer is placed with as many
neurons as symbols of the vocabulary (plus 1, because of
the blank symbol). The use of the softmax activation al-
lows us to interpret the output of this last layer as a poste-
rior probability over the vocabulary [6].

The training stage is carried out by providing pairs of
spectrograms with their corresponding unaligned sequence
of musical symbols. The optimization procedure follows
stochastic gradient descent (SGD) [5] with Nesterov mo-
mentum of 0.9, gradient L2 Norm clipping of 400, and a
mini-batch size of 20 samples, which modifies the network

Input(1024× T )

Convolutional block
Conv(32, 41× 11, 2× 2), BatchNorm(), HardTanh()
Conv(32, 21× 11, 2× 1), BatchNorm(), HardTanh()

Recurrent block
B-GRU(1024), BatchNorm()
B-GRU(1024), BatchNorm()
B-GRU(1024), BatchNorm()
Dense(|Σ|+ 1), Softmax()

Table 2: Instantiation of the CRNN used in this work for
audio-to-score AMT, consisting of 2 convolutional layers
and 3 recurrent layers. Notation: Input(h × w) means an
input spectrogram of height h and width w; Conv(n, kh ×
kw, sh × sw) denotes a convolution operator of n filters,
kernel size of kh×kw, and stride of sh×sw; BatchNorm()
denotes a batch normalization procedure; HardTanh() rep-
resents the hard hyperbolic tangent activation; B-GRU(n)
means a bi-directional Gated Recurrent Units of n neurons;
Dense(n) denotes a fully-connected layer of n neurons;
and Softmax() represents the softmax activation function.
Σ denotes the character-wise alphabet considered.

weights to minimize the CTC loss function through back-
propagation. The learning rate was initially set to 0.0003,
but it was annealed by a factor of 1.1 after each epoch to fa-
vor convergence. The model was trained during 20 epochs,
fixing the weights according to the best result over the val-
idation set.

Once the CRNN is trained with the previous procedure,
it can be used to output a discrete symbol sequence from a
given spectrogram. The model yields character-level pre-
dictions in each frame. In order to provide an actual sym-
bol sequence, it is necessary to both collapse repeating
characters and discarding blank characters. Since there
could be several frame-level sequences that result in the
same sequence of musical symbols, the final decoding is
conducted by a beam search procedure [37], with a beam
width set to 10.

4. EXPERIMENTS

4.1 Setup

The proposed framework is evaluated using the corpus de-
scribed in Section 2.1.

Experiments are performed dividing the available data
into three independent partitions: 49, 980 samples (118.03
hours) for training, 10, 710 samples (25.34 hours) for val-
idation, and 10, 710 samples (25.36 hours) for the test set,
which is used to evaluate the actual performance.

Given the differences with existing AMT approaches,
our results are not directly comparable with any previous
work. Likewise, there are no standard evaluation metrics
with which to evaluate this framework.

Here, we propose a series of metrics especially consid-
ered for evaluating the presented approach. In particular,
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we are inspired by other tasks, like ASR or Optical Charac-
ter Recognition (OCR), that are also formulated expecting
a sequence of symbols as output. Analogously to these
tasks, we also assume that the output consists of individual
characters (pitches, durations, alterations, ...) that build
complete words (such as notes). Therefore, the perfor-
mance can be evaluated in terms of Character Error Rate
(CER) and Word Error Rate (WER). These metrics are de-
fined as the number of elementary editing operations (in-
sertion, deletion, or substitution) to convert the hypotheses
of the system into the ground-truth sequences, at the char-
acter and word level, respectively. They compute this cost
in a normalized way according to the length of the ground-
truth sequences. Even assuming that these metrics are not
optimal for the task of AMT, we hope that they allow us
to validate the approach and draw reasonable conclusions
from our experimental results.

In order to get some baseline results that can be com-
pared to other works, we also applied the evaluation me-
tric used in [19] for piano-roll alignment tasks. The total
number of notes in the ground truth is denoted by NGT ,
that of estimated notes by Nest. The number of notes with
pitch errors is denoted by Np, that of extra notes by Ne,
and that of missing notes by Nm. The number of matched
notes is defined as Nmatch = NGT − Nm = Nest − Ne.
Then we define the pitch error rate as Ep = Np/NGT , ex-
tra note rate as Ee = Ne/Nest, and missing note rate as
Em = Nm/NGT . Onset/offsets errors are also reported
in [19]. As we are dealing with note durations instead of
onsets/offsets, we include an alternative error metric Ed

which is calculated similarly to the pitch error Ep but us-
ing note duration errors, denoted by Nd. Thus, we define
the duration error rate as Ed = Nd/NGT .

4.2 Results

Figure 3 shows the evolution of the errors during the train-
ing process. As can be seen, the convergence is fast and
the best results on the validation set are obtained at epoch
18, reporting a CER of 5.53 and a WER of 15.98. In the
test set, a CER of 5.36 and a WER of 15.67 are obtained.
These results are very similar to those from the validation
set, thus proving that there is no over-fitting and the model
generalizes well.

After an in-depth analysis of the test set transcriptions
obtained, we observed that the majority of errors are due
to wrong time signatures, barline locations, and clefs. This
result was expected in our prior analysis, as even for a hu-
man it would be difficult to identify them based on the
short audio excerpts we provide to our model (the average
number of music measures of the audio excerpts is 4.4).
Furthermore, there are some time signatures that contain
the same number of notes per measure and therefore they
require more musical context to identify them correctly
(e.g. 4/4 and 2/2 time signatures), as shown in Figure 4.
In other cases, one of these specific errors causes the ap-
pearance of many others, as seem to happen with the time
signature in the example of Figure 5. In order to address
these ambiguities, normalization techniques could be em-

Figure 3: Evolution curves of the CTC loss, CER, and
WER over the validation set with respect to the training
epoch. The lowest WER (15.98) and CER (5.53) figures
are obtained at epoch 18.

(a) Original score.

(b) Transcribed score.

Figure 4: Example of transcription performance. Note that
the two mistakes made (clef and time signature) belong to
music notation ambiguities.

ployed (for instance, changing all 2/2 by their equivalent
notation in 4/4).

In spite of all these difficulties, some samples are per-
fectly recognized, as the one depicted in Figure 6.

We provide the results of the evaluation metric proposed
in [19] for estimated notes, and for estimated notes and
rests combined (in this case, Ep does not change). As
can be seen in Table 3, the error rates are quite low com-
pared to [19], but this is due to the fact that our audio files
are monophonic and synthesized. In addition, most tran-
scription errors are due to wrong estimations of time sig-
natures, subsequently yielding wrong barline locations as
previously explained.

5. CONCLUSIONS

In this work, we propose a new formulation of AMT in the
form of an audio-to-score task. In summary, the advan-
tages of this formulation over piano-roll estimation are:
1) it is not required to have a frame-by-frame annotation
aligned with the audio, therefore potentially more data

Table 3: Note pitch error rate (Ep), missing symbol rate
(Em), extra symbol rate (Ee) and symbol duration error
rate (Ed) considering only notes and notes plus rests.

Ep Em Ee Ed

Notes 0.99% 2.63% 1.81% 0.71%
Notes+Rests 0.99% 4.94% 2.51% 1.23%
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(a) Original score.

(b) Transcribed score.

Figure 5: Example of a transcription with several mis-
takes. Here, the unusual time signature 3/2 (wrongly de-
tected) propagates the errors to the notes.

Figure 6: Example of a correctly transcribed score.

could be acquired for training; 2) the obtained outputs are
musically meaningful; 3) the frame-by-frame annotation
ambiguities are avoided, although on the other hand there
are music notation ambiguities to deal with; 4) the task
is addressed holistically instead of using a pipeline of in-
dividual processes, avoiding the cascading of errors when
they are combined sequentially, and 5) musical models are
implicitly inferred as it occurs with language models in
speech recognition.

We validated the proposed framework using a CRNN
with a CTC loss function trained on RISM incipits, cor-
rectly predicting around 84% of symbols for monophonic
scores synthesized with a piano sound at different tempos.
It is important to note that some symbols such as barlines,
rests, ties, time signatures or key signatures were no ex-
plicitly present in spectrograms but they were correctly in-
ferred from the context.

A qualitative analysis of the performance reported that
many errors occurred because of music notation ambigui-
ties. Although they decreased the WER and CER figures,
”wrong” outputs are musically correct and equivalent to
the ground-truth scores in most cases.

As a future work, we are planning first to extend it for
polyphonic sources, and also to perform instrument recog-
nition. In order to deal with polyphony, a chord could be
considered as a “word” containing “syllabus” (the individ-
ual notes), for example: C4 ˘ “E4 ˘ “G4 ˘ “ . An additional sym-
bol could be added to indicate the instrument (for example,
PC4 ˇ “ could represent a quarter note of pitch C4 played on
Piano).

As pointed out in [18], previous experiments on deep
neural networks dealing with framewise multiple pitch de-
tection showed that unseen combinations are hard to de-
tect. A partial solution to this problem might involve a
modification of the loss function for the network to disen-
tangle individual notes explicitly and learn to decompose
a (nonlinear) mixture of signals into its constituent parts.
We believe that, unlike what happens in this framewise de-
tection, CTC loss may be able to break the observed glass-
ceiling, given that ASR methods using this architecture are
capable of generalizing to detect unseen words from its
constituent (character) elements. Nonetheless, additional
experiments on AMT should confirm this hypothesis.

Synthesized scores were used to perform the experi-
ments, although ideally real data should be evaluated. For
this, we are planning to use datasets such as Lakh [25],
which contains audio files with their corresponding MIDIs.
Given the computational cost of CTC, the proposed frame-
work needs to use short segments. Therefore, it is neces-
sary to have aligned barlines to split both the audio and the
corresponding score ground truth into smaller pieces. This
could be done using a score following method [9,22]. This
preprocessing could introduce some errors due to wrong
alignments, but there is a more suitable alternative: to
train the CRNN using full scores along with their complete
real audio files, which is the ultimate goal of the proposed
framework. This is possible and could be done by con-
sidering the recently proposed online CTC [15] function,
which efficiently adapts to any sequence length.

Another obvious future work is to find a more ade-
quate network architecture and evaluate alternative hyper-
parameters to increase the accuracy. CNN and RNN
topologies evaluated in previous AMT works [17, 27]
should be investigated for this task.

In conclusion, in this work we show that it is feasible
to perform end-to-end transcription from monophonic au-
dio files to scores. We are fully aware that experiments
were made in a very controlled and simplified environ-
ment and there is still much work to do in order to per-
form a complete transcription. But we believe that the pro-
posed framework opens a new exciting research area given
the huge amount of data that could potentially be used for
training, and its practical utility for musicians who could
obtain directly a score from audio.
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ABSTRACT

We present a framework based on neural networks to ex-
tract music scores directly from polyphonic audio in an
end-to-end fashion. Most previous Automatic Music Tran-
scription (AMT) methods seek a piano-roll representation
of the pitches, that can be further transformed into a score
by incorporating tempo estimation, beat tracking, key es-
timation or rhythm quantization. Unlike these methods,
our approach generates music notation directly from the
input audio in a single stage. For this, we use a Convo-
lutional Recurrent Neural Network (CRNN) with Connec-
tionist Temporal Classification (CTC) loss function which
does not require annotated alignments of audio frames with
the score rhythmic information. We trained our model us-
ing as input Haydn, Mozart, and Beethoven string quartets
and Bach chorales synthesized with different tempos and
expressive performances. The output is a textual repre-
sentation of four-voice music scores based on **kern for-
mat. Although the proposed approach is evaluated in a
simplified scenario, results show that this model can learn
to transcribe scores directly from audio signals, opening a
promising avenue towards complete AMT.

1. INTRODUCTION

Automatic music transcription (AMT) aims to convert
acoustic music signals into any sort of music notation.
Most of the music we listen today is polyphonic, where
simultaneous sound events produced by different audio
sources (i.e., instruments) are combined in a single acous-
tic waveform. This aggregation process entails loss of in-
formation, making the transcription task very challenging
even for trained musicians. Moreover, the different sound
events are highly correlated in time and frequency due to
the rhythmic and harmonic patterns usually found in mu-
sic, which complicates sound separation even further as we
cannot rely on the statistical independence of the source
signals. Therefore, in order to produce a proper music
score from an audio signal, multiple complex sub-tasks

c© Miguel A. Román, Antonio Pertusa, Jorge Calvo-
Zaragoza. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Miguel A. Román, Antonio
Pertusa, Jorge Calvo-Zaragoza. “A holistic approach to polyphonic music
transcription with neural networks”, 20th International Society for Music
Information Retrieval Conference, Delft, The Netherlands, 2019.

must be involved such as multi-pitch estimation, note on-
set/offset detection, source separation, as well as other mu-
sical context information retrieval tasks like metering and
tonality estimation.

