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ABSTRACT In this paper we will get a class of functional equations in-
volving a countable set of terms, summed by the well known Bochner-Fejér
summation procedure, which are closely associated with the set of almost pe-
riodic functions. We will show that the zeros of a prefixed almost periodic
function determine analytic solutions of such a functional equation associated
with it, and we will obtain other solutions which are analytic or meromorphic
on a certain domain.
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1 Introduction

The exponential sums of the form

a1e
λ1s + . . .+ aje

λjs + . . . , s ∈ C, (1.1)

where the coefficients a1, a2, . . . , aj , . . . are complex numbers and the frequencies
λ1 < λ2 < . . . < λj < . . . are pair-wise distinct real numbers, are connected
with the theory of almost periodic functions of a complex variable, which was
discussed in [4] (see also [3, 5, 6, 7, 8]). As in classical Fourier analysis, every
almost periodic function is associated with a certain exponential series of the
form (1.1), called its Dirichlet series, which determines the given almost periodic
function (see [3, p.147], [6, p.77] or [8, p.312]).

Concerning the theory of almost periodic functions, we recall that if f(s)
is a function of a complex variable s = σ + it which is analytic in a vertical
strip U = {s = σ + it : α < σ < β} (−∞ ≤ α < β ≤ ∞), then it is called
almost periodic in U , and we denote it as f ∈ AP (U,C), if for every ε > 0
there exists a number l = l(ε) > 0 such that any interval of length l contains a
number τ satisfying the inequality |f(s+ iτ)− f(s)| ≤ ε for s in every reduced
strip of the form {s = σ + it : σ1 ≤ σ ≤ σ2} of U . So, the set of almost
periodic functions AP (U,C) coincides with the set of functions which can be
approximated uniformly in every reduced strip by exponential polynomials of
the form

b1e
λ1s + . . .+ bne

λns, s ∈ C, n ≥ 2, (1.2)

where {λ1, λ2, . . . , λn} is a set of distinct real numbers and bj ∈ C for each
j = 1, 2, . . . , n (see for example [6, Theorem 3.18]).

1This is a preprint of an article published in Aequationes mathematicae. The final authen-
ticated version is available online at: https://doi.org/10.1007/s00010-020-00732-3
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It is convenient to remark that an exponential sum of the form (1.1) is
not necessarily associated with a convergent series that defines a holomorphic
function. However, even in the case that the sequence of the partial sums of
the Dirichlet series of a function f ∈ AP (U,C) does not converge uniformly,
there exists a summation procedure, called the Bochner-Fejér’s summation,
which assures the existence of a sequence of exponential polynomials of the
type Pk(s) =

∑
j≥1 pj,kaje

λjs, where for each k only a finite number of the
factors pj,k differ from zero, converging uniformly to f in every reduced strip in
U and converging formally to its Dirichlet series on U [3, Polynomial approx-
imation theorem, pgs. 50,148]. Plainly, the formal convergence implies that
limk→∞ pj,k = 1 for each j ≥ 1.

On the other hand, in this paper we will also handle expressions of the type

a1f(γ1s) + a2f(γ2s) + . . .+ ajf(γjs) + . . . = 0, s ∈ S, (1.3)

where aj are complex numbers, γj constitute a countable set of pair-wise distinct
numbers and f(s) is a complex function in s whose domain includes the points
γjs, with s in a certain set S. We shall refer to these expressions as functional
series equations or simply functional equations. This process requires functional
series in the left member of (1.3) which are summable on S by some prefixed
summation method (not necessarily that consisting of the limit of its partial
sums). In the context of this paper, it must be kept in mind that we will use
the Bochner-Fejér’s summation method (see Definition 2.1).

Given n ≥ 2 an integer number, a particular case of the functional equations
of type (1.3) is given by

b1f(γ1s) + b2f(γ2s) + . . .+ bnf(γns) = 0, s ∈ S, (1.4)

where bj are complex numbers and {γ1, γ2, . . . , γn} is a finite set of pair-wise
distinct positive numbers. When S = C \ {0}, we know that a functional
equation of the form (1.4) is associated with the exponential polynomial

Pn(s) = b1e
s log γ1 + . . .+ bne

s log γn ,

which is of type (1.2). Indeed, it is clear that the functions of the form fn,j(s) =
eαn,j Log s, where αn,j is a zero of Pn(s) and Log s denotes the principal branch
of the logarithm of s 6= 0, are solutions analytic on C \ (−∞, 0] of the func-
tional equation (1.4) (see also [12]). It is worth noting that this connection was
previously shown for the special cases

f(s) + f(2s) + . . .+ f(ns) = 0, n ∈ N, n ≥ 2, s ∈ C \ {0},

which were proposed by Mora in order to model certain processes related to
combustion of hydrogen in a car engine for small values of n (see [10, p. 466]),
and which lead to a strong connection with the partial sums of the Riemann
zeta function ζn(s) = 1+2−s+. . .+n−s, n ≥ 2 (see [10, 11]). Another particular
case of functional equations of type (1.4) was studied by Almira and Abu-Helaiel
(see [1]).

