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Summary

Climate change makes plant-parasitic nematodes
(PPN) an increasing threat to commercial crops. PPN
can be managed sustainably by the biocontrol fun-
gus Pochonia chlamydosporia (Pc). Chitosan gener-
ated from chitin deacetylation enhances PPN
parasitism by Pc. In this work, we investigate the
molecular mechanisms of Pc for chitosan resistance
and root-knot nematode (RKN) parasitism, using
transcriptomics. Chitosan and RKN modify the
expression of Pc genes, mainly those involved in
oxidation–reduction processes. Both agents signifi-
cantly modify the expression of genes associated to
113 GO terms and 180 Pc genes. Genes encoding
putative glycoproteins (Pc adhesives) to nematode
eggshell, as well as genes involved in redox, carbo-
hydrate and lipid metabolism trigger the response to
chitosan. We identify genes expressed in both the
parasitic and endophytic phases of the Pc lifecycle;
these include proteases, chitosanases and transcrip-
tion factors. Using the Pathogen—Host Interaction
database (PHI-base), our previous RNA-seq data and
RT-PCR of Pc colonizing banana we have investi-
gated genes expressed both in the parasitic and
endophytic phases of Pc lifecycle.

Introduction

Root-knot nematodes (RKN) are a persistent problem in
fruit and vegetable crops (Ralmi and Khandaker, 2016).
Biological control is used to reduce and avoid the use of
toxic chemical nematicides and fumigants, introducing
non-harmful organisms for plants that can manage pests
and diseases in a sustainable way (Mankau, 1980).

Pochonia chlamydosporia (=Metacordyceps
chlamydosporia) (Goddard) Zare and Gams (Pc) is a
nematophagous fungus used for biocontrol of RKN
(Meloidogyne spp.) (Forghani and Hajihassani, 2020),
cyst nematodes (Heterodera spp. and Globodera spp.)
(Willcox and Tribe, 1974; Manzanilla-Lopez et al., 2011)
and false RKN (Nacobbus spp.) (Flores-Camacho
et al., 2008). Pc is distributed worldwide and may also
adopt saprotrophic and endophytic lifestyles (Bordallo
et al., 2002; Maciá-Vicente et al., 2009; Manzanilla-López
et al., 2011; Zavala-Gonzalez et al., 2017).

Chitosan is a linear polymer of β-(1-4)-linked N-
acetyl-2-amino-2-deoxy-D-glucose (acetylated) and
2-amino-2-deoxy-D-glucose (deacetylated) (Kaur and
Dhillon, 2014). This polymer is an elicitor of plant
defences (Benhamou and Thériault, 1992; Lafontaine
and Benhamou, 1996; Yin et al., 2016; Suarez-
Fernandez et al., 2020) and has antifungal activity (Shih
et al., 2019), inhibiting or killing fungal pathogens.
Chitosan also promotes the growth of resistant fungi such
as Pc and entomopathogenic fungi (Palma-Guerrero
et al., 2007). The molecular mechanisms that determine
whether a fungus is resistant or sensitive to chitosan
remain to be determined. Pc is resistant to chitosan and
can use it as a nutrient source (Palma-Guerrero
et al., 2010). Chitosan-resistant fungi produce valuable
bioproducts from chitosan degradation due to their
chitinases and chitosanases (Kaczmarek et al., 2019).
The Pc genome encodes a high number of chitosanases
that are induced during nematode egg parasitism
(Aranda-Martinez et al., 2016). Chitosan improves effi-
ciency in reducing nematode pests by nematophagous
fungi (Escudero et al., 2017; Mwaheb et al., 2017).
Therefore, combining Pc and chitosan could be a good
strategy to manage PPN infections in plants.
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Global unbiased transcriptomic analyses are a useful
tool for determining genes involved in the response of
fungi to elicitors such as chitosan (Zhang et al., 2020).
These analyses also show which genes are involved in
biological processes, such as pathogenicity to nema-
todes (Balestrini et al., 2019). The activation of specific
genes can trigger the transition from endophytism to par-
asitism and vice versa in fungi (Fesel and Zuccaro, 2016;
Zhang et al., 2018). In view of the multitrophic interaction
of chitosan and Pc with plants and PPN, it is relevant to
study genes in common between endophytism and path-
ogenicity. This could reveal which genes are key for inter-
acting with other organisms.

This work aims to analyse the molecular mechanisms
that are activated in Pc when interacting with chitosan,
RKN or both as well as to unravel which mechanisms
would increase RKN parasitism by Pc. These mecha-
nisms could explain what makes a fungus resistant or
sensitive to chitosan. In this work we focus on identifying
which genes are shared in both lifestyles: RKN parasit-
ism and plant root endophytism.

Results

Chitosan and RKN eggs modify Pc gene expression

Twelve samples were processed (four treatments per
triplicate), with average total read bases (total reads ×
read length) of 17 894 300 929 yielding approximately
100 GB of transcriptomic raw data. When using DESeq2
in a genome-guided analysis to Pc123 genome 39 009
transcripts in 20 502 loci were found. In addition, 5746,
710 and 6595 genes were expressed in Pc treated with
chitosan (PcQ), Pc treated with nematodes (PcRKN) and
Pc treated with chitosan and nematode eggs (PcRKNQ)
respectively (all data are available in Supplementary
Information File). Considering all treatments together,
80 upregulated and 99 downregulated genes can be
found with a threshold of ±2 in log2 fold change values
(Fig. 1; Tables 1–3). In PcQ there are 136 differentially
expressed genes (DEG, up and downregulated), in
PcRKNQ 75 DEG, while in PcRKN only 10. Therefore,
chitosan is a stronger modulator of Pc gene expression
than RKN eggs are. Two genes encoding proteins
(RZR63781.1, ribonuclease H-like protein and
RZR63940.1, ankyrin repeat protein) are downregulated
in all treatments. These results are supported by qRT-
PCR (Supplementary Fig. 1).

Chitosan favours oxidation–reduction and associated
processes in Pc

We assessed the sets of differentially expressed Pc
genes for enrichment in Gene Ontology (GO) terms

(Fig. 2). We considered terms from all three GO domains
(Biological Processes, BP; Molecular Function, MF; Cel-
lular Component, CC) for upregulated (Fig. 2A) and
downregulated genes (Fig. 2B). For upregulated genes,
‘oxidation–reduction’ (GO:0055114) and ‘polysaccharide
catabolism’ (GO:0000272) are the most enriched BP in
chitosan treatments. The importance of oxidation–
reduction and polysaccharide catabolism is also reflected
in MF (e.g. ‘oxidoreductase activity acting on paired
donors, with incorporation or reduction of molecular oxy-
gen’ (GO:0016705) and ‘monooxygenase activity’
(GO:0004497) for oxidation–reduction processes; and
‘chitosanase activity’ (GO:0004568) for polysaccharide
metabolism). Proteolysis (reflected in MF in ‘aspartic-type
endopeptidase’ (GO:0004190) and ‘endopeptidase’
(GO:0004175) activities) is also an enriched GO term in
chitosan treatments. Transmembrane transport is a BP
enriched in all treatments. ‘Carbohydrate transport’
(GO:0008643) and ‘carbohydrate derivative metabolic
process’ (GO:1901135) are also enriched GO terms in
chitosan treatments. Taken together, this would indicate
a high chitosan turnover by Pc.

