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Living on the edge: Topology, electrostatics, and disorder
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We address the coexistence of massless and massive topological edge states at the interface between two
materials with different topological phases. We modify the well-known Bernevig-Hughes-Zhang model to
introduce a smooth function describing the band inversion and the band bending due to electrostatic effects
between the bulk of the quantum well and the vacuum. Within this minimal model we identify distinct parameter
sets that can lead to the coexistence of the two types of edge states and that determine their number and
characteristics. We propose several experimental setups that could demonstrate their presence in two-dimensional
topological systems, as well as ways to regulate or tune the contribution of the massive edge states to the
conductance of associated electronic devices. Our results suggest that such states may also be present in novel
two-dimensional van der Waals topological materials.
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I. INTRODUCTION

The study of edge states, or surface states for three-
dimensional (3D) materials, goes back to the 1930s, when
Tamm and Shockley studied bound states at the surface of a
periodic lattice structure [1,2]. The discovery of the quantized
transversal conductance in the integer quantum Hall effect
(IQHE) in the early 1980s [3] revealed the existence of a new
type of edge state. The measured quantized conductance is
due to solely edge conduction, as it was realized only later
[4,5]. Contrary to classical edge states, the conducting edge
states in the IQHE result from properties of the bulk of the
system, namely, its Landau levels; it turned out this was one
of the first example of topological edge states [6]. Not only are
these states robust to disorder, but it is even desirable to invoke
disorder for understanding why it is relatively easy to measure
the conductance plateaus. Moreover, to capture the details of
the spatial distribution and interactions between edge states, a
proper description of the electrostatic potential at the edge is
needed [7,8].

It was thought for a long time that one necessarily needed
the breaking of time-reversal symmetry (TRS) in order to get
quantized conduction at the sample edges. With the theoretical
discovery of the topological insulator (TI), it was realized that
different symmetry classes could also give rise to systems
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with edge conduction in the absence of an external magnetic
field (for reviews see [9–12]). The first type of nontrivial
system that was proposed was one giving rise to the quantum
spin Hall effect (QSHE) [13,14]. In particular, this effect was
predicted to be present in 2D mercury telluride quantum wells
(QWs) grown on cadmium telluride substrates (HgTe/CdTe)
[15] (for a recent review see Ref. [16]). Band-gap inversion
in the bulk gives rise to two spin-locked counterpropagating
modes at the edges with linear dispersion (massless). These
edge modes are protected from disorder by TRS, and the
2e2/h two-terminal conductance plateau extends throughout
the entire gap. Here no electrostatics are invoked to un-
derstand their spatial distribution at the edge. The expected
2e2/h quantized conductance was indeed measured about a
year after the proposal [17]. Quantum wells of HgTe/CdTe
became one of the standard platforms for investigating the
QSHE in 2D systems; nonlocal dissipationless transport has
been measured [18], the helicity of the edge channels was
demonstrated [19], the edge currents were visualized [20,21],
and the interactions between edge states were recently probed
[22,23]. Besides in 2D HgTe QWs, experimental signatures
of edge states in the QSH regime have also been predicted
and observed in other platforms such as GaAs/InSb QWs
[24–27] and in monolayer 1T ′ phases of transition metal
dichalcogenide crystals of WTe2 and WSe2 [28–31], bis-
muthene [32–34], and other layered materials [35].