As pointed out by [2], there are many approaches to
tackle AMT, yet most works focus on solving only one in-
termediate goal of the whole problem. Frame-level tran-
scription, also known as multi-pitch estimation, aims to
detect which fundamental frequencies are present at each
time step of the input signal. Note-level transcription goes
a step further by estimating the notes characterized by their
pitch and clock-time duration (onset and offset times), pro-
ducing a piano-roll representation of the music. Stream-
level transcription extends the note-level approach by as-
sociating each note with its originating instrument based
on its timbre. Lastly, the notation-level transcription is the
final goal of AMT, aiming to produce a music score with
enough information to interpret the original recording.

In this work, we denote the notation-level transcription
as Audio-to-Score (A2S) task, where the audio signal is
processed to be converted into a symbolic music score.
Even with a perfect transcription, the output of any A2S
system cannot faithfully represent the music that was orig-
inally played. It must be considered that musical audio
signals are often expressive performances, rather than sim-
ple mechanical translations of notes read from a staff. A
particular score can be performed by a musician in many
different ways, and similarly there are several ways to rep-
resent the same musical excerpt with standard music no-
tation (e.g., a dotted half note is “the same” as a half note
tied to a quarter note). Music scores can only be seen as
guides to aid musicians, highly correlating but never fully
explaining musical experience. This makes A2S a rather
ill-defined problem without unique solutions.

Despite the above, our work aims to demonstrate that
the A2S task can be performed in a single step. To this
end, we make use of a deep neural network that is trained
in an end-to-end fashion to produce a sequence of musi-
cal symbols that describes a feasible polyphonic score out
of the input audio. Our experiments are conducted using
Haydn, Mozart, and Beethoven string quartets and Bach
chorales synthesized with different tempos and expressive
performances. 1 Although the analysis of the current per-
formance requires a deeper reasoning regarding evaluation

1 The source code and data are available at https://github.
com/mangelroman/audio2score.
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metrics, we provide some results that account for the good
performance of the proposed model and allow us to be op-
timistic about this line of research.

1.1 Related Work

There are recent AMT approaches using deep neural net-
works for the multi-pitch detection task [8, 11, 12]. For
this, Short-Term Fourier Transform (STFT), log-frequency
STFT or Mel spectrograms are usually fed to Convolu-
tional Neural Networks (CNN) to extract piano-roll rep-
resentations as output. Other works focus on producing
music scores from unquantized MIDI representation [4].

One of the few methods aiming to extract a complete
score directly from audio is that of [14]. In this work,
a multi-pitch detection method with note tracking is used
to get a piano-roll representation that is further converted
into a quantized MIDI file by using a rhythm quantization
method [15]. Afterwards, a score typesetting software such
as MuseScore can be used to get a MusicXML file from the
MIDI output.

To the best of our knowledge, there are only two ap-
proaches that perform A2S in a single stage, directly con-
verting the input audio into any music notation format.
This has the advantage that a wrong detection in a given
stage (such as the multi-pitch detection) is not propagated
through the next processing stages, avoiding error cascad-
ing. The only works addressing notation-level AMT in an
end-to-end manner are those of [3] and [17]. Both works
follow a supervised learning approach with deep neural
networks to solve the AMT task in one step. Although they
bring promising results, the proposed models include sev-
eral limitations (e.g. monophonic audio in [17] and fixed
input length in [3]) that cannot be disregarded when ad-
dressing the notation-level AMT problem as a whole.

In [3], authors show how a Convolutional-Recurrent
Neural Network architecture (CRNN) [19] can learn all the
basic tasks involved in notation-level AMT, but it is only
a very limited proof of concept that cannot address most
of the possible scores. In the second of these works [17],
the AMT problem was addressed as an Automatic Speech
Recognition (ASR) problem. By using monophonic au-
dio as input and a sequence of symbols (analogously to
the written language characters) as output, several methods
that were originally developed for ASR can be used. In
particular, [17] adopted an architecture inspired in Deep-
Speech2 [1], which learns to map audio frames to a se-
quence of characters without any alignment.

Training with unaligned data, i.e. without needing the
input audio frames to be aligned with the music symbols, is
a clear advantage as much more data can be gathered with-
out going through the tedious task of manually annotating
the location of the output symbols in their corresponding
input audio frames. Nevertheless, monophonic audio tran-
scription does not exhibit the essential challenge coming
from simultaneous sound events. The present work goes
one step beyond by showing that a similar formulation can
also be reliable for polyphonic music.
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Figure 1: Data acquisition pipeline showing the manual
and automated steps required to build the ground truth.

2. DATA

Our notation-level AMT approach, namely A2S, seeks to
estimate which music score, modeled as a structure con-
taining symbols from a fixed alphabet of music notation,
would likely define that audio.

Let X be the domain of audio files and Σ the alphabet
of music score symbols. The aim of our A2S is to com-
pute a function that maps any audio file into a sequence of
symbols, i.e., a function f : X → Σ∗.

2.1 Input Representation

The input representation of our model is the spectral infor-
mation of the raw audio waveform over time, based on the
STFT with log-spaced bins and log-scaled magnitude. In
this type of spectrogram, frequency bins are aligned with
equal-tempered music scales using 440Hz as the reference
for A4 pitch. The sampling rate of the input audio files
was 22,050Hz, and STFT was calculated with a Hamming
window with size 92.88ms (2048 samples) and a hop of
23.22ms (512 samples). Only frequencies between pitches
C2 and C7 were considered, extracting 48 bins per octave.

2.2 Output Representation

The output music notation of our model is a single se-
quence of symbols that can be used to render a multi-part
western music score. These symbols represent both notes
and rests with their corresponding duration, barlines, ties
between notes, and fermatas. It is important to remark that
in the context of the A2S task, notes are not the same as
pitches. For example, pitch 349.23Hz can be represented
as F4, E]4 or G[[4 depending on the key signature.

We are not including clefs in our output representation,
as they are only intended to aid in the score visualization
and do not carry any musical information we can extract
from the audio. For the sake of simplicity, we are also
not including time signatures in the output sequences as-
suming they can be inferred from the predicted barlines
for the type of scores in our training set. By the same ra-
tionale, key signatures are neither included assuming they
can also be inferred from the predicted notes. Moreover,
since most of our samples are made of fragments of much
longer scores, they may not carry enough information to
predict the correct key signature, therefore misleading the
training process. Other music notation symbols such as
slurs, grace notes, ornaments, and articulations marks are
also left out of the scope of this work.
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!!!COM: Mozart, Wolfgang Amadeus 
!!!OTL: String Quartet No. 17 in B-flat Major 
!!!OMD: Allegro vivace assai 
!!!OMV: 1 
**kern **kern **kern **kern 
*I:cello *I:viola *I:violn *I:violn 
*k[b-e-] *k[b-e-] *k[b-e-] *k[b-e-] 
*B-: *B-: *B-: *B-: 
*clefC *clefF *clefG *clefG 
*M6/8 *M6/8 *M6/8 *M6/8 
8r 8r 8dd 8ff 
=1 =1 =1 =1 
4B- 4b- 8dd 8ff 
. . 8b- 8dd 
8r 8f 8b- 8dd 
4BB- 8f 8b- 8dd 
. 8d 8f 8b- 
8r 8d 8f 8b- 
=2 =2 =2 =2 
4D 4d 4f 4b- 
8BB- 8f 8b- 8dd 
4F 4.f 4a 4cc 
8D . 8b- 8dd 
=3 =3 =3 =3 
4C 8.g 4cc 8.ee- 
. 16f . 16dd 
8r 8e- 8r 8cc 
8E- 4e- 4.c 8g 
8C . . 8b- 
8F 8c . 8a 
=4 =4 =4 =4 
4D 8B- 4f 4b- 
. 8d . . 
8BB- 8f 8b- 8dd 
4F 4f 4a 4cc 
8r 8r 8dd 8ff 
=5 =5 =5 =5 
4B- 4b- 16dd 16ff 
. . 16ee- 16gg 
. . 8dd 8ff 
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Figure 2: Example of one score in **kern format (left)
representing the output of our model and the rendered
western music score (right).

2.3 Data Preparation

As previously mentioned, the fact that we do not require
data alignments is a clear advantage to easily build the
ground truth needed to train our model. However, the
majority of scores available in the public domain are usu-
ally in printed form, so we cannot automatically obtain the
symbolic representation we need unless we make use of an
Optical Music Recognition system. A lot of progress has
been made in this area of study but unfortunately it is still
insufficient to meet our precision needs, driving us to look
for existing text based scores instead. After some analy-
sis of the various types of music encoding formats within
reach, we chose the humdrum toolkit [9] due to its versa-
tility to represent polyphonic music.

The humdrum file format is a general-purpose human-
readable 2D representation of music information intended
to assist music researchers. The columns of the text file,
separated by the tab character, represent the sources of in-
formation that produce music-related events. The lines of
the text file represent the evolution of those events over
time. The humdrum syntax defines the skeleton that con-
tains other higher level schemes of music notation, like the
**kern format our ground truth is based on. The **kern
format is designed to encode the semantics of a western
musical score, rather than the visual aspects of its printed

Chorales Quartets
Number of samples 352 34,512
Total duration 5.79h 20.25h
Max duration 120s 30s
Data Augmentation No Yes
Polyphony voices 4 4

Instruments

Pipe organ Cello
Viola
Violin
Flute

Pitch range C2-A5 C2-E7
Shortest note 1/16th 1/64th

Irregular groups None Triplets
Tempo ˇ “ ≈ [60, 70] ˇ “ = [40, 200]
Vocabulary Size 99 143
Train-test split % 80/20 70/30
Batch size 4 16

Table 1: Summary of the datasets’ characteristics.

realization, matching nicely with the purpose of this work.
An example of a music excerpt encoded in **kern no-

tation is shown in Figure 2 along with its associated sheet
music excerpt. In this format, columns are called spines
and they are associated with instruments, just like a penta-
gram in western sheet music. Spines may contain one sin-
gle sound event or the combination of various sound events
with the same canonical duration, namely a chord. Spines
can also be split into two spines when two independent
voices (excluding chords) occur for the same instrument.
The newly created spine can be rejoined back to the orig-
inal spine when the extra voice is no longer needed. This
level of flexibility gives almost no restrictions to the kind
of music it can support, making **kern a good candidate
to endure future work.

We created two datasets out of the **kern files avail-
able in the humdrum-data repository [18]: the chorales
dataset, containing 370 chorales of Bach, and the quartets
dataset, containing most of the string quartets of Haydn,
Mozart and Beethoven. In the chorales dataset we take
each chorale as one training sample, and we use audio
from expressive MIDI files synthesized with a high quality
pipe organ soundfont [7]. As we did not synthesize the au-
dio, we had to manually remove repetitions to ensure that
samples are not unnecessarily long. In the quartets dataset
we randomly split the scores in fragments of 3-6 measures
each, and we synthesized the corresponding MIDI file ob-
tained from the hum2mid tool, which converts **kern to
MIDI using dynamic spines and articulation marks when
available in the original **kern file. We removed grace
notes and ornaments from the score as they cannot be prop-
erly synthesized. We also removed split spines and upper
notes of all chords to ensure no more than 4 simultane-
ous voices were present at any given time. Samples with
double dots, double sharps or double flats are out of the
scope of this work and therefore discarded. On the train-
ing set only, we allow overlapping of fragments as a means
of data augmentation technique. Table 1 summarizes the
main characteristics of both datasets used in this work.

