
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1

Thermal Noise Removal From Polarimetric
Sentinel-1 Data

Lucio Mascolo , Member, IEEE, Juan M. Lopez-Sanchez , Senior Member, IEEE,

and Shane R. Cloude , Fellow, IEEE

Abstract— This study proposes, for the first time, an approach
to remove thermal noise from the wave coherency matrix, C2,
estimated from single-look complex dual-polarization Interfer-
ometric Wide Swath mode Sentinel-1 synthetic aperture radar
data. The approach is straightforward; it exploits the Thermal-
NoiseRemoval module, provided by the European Space Agency
(ESA) in its Sentinel Application Platform (SNAP) software,
to remove thermal noise from the channel intensities. Then, noise
correction on the complex data is applied, in order to estimate
the noise-free C2 matrix. As a further novelty, the proposed
approach can be implemented in SNAP, through the use of a
processing graph that is here provided. The method is applied on
a dense time series of Sentinel-1 data, collected on an agricultural
area located near Seville, Spain. The impact of thermal noise
on the estimation of the eigendecomposition parameters of C2,
i.e., entropy (H2), average alpha angle (α2), and anisotropy
(A2), is assessed for different land-cover types, namely river,
rice, forest, and urban areas. Monte Carlo simulations are
implemented to assess the performance of the proposed approach
in estimating H2, α2, and A2. Results show that the proposed noise
removal method improves the estimation of these parameters for
the considered land-cover classes.

Index Terms— Polarimetry, sentinel-1, thermal noise.

I. INTRODUCTION

THERMAL noise removal is a fundamental step for a
precise radiometric calibration of synthetic aperture radar

(SAR) data. In Terrain Observation with Progressive Scans
SAR (TOPSAR) Sentinel-1 (S1) SAR data, thermal noise
consists of two additive noise sources [1], [2]. The first is
related to the antenna pattern and, hence, varies in the range
direction. The second is scalloping noise, which varies along
the azimuth direction [1], [2].

In the case of single-look complex (SLC) coherent dual-
data, polarization Interferometric Wide Swath (IW) mode
S1 SAR data, the polarization state of the received wave is
described by the 2 × 2 Hermitian and positive-semidefinite
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(PSD) wave coherency matrix C2 [3], [4]. The eigendecom-
position of C2 allows obtaining key polarimetric parameters,
i.e., the entropy (H2), the anisotropy (A2), and the average
alpha angle α2. It is here remarked that the physical interpre-
tation of H2, α2, and A2 is different from the interpretation
of the eigendecomposition outputs obtained in the quad-
pol case. In this case, H2 represents the wave entropy, A2

represents the degree of polarization (DoP), and α2 represents
the angular separation, on the Poincaré sphere, between the
polarization state of the transmitted wave and one of the
received wave [3], [4].

The importance of using the full C2 matrix has been first
demonstrated in [4], where the H2/α2 decomposition is applied
to dual-polarized L-band ALOS –PALSAR SAR data, showing
its potential for various applications such as ship detection,
forest classification, and urban characterization. Furthermore,
the recent studies in [5] and [6] have shown that, in the case
of dual-polarization VH–VV IW S1 SAR data, the use of C2,
along with H2, α2, and A2, significantly improves the perfor-
mance of crop-type classification and growth stages monitor-
ing [5], and retrieval of crops biophysical parameters [6].