The presence of RKN represses nucleoside metabolic
process (e.g. reflected in MF by ‘nucleic acid binding’
(GO:0003676), ‘catalytic activity’ (GO:0003824) and
‘DNA binding’ (GO:0003677)). These GO terms are
enriched in both PcRKN and PcRKNQ treatments. ‘Oxi-
dation–reduction process’ (GO:0055114) is the most
enriched GO term for downregulated genes in chitosan
treatments (reflected in MF by ‘oxidoreductase’
(GO:0016491) and ‘hydrolase’ (GO:0016787) activities).
‘Plasma membrane’ (GO:0005886) is the most enriched
CC GO term for downregulated genes associated with
chitosan treatments. PcRKN does not display any GO
term associated with downregulated genes linked to CC
GO domain.

Fig 1. Chitosan and RKN modify P. chlamydosporia gene expres-
sion. Venn diagrams show a total of 80 upregulated (A) and 99 down-
regulated (B) genes when a threshold of ±2 in log2 fold change is set
and adjusted P-value is taken into account (44.7% vs. 55.3%). Treat-
ments: PcQ, P. chlamydosporia with chitosan (1 mg�ml−1); PcRKN,
P. chlamydosporia with M. javanica eggs (1 egg�μl−1); PcRKNQ,
P. chlamydosporia with M. javanica eggs (1 egg�μl−1) and chitosan
(1 mg ml−1). All treatments were applied for 4 days.
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Table 1. Differentially expressed genes in PcQ treatment.

GenBank accession Sequence description Log2 fold change Adj. P-value

RZR66026.1 Secreted aspartic proteinase precursor 8.155 6.36E-13
RZR63431.1 Peptidase S8/S53, subtilisin/kexin/sedolisin 8.029 5.38E-12
RZR59126.1 Hypothetical protein I1G_00009219 7.792 3.35E-04
RZR63795.1 Glycoside hydrolase family 75 6.745 3.92E-07
RZR63158.1 Peptidase A1 6.520 3.68E-11
RZR61856.1 Glucokinase 6.489 1.27E-09
RZR62208.1 Peptidase A4 family protein 6.016 3.61E-11
RZR61845.1 Glycoside hydrolase family 75 protein 5.858 5.70E-05
RZR66080.1 CipC1 protein, concanamycin induced protein C 5.738 NA
RZR62018.1 Metallo-endopeptidase 5.064 4.21E-05
RZR61625.1 Cytochrome P450 ClCP1 5.053 7.12E-06
RZR61472.1 Oligopeptide transporter OPT-like protein 4.947 6.16E-04
RZR70313.1 Chitosanase CSN1 4.664 2.15E-06
RZR61846.1 Major facilitator superfamily domain, general substrate

transporter
4.641 8.25E-08

RZR65223.1 WSC domain-containing protein 4.559 1.09E-04
RZR68359.1 Nucleotide-binding, alpha-beta plait 4.427 5.32E-07
RZR60329.1 Carboxyl-terminal proteinase 3.907 5.36E-04
RZR61987.1 Tripeptidyl-peptidase 1 precursor 3.851 6.55E-06
RZR62940.1 Glycoside hydrolase family 75 3.801 9.84E-04
RZR66604.1 Hypothetical protein VFPPC_00169 3.368 2.91E-03
RZR68451.1 Maltose permease 3.141 5.70E-05
RZR62148.1 P-loop containing nucleoside triphosphate hydrolase

protein
3.132 4.50E-03

RZR69895.1 Putative polyketide synthase 2.968 4.94E-03
RZR70338.1 Glycoside hydrolase, subgroup, catalytic core 2.916 4.59E-03
RZR66611.1 Hypothetical protein I1G_00003511 2.630 1.15E-02
RZR66588.1 AtmA protein 2.622 2.81E-07
RZR70289.1 Extracellular soluble lytic transglycosylase 2.599 7.85E-06
RZR60800.1 Hypothetical protein VFPPC_03295 2.575 2.39E-03
RZR64639.1 Hypothetical protein I1G_00010772 2.561 2.28E-04
RZR59556.1 Solid-state culture specific ATP-grasp domain protein 2.530 4.53E-03
RZR68085.1 Sugar transporter family protein 2.526 3.84E-03
RZR64446.1 Cytochrome P450 6A1 2.469 1.28E-03
RZR67153.1 Hypothetical protein I1G_00011003 2.454 1.85E-02
RZR65901.1 L-amino-acid oxidase 2.447 1.39E-02
RZR64948.1 Fungal chitosanase 2.411 4.53E-03
RZR69865.1 Cytochrome P450 oxidoreductase 2.383 2.99E-03
RZR63081.1 Glycoside hydrolase family 2 protein 2.379 4.99E-03
RZR63277.1 L-ascorbate oxidase 2.333 9.16E-03
RZR63926.1 Lactonase, 7-bladed beta-propeller domain-containing

protein
2.280 1.76E-02

RZR63275.1 Cytochrome b561, eukaryote 2.169 2.16E-03
RZR69240.1 APSES transcription factor 2.140 7.08E-03
RZR64143.1 Flavin-binding monooxygenase-like family protein 2.104 2.06E-02
RZR59143.1 Hypothetical protein I1G_00011200 2.094 1.37E-02
RZR63080.1 Nuclear distribution protein pac-1a 2.049 1.31E-02
RZR69181.1 Hypothetical protein I1G_00010741 2.034 1.36E-03
RZR67141.1 Killer toxin, Kp4/SMK-like, core 2.008 1.02E-02
RZR65937.1 Nitrate reductase (NADH) −2.024 2.37E-02
RZR60029.1 Aldo/keto reductase −2.034 8.26E-03
RZR63940.1 Ankyrin repeat protein −2.040 1.36E-03
RZR67896.1 MFS transporter, SP family, general alpha glucoside:

H+ symporter
−2.051 4.65E-03

RZR66454.1 Hypothetical protein I1G_00004264 −2.055 9.55E-03
RZR65015.1 Nitrate reductase-like protein −2.056 4.99E-03
RZR69659.1 Integral membrane protein −2.057 5.70E-05
RZR66259.1 Cytochrome P450 −2.068 2.61E-03
RZR62313.1 Hypothetical protein I1G_00005303 −2.097 1.24E-02
RZR67230.1 NADP-dependent alcohol dehydrogenase C −2.103 7.72E-03
RZR64929.1 FMN-dependent alpha-hydroxy acid dehydrogenase −2.104 1.08E-02
RZR59541.1 Hypothetical protein I1G_00010383 −2.107 2.21E-02
RZR66613.1 Oxidoreductase −2.114 7.04E-03
RZR67320.1 Related to double substrate-specificity short chain

dehydrogenase/reductase 2
−2.149 2.72E-02

(Continues)
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Table 1. Continued