Figure 1 depicts the data acquisition pipeline we imple-
mented to build our ground truth. The major inconvenience
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Largo Assai 40 Allegro Moderato 120
Largo 50 Poco Allegro 124
Poco Largo 60 Allegro 130
Adagio 71 Molto Allegro 134
Poco Adagio 76 Allegro Assai 138
Andante 92 Vivace 150
Andantino 100 Allegro Vivace 160
Menuetto 112 Allegro Vivace Assai 170
Moderato 114 Poco Presto 180
Poco Allegretto 116 Presto 186
Allegretto 118 Presto Assai 200

Table 2: List of metronome markings chosen for classical
music tempo annotations, given in number of quarter notes
per minute.

was dealing with multiple errors present in the **kern files,
such as invalid ties, wrong canonical duration of notes and
rests, and missing metronome markings. While these er-
rors do not prevent musical analysis of the scores, they be-
come noisy labels that hinder our training process. For that
reason, we had to revise all the scores manually to cor-
rect these errors and label the missing metronome mark-
ings, with the help of existing tempo annotations and the
conversion shown in Table 2. Adding metronome mark-
ings ensured the synthesized audio perform at reasonable
speeds according to the composer’s intention. Addition-
ally, a random scaling factor in the±6% range was applied
to each metronome marking to ensure tempo variability in
all training samples.

The resulting **kern scores after the preprocessing
stage were then encoded in a special symbolic notation
intended to reduce the number of characters and ease the
training process. Accordingly, each canonical duration for
notes and rests including their dotted version were encoded
with just one symbol of the vocabulary. Likewise, note
pitches were also encoded with one symbol condensing
name and octave. In our **kern dataset, barlines are al-
ways repeated for all spines, so only one barline is main-
tained in the output representation referring to all spines.
The rest of characters are preserved in the output represen-
tation in the same way, i.e. tabs, new lines, tie symbols,
fermatas and the “dot” character, which indicates that the
previous note/rest still affects the current row.

3. METHOD

Once the input and output representations are defined, we
can formulate the A2S task as retrieving the most likely
sequence of score symbols ŝ given an audio file x ∈ X :

ŝ = arg max
s∈Σ∗

P (s|x) (1)

where Σ represents the set of characters necessary to en-
code the output as explained in the previous section (for in-
stance, including “tab”, “new-line” and “dot”, among oth-
ers). Additionally, Σ includes an “empty” symbol, denoted
by ε, that is necessary to separate two or more instances of
the same symbol that occur in consecutive frames.

Following successful approaches in other pattern recog-
nition duties of similar formulation, we address this A2S
with a holistic approach based on statistical models.
Specifically, for learning the posterior probability provided
in Eq. 1, we resort to Convolutional Recurrent Neural Net-
works (CRNN).

A CRNN is composed of one block of convolutional
layers followed by another block of recurrent layers [19].
The convolutional block is in charge of learning how to ex-
tract relevant features from the input and the recurrent lay-
ers interpret these features in terms of sequences of musi-
cal symbols. The activations in the last convolutional layer
can be seen as a sequence of feature vectors representing
the input audio file, x. Let W be the width (number of
frames) of the input sequence x. The length of the result-
ing features after the convolutional layer will be L = γW ,
where γ ≤ 1 is implicitly defined by the specific config-
uration of the convolutional block (which usually includes
some type of down-sampling to reduce dimensionality).

The output activations of the convolutional block are
then fed to the first layer of the recurrent block, and the ac-
tivations of its last layer can be considered proper estimates
of the posterior probabilities per frame:

P (σ | x, j), 1 ≤ l ≤ L, σ ∈ Σ (2)

3.1 Training

Convolutional neural networks can be trained through gra-
dient descent using the well-known Back Propagation al-
gorithm. RNN networks can be trained similarly by means
of Back Propagation Through Time [21]. Therefore both
the convolutional and recurrent blocks of a CRNN can be
jointly trained by providing audio files annotated at the
frame level.

In this work, however, we follow a holistic or “end-
to-end” approach, which means that for each audio file
we only provide its corresponding target transcript into
score symbols, without any kind of explicit information
about its segmentation into frames. A CRNN can be uni-
formly trained without this information by using the so-
called Connectionist Temporal Classification (CTC) loss
function [6]. The CTC training procedure is a form
of Expectation-Maximization, similar to the backward-
forward algorithm used for HMM training [16], that dis-
tributes the loss among all the frames to maximize Eq. 1
with respect to the ground-truth sequence.

3.2 Decoding

In order to solve Eq. 1, the most likely symbol is computed
for each input feature vector of the recurrent block l, also
referred as greedy decoding:

σ̂l = arg max
σ∈Σ

P (σ | x, l), 1 ≤ l ≤ L (3)

Then, a pseudo-optimal sequence of musical symbols
is obtained as ŝ ≈ D(σ̂), where σ̂ = σ̂1 . . . σ̂L and
D : Σ? → Σ? is a function which first merges all the
consecutive frames with equal symbol, and then deletes all
“empty” symbols [6].
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Figure 3: High-level architecture of the Convolutional-
Recurrent Neural Network used in our experiments.

3.3 Architecture

The main building blocks of the CRNN considered for our
experiments is illustrated in Figure 3.

The first two convolutional layers receive a 2D array
containing the audio spectrogram described in section 2.1
and apply 16 filters of 3 × 3 with a stride of 2 in the fre-
quency axis. We use filter striding to reduce the input di-
mensionality without the need of pooling layers.

For the Quartets dataset, output frames from the con-
volutional block are split in half, effectively doubling the
number of frames feeding the next recurrent block. This
is necessary to comply with the CTC loss function pre-
condition for which the number of input frames must be
greater or equal to the number of output symbols. Con-
sidering the high number of symbols per second in our
sequence-based representation of a polyphonic score of the
Quartets dataset, we apply this frame doubling technique at
a lesser computational cost than increasing the density of
the input spectogram.

The next two recurrent layers are based on Bidirectional
Long Short-Term Memory (LSTM) cells, with 1024 hid-
den units each. The fully connected layer at the end of the
recurrent block converts the output per-frame predictions
to the size of the output representation vocabulary.

With the purpose of reducing overfitting, Batch Nor-
malization layers [10] are added between any other layer
excluding the input and output layers, as well as Dropout
layers [20] added after all the convolutional layers and af-
ter the last recurrent layer, with a drop probability of 0.1
for the Quartets dataset and 0.2 for the Chorales dataset. A
higher drop probability is required for the Chorales dataset
since less data is available for training, which increases the
risk of overfitting.

4. EXPERIMENTS

To the best of our knowledge, there are few specific evalua-
tion metrics to measure the performance of a notation-level
AMT method. In [14] an evaluation metric for note-level
AMT is discussed, but it still cannot be directly applied to
our task (e.g. we do not have note onsets and offsets). [17]

adapts this metric to the A2S task by defining note dura-
tion errors instead of onsets/offsets errors. However, we
believe this metric is still insufficient to properly evaluate
a notation-level AMT method since, for instance, it does
not take into account barlines and their effect in subse-
quent predictions of note durations and ties. The MV2H
metric (Multi-pitch detection, Voice separation, Metrical
alignment, note Value detection, and Harmonic analysis)
was introduced in [13]. This metric is closer to our needs,
although its source code uses timing information in sec-
onds that is not provided by our method. We leave it as an
open point for future work to establish a proper notation-
level AMT metric.

In order to validate our method accuracy during train-
ing, we adopt the evaluation metrics from the ASR task
as in [17], namely Word Error Rate (WER) and Character
Error Rate (CER). They are defined as the number of el-
ementary editing operations (insertion, deletion, or substi-
tution) needed to convert the predicted sequences into the
ground-truth sequences, at the word and character level re-
spectively. Even though WER and CER are not specific
to AMT, they provide a good indication of how close our
score is to the ground-truth score.

In the context of our A2S task, we define words as
any group of characters representing notes (including ties),
rests and barlines in the output score. The “tab” and “new
line” characters act as word separators, and only contribute
to the CER calculation.

4.1 Training process

The models were trained for 100 epochs using mini-batch
Stochastic Gradient Descent (SGD) optimizer, with Nes-
terov momentum of 0.9. Our learning rate scheduling con-
sists of 2 cycles of 50 epochs each, starting at 0.0003 and
annealing by 1.1 at every epoch. After each epoch, the
WER and CER are calculated for the validation set, and
the model with the lowest WER is appointed as the best
model for testing purposes.

The Chorales dataset, whose samples are full-length
chorales, is trained with a batch size of 4. The Quartets
dataset, whose samples are small excerpts extracted from
the full-length quartets, is trained with a batch size of 16.
Figure 4 shows the evolution of the CTC loss, WER and
CER at training time on both datasets. Each figure also
highlights the epoch where the best model was obtained.

4.2 Results

The best model obtained after the training process is then
evaluated against the test set for both the Chorales and
Quartets datasets, giving a WER of 30.96% and CER of
18.10% for Chorales, and WER of 21.02% and CER of
13.53% for Quartets.

After analyzing all test predictions, we observe that the
model occasionally generates sequences that do not com-
ply with the **kern format. Nevertheless, we believe these
formatting errors can be solved by providing more sam-
ples to the training set or imposing syntax constraints. As
shown in Figure 5, most of the errors arise from wrongly
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WER CER Loss Loss

0

1 100 97.6359252929688 2967.50610351562 98.91687011719 31.5159358978271

2 99.6521606445312 96.713493347168 2635.22216796875 87.84073893229 18.7702598571777