2



The main purpose in this paper is to extend this previous connection to the
more general case of almost periodic functions (not only exponential polyno-
mials). Specifically, we will show that the zeros of a prefixed almost periodic
function determine solutions analytic on C \ (−∞, 0] of a concrete functional
equation of type (1.3) associated with such a function (see Proposition 2.4).
More generally, this process can be extended to find solutions analytic on every
set C \ Rθ, where Rθ is the ray {reiθ : r ≥ 0}, θ ∈ (−2π, 0] (see Proposition
2.9). Moreover, we will obtain a vector space of real continuous solutions of
such a functional equation for the case that the parameter s varies in the set of
positive real numbers (see Corollary 2.7).

Concurrently with the development above, another purpose in this paper is
to show that any solution of a functional equation of type (1.4), where S ⊂ C
is a certain set that contains 0, cannot be analytic at the origin, except for
the solutions given by polynomials (see Proposition 3.1). This also extends [12,
Proposition 5], which showed that, under the condition of positive coefficients
bj > 0, the only solution of such a functional equation that is analytic at 0
is the trivial solution f ≡ 0. Moreover, under the hypothesis of analyticity
on an annulus S centered at 0, we shall obtain the form of other solutions of
such functional equations which are analytic on C\{0} (see Proposition 3.4). In
fact, we will also prove that the meromorphic functions whose Laurent expansion
about 0 has a finite number of nonzero terms are solutions of infinitely many
functional equations of type (1.4) where S is an arbitrary annulus centered at
0 (see Proposition 3.7).

2 The practical correspondence between almost
periodic functions and their underlying func-
tional equations

Given a set {γ1, γ2, . . .} of infinitely many distinct real numbers and aj ∈ C for
j = 1, 2, . . ., in this section we will focus our attention on the group of functional
equations given by

a1f(γ1s) + a2f(γ2s) + . . .+ ajf(γjs) + . . . = 0, with s ∈ S,

where f(s) is a complex function whose domain includes the points γjs, j =
1, 2, . . ., with s in a certain set S ⊂ C satisfying that the functional series in
the left member is summable on S by some prefixed summation method. In
particular, consider the following definition.

Definition 2.1 Given a set Γ = {γ1, γ2, . . .} of infinitely many distinct real
numbers, and k ∈ N, by following the same procedure as described in [3, pp.
47,48], consider the set of multiples {p1,k, p2,k, . . . , pmk,k}, with mk = max{j ≥
1 : pj,k 6= 0}, which are real numbers obtained from Γ, a basis for Γ (called basic
numbers in [3]) and k. If aj ∈ C for j = 1, 2, . . ., we will say that the functional
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series a1f(γ1s) + a2f(γ2s) + . . .+ ajf(γjs) + . . . is (Bochner-Fejér) summable
on S when there exists

lim
k→∞

p1,ka1f(γ1s) + p2,ka2f(γ2s) + . . .+ pmk,kamkf(γmks)

for any s ∈ S.

Under this definition, we will say that a complex function g is a non-trivial
solution of (1.1) when g is not the null function and a1g(γ1s) +a2g(γ2s) + . . .+
ajg(γjs) + . . . = 0 for all s ∈ S in the sense that the functional series in the left
member is (Bochner-Fejér) summable on S and it is equal to 0 for all s ∈ S.

On the other hand, inspired by the Bochner-Fejér summation method, we
will also consider the following classes of functions included in the spaces of
almost periodic functions AP (U,C). We recall that the elements of these spaces
also correspond to the so-called uniformly almost periodic functions which were
used in [3].

Definition 2.2 Let Λ = {λ1, λ2, . . . , λj , . . .} be a countable set of distinct real
numbers. We will say that a function g : U ⊂ C → C is in the class DΛ,U if it
is an almost periodic function in AP (U,C) whose associated Dirichlet series is
of the form ∑

j≥1

aje
λjs, aj ∈ C, λj ∈ Λ, (2.1)

where U is a strip of the type {s ∈ C : α < Re s < β}, with −∞ ≤ α < β ≤ ∞.

As it was said in the introduction, given g(s) ∈ AP (U,C), there exists
a sequence of finite exponential sums of the form Pk(s) =

∑
j≥1 pj,kaje

λjs,
k = 1, 2, . . ., called Bochner-Fejér polynomials, which converges uniformly to g
in every reduced strip in U and converges formally to the Dirichlet series on
U . In fact, for each k, only a finite number of the terms pj,k differ from zero
(and {pj,k}k≥1 tends to 1 as k goes to infinity), and they depend on the real
frequencies λj but not on the values of the coefficients aj [3, p. 48]. This fact
is key to proving the first results of this paper.

