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Abstract: State-of-the-art Optical Music Recognition (OMR) techniques follow an end-to-end or
holistic approach, i.e., a sole stage for completely processing a single-staff section image and for
retrieving the symbols that appear therein. Such recognition systems are characterized by not
requiring an exact alignment between each staff and their corresponding labels, hence facilitating the
creation and retrieval of labeled corpora. Most commonly, these approaches consider an agnostic
music representation, which characterizes music symbols by their shape and height (vertical position
in the staff). However, this double nature is ignored since, in the learning process, these two features
are treated as a single symbol. This work aims to exploit this trademark that differentiates music
notation from other similar domains, such as text, by introducing a novel end-to-end approach to
solve the OMR task at a staff-line level. We consider two Convolutional Recurrent Neural Network
(CRNN) schemes trained to simultaneously extract the shape and height information and to propose
different policies for eventually merging them at the actual neural level. The results obtained for
two corpora of monophonic early music manuscripts prove that our proposal significantly decreases
the recognition error in figures ranging between 14.4% and 25.6% in the best-case scenarios when
compared to the baseline considered.

Keywords: optical music recognition; deep learning; connectionist temporal classification; agnostic
music notation; sequence labeling

1. Introduction

Music is one of the cornerstones of cultural heritage [1]. Throughout history, the
main means of transmitting and preserving this art has been its engravement in so-called
music scores, i.e., documents in which music composers graphically encode a piece of
music as well as the way to perform it [2]. This particular visual language is identified as
music notation and is known to be considerably different depending on epoch, culture,
instrumentation, and genre, among many others [3].

This engraving process was carried out manually until the end of the 20th century,
mostly done by handwriting or typesetting processes; thus, millions of music documents
are only available as physical documents [4]. While large quantities of them have been
scanned into digital images, only a few hundreds have been stored in a structured digital
format that allows tasks such as indexing, editing, or critical publication [5]. Since its
manual transcription constitutes a costly, tedious, and prone-to-error task, the development
of systems capable of automatically performing this process is of remarkable importance,
even more so considering the vast amount of existing music archives [6]. Optical Music
Recognition (OMR) is the research field that investigates how to computationally read
music notation in printed documents and to store them in a digital structured format [7].

One of the main challenges in this field lies in the aforementioned heterogeneity of the
documents, especially when considering the different notation styles present in historical
documents [8]. Thus, while OMR has been an active research area for decades [9,10],
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such particularity prevents the field from providing general developments for any type
of document.

Traditionally, most OMR systems rely on a multi-stage pipeline, which, in a broad
sense, is devoted to segmenting the complete score into single units (e.g., staves or sym-
bols), which are eventually recognized [11] using traditional machine learning or signal
processing techniques. However, it must be noted that such approaches achieve competi-
tive recognition rates at the expense of using certain heuristics adequately designed for a
particular notation and writing/printing style, being only applicable to the case for which
they were devised [12]. In this regard, this framework becomes considerably limited in
terms of scalability given that a new pipeline and a set of heuristics must be designed for
each particular document and/or notation.

Recent developments in the so-called deep learning paradigm have led to a considerable
renewal of learning-based approaches [13]. This area represents the current state-of-the-art
in a wide range of applications, with image classification being a particular example in
which traditional machine learning techniques seemed to have reached a glass ceiling [14].
Hence, it is not strange that OMR has severely benefited from that field to somehow palliate
its issues.

One of the key advantages of deep learning is that it allows for the creation of the
so-called holistic or end-to-end neural solutions to tackle recognition tasks, i.e., systems in
which both feature extraction and classification processes are learned jointly [15]. This
particularity prevents the need for designing an entire pipeline for each particular case
of study since the traditionally hand-crafted tasks are directly inferred from the data
itself. Such a functionality has been largely explored in the literature, with OMR being
a case in which it has clearly proven its usefulness [16], at least in symbol recognition
at the isolated staff level. It must be noted that, while generative methods based on
Hidden Markov Models have also been considered for holistic OMR as in the works
by Pugin [17] or Calvo-Zaragoza et al. [18], the performance of the commented neural
methods outperforms them. Nevertheless, there is still room for improvement in neural-
based holistic OMR by exploiting the inherent particularities of this type of data, which
have not been totally explored.

When considering an agnostic music representation [19], i.e., a representation based on
the graphical content rather than its musical meaning, symbols depict a two-dimensional
nature. As a consequence, every single element reports two geometrical pieces of infor-
mation at once [20]: the shape, which encodes the temporal duration of the event (sound
or absence of it), and the height, which indicates the pitch of the event represented with
its vertical position in the staff. However, when holistic OMR systems are trained, each
possible combination of shape and height is represented as unique categories, which leads
to music symbols being treated the same way as text characters [21]. Based on this premise,
some recent research OMR works [22–25] have explored the aforementioned particularities
of music notation, concluding that the individual exploitation of each dimension generally
yields better recognition rates.