3 99.5955352783203 91.8456649780273 2516.45043945312 83.88168131510 8

4 83.3198547363281 73.5445251464844 2133.9501953125 71.1316731771 8

5 77.6573333740234 57.7524185180664 1548.73352050781 51.62445068359 8

6 59.6990776062012 34.7363166809082 1210.91760253906 40.36392008464 8

7 53.9152221679688 32.7939262390137 904.002807617188 30.133426920573 8

8 50.4449119567871 29.2675857543945 795.5244140625 26.5174804688 8

9 70.5549240112305 40.8560218811035 711.053771972656 23.701792399089 8

10 45.5508804321289 26.0390586853027 667.843933105469 22.261464436849 8

11 45.7126693725586 26.3184242248535 615.465148925781 20.515504964193 8

12 44.1595230102539 25.8282165527344 576.100830078125 19.203361002604 8

13 41.2392807006836 24.2785224914551 544.734436035156 18.157814534505 8

14 40.7943687438965 23.9121837615967 501.716003417969 16.723866780599 8

15 48.4792098999023 27.7257995605469 465.470581054688 15.515686035156 8

16 40.5921363830566 23.4694137573242 444.237152099609 14.807905069987 8

17 40.7943687438965 23.4878635406494 413.156799316406 13.771893310547 8

18 37.1460914611816 21.4426898956299 398.122039794922 13.270734659831 8

19 37.1380043029785 21.4743175506592 370.363983154297 12.345466105143 8

20 37.7204322814941 22.0251426696777 347.0439453125 11.5681315104 8

21 38.3190422058105 22.6418571472168 315.206085205078 10.506869506836 8

22 47.8077964782715 28.1949234008789 301.534057617188 10.051135253906 8

23 34.856819152832 20.3673934936523 282.148529052734 9.404950968424 8

24 48.7380676269531 28.498010635376 262.865570068359 8.762185668945 8

25 41.0936737060547 24.0782222747803 245.516189575195 8.183872985840 8

26 35.034782409668 20.6862926483154 238.154861450195 7.938495381673 8

27 47.9857635498047 28.2397289276123 229.539031982422 7.651301066081 8

28 35.326000213623 20.7390041351318 211.737869262695 7.057928975423 8

29 35.6819267272949 20.9340324401855 218.069610595703 7.268987019857 8

30 35.7789993286133 21.1079769134521 200.7060546875 6.6902018229 8

31 34.7678375244141 20.6520309448242 197.127166748047 6.570905558268 8

32 35.2370147705078 20.6810207366943 187.495651245117 6.249855041504 8

33 33.7728538513184 19.7691268920898 176.686553955078 5.889551798503 8

34 33.7324066162109 19.8561000823975 169.722061157227 5.657402038574 8

35 34.4766235351562 20.243522644043 166.419509887695 5.547316996257 8

36 34.5413360595703 20.5334320068359 152.649658203125 5.088321940104 8

37 34.3633728027344 20.2909622192383 155.670959472656 5.189031982422 8

38 33.643424987793 20.01686668396 144.928283691406 4.830942789714 8

39 34.4766235351562 20.1381015777588 142.123825073242 4.737460835775 8

40 34.3067474365234 20.5097122192383 148.776107788086 4.959203592936 8

41 33.9669952392578 20.0959339141846 138.855728149414 4.628524271647 8

42 37.4292182922363 22.4310150146484 127.101058959961 4.236701965332 8

43 34.2824783325195 20.2962341308594 132.520523071289 4.417350769043 8

44 33.6838684082031 19.866641998291 125.234832763672 4.174494425456 8

45 33.8456573486328 20.1038398742676 126.064292907715 4.202143096924 8

46 33.5382614135742 20.0537643432617 129.117919921875 4.303930664063 8

47 33.8456573486328 20.2487945556641 123.967658996582 4.132255299886 8

48 33.2713165283203 19.9272594451904 119.324043273926 3.977468109131 8

49 32.8749389648438 19.4950313568115 122.714630126953 4.090487670898 8

50 32.9396553039551 19.5029392242432 119.924674987793 3.997489166260 8

51 33.7728538513184 19.9878768920898 114.117454528809 3.803915150960 8

52 34.0640678405762 20.3937492370605 118.443016052246 3.948100535075 8

53 34.5008888244629 20.2909622192383 111.887336730957 3.729577891032 8

54 35.1965713500977 20.9814720153809 115.238723754883 3.841290791829 8

55 34.1126022338867 20.2540645599365 112.048606872559 3.734953562419 8

56 33.797119140625 19.9878768920898 109.603500366211 3.653450012207 8

57 32.8587608337402 19.476583480835 113.029335021973 3.767644500732 8

58 32.5837249755859 19.2789192199707 112.732879638672 3.757762654622 8

59 32.559455871582 19.5398368835449 108.16374206543 3.60545806885 8

60 32.8830299377441 19.6057243347168 107.071739196777 3.569057973226 8

61 33.4654579162598 20.2646083831787 108.322105407715 3.610736846924 8

62 32.4704742431641 19.4554996490479 105.270393371582 3.509013112386 8

63 37.9388465881348 23.0319156646729 104.287582397461 3.476252746582 8

64 36.741626739502 21.7932167053223 102.625343322754 3.420844777425 8

65 32.1064567565918 19.115514755249 105.627021789551 3.520900726318 8

66 31.879955291748 18.9705619812012 107.20792388916 3.57359746297 8

67 34.1449584960938 20.2118968963623 111.370109558105 3.712336985270 8

68 32.8506698608398 19.468677520752 107.818298339844 3.593943277995 8

69 31.9770259857178 18.9969158172607 104.384399414062 3.479479980469 8

70 33.0043678283691 19.6584358215332 108.488578796387 3.616285959880 8

71 33.8699226379395 20.1354656219482 108.971832275391 3.632394409180 8

72 33.028636932373 19.4317798614502 108.860610961914 3.628687032064 8

73 32.559455871582 19.3790683746338 101.636825561523 3.387894185384 8

74 33.1985130310059 19.7717628479004 106.510009765625 3.550333658854 8

75 33.2713165283203 19.5424709320068 101.176826477051 3.372560882568 8

76 32.3653144836426 19.5161170959473 99.4644317626953 3.3154810587565 8

77 32.4219398498535 19.3685264587402 98.1066589355469 3.2702219645182 8

78 33.0933494567871 19.6637058258057 101.94962310791 3.39832077026 8

79 32.2197036743164 19.036449432373 106.620094299316 3.554003143311 8

80 31.5159358978271 18.7834377288818 102.262489318848 3.408749643962 8

81 33.1257095336914 19.711145401001 98.9543991088867 3.2984799702962 8

82 33.7162284851074 20.1460075378418 104.590675354004 3.486355845133 8

83 32.4300270080566 19.255199432373 107.737968444824 3.591265614827 8

84 32.4623832702637 19.3632545471191 112.612846374512 3.753761545817 8

85 33.5139961242676 19.9984188079834 104.310585021973 3.477019500732 8

86 32.4623832702637 19.1366004943848 105.305946350098 3.510198211670 8

87 33.8456573486328 20.2092609405518 97.4205932617188 3.2473531087240 8

88 33.4897270202637 19.8112964630127 103.198890686035 3.439963022868 8

89 32.0093841552734 19.0232715606689 99.6584548950195 3.3219484965007 8

90 33.8780136108398 20.1776351928711 102.72289276123 3.42409642537 8

91 34.8487281799316 20.7416381835938 102.499328613281 3.416644287109 8

92 31.8395080566406 18.7702598571777 104.775894165039 3.492529805501 8

93 32.8506698608398 19.5424709320068 105.871055603027 3.529035186768 8

94 32.527099609375 19.334264755249 111.040664672852 3.701355489095 8

95 32.5109214782715 19.4212379455566 110.461448669434 3.682048288981 8

96 32.5837249755859 19.3737983703613 107.922119140625 3.597403971354 8

97 34.4361763000488 20.4438228607178 111.377975463867 3.712599182129 8

98 33.1014404296875 19.5213871002197 112.802536010742 3.760084533691 8

99 32.5675468444824 19.4739475250244 112.669631958008 3.755654398600 8

100 32.4542961120605 19.3369007110596 108.820182800293 3.627339426676 8

Epoch 80 
WER 31.52% 
CER 18.77%

�1

(a) Chorales dataset.
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WER CER LossTable 1

WER CER Loss Loss

0 24.5710601806641

1 68.3917846679688 48.2719612121582 427.888000488281 85.577600097656 16.2555675506592

2 41.3364524841309 28.0670261383057 318.129180908203 63.625836181641

3 37.5796585083008 24.6592102050781 253.364959716797 50.672991943359

4 37.8201713562012 24.8075523376465 229.131057739258 45.826211547852

5 37.5163421630859 24.0731086730957 212.711151123047 42.542230224609

6 36.053352355957 22.8218116760254 206.01301574707 41.20260314941

7 33.1789474487305 21.7797088623047 205.412460327148 41.082492065430

8 36.3326721191406 23.9596328735352 197.619293212891 39.523858642578

9 33.8672943115234 21.4765701293945 193.344635009766 38.668927001953

10 33.4546966552734 21.8095703125 179.789947509766 35.957989501953

11 32.1734962463379 20.98876953125 173.956588745117 34.791317749023

12 34.1777648925781 22.1023788452148 166.852935791016 33.370587158203

13 34.0301895141602 22.2431354522705 162.912185668945 32.582437133789

14 34.9840698242188 22.627628326416 156.024978637695 31.204995727539

15 30.8243808746338 20.1931495666504 155.02897644043 31.00579528809

16 30.1406307220459 19.3733177185059 146.767120361328 29.353424072266

17 32.7397956848145 21.371488571167 141.986389160156 28.397277832031

18 31.4294910430908 20.8853034973145 139.159057617188 27.831811523438

19 30.0446300506592 19.5402221679688 138.523345947266 27.704669189453

20 32.2051544189453 20.9676246643066 129.076156616211 25.815231323242

21 32.2541770935059 20.7965240478516 135.769119262695 27.153823852539

22 29.6427555084229 19.468391418457 129.595550537109 25.919110107422

23 29.6703300476074 19.2880897521973 125.500717163086 25.100143432617

24 31.5479602813721 21.1298484802246 122.806381225586 24.561276245117

25 30.6997833251953 19.9699115753174 128.202896118164 25.640579223633

26 27.5899753570557 17.68603515625 115.651969909668 23.130393981934

27 30.6875286102295 19.8241539001465 108.22486114502 21.64497222900

28 29.6907558441162 19.4404678344727 106.820419311523 21.364083862305

29 28.6490459442139 19.2803421020508 103.720603942871 20.744120788574

30 28.832878112793 18.8044872283936 106.386535644531 21.277307128906

31 29.8041172027588 19.4457931518555 102.617279052734 20.523455810547

32 27.5368690490723 17.8277587890625 97.0926818847656 19.4185363769531

33 28.2292976379395 18.6992454528809 96.497184753418 19.299436950684

34 27.4755916595459 17.902494430542 95.4187927246094 19.0837585449219

35 28.9727935791016 19.123929977417 95.9094924926758 19.1818984985352

36 29.7474365234375 19.4466018676758 95.9183959960938 19.1836791992188

37 27.0665664672852 17.4771633148193 94.5960235595703 18.9192047119141

38 28.9794311523438 18.987211227417 94.1891326904297 18.8378265380859

39 28.2160224914551 18.5355682373047 97.1350936889648 19.4270187377930

40 26.7433319091797 17.4832973480225 92.0231781005859 18.4046356201172

41 28.0669136047363 18.3452587127686 94.533935546875 18.906787109375

42 30.25807762146 19.9326248168945 89.2682723999023 17.8536544799805

43 28.9140701293945 18.9413681030273 90.2453842163086 18.0490768432617

44 26.5625629425049 17.2155075073242 85.7980651855469 17.1596130371094

45 29.5002861022949 19.0332145690918 85.2394943237305 17.0478988647461

46 29.1954326629639 19.1457214355469 87.5514526367188 17.5102905273437

47 26.5702228546143 17.8472900390625 86.6022491455078 17.3204498291016

48 26.9986515045166 17.6195335388184 84.0704040527344 16.8140808105469

49 26.9613742828369 17.6874885559082 81.7805480957031 16.3561096191406

50 27.1789093017578 17.9223499298096 82.8508987426758 16.5701797485352

51 29.2076873779297 19.2269134521484 82.0012588500977 16.4002517700195

52 26.9332904815674 17.6682796478271 84.338996887207 16.867799377441

53 27.4975490570068 17.7496337890625 80.7086715698242 16.1417343139648

54 26.6115856170654 17.4563407897949 76.9851379394531 15.3970275878906

55 28.1164474487305 18.3599472045898 79.4909133911133 15.8981826782227

56 31.2931499481201 20.1318130493164 79.7720565795898 15.9544113159180

57 28.2844486236572 18.5651073455811 85.4374923706055 17.0874984741211

58 26.3884353637695 16.9919471740723 77.4477081298828 15.4895416259766

59 26.7208633422852 17.6820011138916 79.2796249389648 15.8559249877930

60 27.1952495574951 18.051965713501 77.0028839111328 15.4005767822266

61 29.0146656036377 19.4951877593994 86.8432083129883 17.3686416625977

62 27.6573791503906 18.1953029632568 82.0243835449219 16.4048767089844

63 26.7050323486328 17.3188152313232 76.7708053588867 15.3541610717773

64 27.812105178833 18.2180633544922 78.1043090820312 15.6208618164063

65 27.6476783752441 18.4945697784424 78.3525466918945 15.6705093383789

66 25.3181304931641 16.6600761413574 73.1056213378906 14.6211242675781

67 25.6903877258301 16.8828296661377 74.3901443481445 14.8780288696289

68 25.8486862182617 16.8991317749023 72.3695449829102 14.4739089965820

69 26.580436706543 17.4789390563965 96.6170883178711 19.3234176635742

70 26.5314140319824 17.2398815155029 77.5999755859375 15.5199951171875

71 28.9436855316162 18.8064250946045 73.3789215087891 14.6757843017578

72 26.4956703186035 17.6882953643799 73.0866928100586 14.6173385620117

73 27.2544841766357 17.7301025390625 78.4028854370117 15.6805770874023

74 25.7174510955811 16.9722537994385 71.4034118652344 14.2806823730469

75 27.1681842803955 17.9896602630615 72.1970062255859 14.4394012451172

76 26.6013717651367 17.6907176971436 76.4802703857422 15.2960540771484

77 27.3448677062988 18.1809368133545 74.9365768432617 14.9873153686523

78 25.6086845397949 16.6741180419922 69.5209655761719 13.9041931152344

79 27.0604400634766 17.8437404632568 74.8206329345703 14.9641265869141

80 26.9501399993896 17.7520561218262 74.2498626708984 14.8499725341797

81 27.3035049438477 18.0605220794678 74.2140884399414 14.8428176879883

82 27.3729515075684 17.9291286468506 72.6221466064453 14.5244293212891

83 26.558988571167 17.6610164642334 73.8877258300781 14.7775451660156

84 27.2013759613037 18.047607421875 75.7384185791016 15.1476837158203

85 26.1903057098389 17.2818508148193 70.4418640136719 14.0883728027344

86 26.1494541168213 17.2140560150146 69.4274749755859 13.8854949951172 38

87 31.4831085205078 21.3065986633301 75.15625 15.03125 38

88 29.0534744262695 19.4257793426514 84.7649383544922 16.9529876708984 38

89 27.2304840087891 18.2088623046875 75.6567230224609 15.1313446044922 38

90 27.0492057800293 17.6384181976318 71.9380493164062 14.3876098632813 38

91 25.8926010131836 16.9838752746582 70.6771545410156 14.1354309082031 38

92 29.3287105560303 19.4662933349609 75.2828063964844 15.0565612792969 38

93 26.6166915893555 17.6003246307373 71.293571472168 14.258714294434 38

94 27.4934635162354 18.2645511627197 69.2414321899414 13.8482864379883 38

95 26.6075000762939 17.3349552154541 71.8367462158203 14.3673492431641 38

96 27.59303855896 18.2303314208984 69.3031158447266 13.8606231689453 38

97 24.5710601806641 16.2555675506592 66.9479370117188 13.3895874023438 38

98 25.6178760528564 16.7895317077637 65.1159896850586 13.0231979370117 38

99 26.3884353637695 17.5470561981201 65.7607192993164 13.1521438598633 38

100 27.0492057800293 17.7593193054199 68.3073959350586 13.6614791870117 38

Epoch 97 
WER 24.57% 
CER 16.26%

�2

(b) Quartets dataset.