GenBank accession Sequence description Log2 fold change Adj. P-value

RZR65483.1 MFS transporter −2.157 1.89E-02
RZR62047.1 Cell surface flocculin, putative −2.178 1.24E-02
RZR61511.1 Reductase −2.181 2.16E-03
RZR59404.1 Transcription factor −2.183 1.03E-02
RZR66789.1 Predicted protein −2.185 2.18E-02
RZR66794.1 Hypothetical protein I1G_00009684 −2.193 2.55E-02
RZR67810.1 L-isoaspartate O-methyltransferase −2.220 9.55E-03
RZR61034.1 Thioredoxin domain-containing protein −2.232 2.91E-03
RZR64973.1 NA −2.234 0.01
RZR70090.1 Zinc transporter protein −2.240 2.35E-02
RZR66702.1 QI74 protein −2.258 2.49E-02
RZR70243.1 MUS38-like protein −2.274 4.08E-04
RZR59616.1 Oxidoreductase −2.275 1.15E-02
RZR62422.1 Related to short-chain alcohol dehydrogenase −2.277 4.10E-03
RZR66328.1 S-(hydroxymethyl)glutathione dehydrogenase −2.283 9.35E-03
RZR70238.1 Predicted protein −2.283 1.36E-03
RZR62423.1 Catalase A −2.301 9.61E-03
RZR64023.1 Hypothetical protein I1G_00011265 −2.304 1.35E-02
RZR64512.1 MIP transporter −2.324 1.32E-02
RZR67229.1 3-dehydroshikimate dehydratase protein −2.328 6.62E-03
RZR67902.1 Alpha/beta hydrolase domain-containing protein −2.340 1.87E-02
RZR59365.1 SUR7 protein −2.359 6.50E-03
RZR65734.1 Related to diacylglycerol pyrophosphate phosphatase

DPP1
−2.380 2.56E-03

RZR70207.1 Major facilitator superfamily domain, general substrate
transporter

−2.386 NA

RZR67256.1 Oligosaccharide translocation protein RFT1 −2.412 6.87E-03
RZR60041.1 Ribonuclease H-like protein −2.448 1.88E-02
RZR67257.1 Putative phosphatidylinositol phosphate kinase −2.470 3.98E-04
RZR69040.1 Double-stranded RNA binding motif domain-

containing protein
−2.471 2.39E-03

RZR68713.1 BTB domain transcription factor −2.478 1.69E-03
RZR65017.1 Short-chain dehydrogenase/reductase family protein −2.486 5.58E-03
RZR66003.1 Potassium channel −2.496 1.40E-03
RZR65013.1 3-oxoacyl-(acyl-carrier-protein) reductase −2.522 1.04E-02
RZR67228.1 6-phosphogluconate dehydrogenase, decarboxylating −2.539 5.23E-03
RZR65468.1 Hypothetical protein I1G_00002210 −2.550 2.91E-03
RZR67249.1 Hypothetical protein I1G_00007967 −2.594 1.34E-04
RZR65014.1 Lactamase_B domain-containing protein −2.619 1.40E-02
RZR65332.1 Hypothetical protein I1G_00001300 −2.625 1.65E-04
RZR62987.1 C6 transcription factor −2.667 1.20E-02
RZR66334.1 Protein kinase domain protein −2.711 6.50E-03
RZR64692.1 Hypothetical protein I1G_00007179 −2.717 3.78E-03
RZR64363.1 ATP synthase protein 9 (Lipid-binding protein) −2.745 4.58E-03
RZR67237.1 Choline and nitrogen mustard permease −2.795 5.61E-04
RZR61033.1 Glucose repressible protein Grg1 −2.810 8.46E-07
RZR69039.1 DUF1929 multi-domain protein −2.824 1.18E-03
RZR69535.1 NAD(P)-binding domain protein −2.844 8.91E-04
RZR66687.1 L-amino acid oxidase −2.848 1.64E-02
RZR64977.1 Related to molybdopterin biosynthesis protein moeA −2.849 4.99E-03
RZR69169.1 Transcriptional regulatory protein GAL4 −2.866 3.21E-03
RZR67231.1 D-xylulose 5-phosphate/D-fructose 6-phosphate

phosphoketolase
−2.874 2.56E-03

RZR66951.1 Hypothetical protein I1G_00006786 −2.876 1.26E-02
RZR60802.1 Siderophore iron transporter mirB −3.029 1.50E-02
RZR60798.1 Alcohol acetyltransferase −3.046 1.50E-02
RZR63453.1 Protein bli-3 −3.067 1.92E-03
RZR66605.1 Beta-lactamase-like protein −3.069 5.20E-04
RZR62135.1 MFS transporter −3.134 5.81E-04
RZR68164.1 MARVEL-like domain protein −3.165 5.35E-04
RZR61718.1 Ctr copper transporter −3.188 1.39E-02
RZR59602.1 30 kDa heat shock protein −3.333 1.42E-04
RZR60799.1 Transferase family protein −3.417 1.21E-02
RZR67450.1 Histone acetylase complex subunit −3.523 3.28E-03
RZR65938.1 HHE domain containing protein −3.575 1.31E-03

(Continues)
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Chitosan and RKN significantly modify the expression of
genes associated with energy, lipid and chitosan
catabolism and proteolysis

Statistical analyses of GO terms associated with Pc DEG
show 113 GOs enriched in all treatments (Supplementary
Table 1). These can be classified into nine clusters
according to their behaviour with chitosan (Fig. 3). Pc
genes included in these significantly enriched GO terms
are shown in Supplementary Table 2. Behaviour of the
individual GO term is shown in Supplementary Fig. 2.
Chitosan promotes the expression of Pc genes associ-
ated with 38 GO terms (Fig. 3A) when nematodes are
absent. Twenty-four of them are related to the cell cycle,
12 to protein synthesis and modification and two to sugar
metabolism. In the absence of nematodes, chitosan
represses Pc genes involved in metal transport and
redox metabolism GO terms (Fig. 3B and C; Supplemen-
tary Table 1). Nematode eggs reverse this behaviour.
Conversely, chitosan induces genes associated with
energy GO terms (Fig. 3D). Chitosan also induces the

expression of genes associated with lipid metabolism
GO terms (specially sphingomyelin (GO:0004767,
GO:0006684 and GO:0006685) metabolism; Fig. 3E).
Chitosan increases expression of genes in GO terms related
to chitin and chitosan degradation (‘chitosanase activity’
(GO:0016977) and ‘exo-1,4-beta-D-glucosaminidase’ activity
(GO:0052761)). This is further enhanced when RKN eggs
are present (Fig. 3F). ‘Phosphate pentose shunt’
(GO:0006098) and ‘NADPH regeneration’ (GO:0006740)
(Fig. 3G) are not affected by chitosan. Both are repressed
by the presence of nematodes. ‘Metallocarboxypeptidase
activity’ (GO:0004181) is overexpressed with chitosan in
the absence of nematode eggs (Fig. 3H). ‘Structural con-
stituent of cell wall’ (GO:0005199) is induced with
chitosan (Fig. 3I).