Still, observation of conductance quantization in the QSHE
is never as precise as is observed in the IQHE, and even in
small and clean samples conductance is always fluctuating
substantially, up to 10% or 20% of 2e2/h. Besides being due to
residual bulk or surface conduction, several other mechanisms
have been proposed to explain the origin of these fluctuations
[36–42]. The most important source of fluctuations is
thought to be disorder, or to be specific, disordered charge
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puddles in topological quantum wells, for example,
HgTe/CdTe. Although QSH edge states are in principle
protected from disorder, disordered charge puddles can
be a possible source of decoherence. The electrons, while
wandering around in the puddle, may undergo inelastic
scattering, losing coherence and potentially scattering back
into a reverse-direction edge state, which would result in
lower than 2e2/h edge conduction [40–42]. In the following,
we will focus on a mechanism that can induce fluctuations
above 2e2/h, namely, the coexistence of additional edge
states. Such Shockley-type edge states can arise from
electrostatic interface effects, such as band pinning or band
bending, and the presence or absence of a topological edge
state is not a requirement. In contrast to the linearly dispersive
(massless) topological states, such states have a paraboliclike
dispersion relation and so are said to be massive edge (ME)
states. Besides electrostatic boundary effects, another possible
origin of ME states at topological interfaces, discovered by
Volkov and Pankratov [43], is the smooth (instead of abrupt)
band inversion at the edge. States resulting from this effect
are called Volkov-Pankratov (VP) states in the literature,
and these states are of topological origin, in the sense that
they are the result of the lifting of band inversion between
a topological and a trivial material. These VP states always
accompany a massless topologically protected state, although
in the original paper by Volkov and Pankratov the proposed
band inversion was associated with a gradient in the doping
percentage of IV–VI semiconductors [44]. Recently, VP states
have attracted attention again, when they were observed to
reside in 3D strained HgTe systems [45–47].

Here we investigate the presence of ME states of topo-
logical and/or electrostatic origin, in 2D topological systems,
within the Bernevig-Hughes-Zhang (BHZ) toy model. Within
this model, we implement smooth band inversion and elec-
trostatic edge effects, in order to investigate the behavior of
ME states in a generic setting. We also add disorder to the
model, thereby demonstrating the different response to dis-
order of unprotected and topologically protected edge states.
We propose four experiments that could detect ME states
and strategies for tuning their contributions to conductance.
Those contributions could be tuned off, if undesired when
only clean topological transport is aimed for, or used for
selective switching in multivalued logic devices [48].

In Sec. II we will discuss the case of edge states due to
electrostatics in normal systems and how the situation changes
in topologically nontrivial systems. In Sec. III we will start
by introducing the BHZ model (Sec. III A) and then discuss
how we adapt the model in order to include interface effects
(Sec. III B). We will study the spectral properties, both charge
and spin degrees of freedom (Sec. III C). We will then add
disorder to the model, before continuing to investigate the
transport properties (Sec. III D). In Sec. IV we will propose
four different experimental setups for detecting massive edge
states in 2D devices. We summarize in Sec. V.

II. ELECTROSTATICS NEAR DEVICE EDGES

The fact that many semiconductors have low densities
of free carriers results in long space-charge regions. This
again leads to bending of the band structure at the interface,

particularly when an electric field is applied to the system by
means of a gate electrode in a field-effect transistor geometry,
in which case pinning of the Fermi level at the interface can
substantially enhance the bending. Depending on the sign and
magnitude of the band bending, the interface layer is classified
as a depletion, accumulation, or inversion layer [49]. If one
would like to know the precise spatial variation of the bands
at the interface of a specific material, one should solve the
Poisson equation, together with the Schrödinger equation if
quantum effects are important, which is generally the case for
strong band bending. These two equations should be solved
self-consistently, taking into account the specific details of
the material and imposing overall charge neutrality. Without
going into such detail, we can take a look at a very general
simple case. If one wants to know the precise spatial variation
V (y) of the band bending near the interface, one must solve
Poisson’s equation

d2V (y)

dy2
= −ρ(y)

ε0εm
, (1)

where ρ(y) is the density of the charge per unit area (or
unit volume in three dimensions) and εm(0) is the dielectric
constant of the material (vacuum). Because the band structure
does not remain flat near the interface, a quantum-well-like
potential landscapes appears, creating room for states close to
the interface. These edge states carry a certain charge, which
is equilibrated behind the interface over a certain distance,
usually called the interface length. For moderately strong
bending such that quantum effects can be neglected, this slab
of material at the interface is called the depletion layer, and
one can affirm that the density of the charge is approximately
constant in space, i.e., assuming ρ(y) ∝ eND, where ND is the
density of the charges. These assumptions result in a band
bending that is quadratic in space

V (y) = − eND

ε0εm
(y − yint )

2, (2)

where yint is the interface length over which the bending
occurs. This length scale depends on the dopant density of the
material and on how strong the bending is. For strong enough
bending, and depending on whether the bending is up or down,
edge states might appear either below the conduction band
(CB) or above the valence band (VB) [49].