The following lemma shows a particular case for which our functional series
are summable according to definition 2.1.

Lemma 2.3 Let
∑
n≥1 ane

λns be the Dirichlet series, of the form (2.1), of a
certain almost periodic function in a class DΛ,U , with Λ = {λ1, λ2, . . . , λj , . . .}.
If fw(s) = ew Log s, with w ∈ U , then the functional series

a1fw(eλ1s) + a2fw(eλ2s) + . . .+ ajfw(eλjs) + . . .

is (Bochner-Fejér) summable on C \ {0}.

Proof. Let Pk(s) =
∑
j≥1 pj,kaje

λjs, k = 1, 2, . . ., be a sequence of Bochner-
Fejér polynomials uniformly convergent to a function g(s) ∈ AP (U,C) and take
mk := max{j ≥ 1 : pj,k 6= 0}, k = 1, 2, . . .. Given w ∈ U , consider the function
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fw(s) := ew Log s, s ∈ C \ {0}. Since Log(eλjs) = λj + Log s for each j ≥ 1 and
any s ∈ C \ {0}, it is clear that

lim
k→∞

p1,ka1fw(eλ1s) + p2,ka2fw(eλ2s) + . . .+ pmk,kamkfw(eλmk s) =

lim
k→∞

ew Log s
(
p1,ka1e

λ1w + p2,ka2e
λ2w + . . .+ pmk,kamke

λmkw
)

=

lim
k→∞

ew Log sPk(w) = ew Log sg(w)

for any s ∈ C \ {0}, which proves the result.
Given an almost periodic function g(s) ∈ AP (U,C), we next establish a

connection of it with a concrete functional equation which presents analytic
solutions obtained from the zeros of g(s). This extends a result already proved
in [12, Corollary 3].

Proposition 2.4 Let g(s) be an almost periodic function in a class DΛ,U whose
Dirichlet series,

∑
n≥1 ane

λns, is of the form (2.1), with Λ = {λ1, λ2, . . . , λj , . . .}.
Then the functions fw0

(s) = ew0 Log s, with w0 belonging to the set of the zeros
of g(s), are solutions analytic on Ω = C \ (−∞, 0] of the functional equation

a1f(eλ1s) + a2f(eλ2s) + . . .+ ajf(eλjs) + . . . = 0, s ∈ C \ {0}.

Proof. Let Pk(s) =
∑
j≥1 pj,kaje

λjs, k = 1, 2, . . ., be a sequence of Bochner-
Fejér polynomials uniformly convergent to the function g(s) ∈ AP (U,C) and
take mk := max{j ≥ 1 : pj,k 6= 0}, k = 1, 2, . . .. Now, let w0 be a zero of g(s),
and consider the function fw0(s) := ew0 Log s, s ∈ C \ {0}. By Lemma 2.3, we
have that a1fw0(eλ1s) + a2fw0(eλ2s) + . . . + ajfw0(eλjs) + . . . is summable on
C \ {0} and, in fact, we have that

lim
k→∞

p1,ka1fw0
(eλ1s) + p2,ka2fw0

(eλ2s) + . . .+ pmk,kamkfw0
(eλmk s) =

lim
k→∞

ew0 Log s
(
p1,ka1e

λ1w0 + p2,ka2e
λ2w0 + . . .+ pmk,kamke

λmkw0
)

=

lim
k→∞

ew0 Log sPk(w0) = ew0 Log sg(w0) = 0

for any s ∈ C \ {0}, which proves the result.
Inspired by the previous result, we next introduce the following definition.

Definition 2.5 Let g(s) be an almost periodic function in AP (U,C) whose
Dirichlet series is of the form

∑
n≥1 ane

λns, with Λ = {λ1, λ2, . . . , λj , . . .} a
countable set of distinct ordered real numbers, and aj ∈ C for each j = 1, 2, . . ..
Then the functional equation

a1f(eλ1s) + a2f(eλ2s) + . . .+ ajf(eλjs) + . . . = 0, s ∈ C \ {0}, (2.2)

will be called the functional equation associated with g(s).

In the space of functions analytic on Ω = C\(−∞, 0], let D be the linear op-
erator defined by D(f) = sf ′, where f ′(s) is the derivative of f(s). Concerning
this operator, we next prove the following result.
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Proposition 2.6 Let g(s) be an almost periodic function in a class DΛ,U whose
Dirichlet series,

∑
n≥1 ane

λns, is of the form (2.1), with Λ = {λ1, λ2, . . . , λj , . . .}.
In the space of functions analytic on Ω, the proper vectors of the operator D are
solutions analytic on Ω of the functional equation (2.2) associated with g(s) if
and only if the corresponding proper values of D are the zeros of g(s).