Chitosan and RKN significantly modify Pc gene
expression dynamics

In response to nematodes and chitosan, 180 Pc genes
cluster into nine significant unique gene trends (Fig. 4,

Table 1. Continued

GenBank accession Sequence description Log2 fold change Adj. P-value

RZR62210.1 Major allergen Asp f 2-like protein −4.322 3.45E-05
RZR62374.1 Ctr copper transporter family protein −4.413 7.43E-03
RZR63781.1 Ribonuclease H-like protein −4.450 8.42E-04
RZR63947.1 Cycloheximide resistance protein −4.655 3.53E-05
RZR68445.1 FAD binding domain protein −5.118 5.70E-05
RZR60696.1 Siderophore iron transporter −5.628 3.78E-03
RZR61719.1 Ferric-chelate reductase −5.658 4.11E-03
RZR66686.1 Glutamyl-tRNA(Gln) amidotransferase −6.049 4.79E-04
RZR63736.1 Monocarboxylate permease-like protein −6.675 1.61E-03
RZR61425.1 Hypothetical protein I1G_00001446 −6.766 1.26E-06
RZR66909.1 Aldo/keto reductase −9.653 9.66E-11
RZR60251.1 Cysteine synthase B −10.592 3.46E-04
RZR60252.1 MFS drug transporter −10.824 2.28E-04
RZR69808.1 Symbiotic chitinase −21.784 1.45E-11
RZR58608.1 Hypothetical protein I1G_00008738 −26.011 2.10E-07

Log2 fold change value for upregulated genes >2. Log2 fold change value for downregulated genes < −2.

Table 2. Differentially expressed genes in PcRKN treatment.

GenBank accession Sequence description Log2 fold change Adj. P-value

RZR69242.1 Floculation protein FLO1 7.501 5.75E-11
RZR67544.1 Isochorismatase family protein 4.199 6.31E-04
RZR68026.1 Putative som1 protein 3.157 3.60E-04
RZR64799.1 Floculation protein FLO1 3.078 4.35E-06
RZR59618.1 Hypothetical protein I1G_00011582 2.634 2.30E-03
RZR64511.1 CRAL/TRIO domain protein 2.099 1.85E-03
RZR63940.1 Ankyrin repeat protein −2.148 1.35E-03
RZR64281.1 Zinc finger, C2H2-like protein −2.605 1.09E-04
RZR63781.1 Ribonuclease H-like protein −2.729 7.32E-03
RZR64322.1 Hypothetical protein I1G_00000198 −2.934 1.35E-03

Log2 fold change value for upregulated genes >2. Log2 fold change value for downregulated genes < −2.
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Table 3. Differentially expressed genes in PcQRKN treatment.

GenBank accession Sequence description Log2 fold change Adj. P-value

RZR63795.1 Glycoside hydrolase family 75 9.036 5.45E-15
RZR69242.1 Floculation protein FLO1 8.287 1.43E-17
RZR61856.1 Glucokinase 8.287 5.87E-18
RZR61845.1 Glycoside hydrolase family 75 protein 8.263 1.50E-10
RZR62940.1 Glycoside hydrolase family 75 7.067 8.19E-11
RZR61846.1 Major facilitator superfamily domain, general substrate

transporter
6.368 2.80E-17

RZR70395.1 Acid phosphatase 5.598 2.36E-04
RZR65223.1 WSC domain-containing protein 5.234 4.47E-07
RZR70313.1 Chitosanase CSN1 5.180 1.53E-09
RZR62842.1 FAD-dependent monooxygenase 5.073 6.19E-05
RZR63081.1 Glycoside hydrolase family 2 protein 4.696 6.21E-10
RZR68451.1 Maltose permease 4.380 1.44E-10
RZR68026.1 Putative som1 protein 4.259 1.37E-08
RZR64799.1 Floculation protein FLO1 4.011 1.31E-12
RZR70420.1 Floculation protein FLO1 3.419 2.62E-03
RZR66026.1 Secreted aspartic proteinase precursor 3.373 4.89E-04
RZR64948.1 Fungal chitosanase 3.260 1.31E-05
RZR61625.1 Cytochrome P450 ClCP1 3.111 7.79E-04
RZR68359.1 Nucleotide-binding, alpha-beta plait 3.097 5.56E-05
RZR70289.1 Extracellular soluble lytic transglycosylase 3.002 1.26E-09
RZR68649.1 Glycoside hydrolase family 75 2.988 1.91E-03
RZR59618.1 Hypothetical protein I1G_00011582 2.929 7.41E-05
RZR70338.1 Glycoside hydrolase, subgroup, catalytic core 2.862 2.22E-03
RZR64159.1 Major facilitator superfamily domain, general substrate

transporter
2.790 2.64E-03

RZR64864.1 Hydrophobic surface binding protein A domain-
containing protein

2.686 3.46E-03

RZR59400.1 Alpha-L-rhamnosidase A 2.672 7.69E-03
RZR68019.1 Glycoside hydrolase, family 29 2.660 5.33E-03
RZR59412.1 Cell wall protein 2.629 5.88E-03
RZR65779.1 Aromatic-ring hydroxylase-like protein 2.565 7.38E-03
RZR66703.1 Major facilitator superfamily domain, general substrate

transporter
2.552 3.44E-03

RZR70254.1 Thioredoxin-like protein 2.543 3.53E-04
RZR64866.1 Antigenic cell wall galactomannoprotein 2.518 5.77E-03
RZR66682.1 Cell wall protein 2.456 5.88E-03
RZR67148.1 Purple acid phosphatase-lik 2.455 1.21E-04
RZR59293.1 General substrate transporter 2.450 5.47E-03
RZR63431.1 Peptidase S8/S53, subtilisin/kexin/sedolisin 2.405 7.09E-03
RZR61740.1 Extracellular serine-rich protein 2.381 3.98E-03
RZR60307.1 Cytochrome P450 2.368 5.67E-04
RZR69862.1 Cell wall galactomannoprotein 2.363 7.81E-03
RZR66588.1 AtmA protein 2.350 3.02E-07
RZR62045.1 EF-hand calcium-binding domain-containing protein 2.198 5.47E-03
RZR62051.1 Lipase 5 2.182 7.81E-03
RZR65709.1 Exo-beta-D-glucosaminidase 2.180 6.40E-04
RZR62208.1 Peptidase A4 family protein 2.165 5.88E-03
RZR59617.1 Galactose oxidase 2.145 1.27E-07
RZR64865.1 Hydrophobic surface binding protein A domain-

containing protein
2.141 1.01E-02

RZR65777.1 Related to glutathione S-transferase GST-6.0 2.112 1.30E-02
RZR64511.1 CRAL/TRIO domain protein 2.096 3.05E-04
RZR62042.1 Helix–loop–helix DNA-binding protein 2.090 6.40E-03
RZR67153.1 Hypothetical protein I1G_00011003 2.068 1.51E-02
RZR62046.1 Polyketide synthase 2.054 7.69E-03
RZR61204.1 Cell wall protein 2.037 1.19E-02
RZR66605.1 Beta-lactamase-like protein −2.001 8.76E-03
RZR67311.1 Phosphoglycerate mutase family protein −2.028 3.07E-03
RZR67249.1 Hypothetical protein I1G_00007967 −2.046 1.32E-03
RZR66003.1 Potassium channel −2.047 3.80E-03
RZR65332.1 Hypothetical protein I1G_00001300 −2.075 1.46E-03
RZR58491.1 Hypothetical protein I1G_00003346 −2.088 6.40E-03
RZR66328.1 S-(hydroxymethyl)glutathione dehydrogenase −2.090 7.81E-03
RZR59616.1 Oxidoreductase −2.097 8.76E-03