The solution to Poisson’s equation at interfaces is known
for many different settings, with more or less intricate so-
lutions. However, in topological insulators there is another
ingredient, which is the presence of a metallic state near the
interface, namely, the topological edge state. This topological
metallic edge state will introduce different screening effects,
likely more pronounced once a gate potential is applied to the
system. In order to calculate the exact spatial electron density,
one has to solve the Poisson equation and the Schrödinger
equation self-consistently, given all of the systems ingredi-
ents. This is an arduous task, moreover, because in many
realistic systems the charge neutrality point of this state can
be buried in the valence band [50]. Doing this calculation,
for example, for HgTe or InAs/GaSb QWs, goes beyond the
scope of this work. However, in order to study the general
physical aspects of ME states, it turns out the exact details
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of the interface function are of minor importance, as long as
some general features are correctly taken into account [46].

III. EDGE STATES IN THE TOPOLOGICAL BHZ MODEL

The QSHE in HgTe/CdTe and InAs/GaSb QW systems is
usually addressed within an eight-band k · p model [14,24].
It was shown that for a layer of HgTe larger than a critical
thickness, the QW undergoes a topological phase transition
resulting in spin-locked in-gap edge states [15]. A similarly
topological phase transition was predicted in the InAs/GaSb
QW system induced by the effect of an electrostatic gate [24].
In addressing transport properties, however, this k · p model is
not very convenient because it demands substantial numerical
resources. The BHZ model is a reduction of the k · p theory
which contains only the four bands closest to the Fermi
energy while keeping the most important physical aspects.
This model is both accurate and convenient for studying
in-gap spectral and transport properties. It can be studied in
the trivial regime or in the topological regime, depending on
the sign of the gap parameter [15,51]. In the following, we
summarize the main properties of the BHZ model. We then
present a modification of it that allows for investigating the
consequences of interface effects, namely, the emergence of
ME states.

A. Bare BHZ model

The standard four-band BHZ model in spin and band
subspace reads

H =
(

h(k) 0
0 h∗(−k)

)
, (3)

with the spin-subblock Hamiltonians

h(k) =
(

(M + C) − (B + D)k2 Ak+
Ak− (C − M ) + (B + D)k2

)
,

(4)

where A, B, C, D, and M are material-dependent parameters,

k =
√

k2
x + k2

y , and k± = kx ± iky. The Hamiltonian in (3) is

expressed in the basis

{|e↑〉, |h↑〉, |e↓〉, |h↓〉},
where e refers to electrons in the CB and h the VB and ↑
and ↓ are the spin eigenstates along the z direction. This
model gives rise to a topologically nontrivial system when
the following condition is fulfilled: 0 < M/2B < 2 [51]. The
numerical results presented in the main text are obtained
via the following set of parameters typical for HgTe/CdTe
QWs: A = 0.3654 nm eV, B = −0.686 nm2 eV, D = −0.512
nm2 eV, and a gap parameter in the topological regime of
M = −10 meV, which is half the gap width. This parameter
set gives rise to a band structure like that depicted in Fig. 2(a).
The gap is 20 meV (=2|M|), as ideally expected in HgTe QWs
at zero temperature. In the gap, between the conduction and
the valence bands, lie two topological modes with a linear
dispersion. The crossing point lies just under the conduction
band. In most HgTe structures, one would expect a flatter
valence band around the � point, with a camelback shape, and
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FIG. 1. (a) Sketch of the system and (b) lateral structure of the
Fermi energy (orange line) and energy band onset (blue line) with
band bending for k = 0. We used here the following parameters:
Cint = Cext = 10 meV, Mint = −10 meV, and Mext = 20 meV.

we should underline again that the BHZ model is constructed
for reflecting the in-gap properties of 2D materials [15,50,52]
and therefore should not be used to study the bulk properties
of a system. However, as we are interested here in studying
the in-gap (edge) properties, the BHZ model provides a good
framework. A natural length scale that emerges from this
model is ξ = h̄vF/|M|, where vF is the Fermi velocity. In
HgTe/CdTe QWs, with a bulk Fermi velocity of vF = 5 × 105

m s−1 and M = −0.01 eV, this gives ξ = 200 nm. We will
later use this length scale when deciding on the interface
length of our system.