Proof. Let fw0
be a proper vector of D corresponding to a generic proper

value w0 ∈ U . Then D(fw0
) = w0fw0

or, equivalently, fw0
satisfies the equation

sf ′w0
= w0fw0 , whose solution analytic on Ω is fw0(s) = Kew0 Log s, with K an

arbitrary constant. By Lemma 2.3, we have that a1fw0(eλ1s) + a2fw0(eλ2s) +
. . .+ajfw0

(eλjs)+. . . is summable on C\{0}. Now, let Pk(s) =
∑
j≥1 pj,kaje

λjs,
k = 1, 2, . . ., be a sequence of Bochner-Fejér polynomials uniformly convergent
to the function g(s) ∈ AP (U,C) and take mk := max{j ≥ 1 : pj,k 6= 0},
k = 1, 2, . . .. Since Log(eλjs) = λj + Log s for each j ≥ 1 and any s ∈ C \ {0},
we have

p1,ka1fw0
(eλ1s) + p2,ka2fw0

(eλ2s) + . . .+ pmk,kamkfw0
(eλmk s) =

Kew0 Log s
(
p1,ka1e

λ1w0 + p2,ka2e
λ2w0 + . . .+ pmk,kamke

λmkw0
)
,

for every k ≥ 1. Hence, fw0
(s) is a solution of (2.2) if and only if lim

k→∞
Pk(w0) = 0

or, equivalently, g(w0) = 0.
Particularly, in connection with (2.2) for s = x > 0, a solution of the func-

tional equation

a1f(eλ1x) + a2f(eλ2x) + . . .+ ajf(eλjx) + . . . = 0, x > 0, (2.3)

is given by fw0(x) = xw0 , with w0 belonging to the set of the zeros of the
function g(s). If w0 = σ0 + it0, then fw0

(x) = xσ0eit0 log x, and we obtain real
solutions of (2.3) of the form

xσ0 (c cos(t0 log x) + d sin(t0 log x)) , c, d ∈ R.

Consequently, we get the following important result which improves [12, Corol-
lary 4].

Corollary 2.7 Let g(s) be an almost periodic function in a class DΛ,U whose
Dirichlet series,

∑
n≥1 ane

λns, is of the form (2.1), with Λ = {λ1, λ2, . . . , λj , . . .}.
Then every zero of g(s) generates a vector space of real continuous solutions of
the functional equation (2.3).

Furthermore, an easy consequence of the previous corollary is that every real
continuous solution f(x) of (2.3) defines a function

h(x) =

 f(x), if x > 0
0, if x = 0

f(−x), if x < 0
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which is a continuous solution, except possibly at the point 0, of the functional
equation

a1f(eλ1x) + a2f(eλ2x) + . . .+ ajf(eλjx) + . . . = 0, x ∈ R.

We next prove that the functions fw0(s) = ew0 Log s, with w0 belonging to
the set of zeros of g(s), are linearly independent in the vector space of functions
analytic on Ω. The proof is similar to that of [12, Proposition 6].

Proposition 2.8 Let g(s) be an almost periodic function in a class DΛ,U whose
Dirichlet series is of the form (2.1). Then the functions fw0(s) = ew0 Log s,
with w0 belonging to the set of the zeros of g(s), which are solutions analytic
on Ω = C \ (−∞, 0] of the functional equation (2.2) associated with g(s), are
linearly independent in the vector space of functions analytic on Ω.

Proof. It was proved in Proposition 2.4 that the functions fw0
(s) = ew0 Log s,

with w0 belonging to the set of the zeros of g(s), are solutions analytic on
the set Ω = C \ (−∞, 0]. Let w1, w2, . . . , wm be m distinct zeros of g(s) with
wj = σj + itj , j = 1, 2, . . . ,m, and let t := max{|tj | : j = 1, 2, . . . ,m} ≥ 0.
Also, we can determine y > 1 such that t log y < π. Then −π < tj log y < π,
j = 1, 2, . . . ,m, and therefore the principal argument of ywj is tj log y for each
j = 1, 2, . . . ,m. Now, consider the numbers cj := yj−1, j = 1, 2, . . . ,m, and
let fw1 , fw2 , . . . , fwm denote the power functions ew1 Log s, ew2 Log s, . . . , ewm Log s

respectively. Thus the determinant

D =

∣∣∣∣∣∣∣∣∣
fw1(c1) fw2(c1) · · · fwm(c1)
fw1

(c2) fw2
(c2) · · · fwm(c2)

...
...

. . .
...

fw1
(cm) fw2

(cm) · · · fwm(cm)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
d1 d2 · · · dm
...

...
. . .

...
dm−1

1 dm−1
2 · · · dm−1

m

∣∣∣∣∣∣∣∣∣ ,
where dj := ywj , j = 1, 2, . . . ,m, is of Vandermonde type and so

D =
∏

k>j(k,j=1,...,m)

(dk − dj).