Due to speckle, C2 is estimated from the data by means
of spatial averaging. The estimated matrix is denoted as Ĉ2.
Therefore, H2, α2, and A2 are estimated from the eigendecom-
position of Ĉ2 and denoted as Ĥ2, α̂2, and Â2, respectively. The
presence of thermal noise in SLC dual-polarization IW S1 data
results in a noisy Ĉ2 matrix. This, in turn, affects the esti-
mation of any polarimetric parameter derived from it. There-
fore, due to the potential of Ĉ2 in final applications [4]–[6],
removing thermal noise from such a matrix represents a
key step when dealing with dual-polarization IW S1 data.
In such a case, an algorithm for thermal noise removal on Ĉ2

still lacks, with attention being paid only on removing noise
from the estimated backscattering intensities (i.e., its diagonal
entries). In this case, the main approach is the one provided
by the European Space Agency (ESA) in [7], integrated in
the Sentinel Application Platform (SNAP) software with the
ThermalNoiseRemoval module. Such an approach consists of
subtracting, for each polarimetric channel, the estimated noise
(derived from the annotated noise vectors present in the image
product files) from the single-look backscattering intensities,
in order to obtain the noise-free one. Hence, even using SNAP,
thermal noise removal on Ĉ2 is still not possible. Note that,
an approach that would simply consist of applying Thermal-
NoiseRemoval without correcting for the off-diagonal entries
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of Ĉ2 would be erroneous since it would not guarantee that
the matrix Ĉ2 is PSD. In recent years, advanced methods [1],
[2], [8] have been proposed to further improve thermal noise
removal on S1 cross-polarized backscattered intensity data.
The method proposed in [1] is based on azimuth descalloping,
noise scaling, and interswath power balancing. In [2], a method
to correct the multiplicative textural noise has been proposed,
whereas in [8], novel methods for scaling and power balancing
and residual noise removal have been conceived. However,
no algorithms have been proposed to remove thermal noise
from Ĉ2.

In this study, we propose, for the first time, an approach for
thermal noise removal on the full Ĉ2 matrix, derived from SLC
dual-polarization IW S1 SAR data. Such a method exploits
the SNAP’s ThermalNoiseRemoval module. Once the noise-
free intensities are obtained, these are used to apply the noise
correction to the complex products that, finally, are used to
obtain the noise-free Ĉ2 matrix. Moreover, as a further novelty,
our approach can be implemented directly using only SNAP,
through the use of a processing graph that is here provided.
This is important since, due to the large usage of this software
by all types of users, this method can be easily incorporated
in current processing chains.

Finally, the proposed approach is applied on a dense time
series of SLC dual-polarization VH–VV IW S1 SAR data,
collected over an agricultural area located near Seville, Spain,
but it can be equally applied on HH–HV data. The noise-
free Ĉ2 matrix is obtained and, therefore, the impact of
thermal noise on the estimation of H2, α2, and A2 is assessed
for different land-cover types, i.e., river, rice, forest, and
urban areas. The performance of the proposed approach is
evaluated by carrying out Monte Carlo (MC) simulations. The
results show that when the proposed noise removal method
is applied, the estimation of H2, α2, and A2 for these land-
cover types improves. Regarding the estimated backscattering
coefficients, the proposed approach provides the same results
as the standard ThermalNoiseRemoval module in SNAP.
Therefore, these observables are not analyzed in this study.

II. METHODOLOGY

A. Noisy Ĉ2 Matrix

For a given SLC XX–XY IW S1 image (with {X,Y} =
{H, V } representing the horizontal/vertical basis), radiomet-
ric calibration allows obtaining the XX and XY complex
backscattering amplitudes, affected by thermal noise, Sn

XX
and Sn

XY

Sn
XX = |Sn

XX|e jφn
XX, |Sn

XY|e jφn
XY (1)

where φn
XX and φn

XY denote the noisy XX and XY phase,
respectively. Therefore, the noisy estimator of the wave
coherency matrix, Ĉ2

n
, is

Ĉ2
n =

[ �|Sn
XX|2� �Sn

XX Sn∗
XY�

�Sn
XY Sn∗

XX� �|Sn
XY|2�

]
(2)

with �·� denoting spatial averaging. Accordingly, the noisy
estimators of H2, α2, and A2 are derived from the

eigendecomposition of Ĉ2
n

as [3]

Ĥ2
n = −

2∑
i=1

pi log2(pi), with pi = λ̂i
n

λ̂1
n + λ̂2

n

α̂2
n = p1α̂1

n + p2

(μ

2
− α̂1

n
)
, with α̂1

n = cos−1
(|ê1

n|)
Â2

n = λ̂1
n − λ̂2

n

λ̂1
n + λ̂2

n . (3)

In (3), λ̂1
n

and λ̂2
n

are the Ĉ2
n

eigenvalues and ê1
n is the

first element of the eigenvector associated with the largest
eigenvalue.