(Continues)
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Supplementary Table 3). Individual gene behaviour is
shown in Supplementary Fig. 3. Chitosan activates the
expression of the genes associated with clusters 1–3
(Fig. 4A, B and C). Cluster 1 includes, among others,
genes encoding proteins related with reactive oxygen
species (ROS) metabolism, such as cytochrome P450
ClCP1 (RZR61625.1) and thioredoxin-like protein
(RZR70254.1). ROS metabolisms play a key role in fun-
gal response to chitosan inducing oxidative metabolism
in chitosan-sensitive fungi such as Neurospora crassa
(Lopez-Moya et al., 2016). In Cluster 2, the presence of
nematodes mitigates the increase in gene expression.
This can be confirmed in Tables 1 and 3. Genes
encoding peptidases (RZR60329.1, RZR61987.1,
RZR62018.1, RZR62208.1, RZR62805.1, RZR63158.1,
RZR63431.1, RZR66026.1 and RZR69491.1) exhibit this
behaviour. RKN and chitosan induce gene expression in
Cluster 3. This cluster includes genes encoding
chitosanases (RZR61845.1, RZR62940.1, RZR63795.1,
RZR64948.1 and RZR70313.1), adhesives (FLO1;
RZR64799.1 and RZR69242.1) and sugar catabolism
proteins (RZR61856.1, RZR63081.1, RZR65709.1 and
RZR66181.1). Differential expression of genes in this
cluster may explain why chitosan increases RKN egg
parasitism by Pc, since chitosanases and polysaccharide
degrading enzymes are involved in RKN egg parasitism
(Aranda-Martinez et al., 2016) and chitosan assimilation.
Genes in Clusters 4–6 (Fig. 4D, E and F) are repressed
with chitosan when nematodes are absent. When nema-
todes are present chitosan does not modify gene expres-
sion dynamics. Cluster 7 (Fig. 4G) includes genes
repressed by chitosan regardless of the presence of
nematodes. Some membrane transporters show this
trend. Nematode eggs increase expression of genes in
Cluster 8 (Fig. 4H), but chitosan represses them. The
most significant encodes a salicylate hydroxylase

(RZR59707.1). Nematode eggs and chitosan induce the
expression of genes in Cluster 9 (Fig. 4I). Genes
encoding the following proteins belong to this cluster:
RZR65223.1 WSC domain-containing protein,
RZR69865.1 Cytochrome P450, RZR64444.1 GMC oxi-
doreductase, RZR64079.1 3-beta hydroxysteroid dehy-
drogenase/isomerase. These genes would play a crucial
role for RKN egg parasitism by Pc with chitosan.

Eight Pc genes are expressed in endophytism,
pathogenicity and response to chitosan

To investigate Pc genes shared between endophytism
and parasitism, we combined PHI-base (Urban
et al., 2020; www.phi-base.org), Pc upregulated genes
found in this work (RKN parasitism and chitosan metab-
olism) and Pc genes expressed during Barley coloniza-
tion (Larriba et al., 2014). The intersection between
these datasets includes eight genes encoding the fol-
lowing proteins (Fig. 5): RZR66026.1 (secreted aspartic
proteinase precursor, overexpressed in PcQ and
PcRKNQ), RZR62042.1 (helix–loop–helix DNA-binding
protein, overexpressed in PcRKNQ), RZR63158.1 (pep-
tidase A1, overexpressed in PcQ), RZR64159.1 (major
facilitator superfamily domain, general substrate trans-
porter, overexpressed in PcRKNQ), RZR62046.1 (poly-
ketide synthase (PKS), overexpressed in PcRKNQ),
RZR61625.1 (cytochrome P450 ClCP1, overexpressed
in PcQ and PcRKNQ), RZR69240.1 (APSES transcrip-
tion factor, overexpressed in PcQ) and RZR61845.1
(glycoside hydrolase family 75 protein (chitosanase)
overexpressed in PcQ and PcRKNQ). We have investi-
gated the expression of these genes in banana plants
colonized by Pc. Banana plants modify the expression
of these Pc genes (Supplementary Fig. 4). Both barley
and banana are monocots, and the former has been

Table 3. Continued

GenBank accession Sequence description Log2 fold change Adj. P-value

RZR69857.1 Protein SERAC1 −2.104 1.23E-03
RZR61435.1 Repetitive proline-rich cell wall protein −2.130 5.56E-05
RZR61534.1 Trehalose synthase (Ccg-9) −2.148 9.96E-10
RZR68989.1 Zn(2)-C6 fungal-type DNA-binding domain protein −2.149 8.76E-03
RZR61511.1 Reductase −2.153 5.91E-04
RZR63940.1 Ankyrin repeat protein −2.212 5.71E-05
RZR63259.1 Hypothetical protein I1G_00011648 −2.240 6.80E-04
RZR69039.1 DUF1929 multidomain protein −2.336 2.91E-03
RZR63453.1 Protein bli-3 −2.365 5.70E-03
RZR61033.1 Glucose repressible protein Grg1 −2.502 1.10E-06
RZR68164.1 MARVEL-like domain protein −2.566 1.73E-03
RZR66334.1 Protein kinase domain protein −2.677 2.64E-03
RZR62135.1 MFS transporter −2.845 4.60E-04
RZR59365.1 SUR7 protein −2.876 2.57E-04
RZR63781.1 Ribonuclease H-like protein −2.944 3.80E-03
RZR66909.1 Aldo/keto reductase −3.348 2.91E-03
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Fig 2. Chitosan favours redox processes in Pc. Gene ontology annotation of differentially expressed Pc genes with nematode eggs and chitosan
using a threshold of ±2 in log2 fold change value.
A. Upregulated genes,
B. downregulated genes. Treatments: PcQ, P. chlamydosporia with chitosan (1 mg ml−1); PcRKN, P. chlamydosporia with M. javanica eggs
(1 egg μl−1); PcRKNQ, P. chlamydosporia with M. javanica eggs (1 egg μl−1) and chitosan (1 mg ml−1). All treatments were applied for 4 days.

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 23, 4980–4997

Chitosan effect in RKN parasitism by Pc 4987



widely used for endophytism studies (Maciá-Vicente
et al., 2009; Murphy et al., 2014a; Murphy et al., 2014b;
Larriba et al., 2015).