In this work, we propose to further explore and exploit the two-dimensional nature of
music symbols and, more precisely, we focus on symbol recognition at a staff-line level of
monophonic early music documents. Considering the end-to-end neural-based framework
by Calvo-Zaragoza et al. [20] as a starting point, we propose and discuss the separate
extraction of shape and height features and then propose several integration policies. The
neural end-to-end approach presented in this work fills a gap in the related literature as
this double dimension has not been previously addressed in this particular context, thus
constituting a clear innovation in the OMR field. The results obtained for two different
corpora show that our proposal outperforms the recognition performance of the baseline
considered, even in cases in which there is considerably narrow room for improvement.

The rest of the paper is organized as follows: Section 2 overviews some related
proposals for this topic; Section 3 thoroughly develops our proposed approach; Section 4
describes the experimental setup; Section 5 presents and analyzes the results; Section 6
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provides a general debate of the insights obtained in the work; and finally, Section 7
concludes the present work, along with some ideas for future research.

2. Background

Even though the term OMR encompasses a vast range of scenarios—research might
vary depending on the music notation system or the engraving mechanism of the
manuscripts—most of the existing literature is framed within a multi-stage pipeline
that divides the challenge into a series of independent phases [26]. Bainbridge and
Bell [9] properly described and formalized the de facto standard workflow, which was
later thoroughly reviewed by Rebelo et al. [10]. This sequential pipeline comprises four
main blocks: (i) image preprocessing, which aims at palliating problems mostly related
to the scanning process and paper quality; (ii) symbol segmentation and classification,
which focuses on the detection and actual labeling of different elements of the image
meant to be recognized; (iii) reconstruction of the music notation, which postprocesses the
recognition process; and (iv) an output encoding stage that stores the recognized elements
into a suitable symbolic format. In this work, we focus on the symbol segmentation and
classification one.

The inclusion of deep learning strategies in the OMR field produced a shift towards
the use of end-to-end or holistic systems for symbol recognition [27]. Some examples of
work addressing the recognition process at a staff level may be found in the literature
for common Western notation [12,16,28,29] as well as mensural [20], neumatic [30], and
ancient organ tablature [31] handwritten music. While our proposal focuses on staff-line
symbol recognition, it must be noted that research efforts are also devoted to addressing
the issue of full-page recognition such as the proposal by Castellanos et al. [21].

In this context of staff-level holistic approaches for symbol recognition, most ap-
proaches rely on the use of architectures based on Convolutional Recurrent Neural Networks
(CRNN). Such schemes work on the premise of using the convolutional stage to learn the
adequate features for the case at issue, with the recurrent part being devoted to model-
ing the temporal (or spatial) dependencies of the symbols. This type of design has been
mainly exploited using Sequence-to-Sequence (seq2seq) architectures [22,25] or considering
the Connectionist Temporal Classification (CTC) training mechanism [12,16,20,28]. However,
the work by Ríos-Vila et al. [25] shows that, when targeting the same handwritten corpus,
CRNN-seq2seq models are not competitive against CRNN trained with CTC.

As previously introduced, music notation depicts a two-dimensional nature since each
symbol is actually defined by a combination of a certain shape or glyph and its height
or vertical position within the staff lines. While proven to be beneficial, this particular-
ity has been rarely exploited in the literature, with some examples being the work by
Nuñez-Alcover et al. [23], which shows that separately performing shape and height classifi-
cation is beneficial in the context of isolated symbol classification of early music manuscripts;
by van der Wel and Ullrich [22] and Ríos-Vila et al. [25], in which this conclusion was further
reinforced in a context of CRNN-seq2seq models; and by Villarreal and Sánchez [24], which
also proved the validity of such an exploitation by integrating the shape and height informa-
tion at a Language Model level, which was based on Hidden Markov Models rather than on
the actual optical estimation.

For all of the above, this paper presents a novel proposal that takes advantage of
the two-dimensional nature of music symbols in the context of neural end-to-end OMR
systems at the staff level. The basic premise in this case is that, instead of relying on a
single CRNN scheme for processing each staff, we can devote two CRNN schemes to
concurrently exploit the shape and height information and to eventually merge them at
the actual neural level. As will be shown, this separate exploitation of the music symbol
information provides a remarkable improvement in terms of recognition performance
when compared to the baseline in which this duality is not considered.
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3. Methodology

This section describes the recognition framework of the work and the different pro-
posals for properly exploiting the dual nature of agnostic music notation.