B. Noise-Free Ĉ2 Matrix

To obtain the noise-free estimator of the wave coherency

matrix, referred to as Ĉ2
nf

, we propose a procedure consisting
of the following steps.

1) Radiometric Calibration of the Noisy Complex Backscat-
tering Amplitudes: Complex data are radiometrically
calibrated to obtain Sn

XX and Sn
XY.

2) Thermal Noise Removal on the Channel Intensities: In
parallel, the digital numbers (DNs) associated with the
noisy SLC data are used to obtain the intensity at the XX
and the XY channels. Then, ThermalNoiseRemoval is
applied to generate the noise-free intensity data. Finally,
after radiometric calibration, the noise-free single-look
backscattering coefficients, denoted with σ 0,nf

XX and σ 0,nf
XY ,

are obtained.
3) Thermal Noise Removal on the Complex Backscatter-

ing Amplitudes: The noise-free complex backscattering
amplitudes, Snf

XX and Snf
XY, are obtained from Sn

XX and
Sn

XY, using σ 0,nf
XX and σ 0,nf

XY to apply the noise correction

Snf
XX =

√
σ 0,nf

XX e jφn
XX, Snf

XY =
√

σ 0,nf
XY e jφn

XY . (4)

In summary, the amplitude is taken from the square root of
the noise-free backscattering coefficient, whereas the phase
is retained. Here, we point out that while thermal noise does
affect the phase of the polarimetric channels, the noise vectors
are provided for intensity only. This is reasonable, as it is
common in the literature to assume that the noise at the
XX channel is uncorrelated from the noise at XY channel.
Hence, since the real and the imaginary parts of each SLC
channel are also assumed to be uncorrelated, this leads to
uniformly distributed random phases at the SLC level (where
our algorithm works). Therefore, (4) will result in correcting
the real and imaginary parts of the products between the XX
and XY channels, to ensure a rank-1 PSD matrix.

Then, the noise-free estimator of the wave covariance matrix
is

Ĉ2
nf =

[ �|Snf
XX|2� �Snf

XX Snf∗
XY�

�Snf
XY Snf∗

XX� �|Snf
XY|2�

]
. (5)

Finally, the eigendecomposition of Ĉ2
nf

provides Ĥ2
nf

, α̂2
nf

,

and Â2
nf

.
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Fig. 1. Sketch of the processing graph implemented in SNAP.

C. Noise-Induced Offsets in the
Eigendecomposition Parameters

The presence of thermal noise in the matrix Ĉ2
n

induces
an offset in any polarimetric-based variable, including the
eigendecomposition parameters. In such a case, these offsets
are

�Ĥ2 = Ĥ2
n − Ĥ2

nf

�α̂2 = α̂2
n − α̂2

nf

� Â2 =
∣∣∣ Â2

n − Â2
nf
∣∣∣. (6)

Then, since Ĉ2
n

is characterized by higher depolarization,
we expect, on the average, �Ĥ2 > 0, �α̂2> 0◦, and � Â2 > 0.

D. Implementation in SNAP

The proposed approach can be implemented in SNAP,
using the processing graph (.xml file) shown in Fig. 1
(obtained with the GraphBuilder tool). Such a graph
is provided in the GitHub repository available online at
[https://github.com/LucioMascolo/Noise-free-C2-graph].