Figure 4: Evolution of loss, validation WER and CER during 100 epochs of training with a) Chorales dataset and b)
Quartets dataset. Chorales WER is 30.96% and CER is 18.10%. Quartets WER is 18.10% and CER is 13.53%.

(a) Chorales dataset example (b) Quartets dataset example

Figure 5: Excerpt of original (top row) and predicted scores (bottom row) from a test sample in a) Chorales dataset, b)
Quartets dataset. The differences between original and prediction are highlight in red.

estimated note durations and barlines. Exchanging notes
between voices is another common mistake our model
makes, specially when voice pitches are too close or even
when two voices cross their melodic lines.

The model struggles at predicting ties and triplets,
which requires further analysis to determine whether it is
related to barline errors, to the output representation for-
mat based on **kern, or to the lack of enough samples in
the training set (i.e., ties and triplets are very infrequent in
our training data compared to other symbols).

5. CONCLUSIONS

In this work, we focus on the A2S task, a hardly explored
formulation consisting of extracting a full score from an
audio file. Note that A2S resembles what a human would
expect to get if it intends to visualize the input audio as a
music score (e.g., MusicXML), unlike what most authors
consider AMT where the output sequence format is in-
tended to be further processed by a computer (e.g., MIDI).

The proposed methodology which performs the A2S
task has the following advantages over other AMT meth-
ods: 1) Frame-level alignment of the ground truth is not
needed; 2) The end-to-end approach avoids propagating

errors from one stage to the other; 3) The output of our
model is based on **kern format and can be straightfor-
wardly translated to a valid music score.

We are aware this simplified scenario used for evalua-
tion does not include real audio and some score symbols,
but we argue the results provide the basis to open a new
path of research towards notation-level AMT.

One of the main limitations of the proposed approach
is the maximum-length of input sequences due to mem-
ory constraints. For example, this prevents an end-to-end
training with complete songs, only allowing fragments of
2 minutes at a maximum on a typical training infrastruc-
ture. For this, we plan in a future work to explore other ar-
chitectures such as the Transformer XL [5], a sequence-to-
sequence model that can deal with much longer sequences.
Other future works include defining an evaluation metric
for A2S and building a dataset from real audio to validate
the approach with actual music performances.
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a b s t r a c t

This work presents an end-to-end method based on deep neural networks for audio-to-score music tran-
scription of monophonic excerpts. Unlike existing music transcription methods, which normally perform
pitch estimation, the proposed approach is formulated as an end-to-end task that outputs a notation-
level music score. Using an audio file as input, modeled as a sequence of frames, a deep neural network
is trained to provide a sequence of music symbols encoding a score, including key and time signatures,
barlines, notes (with their pitch spelling and duration) and rests. Our framework is based on a
Convolutional Recurrent Neural Network (CRNN) with Connectionist Temporal Classification (CTC) loss
function trained in an end-to-end fashion, without requiring to align the input frames with the output
symbols. A total of 246,870 incipits from the Répertoire International des Sources Musicales online cat-
alog were synthesized using different timbres and tempos to build the training data. Alternative input
representations (raw audio, Short-Time Fourier Transform (STFT), log-spaced STFT and Constant-Q trans-
form) were evaluated for this task, as well as different output representations (Plaine & Easie Code, Kern,
and a purpose-designed output). Results show that it is feasible to directly infer score representations
from audio files and most errors come from music notation ambiguities and metering (time signatures
and barlines).

� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic music transcription (AMT) is a music information
retrieval (MIR) task whose final goal is to extract a human-
readable and interpretable representation (i.e., a music score), from
an audio signal. A music score is a guide to perform a piece of
music, and it can be represented in different ways. The most
extended representation is the modern staff notation used in com-
mon Western music, which can be encoded as symbolic data for
computational purposes, namely a digital music score. Precise
high-level musical information can be extracted from digital music
scores, making them suitable to process, retrieve and classify
music content (Corrêa & Rodrigues, 2016). There are different dig-
ital music score formats such as Plaine & Easie Code (Brook, 1965),
Kern (Sapp, 2005) or MusicXML (Good, 2001), among others.

The most obvious application of AMT is to help a musician write
down the music notation of a performance from its audio record-
ing, which is a time-consuming task when it is done by hand. Addi-
tionally, AMT can also be useful for other MIR tasks, such as
plagiarism detection, artist identification, genre classification,

real-time score following, music style transfer or accompaniment
generation. In general, AMT enables symbolic music algorithms
to analyze recorded music.

In a modern music score (Schobrun, 2005), sounds are repre-
sented by notes placed on a staff, which is made of 5 horizontal
lines representing the flow of time. The vertical position of the note
in the staff determines its pitch, and the shape of the note symbol
determines its duration. Silence is represented by rest symbols,
whose duration is also determined by its shape. A staff begins with
a clef symbol, which defines the pitch reference for the written
notes. After the clef, a time signature determines the metric infor-
mation or rhythm, and a key signature determines which note
pitches must be altered according to the tonality of the musical
piece. Based on the time signature, notes and rests are divided in
measures of equal duration using barlines. Notes whose duration
go beyond the current measure are joined with another note of
the same pitch in the next measure using a curved line named
tie. However this is only the basics, as a modern music score usu-
ally contains other information to indicate changes in dynamics
(i.e., volume of the played notes) and tempo (i.e., duration of the
played notes).

In order to extract a modern score from an audio signal, it is
necessary to estimate the notes (with their pitch and duration)
and the rests (duration) together with other symbols intended to

https://doi.org/10.1016/j.eswa.2020.113769
0957-4174/� 2020 Elsevier Ltd. All rights reserved.
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aid the interpretation of the score, such as key signatures, metering
information (time signature and barlines) and clefs. However, this
is just the basic information since a score is also a mean of commu-
nication between the composer and the performer, in which the
former expresses how the musical piece should be performed by
the latter. Thus, a score also contains a myriad of symbols intended
to affect the acoustic characteristics of the written notes (e.g., slurs,
crescendo, rubato, pizzicato). The meaning of these symbols is
vague and in some cases has changed over different periods (e.g.,
grace notes, tempo markings). As a score does not unequivocally
represent a musical piece and vice versa, the output of any AMT
system can only be an approximation of the score that a musician
used to perform the recorded audio.

Experienced musicians are capable of writing down a score by
listening to an audio recording, notwithstanding slight differences
compared with the original score due to inherent notation ambigu-
ities. Music students are initially trained by transcribing mono-
phonic scores (only one note playing simultaneously) in melodic
dictations. The polyphonic scenario (many notes playing simulta-
neously) is much more complex and even some expert musicians
are not able to transcribe full scores correctly.

In this work, we propose to focus on a hardly explored formula-
tion, namely the Audio-to-Score (A2S) task, consisting of extracting
a full score from the audio file in an end-to-end fashion. To the best
of our knowledge, addressing audio-to-score transcription in one
step is only found in our preliminary work (Román, Pertusa, &
Calvo-Zaragoza, 2018; Román, Pertusa, & Calvo-Zaragoza, 2019),
and in Carvalho and Smaragdis (2017).

In Román et al. (2018), the AMT problem is formulated as an
automatic speech recognition (ASR) problem. Using monophonic
(i.e., only one note playing simultaneously) audio as input, and a
sequence of symbols (analogously to the spoken words) as outputs
enables the application of several methods that were originally
developed for ASR. In particular, Román et al. (2018, 2019) adopted
the Convolutional Recurrent Neural Network architecture (Shi, Bai,
& Yao, 2017a), which is the same architecture employed by Deep
Speech 2 (Amodei et al., 2015). The present approach extends the
contents of Román et al. (2018) by training the model with a much
larger dataset (246,870 vs 71,400), using different instruments for
the synthesis of the audio excerpts (instead of only piano), evalu-
ating different input and output representations, and analyzing
the nature of errors.

The main goal of this work is to find the most adequate input
and output representations for this problem, as well as to design
a proper neural network architecture to tackle the A2S task from
these data.

2. Background

Even though the final goal of AMT is to provide a valid score out
of an audio recording, most authors working on this task focus on
one intermediate goal (Benetos, Dixon, Duan, & Ewert, 2019),
which is pitch estimation. AMT systems can be roughly classified
into four categories (Benetos et al., 2019). (1) Frame-level AMT or
pitch estimation outputs the fundamental frequencies present at
all time frames of the input audio. This is usually performed in each
frame independently, although contextual information is some-
times considered in a post-processing stage. (2) Note-level (or note
tracking) AMT not only estimates pitches in each individual frame,
but also connects pitch estimates over time, producing a piano-roll
representation as the output similarly to frame-level methods, but
characterizing each note with pitch, onset and offset times. (3)
Stream-level AMT goes one step further by clustering notes
belonging to the same audio source characterized by its timbre.
(4) Finally, notation-level AMT aims at the final goal of AMT, gen-

erating a human-readable score, which is the task addressed in the
present work.

Regarding frame-level AMT, established algorithms such as
SPICE (Gfeller et al., 2019) or YIN (de Cheveigné & Kawahara,
2002) and its variants (such as probabilistic YIN (Mauch & Dixon,
2014)) can obtain very reliable results for monophonic pitch esti-
mation, which can be considered an almost solved task. In conse-
quence, most AMT researchers only target the polyphonic pitch
estimation problem, which is an extremely challenging task that
still leaves room for improvement. Polyphonic pitch estimation
methods include signal processing based techniques (Su & Yang,
2015), Negative Matrix Factorization (NMF) (Benetos & Dixon,
2013) and neural networks (Kelz et al., 2016) among others.

For note-level AMT, deep neural networks achieve state of the
art results (Hawthorne et al., 2018; Kim & Bello, 2019; Ycart,
McLeod, Benetos, & Yoshii, 2019a; Ycart, Stoller, & Benetos,
2019b), particularly using Convolutional Neural Networks (CNN)
to output a piano-roll representation.

At present, the main focus of AMT research is on note-level
AMT, still an open problem. For this reason, there are very few
works (Arora & Behera, 2015) addressing stream-level AMT, which
is closely related to instrument source separation.

Likewise, few researchers address notation-level AMT, which is
the subject of this work. Regarding polyphonic sources, Nakamura,
Benetos, Yoshii, and Dixon (2018a) uses a pipeline of multi-pitch
estimation, note tracking, rhythm quantization, and score typeset-
ting for polyphonic music. The results are still unsatisfactory
according to the authors, who also suggest the integration of a
music language model to improve the metrics. Cogliati,
Temperley, and Duan (2016) approaches the problem by focusing
on rhythm quantization of MIDI files, but do not tackle AMT end
to end. The first work that formulates notation-level AMT as a
sequence-to-sequence translation is Carvalho and Smaragdis
(2017), but they intend to show that a neural network is capable
of learning the task and the nature of the experiments is still very
simple (i.e., note duration is constant, all samples limited to one
measure of 4/4 metering).

Nonetheless, to the best of our knowledge there is no previous
work addressing monophonic notation-level AMT other than
Román et al. (2018). Although frame-level pitch estimation can
be accurately performed on monophonic audio, the task of obtain-
ing a full monophonic score has not received attention from the
community. As a matter of fact, the result of a monophonic pitch
estimation or pitch tracking method, which shows the evolution
of pitches over time, is not useful in most situations since it lacks
musical meaning, whereas obtaining a complete score from a
singer or a monophonic instrument would be very useful for musi-
cians and music students. For example, jazz trumpet players could
use a monophonic notation-level AMT system to extract the score
out of their recorded performances, which very often include solo
improvisations never played or written beforehand.