The proposed OMR recognition task works at the staff level; thus, we assume that a
certain preprocess (e.g., [32,33]) already segmented the different staves in a music sheet.
Our goal is, given an image of a single staff, to retrieve the series of symbols that appear
therein, i.e., our recognition model is a sequence labeling task [34].

Formally, let X represent a space of music staves. Additionally, let Σ represent a
symbol vocabulary and Z = Σ∗ be the complete set of possible sequences that may be
obtained from that vocabulary.

Since we are dealing with a supervised learning task, we assume the existence of
a set T = {(xi, zi) : xi ∈ X , zi ∈ Z}

|T |
i=1, which relates a given staff xi to the sequence

of symbols zi = (zi1, zi2, . . . , ziN). Furthermore, we assume that there is an underlying
function g : X → Z , which is the one we aim to approximate as ĝ(·).

In this work, given its competitive performance reported in the literature, we consider
the introduced Convolutional Recurrent Neural Network (CRNN) scheme together with
the Connectionist Temporal Classification (CTC) training algorithm [35] for approximating
function ĝ(·). Based on this premise, we derive different neural designs for performing the
recognition task.

The rest of this section further develops the idea of the two-dimensional natural nature
of music symbols when considering agnostic notation and its application in our case as
well as the different neural architectures considered.

3.1. Symbol Representation

As commented upon, the agnostic notation considered allows for defining each music
symbol using its individual shape and height graphical components. Note that this duality
can be applied to all symbols, even to those that indicate the absence of sound, i.e., rests,
because they may also appear at different vertical positions.

Let ΣS and ΣH be the spaces for the different shape and height labels, respectively.
Formally, ΣT = ΣS × ΣH represents the set of all possible music symbols in which a given
ith element is denoted as the 2-tuple 〈si, hi〉 : si ∈ ΣS, hi ∈ ΣH . However, while all
aforementioned combinations are theoretically possible, in practice, some pairs are very
unlikely to appear; hence, ΣT ⊂ ΣS × ΣH . In a practical sense, to facilitate the convergence
of the model, we restrict the ΣT vocabulary to the 2-tuples elements present in the corpus,
i.e., ΣT = {ΣS, ΣH}T .

Figure 1 shows a graphical example of the commented agnostic representation for a
given symbol in terms of its shape (ΣS), height (ΣH), and combined labels (ΣT).

Figure 1. Agnostic representation of a handwritten music symbol, showing its shape, height, and
combined labels. Note that Ln and Sn, respectively, denote the line or space of the staff on which the
symbol may be placed, which refers to its height property.
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3.2. Recognition Architectures

The architecture of both recognition frameworks, baseline and proposed, are de-
scribed below.

3.2.1. Baseline Approach

A CTC-trained CRNN is considered the state-of-the-art for the holistic approach in
OMR, having been successfully applied in a number of work in the literature [12,16,20,28].
As aformentioned, this architecture models the posterior probability of generating a se-
quence of output symbols given an input image.

A CRNN is formed by an initial block of convolutional layers followed by another group
of recurrent stages [28]. In such a particular configuration, the convolutional block is meant
to learn adequate features for the case at issue, while the set of recurrent layers model the
temporal or spatial dependencies of the elements from the initial feature-learning block.

The network is trained using the commented upon Connectionist Temporal Classi-
fication (CTC) training function [35], which allows for training the CRNN scheme using
unsegmented sequential data. In our case, this means that, for a given staff image xi ∈ X ,
we only have its associated sequence of characters zi ∈ Z as its expected output, without
any correspondence at the pixel level or similar input-output alignment. Due to its particu-
lar training procedure, CTC requires the inclusion of an additional “blank” symbol within
the Σ vocabulary, i.e., Σ′ = Σ ∪ {blank}.

During the prediction or decoding phase, CTC assumes that the architecture contains
a fully connected network with |Σ′| outputs and a softmax activation. While there exist
several possibilities for performing this inference phase [36], we resort to so-called greedy
decoding for comparative purposes with the considered baseline works. Assuming that the
recurrent layer outputs sequences of length K, this approach retrieves the most probable
symbol per step. Equation (1) mathematically describes this process.

π = arg max
π∈Σ′K

K

∏
k=1

yk
πk

(1)

where yk
πk

represents the activation probability of symbol πk and time-step k and where π
is the retrieved sequence of length K.

Eventually, a B(·) squash function that merges consecutive repeated symbols and
removes the blank label is applied to the π sequence obtained as an output of the recurrent
layer. Thus, the actual predicted sequence is obtained as z′ = B(π), where |z′| ≤ K.

In this work, we consider as the baseline the particular CRNN configuration proposed
in the work by Calvo-Zaragoza et al. [20]. This neural model comprises four convolutional
layers for the feature extraction process followed by two recurrent units for the dependency
modeling. As commented upon, the output of the last recurrent layer is connected to a
dense unit with |Σ′| output neurons. A graphical representation of this configuration is
depicted in Figure 2.
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Figure 2. Graphical scheme of the CRNN configuration by Calvo-Zaragoza et al. [20].