Initially, for a given SLC XX–XY IW S1 image, the Apply-
Orbit-File (which allows applying the precise orbit file of
the image) and the TOPSAR-Split (which allows selecting
the subswath and the bursts of interest) modules are applied.
Then, the processing chain splits into two branches. In the
upper branch, complex data are radiometrically calibrated
(Calibration module) and then debursted (TOPSAR-Deburst
module), in order to obtain the real and the imaginary parts
of the noisy complex backscattering amplitudes. In the lower
branch, the ThermalNoiseRemoval module is applied to
remove noise from the channel intensities. The output products
are radiometrically calibrated and then debursted, in order
to obtain the single-look backscattering coefficients σ 0,nf

XX and
σ 0,nf

XY . The resulting products of these two branches are merged
through the BandMerge operator and, then, optionally the
Subset operator is applied, in order to extract only an excerpt
of the imaged scene. As a third step, (4) is applied using the
BandMaths operator: BandMaths and BandMaths(2) pro-
vide the real and imaginary parts of Snf

XX and BandMaths(3)
and BandMaths(4) provide the real and imaginary parts of
Snf

XY.
These output products are then merged to serve as input

for the Polarimetric-Matrices module, where SNAP creates

a single look 2 × 2 wave coherency matrix. Finally, Ĉ2
nf

is
obtained with the Multilook module and then saved as image
product file (Write operator).

III. EXPERIMENTS

A. Test Site and Data Processing

The proposed noise removal method is applied on an
agricultural test site, located near Seville, Spain, where rice
is the main crop. This area has been considered in previous
literature studies, e.g., in [9] for crop-type mapping using
S1 interferometric coherence data. Apart from rice and other
crops, different land-cover types are present, including the
Guadalquivir river, forests, and urban areas.

The SAR data consist of a time series with 32 SLC dual-
polarization VH–VV IW S1 images, collected by both S1A
and S1B sensors (i.e., six-day revisit time, with relative orbit:
74, ascending pass), acquired from May 28 to November 30.
Such a time series is processed in SNAP version 7, where
two processing chains are implemented, both using the batch
processing module. The first chain is aimed at obtaining

Ĉ2
nf

, by applying the processing graph in Fig. 1. The area
of interest is covered by subswath IW1, which is selected in
the TOPSAR-Split module, along with the bursts (bursts 3–5
for S1A and bursts 7–9 for S1B). In this case, the Subset
operator is used to select only a region of interest (ROI)
from the debursted data. After noise correction, the noise-
free matrix Ĉ2

nf
is estimated by a 4 × 1 (range × azimuth)

multilook, which provides a square pixel on the ground of
about 15 m. Then, further processing is applied: 1) the
intensity-driven adaptive-neighborhood (IDAN) speckle filter

[10] is applied on each Ĉ2
nf

matrix (setting number of looks

= 1 and adaptive neighborhood size = 11) and 2) each Ĉ2
nf

matrix is geocoded, resampling the output products at 10-m

pixel spacing. As a final step, the geocoded Ĉ2
nf

matrices
are coregistered by using the Create Stack module, to have
them in the same geographical grid. In Fig. 2(a), a Google
Earth picture of the test site is shown, with the extent of the
extracted ROI highlighted in white. Fig. 2(b) shows a false-
color RGB composite, with the Red, Green, and Blue channels

associated with Ĥ2
nf

collected on June 15, August 14, and
October 1, respectively. The second processing chain consists
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Fig. 2. (a) Google Earth picture of the Seville test site, where the excerpt of
the S1 scene is highlighted in white. The polygons corresponding to the water,
rice, forest, and urban ROIs are also visible. (b) False-color RGB composite

obtained from the Ĥ2
nf

time series, where the Red, the Green, and the Blue
channel are associated with the images collected on June 15, August 14, and
October 1, respectively.

of the “classical” estimation approach, aimed at obtaining the
time series of the noisy Ĉ2

n
matrices. The same settings for

the multilook, speckle filtering, and geocoding steps are used,
but thermal noise removal is not performed.