Although monophonic pitch estimation is a relatively simple
task, the extraction of the full score out of the pitches is not trivial.
Problems such as rhythmic quantization (i.e., note and rest dura-
tions, barline locations, time signature estimation) and pitch spel-
ling (i.e., G] vs. A[) are still open, notably if we consider the real
duration of note symbols (e.g., ) is never the same from one
composition to the other, and even from one performance to the
other. Moreover, there can be different ways to represent the same
audio content using the western score notation. These intrinsic
challenges of monophonic notation-level AMT are common to
polyphonic notation-level AMT. Hence, some of the lessons learned
in this work can be useful for future notation-level AMT works
addressing polyphonic music.

Notation-level transcription can be divided into various sub-
tasks, including pitch estimation, note tracking, pitch spelling,
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instrument recognition, rhythmic quantization and extraction of
music dynamics. Each of these sub-tasks is very challenging on
its own, even for trained musicians, leading many researchers to
address AMT only as a frame or stream level estimation problem
(Cemgil, Kappen, & Barber, 2003; Benetos et al., 2019).

As shown in Fig. 1, recent AMT methods that produce a notation
syntax as output usually split the task into two main stages: they
first convert the audio signal into the piano-roll representation,
and in a second stage, they convert the estimated piano-roll into
the final musical notation. Commercial software like Audioscore1

follows this two-stage approach. In this case the first stage is fully
automatic, but the second stage requires human intervention to
set the time signature and barlines manually. Nonetheless, this
approach has some drawbacks, since a wrong detection in a given
stage (such as the multi-pitch detection) can be propagated through
the next processing stages (Román et al., 2019). This is the main
motivation to use end-to-end methods, where pitches can be better
predicted together with the time information and dynamics, and
vice versa, thanks to the underlying music language model that
can be learned from the training data.

All notation-level AMT methods, including both monophonic
and polyphonic, suffer from two key limitations that hinder its pro-
gress. The first one is the scarcity of quality datasets. Even though
there are many audio recordings with their corresponding scores,
they are not aligned and, since they can not be split, samples are
usually very long to fit the training of deep neural networks. Unlike
Automatic Speech Recognition (ASR), there is no trivial way to
break a continuous musical piece into smaller excerpts based on
the score. The second key limitation is the lack of proper evaluation
metrics that can measure how close two scores are from each
other, apart from a character by character comparison. There are
some attempts to develop evaluation metrics for notation-level
AMT (e.g., (McLeod & Steedman, 2018)), but they are still far from
becoming a de facto standard that allows a proper comparison
between different methods.

3. Data acquisition

As previously mentioned, one of the key limitations of notation-
level AMT is the lack of quality datasets for training neural net-
works, namely a vast collection of musical excerpts of real audio
data together with the corresponding aligned score in a textual for-
mat (e.g., MusicXML).

Our end-to-end approach has the advantage of not requiring
audio frames aligned with the corresponding score notation sym-
bol, which allows us to build our own dataset from existing digital
scores by synthesizing the associated audio. Synthetic data is not
optimal for training neural networks but it has been found an
effective and inexpensive alternative in the absence of real data
(Tremblay et al., 2018).

Fig. 2 outlines the pipeline we developed to create our ground
truth. Our data source is the Répertoire International des Sources
Musicales (RISM) (RISM, 2017) online catalog, which contains
more than 1 million music incipits, encoded in Plaine& Easie Code
(Brook, 1965) more commonly known as PAE format. In the Data
Extraction block, we select a subset of more than 300.000 incipits
and extract the PAE contents along with other metadata such as
clef, key signature, time signature, and target instrument. The next
two blocks in the pipeline are the Score Parsing block and the Audio
Synthesis block. The former removes multi-rests and grace notes,
which will not be considered for this work, and discards scores
with invalid format and with incorrect measure lengths. The latter
converts the resulting PAE files into MIDI by sequentially running

the tools pae2kern and hum2mid available at the humdrum extra
toolkit (Sapp, 2013).

The General MIDI program was based on the instrument meta-
data extracted from RISM and a random tempo between 80 and
120 is chosen to ensure variability in the note duration. Audio files
were synthesized from MIDI files via FluidSynth with the default
sound font (FluidR3 GM Bank) at 22,050 Hz sampling rate and
compressed to mono FLAC audio format to reduce disk space while
preserving the audio content in a lossless manner.

After this initial processing stage, we ended up with 313,493
samples of FLAC (input) and PAE (output) files, which will form
our training data. Aiming at curating the dataset, the Filtering block
in Fig. 2 filters out those samples that do not have their clef in [G2,
F4, C1, C3, C4], their key signature in [0–5 sharps, 0–5 flats], their
time signature in [4/4, 2/2, 3/4, 2/4, 3/8, 6/8, 9/8, 12/8, 6/4, 4/2,
3/2], their note and rest durations in [1, 1/2, 1/4, 1/8, 1/16, 1/32]
(including dotted versions), or their note pitches in the [C2-B6]
range. The samples removed by this filter are music notation out-
liers, extremely rare music scores that are not sufficiently repre-
sented in our data.

Additionally, we discarded samples containing double dots,
double flats, double sharps, measure repetitions, and PAE rhythmic
patterns, as well as samples that change the initial clef/key/time
signatures. And lastly, we also discarded audio samples longer than
18 s and those with a high number of output symbols per second,
to guarantee a minimum 1:1 ratio between input frames and out-
put symbols required for CTC loss function.

After this final filtering stage, we ended up with 246,870 sam-
ples that were randomly divided into training (70%), validation
(15%) and test (15%) sets. The same sets were used for all the
experiments to ensure results can be compared across all input/
output representations and models.

4. Data representation

Under this end-to-end scenario, the input of the proposed
model is a sequence of audio frames, and the output is a sequence
of text characters representing the score. Given the nature of our
approach, we intend to analyze the impact of the data representa-
tion with regards to both input and output formats. In the follow-
ing sections, we describe the different alternatives that we have
considered.

4.1. Inputs

All input representations were obtained from an audio wave-
form sampled at 22,050 Hz, and they apply the same window
stride to ensure that input sequences have equal length regardless
of its representation.

� Raw audio. Raw waveforms were directly used as input by add-
ing SincNet (Ravanelli & Bengio, 2018) as the first layer of the
model. SincNet layer extracts audio features from waveforms
by discovering meaningful filters for our problem. SincNet is
based on parameterized ‘sinc’ functions, which implement
band-pass filters whose coefficients (low and high cutoff fre-
quencies) are learned during training. A set of 144 filters were
used with a window length of 2048 samples and a window
stride of 512 samples. A Hamming window was selected to con-
trol spectral leakage after applying the filters. The initial filter
coefficients were initialized with Mel-scaled bins across the
valid frequency range (from 0 to Nyquist).

� STFT. The magnitude spectrogram from the Short Time Fourier
Transform was also evaluated, using a Hamming window of
2048 samples and hop size of 512 samples.1 https://www.neuratron.com/audioscore.htm.
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� LogSTFT. A log-spaced filter bank was applied to the previous
STFT to get 24 bins per octave, starting from C2 and extending
across 6 octaves.

� CQT. Constant-Q transform (Schörkhuber & Klapuri, 2010) spec-
trogram, using 24 bins per octave, starting from C2 and extend-
ing across 6 octaves. In this type of spectrogram, the window
size is variable in order to guarantee the same resolution in
the frequency axis at the cost of penalizing the resolution in
the time axis. However, the hop size is constant and set to
512 samples in order to ensure the same number of frames as
the previous representations.

4.2. Outputs

Different output representations were obtained from the origi-
nal input incipits encoded in standard PAE format. Fig. 3 shows an
example of a score excerpt and how it was encoded to the 3 output
representations we considered.

� CTC-friendly. This is a semantic notation we created to ease Con-
nectionist Temporal Classification (CTC) decoding, explained in
more detail in the following section. It is formed by a sequence
of words, separated by spaces, of one of these types: clef, key
signature, time signature, barline, rest, note, tie. A single-
character word was used to encode clef, key signature, time sig-
nature, barline and tie. Multiple characters were used to encode
notes, including the pitch spelling (e.g., a]4, c2, b[3) followed by
one character to encode the canonical duration, plus the stan-
dard notation dot character to extend the duration when
needed. Explicit sharp and flat notes were encoded regardless
of key signature or measure accidentals. Rests were encoded

using one special symbol followed by the same duration encod-
ing used for notes. The alphabet size is 52 characters, and the
average word size is 2.53 characters.

� PAE-based. This notation is based on the PAE (Brook, 1965) for-
mat with the following changes to match the requirement of
our output sequences: (1) clef, key signature and time signature
were encoded following the PAE format and placed at the begin-
ning of the incipit without their special characters and always in
the same order; (2) notes, rests, ties, and barlines were split by
spaces; (3) note/rest modifiers (i.e., octave, duration, accidental)
were placed right before the first note or rest that they affect to;
(4) note modifiers always follow this precedence: duration,
octave, accidental; (5) there are implicit sharp and flat notes
based on the key signature and measure-bound accidentals.
The alphabet size is 24 characters and the average word size
is 1.87 characters.

� Kern-based. This notation is based on the Humdrum (Huron,
1995) Kern format, which represents music in lines of tab-
separated columns. Each line represents an instant of time
where one or more note onsets exist, whereas each column,
or spine in Humdrum’s nomenclature, represents a different
pentagram or voice in a score. As we are dealing with mono-
phonic excerpts, our kern files have one spine only. We take
advantage of this fact to create a one-line representation of
the score by replacing the carriage return characters with
spaces. Moreover, we make the following changes to match
our output sequence format: (1) clef, key signature and time
signature were encoded as described in the previous PAE format
section; (2) comment records and interpretation records were
removed; (3) middle notes of ties do not have any special char-
acter. Only the initial and final tie characters (i.e., ‘[’ and ‘]’)

Fig. 1. Overview of notation-level automatic music transcription methods. Top: two-stage methods based on piano-roll estimation. Bottom: end-to-end methods based on
deep neural networks and the object of this study.

Fig. 2. Training data acquisition pipeline.
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were considered and they were placed next to the affected
notes; (4) there are explicit sharp and flat notes regardless of
key signature or measure-bound accidentals. The alphabet size
is 31 characters and the average word size is 2.64 characters.

5. Method

We built our architecture based on Román et al. (2018), which is
an improved version of the Convolutional Recurrent Neural Net-
work (CRNN) trained with Connectionist Temporal Classification
(CTC) loss function.

Our notation-level AMT approach aims at estimating which
music score, modeled as a structure containing symbols from a
fixed alphabet of music notation, would define the input audio
most likely. This is what we denote by the Audio-to-Score (A2S)
task. Note that A2S resembles what a human would expect to get
if it intends to visualize an audio file as a music score (e.g.,
MusicXML), unlike traditional AMT where the output is a construc-
tion intended to be further processed by a computer (e.g., piano-
roll, MIDI, etc.).

Let X be the domain of audio files and R the alphabet of music
score symbols. The aim of our A2S is to compute a function that
maps any audio file into a sequence of symbols, i.e., a function
f : X ! R�. The A2S task is therefore formulated as retrieving the
most likely sequence of music symbols ŝ given an x 2 X:

ŝ ¼ arg max
s2R� PðsjxÞ ð1Þ

Following successful approaches in other sequence labeling
tasks, we address the A2S with an end-to-end approach based on
statistical models. For learning the posterior probability of Eq.
(1), we resort to Convolutional Recurrent Neural Networks (CRNN).

A CRNN consists of one block of convolutional layers connected
to a block of recurrent layers (Shi, Bai, & Yao, 2017b). Each convo-
lutional layer usually includes a max-pooling layer (or filters with
a stride greater than 1) that reduces the dimensionality of its out-
put. The convolutional block is in charge of learning relevant fea-
tures from the input and the recurrent layers process these
features in terms of sequences of musical symbols.

Activations of the last convolutional layer can be seen as a
sequence of feature vectors representing the input audio file, x.
Let M be the width of the input sequence x. The length of the
resulting features after the convolutional layer will be J ¼ cM,
where c 6 1 is defined by the specific max-pooling parameters.

These activations are then fed to the first layer of the recurrent
block, and the unit activations of the last recurrent layer are con-
sidered estimates of the posterior probabilities per frame:

Pðrjx; jÞ; 1 6 j 6 J; r 2 R [ f�g ð2Þ

where � is a special ‘‘non-character” symbol that is necessary to
detect two or more consecutive instances of the same symbol
(Graves, 2008).