It must be finally noted that the different parameters for each layer is commented
upon in Section 4, which deals with the actual experimentation carried out.



Appl. Sci. 2021, 11, 3621 6 of 16

3.2.2. Proposed Approach

This section presents the different neural architectures proposed for exploiting the
individual shape and height properties when considering an agnostic representation of
music notation. For that, we modify the base CRNN architecture introduced in Section 3.2.1
by adding different layers to adequately exploit such pieces of information with the aim of
improving the overall recognition rate.

More precisely, our hypothesis is that having two CRNN models that are specialized
in retrieving the shape and height features may be beneficial with respect to having a
unique system that deals with the task as a whole. The input staff image is individually
processed by each model, and the different characteristics obtained by each single model
may be gathered at some point of the neural model before the actual classification process.

Based on that premise, we propose three different end-to-end architectures that basi-
cally differ on the point in which the two CRNN models are joined: (i) the PreRNN one,
which joins the extracted features by each model right before the recurrent block; (ii) the
InterRNN one, which performs this process after the first recurrent layer; and (iii) the
PostRNN one, which gathers both sources of information after the recurrent block. These
proposals are graphically shown in Figure 3.

RecL1Convolutional block RecL2

RecL1Convolutional block RecL2

Concat

Dense (  )ΣS

ΣHDense (  )

ΣTDense (  ) zShape

Height
RecL2RecL1

(a) PreRNN model: features extracted by each specialized model are joined
after the convolutional block.

RecL1Convolutional block RecL2

RecL1Convolutional block RecL2

Concat

Dense (  )ΣS

ΣHDense (  )

ΣTDense (  ) zShape

Height
RecL2

(b) InterRNN model: features extracted by each specialized model are joined
after the first recurrent layer.

RecL1Convolutional block RecL2

RecL1Convolutional block RecL2

Concat

Dense (  )ΣS

ΣHDense (  )

ΣTDense (  ) z
Shape

Height

(c) PostRNN model: features extracted by each specialized model are joined
after the recurrent block.

Figure 3. Graphicaldescription of the three CRNN-based architectures proposed. The Concat block
concatenates the input features from each branch. Gray layers represent the ones that are only
considered during the training stage of the model.

As it may be noted, all models depict three differentiated parts. Out of these three
parts, two of them constitute complete CRNN models specialized on a certain type of
information (either shape or height) while the third one is meant to join the previous sources
of information for eventual classification. These parts are thoroughly described below:

• Shape branch: a first CRNN model that focuses on the holistic classification of musical
symbols in terms of their shape labels. Its input is the initial staff x ∈ X , while its
output is a sequence zs ∈ Σ∗S of shape symbols.
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• Height branch: the other CRNN model devoted to recognition of the vertical position
labels. In this case, a sequence zh ∈ Σ∗H of height symbols is retrieved out of the initial
staff x ∈ X .

• Combined branch: the one that combines the extracted features of the other two
branches to perform joint estimation of music symbols in terms of their combined
<shape:height> labels. Thus, given an initial input staff x ∈ X , the branch retrieves a
sequence z ∈ Σ∗T of combined labels.

Note that all branches are separately trained using the same set of staves T with the
CTC learning algorithm, simply differing on the output vocabulary considered. This way,
we somehow bias the different shape and height CRNN branches to learn specific features
for those pieces of information, whereas in the case of the combined branch, the training
stage is expected to learn how to properly merge those separate pieces of information.

In a practical sense, in this work, we consider two different policies for training the
introduced models: a first scenario in which the parameters of the entire architecture
are learned from scratch, i.e., we sequentially train the different branches without any
particular initialization, and a second case in which the shape and height branches are
separately trained and, after their convergence, the same procedure of the first scenario is
reproduced. In this regard, we may assess how influential the initial training stage of the
different branches of the scheme is on the overall performance of the system.

It must be remarked that all proposed architectures perform the feature-merging
operation after the convolutional block, having discarded other policies which may affect
this stage. The reason for this is that, since the convolutional block is responsible for
extracting the appropriate features out of the input image staff, we consider that the
potential benefit may be achieved by merging those specialized characteristics in the
recurrent stage.

While these new architectures suppose an increase in the network complexity with
respect to the base model considered, separate exploitation of the graphic components of
the commented agnostic music notation is expected to report an improvement in terms of
recognition. Nevertheless, this increase does not imply a need for using more data since
each part of the network specializes in a set of image features. Finally, note that, while
the training stage may require more time until convergence, the inference phase spans
practically the same time-lapse as in the base network since the different branches work
concurrently before the merging phase.