B. Impact of Thermal Noise on Ĥ2, α̂2, and Â2

In order to analyze the influence of thermal noise on the
estimation of the eigendecomposition parameters, four ROIs,
corresponding to different land-cover types, are considered:
an excerpt of the Guadalquivir river, a rice field, a forest area,
and an urban area (an excerpt of the town of Isla Mayor).
The polygons of these ROIs are overlaid on the Google Earth

picture of Fig. 2(a). For each land-cover class, Ĥ2
nf

, α̂2
nf

, and

Â2
nf

are estimated from Ĉ2
nf

, whereas Ĥ2
n
, α̂2

n
, and Â2

n
are

estimated from Ĉ2
n
. Then, (6) is applied to obtain �Ĥ2, �α̂2,

and � Â2. The average values of Ĥ2
nf

, α̂2
nf

and Â2
nf

are shown
in Fig. 3(a), (c), and (e), respectively, while the average �Ĥ2,
�α̂2, and � Â2 values are shown in Fig. 3(b), (d), and (f),
respectively. All the parameters are plotted against the Day
of the Year (DoY).

The behavior of the estimated eigendecomposition parame-
ters is the one expected for these land-cover types. For the

river and the rice classes, the large dynamic range of Ĥ2
nf

,

α̂2
nf

, and Â2
nf

induces large temporal variations in the offsets.
In the case of the river, the polarimetric parameters depend
on the state of the water surface, which is driven by wind

conditions, river’s currents, etc. Regarding rice, Ĥ2
nf

, α̂2
nf

,

and Â2
nf

vary according to its phenological stages. It can be
noted that when weak depolarization is experienced, i.e., for
the river in most of the cases and for the rice field at the
beginning of the growing season (between DoY 154 and
DoY 190), the offsets exhibit larger values. �Ĥ2 is ∼ 0.1,
while �α̂2 (� Â2) ranges between ∼ 3◦ and ∼ 5◦(between
∼ 0.05 and ∼ 0.007). However, while it is easier to relate
�Ĥ2 to changes in Ĥ2

nf
, it is hard to recognize a clear trend

in �α̂2 and � Â2. On the other hand, when moderate-to-high

Fig. 3. (a), (c), and (e) Evolution of Ĥ2
nf

, α̂2
nf

and Â2
nf

for each land-cover
type, respectively. (b), (d), and (f) Evolution of the noise-induced offsets.

depolarization is in place, the offsets are lower, indicating a
less significant impact of thermal noise. For the river, this
occurs at some acquisition dates, e.g., at DoY 232 and DoY
244, where �Ĥ2 is ∼ 0.01, �α̂2 is ∼1◦, and � Â2 is ∼ 0.04
For the rice field, higher depolarization is observed as plants
develop, from DoY 202 onward. Accordingly, the lower �Ĥ2,
�α̂2, and � Â2 values range from ∼ 0.02 to ∼ 0.05, from
∼ 1.5◦ to ∼ 3◦ , and from ∼ 0.03 to ∼ 0.05, respectively.

Regarding the forest and urban area, a moderate-to-high
depolarization, stable along time, is observed, resulting in a
low impact of thermal noise in the estimation. Accordingly,
the low �Ĥ2, �α̂2, and � Â2 values are stable around ∼
0.02, ∼1◦, and ∼0.025, respectively. Moreover, the apparent
sawtooth behavior, more pronounced for these two classes,
is likely due to the difference between the S1A and S1B
backscattering coefficients and noise levels [11].

C. Performance Assessment With MC Simulations
The performance of the proposed approach is evaluated

by implementing, for each land-cover type, MC simulations,
using the procedure proposed in [12]. For these simulations,

the Ĉ2
nf

matrix relevant to the S1 acquisition on July 21 (DoY
202) is used.

The core idea is to assume that, for a large number of looks

(NL ), Ĉ2
nf

represents the true wave coherency matrix, C2;

Ĥ2
nf

, α̂2
nf

, and Â2
nf

represent the true parameters, H2, α2,
and A2. This is in line with the analysis carried out in [13].