Pc acidic peptidases modify their expression when
banana plants are present. Secreted aspartic proteinase
precursor gene is induced, while the A1 peptidase gene

Fig 3. Chitosan and RKN modify the expression of genes associated to 113 GO terms. A cluster of the median profile of 113 GO terms analysis
generated nine groups. These GOs are enriched and show a significant behaviour.
A. Cluster related to cell cycle and associated processes.
B. Redox and transport.
C. Redox and transport metabolism.
D. Includes GO terms related to the previous step to energy production.
E. Lipid metabolism.
F. All GO terms related to chitin/chitosan degradation.
G. Phosphate pentose shunt and NADPH regeneration GO terms.
H. This cluster is represented by one GO term: metallocarboxypeptidase activity.
I. Associated with cell wall–associated processes. Legend is shown in Fig. 3A.
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is slightly repressed. A chitosanase gene is expressed
whenever chitosan is present. The fungus does not mod-
ify the expression of this gene when it grows
endophytically on bananas, but the maximum expression
occurs in the ‘artificial rhizosphere’ (liquid surrounding
roots) with chitosan. One Pc PKS protein, involved in the
secondary metabolism of the fungus, is slightly induced
by the presence of the plant. Secondary metabolism
plays an essential role during plant–host interaction
(Macheleidt et al., 2016). Endophytism in Pc also

modifies the expression of transcription factors. Helix–
loop–helix DNA binding protein is overexpressed in all
treatments. Cytochrome P450 ClCP1 is related to oxida-
tive metabolism, which is also involved in this process.

Discussion

In this work, we have carried out a transcriptomic study,
using RNA-seq, to determine Pc genes involved in the
response to chitosan and RKN parasitism. We have

Fig 4. Chitosan and RKN significantly modify the expression of 180 genes. A median profile of 180 genes clustered in nine groups according to
their trends with chitosan. Legend is shown in Fig. 4A.
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found that chitosan on its own modifies the expression of
more Pc genes than RKN does. This may be because
chitosan permeabilizes plasma membrane in fungi trig-
gering the activation of reactive oxygen species (ROS)
and cell death (Lopez-Moya et al., 2019). Besides,
chitosan solutions reach all fungal cells, whereas nema-
todes are in contact with only specific parts (mainly
appressoria) of the fungus. Chitosan enhances redox
processes, proteolysis and carbohydrate metabolism in
Pc. Redox metabolism is the most affected process by
chitosan. To this respect, the gene encoding CipC1 (con-
canamycin induced protein C), a ROS-related protein, is
the most induced by chitosan. This protein has also been
found induced in citrus fruits infected by the fungal patho-
gen Penicillium digitatum (López-Pérez et al., 2015).
CipC1 is involved in hyphal branching and upregulated in
Laccaria bicolor in response to Pseudomonas flu-
orescens (Deveau et al., 2007). This gene could be over-
expressed in Pc to overcome chitosan-induced ROS.
Other genes overexpressed in chitosan-induced ROS are
Cytochromes P450 and b561, L-ascorbate oxidase and
aldo/keto reductase. This enhanced activation of redox
metabolism–related genes connects resistance with
chitosan-sensitive fungi (Jaime et al., 2012; Lopez-Moya
et al., 2016). Pc has to fight plasma membrane oxidation
generated by chitosan-induced ROS. Chitosan
permeabilizes the plasma membrane of fungi in an
energy-dependent manner (Palma-Guerrero et al., 2009).
In our work, Pc activates energy and lipid metabolism
genes with chitosan. This was previously found on
chitosan-sensitive yeasts and filamentous fungi (Jaime
et al., 2012; Lopez-Moya et al., 2015; Lopez-Moya
et al., 2016). Lipid oxidation generates oxylipins (Gabbs

et al., 2015), which can modify fungal morphology, pro-
moting appressoria differentiation (Niu et al., 2020). We
then may speculate that Pc oxylipins could be involved in
chitosan induction of Pc appressoria found previously
(Escudero et al., 2016). ROS increase in the cell could
lead to Pc methylation (Wu and Ni, 2015), a highly repre-
sented GO term in chitosan treatments. This indicates
chitosan may also trigger Pc epigenetic mechanisms
(Razin and Cedar, 1991; Phillips, 2008). ROS also cau-
ses damage to proteins, probably activating protease
induction (Schieber and Chandel, 2014). To this respect,
chitosan induces Pc genes encoding all families of pepti-
dases. In our study, chitosan enhances Pc subtilisin
S8/S53 expression. This protease may help the fungus to
adapt to the ecological niches, facilitating nutrition
(Li et al., 2017). Pc subtilisins have been detected in both
the parasitic (Escudero et al., 2016) and endophytic
(Lopez-Llorca et al., 2010) phases of the fungal lifestyle.
Peptidases A1 and A4 (fungal family G1), involved in
plant parasitism and host adaptation (Kirshnan
et al., 2018), are also upregulated in Pc with chitosan.
Finally, Pc metallo-endopeptidases are also upregulated
with chitosan. This wide range of biological processes
and molecular functions affected by chitosan indicates
the effort made by the cellular machinery of Pc to over-
come stress. Further work should quantify the response
of individual Pc cells against chitosan, since antibiotics
generate dead, dying and resistant active and inactive
cells (Bamford et al., 2017).

Pc has mechanisms to efficiently degrade chitosan
and thus reduce its damage (mainly caused by ROS) on
cells. Pc overexpresses chitosanases (GH75) with
chitosan, degrading it into monosaccharides. One WSC
domain-containing protein, a stress responsory related to
carbohydrate binding (Tong et al., 2016; Oide
et al., 2019), is also upregulated with chitosan. Genes
coding for membrane transporters, such as the major
facilitator superfamily domain, general substrate trans-
porter, oligopeptide transporter OPT-like protein, maltose
permease and sugar transporter family protein, are also
overexpressed with chitosan. They may be involved in
the assimilation of monosaccharides generated upon
chitosan degradation by Pc. Neurospora crassa, a
chitosan-sensitive fungus, also shows the activation of
monosaccharide transport genes (Lopez-Moya
et al., 2016) upon chitosan treatment but not as many as
Pc. This may be a further reason to explain why Pc is
more resistant to chitosan than N. crassa. Over-
expression of Pc glucokinase in the presence of chitosan
is probably related to the final catabolism of this polymer
(Maitra and Lobo, 1983). Other glycoside hydrolases
(GH2 and 3) are also overexpressed in chitosan treat-
ments. This may indicate the high metabolic potential of
Pc to degrade and assimilate chitosan.