Since dj are all distinct because they have different arguments or absolute values,
we deduce that D 6= 0. This means that, for the m values c1, c2, . . . , cm, the
system

x1fw1(c1) + x2fw2(c1) + . . .+ xmfwm(c1) = 0

x1fw1(c2) + x2fw2(c2) + . . .+ xmfwm(c2) = 0

. . . = 0

x1fw1(cm) + x2fw2(cm) + . . .+ xmfwm(cm) = 0

has only the trivial solution x1 = x2 = . . . = xm = 0. Hence the expression
x1fw1

(s) + x2fw2
(s) + . . .+ xmfwm(s) = 0 implies x1 = x2 = . . . = xm = 0, i.e.

the functions fw1
(s), fw2

(s), . . . , fwm(s) are linearly independent.
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Now, given θ ∈ R, let logθ s denote the branch of the logarithm function
such that the argument of s is in [θ, θ + 2π), that is logθ s = log |s| + i argθ s,
with argθ the unique argument of s in [θ, θ+2π). Recall that the function logθ s
is analytic on C \ Rθ, where Rθ is the ray {reiθ : r ≥ 0}. Proposition 2.4 can
be now generalised in the following sense.

Proposition 2.9 Let g(s) be an almost periodic function in a class DΛ,U whose
Dirichlet series,

∑
n≥1 ane

λns, is of the form (2.1), with Λ = {λ1, λ2, . . . , λj , . . .}.
Given θ ∈ (−2π, 0], the functions fw0

(s) = ew0 logθ s, with w0 belonging to the set
of the zeros of g(s), are solutions analytic on C \Rθ of the functional equation
(2.2) associated with g(s).

Proof. Given g(s) ∈ DΛ,U and θ ∈ (−2π, 0], take fw0
(s) = ew0 logθ s with w0

belonging to the set of the zeros of g(s). Since logθ(e
λjs) = λj + logθ s for

each j ≥ 1 and any s ∈ C \ {0}, as in Lemma 2.3, we have that a1fw0(eλ1s) +
a2fw0(eλ2s) + . . .+ ajfw0(eλjs) + . . . is summable on C \Rθ and

lim
k→∞

p1,ka1fw0
(eλ1s) + p2,ka2fw0

(eλ2s) + . . .+ pmk,kamkfw0
(eλmk s) =

lim
k→∞

ew0 logθ s
(
p1,ka1e

λ1w0 + p2,ka2e
λ2w0 + . . .+ pmk,kamke

λmkw0
)

=

lim
k→∞

ew0 logθ sPk(w0) = ew0 logθ sg(w0) = 0

for any s ∈ C \Rθ.

3 Solutions of the functional equations associ-
ated with exponential polynomials

Given an exponential polynomial P (s) = a1e
λ1s + . . . + ane

λns, s ∈ C, n ≥ 2,
with aj ∈ C and {λ1, . . . , λn} a set of distinct real numbers, Proposition 2.9
shows that the functions of the form fw0

(s) = ew0 logθ s, with w0 a zero of P (s),
are solutions analytic on C \Rθ of the functional equation

a1f(eλ1s) + a2f(eλ2s) + . . .+ anf(eλns) = 0, s ∈ C \ {0}, (3.1)

associated with P (s). In this respect, in this section we will handle functional
equations of the type

a1f(γ1s) + a2f(γ2s) + . . .+ anf(γns) = 0, s ∈ S,

where n ∈ N, n ≥ 2, aj are complex numbers, γj are pair-wise distinct positive
numbers and S is a certain set in C. Hence the member on the left is certainly
summable, and the expressions of the form (3.1) are included in this type of
functional equations, which means that we will handle a particular case of the
functional equations of type (1.3) which was already considered in [12]. In fact,
we will show more solutions of the functional equation (3.1) (extended to the
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whole C or with other domains) which are not of the form fw0(s) indicated
above. We first show that any solution of such a functional equation cannot be
analytic at the origin, except for the solutions given by polynomials.

Proposition 3.1 Let f(s) be a complex solution of the functional equation

a1f(γ1s) + a2f(γ2s) + . . .+ anf(γns) = 0, s ∈ S, (3.2)

where n ∈ N, n ≥ 2, {γ1, γ2, . . . , γn} is a set of distinct positive numbers,
aj ∈ C \ {0} for each j = 1, 2, . . . , n and S is a certain open set that contains
0. If f(s) is analytic at 0, then it is a polynomial of, at most, n− 1 terms.