5.1. Training

Convolutional neural networks can be trained through gradient
descent using the well-known Back Propagation algorithm. RNN
networks can be trained similarly using Back Propagation Through
Time (Williams & Zipser, 1995). Therefore both the convolutional
and recurrent blocks of a CRNN can be jointly trained by providing
audio files annotated at the frame level.

In this work, we follow an end-to-end approach, which means
that for each audio file we only provide its corresponding target
transcription of score symbols, without any kind of explicit infor-
mation about its segmentation into frames. A CRNN can be uni-
formly trained without this information by using the
Connectionist Temporal Classification (CTC) loss function (Graves,
Fernández, Gomez, & Schmidhuber, 2006). The CTC training proce-
dure is a form of Expectation–Maximization, similar to the
backward-forward algorithm used for HMM training (Rabiner &
Juang, 1993), that distributes the loss among all the frames to
locally maximize Eq. (1) with respect to the ground-truth
sequence.

To improve convergence and prevent overfitting, Batch Normal-
ization layers (Ioffe & Szegedy, 2015) are also added between any
other layer excluding the input and output layers.

5.2. Decoding

For solving Eq. (1), the most likely symbol is computed for each
input feature vector of the recurrent block j:

r̂j ¼ arg max
r2R[f�g

Pðrjx; jÞ;1 6 j 6 J ð3Þ

Then, an approximately optimal sequence of musical symbols is
obtained as ŝ � Fðr̂Þ, where r̂ ¼ r̂1 . . . r̂J and F : R0I ! RI is a
function which first merges all the consecutive characters such
that r̂j ¼ r̂j�1 and then deletes all the non-character symbols
(rj ¼ �) (Graves et al., 2006). This is known as greedy decoding.

In our work, we replaced greedy decoding with CTC-based
beam search decoding, which applies beam search algorithm to
find the n-best paths with one particularity: when exploring new
paths, if two or more of them lead to the same sequence (after
merging consecutive characters and deleting the non-character
symbol), they are grouped into a single path and their probabilities
are added up. After all frames are decoded, the path with the high-
est probability is chosen as the output sequence.

Fig. 3. Example of score encoding to the output representations we considered.
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5.3. Implementation details

In order to adapt the topology for the different input/output
configurations and improve the accuracy, we made the following
changes to the model described in Román et al. (2018).

First, we adapted the convolutional stage depending on the
input representation to ensure the same number of features per
frame in the recurrent stage, and we also reduced the size of the
filters to increase the resolution in the frequency and time axis.
Table 1 summarizes the convolutional stage hyperparameters we
selected following this rationale.

In addition, zero-padding was applied not only at the input
layer (to match the length of the largest sequence of the batch),
but in the same manner at the output of all the layers of the con-
volutional stage.

For the raw waveform input representation only, we added an
extra filter bank layer before the convolutional layers with learn-
able filter bands, based on Ravanelli and Bengio (2018), and chan-
ged 2D convolutions by 1D convolutions 5. The reason behind this
change is to give freedom to the model to learn filters that might
not be adjacent in the frequency axis.

Finally, we also reduced the number of recurrent layers from 3
to 2, increased the number of hidden units from 1,024 to 1,536 and
replaced Gated Recurrent Units (GRU) with LSTM cells. We made
all these changes after trying different values and finding a

trade-off between reasonable performance and computational
cost.

Fig. 4 depicts the high level CRNN architecture used for
spectrogram-based input representations and 5 depicts its coun-
terpart for raw waveform input representation.

In order to produce comparable results for all the training mod-
els, we used the same set of samples for the training, validation and
test. With the same motivation, we set the same training hyper-
parameters summarized in Table 2.

6. Evaluation

6.1. Metrics

Unfortunately, there are not existing standard A2S evaluation
metrics that can be adopted for notation-based methods, since this
is still an open problem due to the complexity of the score nota-
tion. For example, a good metric should count score errors only
once, hence if the time signature is wrongly predicted, barlines
should not be counted as errors based on their ground truth loca-
tion. Likewise, errors caused by music notation ambiguities should
be dismissed, for example, a quarter dotted note should be equiv-
alent to a quarter note tied to an eighth note.

Having this in mind, we borrowed the most common evaluation
metrics from the ASR task, namely Word Error Rate (WER) and
Character Error Rate (CER), to validate our results. As our output
is also made by words separated by spaces, we can use these met-
rics effortlessly. WER is an indication of the number of words
incorrectly predicted and is measured as the edit distance of the
sequence of output words with respect to the ground truth. CER
is an indication of the number of characters incorrectly predicted
and is measured as the edit distance of the sequence of output
characters (after removing the spaces) with respect to the ground
truth. At training time, we keep the model with the lowest WER
in the validation set, calculated after each epoch. We chose to min-
imize WER as it gives an indication of how many musical symbols
(e.g., notes) should be manually edited by a musician to fix the out-
put score, while CER does not provide a direct relationship
between errors and musical symbols.

Additionally, we also used the evaluation metrics of Nakamura,
Benetos, Yoshii, and Dixon (2018b) in order to provide a reference
for AMT readers who are knowledgeable of existing note-level AMT
methods, even though our work belongs to the notation-level AMT
category. These evaluation metrics also provide an alternative way
to compare our experiments beyond using WER and CER. The total
number of notes in the ground truth is denoted by NGT , that of esti-
mated notes by Nest . The number of notes with pitch errors is
denoted by Np, that of extra notes by Ne, and that of missing notes
by Nm. The number of matched notes is defined as
Nmatch ¼ NGT � Nm ¼ Nest � Ne. Then we define the pitch error rate
as Ep ¼ Np=NGT , extra note rate as Ee ¼ Ne=Nest , and missing note
rate as Em ¼ Nm=NGT . Onset/offsets errors are also reported in
Nakamura et al. (2018b). As we are dealing with note durations
instead of onsets/offsets, we include an alternative error metric
Ed which is calculated similarly to the pitch error Ep but using note

Table 1
Convolutional layers hyper-parameters based on input representation.

Input Number of Filters Kernel Size Stride

Raw 2048, 2048 3, 3 1, 1
STFT 8, 8 9 � 3, 3 � 3 2 � 1, 1 � 1
LogSTFT 16, 16 3 � 3, 3 � 3 1 � 1, 1 � 1
CQT 16, 16 3 � 3, 3 � 3 1 � 1, 1 � 1

Fig. 4. CRNN with spectrogram input.

Fig. 5. CRNN with raw waveform input.

Table 2
Selected hyper-parameters for all the models.

Batch size 20

Epochs 25
Optimizer SGD with Nesterov
Learning rate 3e-4
Momentum 0.9
Learning rate annealing 1.1
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duration errors, denoted by Nd. Thus, we define the duration error
rate as Ed ¼ Nd=NGT .

6.2. Results

Table 3 shows the WER and CER metrics for all the combina-
tions of input and output representations, measured on the test
set using the CTC beam search decoding with 10 search paths. Con-
cerning the input signal, it can be observed that spectrogram-based
representations perform similarly, whereas a raw input represen-
tation provide significantly worse results. With respect to the out-
put representation, CTC-friendly reports the best results on
average, whereas both PAE and Kern-based output representations
perform similarly, with a slightly worse performance. According to
these results, the best combination is that of LogSTFT input with
CTC-friendly output, that yields 9.96 and 3.15 of WER and CER,
respectively.

The results of applying (Nakamura et al., 2018b) evaluation
metrics as explained in the previous section are reported in Table 4.
As can be noted, CTC-friendly output representations score the
lowest in all error categories. However, the choice of the input rep-
resentation hardly affects the magnitude of errors for any given
output representation.

Overall, extra note errors (Ee) are very scarce in all scenarios,
which is expected for monophonic transcription, and duration
errors (Ed) are notably higher when considering rests as well
as notes. PAE-based output representations exhibit the worst
pitch error (Ep) and duration error (Ed), which makes sense con-
sidering the implicit duration, octave, and accidentals for most
notes in this particular representation. On the other hand,
Kern-based output representations score the worst missing notes
errors (Em), due to the higher number of symbols required to
represent a note.

For a better comparison of the evaluated input/output represen-
tations, we group notation-level transcription errors into 8 cate-
gories that are shown in Table 5.

As can be seen, highest errors are related to Barline and TimeSig,
which is expected as many incipits do not contain enough contex-
tual information to properly predict them. We should notice here
that audio is not synthesized with dynamic expression, thus

without accents indicating strong and weak beats inside a mea-
sure, which also hampers the estimation of metric information.
For spectrogram-based input representations, CQT has consider-
ably higher Barline and TimeSig error rates, which indicates that
the variable window size used to create this kind of spectrogram
is negatively affecting the time-based predictions as expected
(i.e., CQT improves frequency resolution at the expense of lower
time resolution).

Focusing on the output representation, Kern-based has the
highest Format and Tie errors, which suggests that its higher ver-
bosity and the different way to represent ties (i.e., tie character is
added to each note instead of being an independent word between
notes) are more difficult to learn. On the other hand, CTC-friendly
representation displays the lowest Note errors of all, while PAE-
based again exhibits the highest Note errors, which is explained
by the way it encodes notes with implicit modifiers (i.e., whenever
a note modifier such as the change of duration is incorrectly pre-
dicted, it will very likely affect the prediction of multiple subse-
quent notes). Nonetheless, PAE-based output representation has
the lowest Format errors, due to having the smallest alphabet size.
Based on Format errors, the addition of a language model to the
CTC decoding stage seems a very promising approach to increase
accuracy.

Regarding Clef, KeySig and TimeSig errors, CTC-friendly generally
shows better results, suggesting that the minimal character encod-
ing for these symbols benefits its prediction accuracy. Overall, Key-
Sig error rates are significantly lower than Clef error rates, hinting a
higher correlation between note spellings and key signature than
between note spellings and clef.

Fig. 6 depicts the distribution in absolute terms of transcription
errors based on its category for each input/output representation.
We notice a very similar distribution regardless of the input repre-
sentation, being Barline and TimeSig the most prominent source of
errors in all cases. Note errors are also high due to the fact that they
are the most frequent symbol of every score. This figure also illus-
trates the highest proportion of Note errors for PAE-based repre-
sentation and Format/Tie errors for Kern-based representation, as
we previously noticed.

Finally, we have also measured WER and CER for different
types of instruments using our best model (i.e., logSTFT and

Table 3
Word Error Rate (WER)/ Character Error Rate (CER) using different inputs and outputs. Best result is highlighted in bold text.

Raw STFT LogSTFT CQT Average

CTC 12.18/ 3.94 10.29/ 3.24 9.96/ 3.15 10.59/ 3.32 10.76 / 3.41
PAE 11.65/ 4.82 11.11/ 4.53 11.08/ 4.51 11.10/ 4.53 11.24/ 4.60
Kern 12.10/ 4.57 11.53/ 4.22 11.31 / 4.15 11.29/ 4.18 11.56/ 4.28

Average 11.98/ 4.44 10.98/ 4.00 10.78/ 3.94 10.99/ 4.01

Table 4
Note-level transcription errors for different inputs and outputs. Best result is highlighted in bold text.

Ep Em (+rests) Ee (+rests) Ed (+rests)

Raw + CTC 0.50 0.61 (0.67) 0.12 (0.13) 1.19 (1.49)
Raw + PAE 1.74 0.70 (0.78) 0.42 (0.40) 2.27 (2.56)
Raw + Kern 1.32 1.23 (1.34) 0.23 (0.22) 1.20 (1.46)

STFT + CTC 0.42 0.32 (0.35) 0.09 (0.09) 0.76 (1.06)
STFT + PAE 1.50 0.48 (0.52) 0.15 (0.14) 1.41 (1.72)
STFT + Kern 1.07 0.84 (0.90) 0.16 (0.15) 0.81 (1.10)

LogSTFT + CTC 0.44 0.25 (0.28) 0.09 (0.08) 0.71 (1.04)
LogSTFT + PAE 1.49 0.48 (0.53) 0.17 (0.16) 1.36 (1.70)
LogSTFT + Kern 1.12 0.86 (0.93) 0.16 (0.15) 0.82 (1.11)

CQT + CTC 0.40 0.38 (0.44) 0.08 (0.08) 0.78 (1.08)
CQT + PAE 1.53 0.47 (0.50) 0.15 (0.15) 1.52 (1.83)
CQT + Kern 1.16 0.73 (0.77) 0.15 (0.15) 0.84 (1.16)
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CTC-friendly), as shown in Table 6. These results reveal small
differences in error rates, which suggests that the model
can learn to transcribe multiple timbres with little effect on
performance. No further comparative analysis can be derived from
these results, since instruments are not equally represented in our
test set.