Fig 5. Eight Pc genes are common to endophytism, pathogenicity
and chitosan response. Venn diagram showing the intersection of
genes expressed when Pc colonizes barley (Larriba et al., 2014),
PHI database data and differentially expressed genes (DEG; log2
fold change >2) in this study. Eight genes are found common to all
studies.
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RKN eggs stimulate Pc to overexpress rather than
repress genes. RKN also induce gene expression of
nematode-trapping fungi, such as Arthrobotrys conoides
(Pandit et al., 2017), indicating the activation of parasitic
pathways. In this work, the addition of chitosan to nema-
tode eggs displays the highest values of Pc gene expres-
sion in all treatments tested. This shows that chitosan is
a strong elicitor of genes potentially involved in RKN egg
parasitism by Pc. In cluster analyses, genes encoding
proteins for adhesion (FLO1), chitosan and sugar degra-
dation (GH2, GH3, GH75), membrane transport (MFS-
transporters) and carbohydrate metabolism (glucokinase)
are overexpressed in chitosan and RKN treatments. In a
previous study (Lin et al., 2018), RKN eggs in Minimal
Medium (MM) were found to induce Pc adhesives
(CFEM), GHs enzymes and proteases. In our GO cluster
analysis, we have found GO terms related to chitin/
chitosan degradation with an enhanced expression upon
addition of nematode eggs and chitosan. Genes that
share this behaviour may explain why RKN eggs parasit-
ism by Pc increases in the presence of chitosan. The
trend pattern (increase or decrease in expression by
adding chitosan to treatments) is best observed in a gene
rather than in GO cluster analyses. This is because GOs
share genes and when some have opposing trends, the
average GO behaviour does not show up in the cluster
analysis. Pc deploys its machinery to putatively attach to
RKN eggshell by binding peptides, lipids and carbohy-
drates. FLO1 proteins are flocculation proteins present in
yeasts, related to adhesion to hyphae (Moreno-García
et al., 2018). FLO1 is a mannose-binding glycoprotein,
which could be a determinant for hyphal adhesion to the
nematode eggshell. A CRAL/TRIO domain protein is
upregulated when Pc is in contact with RKN. This domain
is related to the binding to small lipophilic molecules
(Panagabko et al., 2003). It could also be involved to the
attachment to the eggshell lipid layer (Johnston and
Dennis, 2012). We hypothesize that once the fungus is
attached to the eggshell, its degradation begins by trans-
forming the RKN egg chitin layer (Johnston and
Dennis, 2012) to chitosan using chitindeacetylases
(Aranda-Martinez et al., 2016) and degrading the
resulting chitosan mainly using chitosanases (GH75).
Other glycosyl hydrolases (GH2 and GH3) may also con-
tribute to degradation. Sugars may be introduced to the
cells of the fungus through transporters (MFS). All molec-
ular processes involved in egg parasitism are enhanced
by the addition of chitosan. The increase in ROS could
explain this behaviour.

Pc can act both as an endophyte (Bordallo
et al., 2002) or RKN egg parasite (Lopez-Llorca
et al., 2002). In this work, we have explored the common
‘gene toolbox’ involved in endophytism (Larriba
et al., 2014), pathogenicity (PHI-base) and response to

chitosan. We have found eight candidate genes, among
them proteases, chitosanases, redox-related proteins
and transcription factors.

Proteases modify their expression in endophytic pro-
cesses. This is related to parasitism in other fungi
(Druzhinina et al., 2012) and to endophytism in insect
pathogenic fungi (Moonjely et al., 2016). In works of gene
expression during endophytism, it has been found that
Pc overexpresses ribosomal proteins, proteases,
secreted proteins and heat shock proteins, among others
probably related to transitions in the lifestyle of the fungus
(Pentimone et al., 2019). The fact that chitosan increases
the secretion of Pc proteases could explain why the fun-
gus colonizes the plant efficiently when chitosan is pre-
sent. Pc does not modify the expression of GH75 when it
grows endophytically on bananas, but the maximum
expression of this gene occurs in the rhizosphere with
chitosan. Endophytic fungi have enzymes that modify chi-
tin and chitosan (Govinda Rajulu et al., 2011; Ven-
katachalam et al., 2015). This could mean that the
fungus enhances its chitin- and chitosanolytic metabolism
in order to start plant root colonization. Chitosan and its
derivatives are highly related to redox metabolism
(Sarangapani et al., 2018; Ivanova and Yaneva, 2020),
as we commented before. Cytochrome P450 ClCP1 is
also involved in oxidative metabolism (Korzekwa, 2014),
and it is expressed in endophytes (Chadha et al., 2018).
This is consistent with studies which prove that root colo-
nization processes activate ROS (Segal and
Wilson, 2018). One Pc PKS protein is slightly induced by
the presence of the plant. PKS are expressed in biocon-
trol fungus such as Clonostachys rosea during fungal–
fungal interactions (Fatema et al., 2018) and virulence
events (Tsai et al., 1998). This gene is also related to
melatonin biosynthesis (Knapp et al., 2018). Melatonin
is a precursor of plant hormones (Arnao and Hernández-
Ruiz, 2018). It has been shown that endophytic
organisms secrete melatonin and derivatives during root
colonization (Jiao et al., 2016). This could mean that Pc
is secreting metabolites homologous to plant hormones
in order to facilitate plant root colonization. This could be
one of the reasons why Pc increases banana plant
growth and development (Mingot-Ureta et al., 2020).
Finally, endophytism in Pc modifies the expression of
transcription factors. Helix–loop–helix DNA binding pro-
tein is overexpressed in all treatments. Related to previ-
ous results, Pc seems to be activating metabolic routes
in order to colonize the plant properly hiding from plant
defences.

In conclusion, Pc modifies its gene expression to para-
site RKN eggs, colonize plant roots or resist chitosan.
When Pc is growing with chitosan, it activates metabolic
pathways to avoid chitosan-induced ROS damage. Pc
enzymes capable of degrading it into sugars. Pc sugar
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carriers introduce them into the cell for catabolism. This
process increases ROS content, and Pc activates lipid
metabolism. Metal membrane transporters putatively
carry out these reduction and oxidation reactions. During
this process genes related to plant endophytism or nema-
tode egg parasitism are activated, which could indicate
that, in combination with the real stimulus, chitosan could
be a non-toxic additive to increase plant colonization by
Pc and sustainably reduce plant-parasitic nematodes,
such as RKN, in banana and other agroecosystems.

Experimental procedures

Fungi, chitosan, nematodes and plants

Pochonia chlamydosporia var. chlamydosporia (=Metacordyceps
chlamydosporia var. chlamydosporium) isolate 123 (Pc) (ATCC
No. MYA-4875; CECT No. 20929) was used in this study. Pc
was obtained from Heterodera avenae–infected eggs (Olivares
and López-Llorca, 2002). Chitosan T8 (70 kDa and 80.5%
deacetylation degree) was obtained from Marine Bioproducts
GmbH (Bremerhaven, Germany). Chitosan solutions were pre-
pared as described in Palma-Guerrero et al. (2010). Meloidogyne
javanica was a kind gift from Dr. Caridad Ros (IMIDA, Murcia,
Spain). It was maintained in tomato susceptible plants (Solanum
lycopersicum Mill cv. Marglobe). RKN egg masses were hand-
picked from infected tomato roots and surface-sterilized with 1%
sodium hypochlorite as in McClure et al. (1973). Meloidogyne
javanica eggs in all developmental stages were used for experi-
ments. One-month-old in vitro banana plantlets (Musa acuminata
cv. Dwarf Cavendish) were purchased from Cultesa
S.A. (Tacoronte, Canary Islands, Spain).