Proof. Assume the existence of a solution of (3.2) which is analytic at 0, say
f(s). This means that f(s) is analytic on an open set D that contains 0 and

f(s) =
∑
k≥0

f(k)(0)
k! sn ∀s ∈ D. Hence

a1f(γ1s) + a2f(γ2s) + . . .+ anf(γns) =

a1

∑
k≥0

f (k)(0)

k!
γk1 s

k + a2

∑
k≥0

f (k)(0)

k!
γk2 s

k + . . .+ an
∑
k≥0

f (k)(0)

k!
γkns

k =

(a1f(0) + a2f(0) + . . .+ anf(0))+(a1f
′(0)γ1 + a2f

′(0)γ2 + . . .+ anf
′(0)γn) s+

+. . .+
(
a1f

(n−1)(0)γ
(n−1)
1 + a2f

(n−1)(0)γ
(n−1)
2 + . . .+ anf

(n−1)(0)γ(n−1)
n

)
sn−1+

+ . . . = 0,

for all s in an open set that contains 0 and is included in S. This yields that

f(0)(a1 + a2 + . . .+ an) = 0

f ′(0) (a1γ1 + a2γ2 + . . .+ anγn) = 0

. . . = 0

f (n−1)(0)
(
a1γ

(n−1)
1 + a2γ

(n−1)
2 + . . .+ anγ

(n−1)
n

)
= 0

. . . = 0.

If we took a = (a1, a2, . . .)
t as the vector of the unknowns, this would lead to a

matrix equation of the form Ma = 0, where

M =



f(0) f(0) · · · f(0)
f ′(0)γ1 f ′(0)γ2 · · · f ′(0)γn

... . . .
. . .

...

f (n−1)(0)γ
(n−1)
1 f (n−1)(0)γ

(n−1)
2 · · · f (n−1)(0)γ

(n−1)
n

...
...

...
...


Under the hypothesis of the existence of at least n values of the set given by
{f(0), f ′(0), . . . , f (n−1)(0), . . .} which are nonzero, it would be satisfied that
rankM = n because of the fact that these n rows of the matrix M (associated
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with the values f (α1)(0), f (α2)(0), . . . , f (αn)(0) different from zero) would give
rise to a generalized Vandermonde determinant of the form

f (α1)(0)f (α2)(0) · · · f (αn)(0)

∣∣∣∣∣∣∣∣∣
dα1

1 dα1
2 · · · dα1

n

dα2
1 dα2

2 · · · dα2
n

...
...

. . .
...

dαn1 dαn2 · · · dαnn

∣∣∣∣∣∣∣∣∣ 6= 0,

where dj := γj , j = 1, 2, . . . , n, and α1 < α2 < . . . < αn (see for example [13,
Theorem 1]). Equivalently, the trivial solution a1 = a2 = . . . = an = 0 would be
the only solution of this system, which is a contradiction. Consequently, f(s) is
a polynomial of, at most, n− 1 terms.

Remark 3.2 From the proof of the proposition above it is also deduced that if
P (s) = b1s

α1 + b2s
α2 + . . . + bn−1s

αn−1 , with 0 ≤ α1 < α2 < . . . < αn−1 and
bj ∈ C \ {0} for each j = 1, . . . , n− 1, is a polynomial of n− 1 terms which is a
solution of the functional equation (3.2), then any solution of such an equation
is of the form

f(s) = c1s
α1 + c2s

α2 + . . .+ cn−1s
αn−1 ,

with c1, c2, . . . , cn−1 ∈ C. Indeed, a1, a2, . . . , an satisfy the system

f (α1)(0)(a1γ
α1
1 + a2γ

α1
2 + . . .+ anγ

α1
n ) = 0

f (α2)(0) (a1γ
α2
1 + a2γ

α2
2 + . . .+ anγ

α2
n ) = 0

. . . = 0

f (αn−1)(0)
(
a1γ

αn−1

1 + a2γ
αn−1

2 + . . .+ anγ
αn−1
n

)
= 0.

So, in the case that f (α)(0) 6= 0 for some α 6= αj, j = 1, . . . , n − 1, we would
also have

a1γ
α
1 + a2γ

α
2 + . . .+ anγ

α
n = 0,

which would lead to a1 = a2 = . . . = an = 0.

Note that the proposition above is related to [12, Proposition 5], which shows
that, under the condition of positive coefficients aj > 0, the only solution of the
functional equation (3.1) that is analytic at 0 is the trivial solution f ≡ 0.

Example 3.3 Consider the functional equation 3f(s)−4f(2s)+f(5s) = 0 with
s ∈ C. By Proposition 2.9, we know that the functions of the form fw0

(s) ={
ew0 logθ s if s 6= 0

0 if s = 0
, where w0 is a zero of the exponential polynomial given by

P (s) = 3 − 4 · 2s + 5s, are solutions analytic on C \ Rθ of such an equation.
As P (0) = 0, the constant solution f0(s) = 1 is a particular case, but P (s)
has infinitely many zeros (all of them lie in a vertical strip, see for example
[9]) which provide other solutions fw0

(s) which are not polynomials. Now, by
Proposition 3.1, the only solutions of such an equation which are analytic at 0

10



are the polynomials of, at most, 2 nonzero terms. In fact, it is easy to check
that the polynomials of the form f(s) = A + Bs, with A,B ∈ C, are solutions
of such a functional equation.