7. Conclusions and future work

Although monophonic pitch estimation is considered an almost
solved problem, producing a human-readable score from mono-
phonic audio still presents some challenges we are addressing in
this work. Our Audio-to-Score task goes one step beyond more tra-
ditional AMT systems based on pitch estimation, by also learning
other musical information such as note duration, rests, clef, key
signature, time signature, barlines, and ties.

In this work, we analyzed different input/output representa-
tions to perform notation-level AMT in an end-to-end manner
using Convolutional Recurrent Neural Networks. For this, 246,870
incipits from RISM were synthesized using different timbres and
random tempos, and the raw audio, STFT, LogSTFT and CQT were
extracted to be used as input. To encode the music score in a tex-
tual format, PAE, Kern and a designed CTC-friendly language were

Table 5
Transcription errors by category for different inputs and outputs. Clef, KeySig and TimeSig represent the prediction errors of the single word representing clef, key signature and
time signature, respectively. Note shows the errors in the prediction of note pitch and duration, plus errors of missing and extra notes, whereas Rest represents the errors of rest
duration, plus errors of missing and extra rests. Barline shows the errors in barline location, based on the predicted time signature. Finally, Tie accounts for invalid ties in the
predicted score, and Format represents the formatting errors present in the output representation. Best result is highlighted in bold text.

Clef KeySig TimeSig Note Rest Barline Tie Format

Raw + CTC 19.93 13.38 38.07 2.41 5.74 32.27 10.03 0.79
Raw + PAE 21.20 14.53 38.47 5.12 7.07 31.60 5.84 0.38
Raw + Kern 22.53 14.39 38.92 3.96 6.58 33.38 43.93 1.25

STFT + CTC 19.74 13.74 37.99 1.58 4.74 28.93 11.97 0.51
STFT + PAE 21.91 13.31 38.50 3.53 5.59 30.50 4.65 0.38
STFT + Kern 21.02 14.03 39.74 2.88 5.46 34.65 39.59 0.93

LogSTFT + CTC 19.98 13.26 37.81 1.48 4.93 28.04 8.45 0.47
LogSTFT + PAE 21.48 13.59 38.15 3.50 6.08 29.91 4.74 0.35
LogSTFT + Kern 21.41 13.95 39.55 2.95 5.58 31.54 36.04 0.95

CQT + CTC 20.27 13.33 36.74 1.65 4.96 32.41 16.95 0.72
CQT + PAE 20.58 14.01 38.09 3.65 5.72 31.19 4.84 0.33
CQT + Kern 21.75 14.01 39.74 2.88 5.50 33.96 33.21 0.88

Fig. 6. Distribution of transcription errors by category for each input and output representation.

Table 6
WER and CER of test samples split by instrument type using the best model.

WER CER Samples

Piano 10.20 3.26 20961
Harpichord 11.45 3.50 1508
Organ 12.05 4.04 2020
Strings 9.60 3.06 10293
Winds 11.08 3.65 1938
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considered. Different configurations of the CRNN were experimen-
tally tuned for each input and output representation.

We tested this framework for all input and output combina-
tions, performing a thorough error analysis to bring a comparative
evaluation. The best results were obtained using logarithmic STFT
as input and CTC-friendly as output format, which can be con-
verted with simple symbol manipulations to Kern or PAE, making
it a valid language to represent a music score. The comparative
evaluation shows that using a proper representation of data can
lead to shorter training cycles and lower error rates.

We classified prediction errors based on their musical meaning,
i.e., clef, time signature, key signature, notepitch, noteduration, rest,
barline location, tie, and format errors. We observed that time-
related symbols have the highest error rates, including barline loca-
tion, time signature and note/rest duration, in that specific order.

In general, these results are promising to build a practical appli-
cation for musicians that performs monophonic A2S music tran-
scription, considering that approximately 10% of the predicted
symbols require manual editing to yield the correct score. How-
ever, it is still not clear how these results would translate to poly-
phonic music. AMT for polyphonic music is still an open problem,
but as Natural Language Processing thrived just by scaling up end-
to-end language models, we believe AMT could experience a sim-
ilar leap of progress once we procure sufficient amount of data
and build music language models that can be trained with very
long audio sequences.

Future work includes adding a language model to the decoder,
which is expected to boost the performance by ensuring the output
is syntactically and gramatically correct, thus making it suitable to
render a valid graphic score with a music engraving software like
Verovio (Swiss RISM Office, 2017). In addition, we plan to validate
this framework with polyphonic audio, as well as to evaluate alter-
native neural network architectures such as seq2seq auto-
regressive models with attention mechanisms, which perform bet-
ter in the analogous speech recognition task by predicting output
characters conditioned to those already predicted, while CTC-
based models assume statistical independence of output charac-
ters. Moreover, auto-regressive models allow output sequences
longer than its corresponding input sequences (Sutskever,
Vinyals, & Le, 2014), a key advantage for polyphonic music that
requires much more characters than monophonic music to output
a score, with the same number of audio frames.
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Chapter 6

Concluding remarks

This chapter ends this dissertation. It includes a summary of the research car-
ried out, a brief discussion based on its results, and some of the main opened
lines of future work.

6.1 Summary

This thesis presents a new approach in the area of AMT, defines the Audio-to-
Score (A2S) task and proposes a framework to perform A2S in an end-to-end
manner, thanks to the expressive power of deep neural networks. This frame-
work goes one step beyond most conventional AMT systems, which aim at
predicting notes in a piano-roll notation. The main advantages of our approach
compared to previous methods are:

1. The output of our method is a music score that can be directly interpreted
by musicians or analyzed by musicologists.

2. The end-to-end nature avoids errors from one stage cascading to other
stages.

3. Annotations of alignment information between audio frames and music
scores are not required since they are implicitly learned.

4. A music language model is learned by the end-to-end approach, which
also helps on reducing transcription errors globally.

6.2 Discussion

Results on monophonic audio show that the source of most errors is related to
the metric information of the music score such as note and rest duration, time
signature estimation, and barline location. This makes sense since information
is not encoded explicitly in the audio signal frames and must be inferred tak-
ing into account the learned music language model and the musical context
extracted from the full-length audio.

The input representation that led to the best performance was the STFT with
log-spaced bins aligned with music octaves. The best output representation
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was the one we specifically created to ease CTC-decoding, as it was intended.
We also verified that the framework is capable of performing well with a fixed
number of polyphonic voices, dealing with every A2S challenge in the time
domain (e.g. note quantization) and in the frequency domain (e.g. harmonic
overlapping).

Although the A2S formulation we present in this dissertation is still far from
being solved, especially in the case of polyphonic music, we believe the results
of our experiments open a new path of research in the area of AMT. Nonethe-
less, there are two important factors that currently hamper A2S progress:

1. Although there exist many audio files with their corresponding digital
scores, the requirements of the framework in its current formulation (i.e.,
short fragments of polyphonic real audio and their matching music score
excerpts) limit the amount of data that can be used for training.

2. There are no standard polyphonic evaluation metrics to measure A2S per-
formance based on the musical outcome rather than on the edit distance
of predicted and expected output sequences. Proper metrics would also
allow an adequate comparison of different methods.

Similarly to how Natural Language Processing (NLP) has experimented a gi-
ant leap over the past few years thanks to bigger models like GPT-3 [4], the A2S
task could also benefit as more computing power becomes available. Larger
neural networks can process longer sequences, which allows training directly
with audio recordings and their corresponding digital music scores in the pub-
lic domain. Collecting data by this approach requires less effort and can increase
the size of AMT training data by several orders of magnitude. In summary, by
increasing both the size of neural network models and the amount of training
data, we would be able to learn better music language models that might be the
key to overcome some of the intrinsic challenges of AMT.

6.3 Future work

Besides working towards overcoming the aforementioned limiting factors of
A2S progress, there are other ways in which this work can be continued:

1. Adding a language model to the decoder, which will boost performance
by ensuring the output is syntactically and grammatically correct. This
language model can be trained in an unsupervised way by using large
datasets of existing digital music scores.

2. Assessing auto-regressive models with attention mechanisms like the Trans-
former architecture [16], to remove the CTC limitation of having output
sequences no longer than the number of input frames. This architecture
is also capable of learning better implicit language models than recurrent
neural networks for similar tasks.
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3. Augmenting data to improve the robustness of the models, by applying
multiple transformations to the audio, like noise addition, pitch shifting,
dynamic range variation, audio synthesis with alternative sound fonts per
instrument, etc.

4. Creating a new dataset for the A2S task with real audio, after splitting
existing recordings automatically with a score following tool.

53





Bibliography

[1] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper,
Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg
Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony
Han, Awni Hannun, Billy Jun, Patrick LeGresley, Libby Lin, and Zhenyao
Zhu. Deep speech 2: End-to-end speech recognition in english and man-
darin. ArXiv e-prints, 12 2015.

[2] Emmanouil Benetos, Simon Dixon, Zhiyao Duan, and Sebastian Ewert.
Automatic Music Transcription: An overview. IEEE Signal Procesing Mag-
azine, 36(1):20–30, 2019.

[3] Barry S. Brook. The simplified "plaine and easie code system" for notat-
ing music : A proposal for international adoption. Fontes Artis Musicae,
12(2/3):156–160, 1965.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language models are few-shot learners, 2020.

[5] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmid-
huber. Connectionist Temporal Classification: Labelling Unsegmented
Sequence Data with Recurrent Neural Networks. In 23rd International Con-
ference on Machine Learning, International Conference on Machine Learning,
pages 369–376. ACM, 2006.

[6] David Huron. **kern representation, 1998.

[7] Eita Nakamura, Emmanouil Benetos, Kazuyoshi Yoshii, and Simon Dixon.
Towards complete polyphonic music transcription: Integrating multi-pitch
detection and rhythm quantization. In IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). IEEE, 2018.

[8] M. Ravanelli and Y. Bengio. Speaker recognition from raw waveform with
sincnet. In 2018 IEEE Spoken Language Technology Workshop (SLT), pages
1021–1028, 2018.

55



[9] RISM Organization. Répertoire International des Sources Musicales, 2015.

[10] Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. An End-to-
end Framework for Audio-to-Score Music Transcription on Monophonic
Excerpts. In Proceedings of the 19th International Society for Music Information
Retrieval Conference, pages 34–41, Paris, France, September 2018. ISMIR.

[11] Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. A Holis-
tic Approach to Polyphonic Music Transcription with Neural Networks.
In Proceedings of the 20th International Society for Music Information Retrieval
Conference, pages 731–737, Delft, The Netherlands, November 2019. ISMIR.

[12] Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. Data rep-
resentations for audio-to-score monophonic music transcription. Expert
Systems with Applications, 162:113769, 2020.

[13] Craig S. Sapp. humdrum-data. https://github.com/
humdrum-tools/humdrum-data.git, 2014.

[14] Marc Schobrun. The Everything Reading Music Book: A Step-By-Step Introduc-
tion to Understanding Music Notation And Theory. Everything series. Adams
Media, 2005.

[15] Christian Schörkhuber and Anssi Klapuri. Constant-Q transform toolbox
for music processing. In Proc. of the 7th Sound and Music Computing Confer-
ence, Barcelona, Spain, July 2010.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

56

https://github.com/humdrum-tools/humdrum-data.git
https://github.com/humdrum-tools/humdrum-data.git

	Preface
	I Preamble
	Introduction
	Main Challenges
	Research Background
	Proposed Approach

	Contributions
	Audio-to-Score Formulation
	Data Acquisition
	RISM
	Humdrum-data

	Input and Output Representations
	Input
	Output

	Monophonic Audio-to-Score
	Polyphonic Audio-to-Score


	II Published works
	An End-to-end Framework for Audio-to-Score Music Transcription on Monophonic Excerpts
	A Holistic Approach to Polyphonic Music Transcription with Neural Networks
	Data representations for audio-to-score monophonic music transcription

	III Conclusion
	Concluding remarks
	Summary
	Discussion
	Future work

	Bibliography