Pc, chitosan and RKN: RNA-seq experimental design

Pc conidia (final concentration 106 conidia�ml−1) were
inoculated into 100 ml flasks each containing 20 ml
Czapek Dox broth medium (Ward et al., 2012). Flasks
were incubated at 25�C with shaking at 120 rpm. After
5 days, mycelia were recovered by filtration through Mir-
acloth (Calbiochem) and washed twice with sterile dis-
tilled water. Pc mycelia (ca. 0.2 g) were inoculated
axenically into 100 ml flasks each containing 20 ml MM
(Aranda-Martinez et al., 2016) and amended with either:
(i) chitosan (PcQ) (0.1 mg ml−1 final concentration),
(ii) surface-sterilized RKN eggs (PcRKN) (1 egg μl−1 final
concentration), or (iii) both (PcRKNQ). Controls consisted
of Pc mycelium growing in MM (Pc). All treatments were
carried out in triplicate. Flasks were incubated for 4 days
as before. Samples were then filtered through Miracloth,
frozen in liquid N2, lyophilized and stored at −80�C until
used. The experiment was performed three times.

RNA extraction and RNA-seq performing

Total RNA extractions were performed using TRIzol
reagent (Life Tech), following the manufacturer’s proto-
col. The quality of all RNA samples was determined
using a bioanalyzer (Agilent 2100 Bioanalyzer System) to
confirm it was adequate for RNA-seq analysis
(Supplementary Table 4). Three replicates per treatment
were then selected at random to perform RNA-seq analy-
sis. cDNA synthesis, library construction and Illumina
sequencing were carried out by Macrogen (Seoul, South
Korea). TruSeq Stranded mRNA LT Sample Prep Kit
(Illumina) was used as Library Kit and TruSeq Stranded
mRNA Sample Preparation Guide, Part #15031047 Rev.
E as Library Protocol. The reagent used was NovaSeq
6000 S4 Reagent Kit (Illumina) and sequencing protocol
NovaSeq 6000 System User Guide Document
#1000000019358 v02.

Bioinformatic analyses

Raw reads were trimmed and filtered with Trimmomatic
(Bolger et al., 2014) to remove adapters with up to two
mismatches that had a palindrome read alignment accu-
racy of 30 and a sequence match accuracy of 10. Lead-
ing and trailing low-quality or N bases (<3) were removed
by using a 4-base-wide sliding window. Where average
base quality was low (<15) reads were trimmed and any
short reads (<80 bp) were removed. The quality of the
reads was then checked with FASTQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/).

Reads were quantified using Salmon mapping against
the P. chlamydospora 123 genome (GenBank acces-
sion: GCA_000411695.2) using a wrapper script
(align_and_estimate_abundance.pl) from the Trinity
software package (Grabherr et al., 2011). DEG were
determined with the Bioconductor package DESeq2
(Love et al., 2014) using the likelihood ratio test. Genes
were filtered so only those with at least three samples
with >10 counts were analysed. P values were adjusted
using the Benjamini–Hochberg (BH) correction
(Benjamini and Hochberg, 1995). Genes were consid-
ered differentially expressed if they had a log2 fold
change of ±2 and a BH-FDR-adjusted P-value of ≤0.05.
This process selected genes whose expression varied
the most with treatments with respect to the control and
characterized the main genes involved in the response
of Pc to chitosan and RKN.

A consensus set of transcripts was functionally anno-
tated with GO terms using Blast2GO (http://www.
blast2go.com/b2ghome) (Edgar et al., 2002). Protein
sequences were annotated using the InterPro (http://
www.ebi.ac.uk/interpro) and KEGG databases (http://
www.genome.jp/kegg/pathway.html) in OmicsBox
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(BioBam, Spain; http://www.biobam.com/omicsbox). Sig-
nificant differential gene expression between treatments
was analysed using maSigPro R package (Nueda
et al., 2014). And significant differential GOs were
obtained with maSigFun, an adaptation of maSigPro for
dealing with groups of genes, as in Lopez-Moya
et al. (2016).

Pc-Chitosan-Musa: bioassays

Pc (106 conidia�ml−1) was inoculated in Cz liquid medium
and incubated for 5 days as described above. Thirty-six
banana plantlets were placed individually in Magenta
Boxes™ (Sigma) each containing 50 ml of MM sup-
plemented or without chitosan (final concentration
0.1 mg ml−1). Half of the plants were inoculated with
0.2 g Pc mycelium and half were left uninoculated. Plants
were maintained at 24�C, 60% relative humidity and
16:8 h light/darkness photoperiod, with 100 rpm shaking,
for 4 days. Control replicates of 0.2 g of mycelium were
inoculated in 100 ml flasks each containing 20 ml MM
supplemented or not with chitosan (final concentration
0.1 mg ml−1). Controls with and without chitosan were
made by triplicate to obtain replicability among the sam-
ples. To extract RNA, three plant roots from the same
treatment were collected for each extraction. In this way,
three replicates were obtained per treatment, each repli-
cate with three whole roots from three different plants.
RNA was extracted as described above. Final treatments
were: Pc (Pc mycelium in MM), PcQ (Pc mycelium in MM
amended with 0.1 mg ml−1 chitosan), PcB (Pc mycelium
growing in MM close to banana roots), PcBQ
(Pc mycelium growing in MM amended with 0.1 mg ml−1

chitosan close to Banana roots), BPc (banana roots colo-
nized by Pc) and BPcQ (Banana roots colonized by Pc in
medium amended with 0.1 mg ml−1 chitosan). To identify
potential genes related to endophytism and pathogenic-
ity, a whole-genome blast search was conducted against
the Pathogen–Host Interaction database v. 4.9 (PHI-
base; www.phi-base.org; Urban et al., 2020). These can-
didate genes were intersected with expressed genes
when Pc colonizes Barley (Larriba et al., 2014) and
upregulated genes (log2 fold change values ≧2) in all
treatments in this work (data available in Supplementary
Information File). Selected genes were evaluated by
qRT-PCR in banana treatments.

qRT-PCR

RNA was treated twice with DNase (Turbo DNA-free,
Ambion) to remove any remnants of DNA in the samples.
Then, cDNA was obtained using NZY First Strand cDNA
Synthesis Kit (NZYtech). Finally, qRT-PCRs were per-
formed in a StepOnePlus™ Real-Time PCR System

machine, using SYBR Green with ROX (Roche) and a
ΔΔCt methodology. qRT-PCR analyses included three
biological replicates with three technical replicates each.
ΔΔCt method was used to calculate the relative fold
gene expression of samples and statistical analyses
were performed using ANOVA in GraphPad Prism 7.0
Software (www.graphpad.com). Primers used for qRT-
PCRs are shown in Supplementary Table 5. Pochonia
chlamydosporia allantoate permease (RZR69578.1;
Rosso et al., 2014), glyceraldehyde-3-phosphate dehy-
drogenase (RZR61537.1; Escudero et al., 2016) and ß-
tubulin (RZR65128.1; Ward et al., 2012) were used as
housekeeping genes.

Statistical analyses and figures

Statistical analysis for differential gene expression was
determined using DESeq2 (Love et al., 2014). Statistics
for gene set enrichment analysis were performed using
OmicsBox (BioBam, Spain) and figures generated using
GraphPad Prism version 7.00 for Mac, GraphPad Soft-
ware, La Jolla, California, USA, (www.graphpad.com).
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