Secondly, under the hypothesis of analyticity on an annulus centered at 0,
we shall obtain solutions which are meromorphic on such a set. Recall that a
function f is meromorphic on a set S if f is analytic on S except possibly for
poles [2].

Proposition 3.4 Let f(s) be a complex solution of the functional equation

a1f(γ1s) + a2f(γ2s) + . . .+ anf(γns) = 0, s ∈ S, (3.3)

where n ∈ N, n ≥ 2, {γ1, γ2, . . . , γn} is a set of distinct positive numbers,
aj ∈ C \ {0} for each j = 1, 2, . . . , n and S is a certain open set that does not
contain 0. If f(s) is analytic on some annulus {s ∈ C : r < |s| < R} with
0 ≤ r < R ≤ ∞, then it is a meromorphic function, analytic on C \ {0}, whose
Laurent expansion about 0 has, at most, n− 1 nonzero terms.

Proof. Assume the existence of a solution of (3.3) which is analytic on some
annulus of the form D = {s ∈ C : r < |s| < R}, say f(s). This means that f(s)
has a Laurent series on D of the form f(s) =

∑∞
k=−∞ bks

k ∀s ∈ D. Hence

a1f(γ1s) + a2f(γ2s) + . . .+ anf(γns) =

a1

∞∑
k=−∞

bkγ
k
1 s
k + a2

∞∑
k=−∞

bkγ
k
2 s
k + . . .+ an

∞∑
k=−∞

bkγ
k
ns
k =

. . .+
(
a1b−1γ

−1
1 + a2b−1γ

−1
2 + . . .+ anb−1γ

−1
n

) 1

s
+ (a1b0 + a2b0 + . . .+ anb0)

+ (a1b1γ1 + a2b1γ2 + . . .+ anb1γn) s+ . . . = 0

for all s in a set that contains D and is included in S. This yields that

. . . = 0

b−1

(
a1γ
−1
1 + a2γ

−1
2 + . . .+ anγ

−1
n

)
= 0

b0(a1 + a2 + . . .+ an) = 0

b1 (a1γ1 + a2γ2 + . . .+ anγn) = 0

. . . = 0.

If we took a = (a1, a2, . . .)
t as the vector of the unknowns, it would lead to a

matrix equation of the form Ma = 0, where

M =



...
...

...
...

b−1γ
−1
1 b−1γ

−1
2 · · · b−1γ

−1
n

b0 b0 · · · b0
b1γ1 b1γ2 · · · b1γn

... . . .
. . .

...


11



Under the hypothesis of the existence of at least n values of the set given by
B = {. . . , b−1, b0, b1, . . .} which are nonzero, it is clear that rankM = n (it
leads to a matrix of the same form as the generalized Vandermonde matrix in
the proof of Proposition 3.1, see also [13, Theorem 1]) or, equivalently, the trivial
solution a1 = a2 = . . . = an = 0 is the only solution of this system, which is a
contradiction. Consequently, 0 is not an essential singularity of f(s), i.e. f(s)
is a meromorphic function of the form

∑∞
k=−∞ bks

k, where the cardinal of the
set B is less than n, which proves the result.

Remark 3.5 As in Remark 3.2, from the proof of the proposition above it is
also deduced that if P (s) = sα1 + sα2 + . . .+ sαn−1 , with α1 < α2 < . . . < αn−1,
is a meromorphic function of n − 1 terms which is solution of the functional
equation (3.3), then any solution of such an equation is of the form

f(s) = c1s
α1 + c2s

α2 + . . .+ cn−1s
αn−1 ,

with c1, c2, . . . , cn−1 ∈ C. As a consequence, in this case we would have the
following result: if f(s) is a solution of n − 1 terms of the functional equation
(defined on a certain set S that does not contain 0), then such an equation
(extended onto S ∪ {0}) has solutions analytic at 0 if and only if some of the
n− 1 terms of f(s) is of the form ajs

j with j = 0, 1, . . ..

Example 3.6 Consider the functional equation f
(

1
5s
)
− 4f

(
1
2s
)

+ 3f(s) = 0
with s ∈ C \ {0}. By Proposition 3.4, the only non-trivial solutions of such an
equation which are analytic on the annulus {s ∈ C : 0 < |s| < R}, with R > 0,
are the meromorphic functions of, at most, 2 nonzero terms. In fact, it is easy
to check that f(s) = A + B

s , with A,B ∈ C, is a solution of such an equation
which is not of the form of Proposition 2.9. Moreover, the constant polynomials
P (s) = A, with A ∈ C, are solutions of the functional equation extended onto
the whole C.