4. Experimental Setup

This section introduces the different corpora considered for assessing the goodness of
our proposal as well as the actual definitions of the different layers of the neural models
posed and the evaluation protocol contemplated.

4.1. Corpora

We considered two corpora of music scores depicting Mensural notation (the notation
system used for the most part during the 16th and 17th centuries in Western music tradition)
with varying print styles:

• Capitan corpus [37]: a manuscript of ninety-six pages dated from the 17th century of
missa (sacred music). An example of a particular staff from this corpus is depicted in
Figure 4a.

• Il Lauro Secco corpus [38]: a collection of one hundred and fifty-five typeset pages
corresponding to an anthology of Italian madrigals of the 16th century. Figure 4b
shows a staff example of this set.
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(a) Handwritten music staff extracted from the Capitan set.

(b) Staff from the Il Lauro Secco corpus.

Figure 4. Music excerpts of the two corpora used in the experiments.

It must be mentioned that both corpora have already been considered in holistic staff-
level symbol recognition. Thus, since our proposal addresses this same task, we segmented
the initial music sheets as in the referenced works. A summary of the characteristics of
these corpora is given in Table 1.

Table 1. Details of the corpora in terms of the number of staves, the average sequence length per
staff, and the cardinality of the vocabulary for each label space considered.

Corpus Staves Avg. Staff Length
Vocabulary

Shape (ΣS) Height (ΣH) Combined (ΣT )

Capitan 704 24.3 53 16 320
Il Lauro Secco 1100 28.7 33 14 182

Finally, for comparative purposes with the reference work, we reproduced the ex-
act experimentation conditions. In this sense, we resized each image to a height of 64
pixels, maintaining the aspect ratio (thus, each sample might differ in width) and con-
verted them to grayscale, with no further preprocessing. In terms of data partitioning,
we also reproduced their train, validation, and test divisions with the same 5-fold cross
validation policy.

4.2. Neural Network Configuration

As mentioned in Section 3.2, the different neural models proposed in this work for
exploiting the commented upon duality of agnostic notation are based on the architecture
of Calvo-Zaragoza et al. [20], which we considered our baseline. In this sense, while the
configuration was broadly described in Section 3.2.1, the actual composition of each layer
is depicted in Table 2.

Table 2. Layer-wise description for the CRNN architecture considered. Notation: Conv( f , w× h) stands for a convolution
layer of f filters of size w× h pixels, BatchNorm performs the normalization of the batch, LeakyReLU(α) represents a leaky
rectified linear unit activation with negative slope value of α, MaxPool2D(w× h, a× b) stands for the max-pooling operator
of dimensions w× h pixels with a× b striding factor, and BLSTM(n, d) denotes a bidirectional long short-term memory
unit with n neurons and d dropout value parameters.

Convolutional Block

ConvL1 ConvL2 ConvL3 ConvL4

Conv2D (64, 5 × 5) Conv2D (64, 5 × 5) Conv2D (128, 3 × 3) Conv2D (128, 3 × 3)
BatchNorm BatchNorm BatchNorm BatchNorm

LeakyReLU (0.20) LeakyReLU (0.20) LeakyReLU (0.20) LeakyReLU (0.20)
MaxPool2D (2 × 2, 2 × 2) MaxPool2D (2 × 1, 2 × 1) MaxPool2D (2 × 1, 2 × 1) MaxPool2D (2 × 1, 2 × 1)

Recurrent Block

RecL1 RecL2

BLSTM (256, 0.5) BLSTM (256, 0.5)



Appl. Sci. 2021, 11, 3621 9 of 16

In terms of the models proposed in Section 3.2.2, it must be noted that the nomencla-
ture considered is the same as the one used for the baseline architecture. Hence, Table 2
also describes the different layers of the those proposed models.

Finally, these architectures were trained using the backpropagation method provided
by CTC for 300 epochs using the ADAM optimizer [39] with a fixed learning rate. Batch
size was fixed to 16 in the case of the Capitan corpus, while for the Il Lauro Secco, this value
was set to 8.

4.3. Evaluation Protocol

We considered two figures of merit to measure the performance of the proposal. For
their definition, let us assume a set S = {(xi, zi) : xi ∈ X , zi ∈ Z}

|S|
i=1 of test data drawn

from the same distribution as the train data T but disjoint from it. Considering that, the
two metrics are described below:

• Symbol Error Rate (Sym-ER): computed as the average number of elementary editing
operations (insertions, deletions, or substitutions) necessary to match the sequence
predicted by the model with the ground truth sequence and normalized by the length
of the latter. Mathematically, this is represented as follows:

Sym-ER (%) =
∑
|S|
i=1 ED

(
zi, ĥ(xi)

)
∑
|S|
i=1 |zi|

(2)

where ED(·, ·) represents the string edit distance [40].