The first MC simulation is aimed at simulating C2. For

each land-cover ROI, Ĉ2
nf

is averaged over all the pixels.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 05,2021 at 17:15:36 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MASCOLO et al.: THERMAL NOISE REMOVAL FROM POLARIMETRIC SENTINEL-1 DATA 5

TABLE I

RMSE OF THE NOISY ESTIMATORS FOR EACH LAND-COVER CLASS

TABLE II

RMSE OF THE NOISE-FREE ESTIMATORS FOR EACH LAND-COVER CLASS

This average matrix is used as an input to obtain C2, setting
NL = 10 000. Finally, the eigendecomposition of C2 provides
the true H2, α2, and A2. Then, in order to simulate, say
NM , realizations of the noisy and noise-free estimators, NM

MC simulations (with NM = 10 000) are implemented, using
C2 as an input. At each iteration, the “classical” estimation
approach, i.e., Ĉ2

n
, is first simulated. The VH and VV noise

intensities (obtained by subtracting the single-look noise-free
backscattering coefficients from the noisy ones) are added
on the simulated true complex scattering amplitudes, thus
simulating the noisy SLC data. The latter allows obtaining
Ĉ2

n
, from which Ĥ2

n
, α̂2

n
, and Â2

n
are derived. Then,

the proposed approach is applied to remove thermal noise from

the simulated noisy SLC data. After noise correction, Ĉ2
nf

is

obtained, along with Ĥ2
nf

, α̂2
nf

, and Â2
nf

.
Finally, the performances of these estimators are evaluated

by the root mean square error (RMSE)

RMSE
(
θ̂
)

=
√

var
(
θ̂
)

+ b2 (7)

where θ̂ is an estimator of the true parameter θ , var(·) denotes
the variance of an estimator, and b = E(θ̂ ) − θ is the bias,
with E(·) denoting statistical expectation.

For each land-cover type, the RMSE for the noisy and
noise-free estimators are listed in Tables I and II, respectively.
By comparing these two tables, one can clearly see that, for
all the classes, the estimation of H2, α2, and A2 is improved
when the proposed noise removal approach is applied. For
H2 and A2, the difference, in terms of RMSE, between the
noise-free estimators and the noisy ones is: three orders of
magnitude for the river class, ∼2 orders of magnitude for
both rice and forest class, and one order of magnitude for the
urban class. In the case of α2, such differences are: almost two
orders of magnitude for the river class, more than one order
of magnitude for rice class, one order of magnitude for the
forest class, and about one order of magnitude for the urban
class.

IV. CONCLUSION

For the first time, a method to remove thermal noise from
the C2 matrix, estimated from SLC dual-polarization IW

S1 SAR data, is proposed in this study. Such an approach
exploits SNAP’s ThermalNoiseRemoval module and provides

Ĉ2
nf

in a straightforward and effective way. As a further
novelty, we provide a processing graph, which allows imple-
menting the approach using only SNAP. This represents a
significant advantage for a wide range of SNAP users.

The proposed method is applied on a dense time series of
SLC dual-polarization VH–VV IW S1 SAR data and tested
on different land-cover types, i.e., river, rice, forest, and urban
areas. The time series of �Ĥ2, �α̂2, and � Â2 for these classes
allows evaluating the impact of thermal noise on the estimation
of the eigendecomposition parameters.

Furthermore, for each class, we carried out MC simula-
tions to compare the performances of the noisy estimators,
i.e., the ones obtained from the “classical” C2 estimation,
with the noise-free ones. The resulting RMSEs show that the
proposed noise removal approach improves the estimation of
the eigendecomposition parameters for the considered land-
cover classes.

In conclusion, the proposed approach allows improv-
ing polarimetric analysis undertaken with dual-polarization
S1 data, and hence, it is expected to be important for final
applications, including the ones in [4]–[6].
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