Finally, inspired by the proof of Proposition 3.4, we will prove the following
result.

Proposition 3.7 Consider {γ1, γ2, . . . , γj , . . .} a set of distinct positive num-
bers and S ⊂ C an open set that does not contain 0. Let f(s) be a meromorphic
function whose Laurent expansion about 0 has n ≥ 2 nonzero terms, and let m
be an integer number greater than n. Then f(s) is a solution, which is analytic
on C \ {0}, of infinitely many functional equations of the form

a1f(γ1s) + a2f(γ2s) + . . .+ amf(γms), s ∈ S,

for some aj ∈ C \ {0}, j = 1, 2, . . . ,m.

Proof. Assume that f(s) has a Laurent series, on the annulus D = {s ∈ C :
|s| > 0}, of the form f(s) =

∑∞
k=−∞ bks

k ∀s ∈ D, where the cardinal of the

12



set B = {bk1 , bk2 , . . . , bkn}, kj ∈ Z, of nonzero coefficients is equal to n. Let
m ≥ n+ 1, then

a1f(γ1s) + a2f(γ2s) + . . .+ amf(γms) =

a1

n∑
j=1

bkjγ
kj
1 skj + a2

n∑
j=1

bkjγ
kj
2 skj + . . .+ am

n∑
j=1

bkjγ
kj
m s

kj =(
a1bk1γ

k1
1 + a2bk1γ

k1
2 + . . .+ ambk1γ

k1
m

)
sk1 + . . .+

+
(
a1bknγ

kn
1 + a2bknγ

kn
2 + . . .+ ambknγ

kn
m

)
skn = 0

for all s in a set that contains D and is included in S. This yields that

bk1

(
a1γ

k1
1 + a2γ

k1
2 + . . .+ amγ

k1
m

)
= 0

. . . = 0

bkn

(
a1γ

kn
1 + a2γ

kn
2 + . . .+ amγ

kn
m

)
= 0

If we took a = (a1, a2, . . . , am)t as the vector of the unknowns, it would lead to
a system of the form Ma = 0, where

M =

γ
k1
1 γk12 · · · γk1m
...

...
...

...

γkn1 γkn2 · · · γknm


satisfies rankM = n (it leads to a matrix of the same form as the generalized
Vandermonde matrix in the proof of Proposition 3.1). If m ≥ n + 1, it is clear
that this system has infinitely many solutions, which proves the result.

References

[1] Almira, J.M.; Abu-Helaiel, Kh. F.: On solutions of f(x) + f(a1x) +
. . . + f(aNx) = 0 and related equations, Ann. Tiberiu Popoviciu Semin.
Funct. Equ. Approx. Convexity. 9 (2011), 3–17.

[2] Ash, R.B.: Complex variables, Academic Press, London, 1971.

[3] Besicovitch, A.S.: Almost periodic functions, Dover, New York, 1954.

[4] Bohr, H.: Zur Theorie der fastperiodischen Funktionen. (German) III.
Dirichletentwicklung analytischer Funktionen, Acta Math. 47 (3) (1926),
237-281.

[5] Bohr, H.: Almost periodic functions, Chelsea, New York, 1951.

[6] Corduneanu, C.: Almost Periodic Functions, Interscience publishers,
New York, London, Sydney, Toronto, 1968.

13



[7] Favorov, S. Yu.: Zeros of Holomorphic Almost-Periodic Functions, Zeros
of holomorphic almost periodic functions. J. Anal. Math. 84 (2001), 51-66.

[8] Jessen, B.: Some aspects of the theory of almost periodic functions, in
Proc. Internat. Congress Mathematicians Amsterdam, 1954, Vol. 1, North-
Holland, 1954, pp. 304–351.

[9] Mas, A.; Sepulcre, J.M.: The projections of the zeros of exponential
polynomials with complex frequencies, Colloq. Math. 158 (1) (2019), 91–
102.

[10] Mora, G.: A note on the functional equation F (z)+F (2z)+· · ·+F (nz) =
0, J. Math. Anal. Appl. 340 (2008), 466–475.

[11] Mora, G.; Sepulcre, J.M.: The zeros of Riemann zeta partial sums
yield solutions to f(x) + f(2x) + ... + f(nx) = 0, Mediterr. J. Math. 10
(2013), 3, 1221–1232.

[12] Sepulcre, J.M.; Vidal, T.: On the analytic solutions of the functional
equations w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0, Mediterr. J. Math.,
12 (2015), 667-678.

[13] Yang, S.J.; Wu, H.Z.; Zhang, Q.B.: Generalization of Vandermonde
determinants, Linear Algebra and its Applications, 336 (2001), 201–204.

14