• Sequence Error Rate (Seq-ER): ratio of incorrectly predicted sequences, i.e., the per-
centage of sequences of recognized symbols that have at least one error. Mathemati-
cally, this may be represented as follows:

Seq-ER (%) =

∣∣∣{x ∈ S : h(x) 6= ĥ(x)
}∣∣∣

|S| (3)

It must be noted that, while these figures of merit may be applied to any predicted
sequence disregarding the label space considered, in the particular case of the Σ∗T space of
combined shape and height classes, some additional insights may be obtained by further
analyzing the results. As commented upon in Section 3.1, each symbol in the ΣT vocabulary
is a 2-tuple 〈si, hi〉 : si ∈ ΣS, hi ∈ ΣH . Thus, for a given sequence zi = (zi1, zi2, . . . , ziN) ∈
Σ∗T , we may decouple each symbol into its individual shape si ∈ ΣS and height hi ∈ ΣH
components and assess the model in terms of the sole prediction of those individual
elements while trained for the combined prediction.

5. Results

Having introduced the considered experimental scheme and the different models
proposed, we now present and discuss the results obtained. Since the experiments have
been performed in a cross-validation scheme, this section provides the average values
obtained for each of the cases considered. It must be remarked that the figures reported
constitute that of the test data partition for the case in which the validation data achieve
their best performances.

The results obtained in terms of the Symbol Error Rate (Sym-ER) for the base neural
configuration and the three different proposed architectures for each data corpus considered
are shown in Figure 5. Note that these recognition models consider the ΣT vocabulary case,
i.e., each detected element is represented as the 2-tuple that defines both the shape and
pitch of the symbol.
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Figure 5. Comparison of the base neural model and the different architectures proposed for the
ΣT vocabulary case in terms of the Symbol Error Rate (Sym-ER (%)) and their respective standard
deviations. Pretrained and raw denote the cases in which shape and height branches have been trained
or not before considering the joint model, respectively.

An initial remark is that, as it can be appreciated in Figure 5, all proposed architectures
improve the results obtained by their respective baselines except for the case of the PreRNN
architecture in the raw scenario for the Capitan corpus. By examining this graph, we may
also check that the InterRNN model is the one that consistently achieves the best error rates
for all scenarios considered, tied only with the PostRNN proposal for the raw case of the Il
Lauro Secco set.

It must be also noted that, for all cases, the error rates obtained with the Capitan corpus
are remarkably higher than the ones obtained with the Il Lauro Secco set. This is a rather
expected result since the graphical variability inherent to handwritten data compared to
the typeset format supposes a drawback to the recognition algorithm. Moreover, the latter
corpus depicts a lower vocabulary size, which also simplifies the complexity of the task.

Having visually checked the behavior of the different schemes considered, Table 3
numerically reports these Symbol Error Rate (Sym-ER) figures as well as the Sequence
Error Rate (Seq-ER) ones for the same scenarios considered for a more detailed analysis.

Table 3. Results obtained in terms of the Symbol (Sym-ER) and Sequence (Seq-ER) Error Rates
comparing the base neural model with the different architectures proposed for the ΣT vocabulary
case. Pretrained and raw denote the cases in which shape and height branches have been trained or
not before considering the joint model, respectively.

Baseline
PreRNN InterRNN PostRNN

Raw Pretrained Raw Pretrained Raw Pretrained

Sym-ER (%)
Capitan 10.32 11.12 8.62 7.68 8.18 8.30 8.39

Il Lauro Secco 4.87 4.54 4.70 4.35 4.17 4.36 4.42

Seq-ER (%)
Capitan 86.53 89.37 81.39 77.15 76.41 78.21 80.70

Il Lauro Secco 36.16 33.40 37.47 31.26 32.75 31.45 34.34

The trends observed in the sequence error rate are consistent with the ones already
provided by the symbol error rate metric in Figure 5. In general, for this Seq-ER figure of
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merit, all results improve the base neural configuration considered except for the PreRNN
model in two particular situations: when tackling the Capitan set in the raw scenario and
for the Il Lauro Secco corpus in the pretrained case. The two other models, as commented
upon, consistently outperform the baseline considered in all metrics and scenarios posed,
with the InterRNN case being the one achieving slightly better results than the PostRNN
one. A last point to comment upon from these figures is that, while differences between
the raw and pretrained cases do not generally differ in a remarkable sense, convergence is
always faster in the latter approach than in the former one.

We now further analyze this InterRNN model since, as commented upon, it is the one
showing the best overall performance. To do so, we compare its performance when decou-
pling the predicted sequence of labels into their shape and height components against the
base neural architecture when trained specifically for the ΣS and ΣH vocabularies. Table 4
provides the results of this analysis and reports the figures obtained for the baseline model.

Table 4. Detailed comparison in terms of the Symbol (Sym-ER) and Sequence (Seq-ER) Error Rates of
the InterRNN proposal (denoted as best model) against the baseline case as well as the cases in which
the base neural configuration is trained using the ΣS and ΣH vocabularies. Note that, for both the
baseline and best model cases, we report the error rates when the predicted labels are decoupled in
terms of their shape and height base components.

Baseline Best Model Shape Height

ΣT ΣS ΣH ΣT ΣS ΣH ΣS ΣH

Sym-ER (%)
Capitan 10.32 7.09 8.84 7.68 4.57 6.59 4.92 7.52

Il Lauro Secco 4.87 4.05 4.10 4.17 3.37 3.48 2.14 2.47

Seq-ER (%)
Capitan 86.53 77.92 83.75 77.15 57.05 72.16 61.57 78.67

Il Lauro Secco 36.16 28.85 29.83 32.75 25.61 26.53 24.20 25.13

As it may be checked, the results comparing the baseline and best model architectures
when decoupling the combined labels into their shape and height components depict
the expected behavior: for all cases and metrics, the best model decreases the error rate
with respect to baseline. In the particular case of Capitan, the Symbol Error Rate decreases
approximately by 2% while, for the Il Lauro Secco, this improvement is around 0.7% for
both the shape and height individual vocabularies. The same trend is observed for the
Sequence Error Rate, with the error decrease in the case of the shape vocabulary space for
the Capitan corpus is especially noticeable, where the improvement is around 20%.

We now compare the performance of the best model configuration with that of the shape
and height models. Regarding the Capitan set, the error rates achieved when decoupling
the resulting predictions into the ΣS and ΣH vocabularies are lower than those of the
actual dedicated models. These results suggest that the configuration exploits the indi-
vidual sources of information in a synergistic manner that leads to such an improvement.
Nonetheless, in the case of the Il Lauro Secco corpus, since the shape and height architectures
achieve better recognition rates than those of the decoupled evaluation, there is still some
room for improvement, which suggests that this may have not been the best architecture
for this particular set.

Finally, let us comment that the narrow improvement margin that the different corpora
depict must be taken into consideration. Focusing on the Capitan corpus, the baseline model
depicts an initial Symbol Error Rate of 10.32%, which is reduced to 7.68% with the proposed
architecture. While the absolute error reduction is 2.64%, it must be noted that it supposes
an improvement of 25.6% with respect to the initial figure. Similarly, the Il Lauro Secco
improves from an initial value of 4.87% to 4.17%, which is an absolute improvement of
0.7% but implies an error reduction of 14.4% with respect to that of the baseline model.
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Statistical Significance Analysis

While the results obtained report that there is an improvement in the overall per-
formance of the recognition task, at least when considering some of the configurations
proposed, we now assess the statistical significance of the improvement. For that analysis,
we resort to the nonparametric Wilcoxon signed-rank test [41] with a significance value of
p < 0.05.

Since the idea to compare whether the proposed architectures improve the base neural
model, the analysis considers that each result obtained for each fold of the two corpora
constitutes a sample of the distributions to be compared. It must be noted that, in this
significance test, we focus on the symbol error rate as the metric to be analyzed.

Considering this assessment scheme, the results obtained are reported in Table 5.

Table 5. Statistical improvement over the base neural model of the different proposed schemes
considering the Wilcoxon signed-rank test with a significance value of p < 0.05 for the symbol
error rate metric. The symbols = and > represent that the error of the method in the row (the
base neural architecture) is not significantly different or is significantly greater than that of the
column, respectively.

PreRNN InterRNN PostRNN

Raw Pretrained Raw Pretrained Raw Pretrained

Baseline = = > > > >

A statistical assessment of the results obtained shows two clear conclusions, which
were already intuitive from the previous analysis. On the one hand, the performance of the
PreRNN architectures does not significantly differ from the baseline model. On the other
hand, both of the InterRNN and PostRNN models do significantly improve the results of
the baseline scheme since, as it can be seen, the error rate is consistently superior in the
latter model than in the hybrid schemes.

As a last point to mention, the InterRNN and PostRNN models were also confronted
with the Wilcoxon signed-rank test in the same conditions as in the previous analysis.
Nevertheless, as expected from the average and deviation error rate figures aforementioned,
there was no statistical difference between them.

6. Discussion

Current state-of-the-art OMR technologies, which are based on Convolutional Recur-
rent Neural Networks (CRNN), typically follow an end-to-end approach that operates at
the staff level: they map the series of symbols that appear in an image of a single staff to
a sequence of music symbol labels. Most commonly, these methods consider an agnostic
music representation that defines every symbol as a 2-tuple element that encodes its two
graphic components: shape and height. However, as mentioned in Section 1, holistic OMR
systems [12,16,20] do not take advantage of this double dimension since each possible com-
bination of shape and height is represented as a unique category. This leads to a recognition
formulation completely equivalent to the one used in fields as text recognition [21]; hence,
the particularities of this data and notation are neglected in the framework.

Nevertheless, we consider that exploitation of this trademark of music notation could
increase the recognition rates, as recent work have provided insights about its benefits [22–25].
Considering the end-to-end neural-based framework by Calvo-Zaragoza et al. [20] as a
starting point, we pose the following hypothesis: devoting independent CRNN schemes to
separately exploit the two aforementioned graphical components of agnostic labeling and, in
time, gathering them at the actual neural level might boost the overall performance of the
model. In a practical sense, the considered CRNN architectures for each graphical component
are equivalent to that of the starting point to perform a fair performance comparison between
both the existing and proposed approaches.
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In this work, we empirically evaluated three different integration policies differing in
the point in which the specialized branches are merged: the PreRNN, which merges the
information after the convolutional stage; the InterRNN, which joins the different branches
after a first recurrent layer; and the PostRNN, which gathers the information after a second
recurrent stage. These architectures are evaluated on two collections of monophonic early
music manuscripts, namely the Capitan and the Il Lauro Secco corpora. The results presented
in Section 5 show that the merging point affects the performance, as both the InterRNN and
PostRNN models significantly improve the results of the baseline considered. Moreover,
the InterRNN model yields the best overall performance, reducing the baseline error rate
by 25.6% and 14.4% for the Capitan and Il Lauro Secco corpora, respectively.

In spite of this benefit, the proposed framework entails an increase in the network
complexity with respect to the base model considered. Nevertheless, this increase does
not imply more training data as each part of the network is meant to specialize in certain
features of the staff image. Moreover, regarding processing time, the increase in the
complexity of the network does not affect the inference phase, as the different branches
work concurrently. The main drawback in this case though is the training lapse, which is
certainly expanded. However, note that this drawback is assumable given the remarkable
error rate decrease with respect to the figures obtained with the baseline considered.

Finally, let us note the generalization capability of the proposal, regarding the reach
and performance of this neural architecture when tackling different corpora. As men-
tioned in Section 1, CRNN-based models are rather adaptable since the same architecture
is capable of obtaining very competitive recognition rates on two very different corpora.
Therefore, the inherent lack of generalization of heuristic systems mentioned in Section 1 is
considered solved under the CRNN paradigm.

7. Conclusions

Holistic symbol recognition approaches have proven their usefulness in the context
of Optical Music Recognition (OMR) since, given that no alignment is required between
the input score and the sequence of output elements, corpora are relatively easy to cre-
ate. In such a context, these sets are commonly labeled using either a semantic notation,
which codifies the actual musical meaning of each element in the score, or an agnostic
representation, which encodes the elements as a combination of a shape tag and the vertical
position (height) in the score. While this latter representation lacks the underlying music
sense of the former, it has the clear advantage of perfectly suiting an image-based symbol
recognition task as the vocabulary is defined directly on visual information. However, in
spite of having been considered for a number of work, it is still unclear how to properly
take advantage of the fact that each symbol is actually a combination of two individual
primitives representing the shape of the element and its height.

This work presents an end-to-end approach that exploits this two-dimensional nature
of the agnostic music notation to solve the OMR task at a staff-line level. We considered
two Convolutional Recurrent Neural Network (CRNN) schemes to concurrently exploit
the shape and height information and to then merge them at the actual neural level. Three
different integration policies were empirically studied: (i) the PreRNN one, which joins the
shape and height features right before the recurrent block; (ii) the InterRNN one, which
does the merging process after the first recurrent layer; and (iii) the PostRNN one, which
collects both sources of information after the recurrent block. The results obtained confirm
that the gathering point impacts the performance of the model, with the InterRNN and
PostRNN models being the ones that significantly decrease the error rate with respect to the
baseline considered. Quantitatively, in the best-case scenarios, this error reduction ranges
between 14.4% and 25.6% referred to the base neural model.

In light of the obtained conclusions, this work opens new research points to address.
In that sense, future work considers extending the approach from this monophonic context
to a homophonic one [42]. Additionally, given the variability of music notation and the
relative scarcity of existing labeled data, we aim to explore transfer learning and domain adap-
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tation techniques to study different strategies to properly exploit the knowledge gathered
from a given corpus on a different one. Moreover, we also consider that other network
architectures may provide some additional insights to the ones obtained in this work as
well as more competitive recognition rates. Finally, since the greedy decoding strategy
considered does not take advantage of the actual Language Model inferred in the recurrent
layer of the network, our premise is that more sophisticated decoding policies may report
improvements in the overall performance of the proposal.
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