B. Extended BHZ model: Interface effects

We will modify the bare BHZ model in order to make
the band inversion and the electrostatic edge potential smooth
and progressive. Therefore, in what follows, the parameters
C and M will be functions of the lateral position y [see
Fig. 1(b)]. Here M(y) will account for the smooth inversion
of the topological gap and C(y) will account for band bending
near the device edges. We will include these effects by writing
the Fermi energy and the gap parameter of the system as a
function of the form

F (y) = Fint + Fext

2

+ Fint − Fext

2

[
tanh

(y

�

)
− tanh

(
y − W

�

)
− 1

]
,

(5)

where Fint (ext) = Mint (ext) (Cint (ext)) is the gap parameter (Fermi
level) inside (outside) the system and � is the interface length.
The choice of the form of this function appears natural, fulfills
all basic requirements, and corresponds to a regular choice
taken in the literature [46,49]. We will not justify it by means
of self-consistent calculations of the electrostatic landscape
near the edge, which would be an extensive investigation
by itself. However, changing this transition function to a
different smooth function, such as F (y/�) ∝ (y/�)2 or F (y) ∝
tanh[(y/�)2], does not qualitatively change the results, which
gives this choice a solid basis for this study.

In Ref. [46] Tchoumakov et al. analytically solved a similar
model for a 3D TI with these types of boundary conditions.
However, because the BHZ model is quadratic in momentum
it cannot be solved analytically with the same technique, and
we therefore implemented it numerically using KWANT [53].
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FIG. 2. Bulk bands (green), VP states (yellow), and topological
edge states (red). The bare BHZ model is shown for HgTe pa-
rameters, with (a) C(y) = C = 0 and M(y) = M = −10 meV and
(b) smooth band inversion with Mint = −10 meV and Mext = 10 meV
with the interface length � = 200 nm and C(y) = 0. Also shown is
sharp band inversion M(y) = M = −10 meV, as in the bare model,
and Fermi pinning near the edges with � = 200 nm and (c) Cint =
−20 meV and Cext = 20 meV and (d) Cint = 10 meV and Cext =
−10 meV.

C. Spectral properties

In order to obtain ME states in addition to the topologi-
cal ones, one can change from an abrupt band inversion to
a smooth band inversion, by taking Mint = −10 meV and
Mext = 10 meV and choosing an adequate interface length,
which is done by taking � � ξ in order to have a smooth
gap inversion. The longer the interface length is, the more
ME states can be hosted near the interface. We here choose
� = 200 nm, for which we get multiple well-detached ME
states, which emerge both above the VB and under the
CB [see Fig. 2(b)]. In this situation the ME states are
also called Volkov-Pankratov states; they are of topologi-
cal origin and always appear accompanying a topological
state.

Another strategy for obtaining states at the edge is apply-
ing a local potential near the edge, which would physically
correspond to a band bending scenario. By adding a local
edge potential to the outermost lattice sites in the BHZ
system, the crossing point of the topological states can be
moved up or down, as was already shown in Ref. [50], and
edge states may appear for strong enough potentials. Here
we implement a physically more natural boundary potential
given in Eq. (5), which has the same effect of moving the
crossing point down (or up). This results in band structures
as depicted in Figs. 2(c) and 2(d) if the sign of the potential is,
respectively, negative or positive. In Fig. 2(c) the bending of
the Fermi energy is positive, bending towards the conduction

band, and conversely, in Fig. 2(d), the Fermi energy bends
towards the valence band. So depending on the sign of the
bending, the ME states can hang under the CB [Fig. 2(c)]
or lie above the VB [Fig. 2(d)]. Similar results were also
obtained for the case of 3D TI [46]. The band structure at
the edge forms a sort of triangular confinement potential at
the boundaries of the system; the ME states can be seen as
states arising from this confinement, each of them presenting
a spin-split spectrum due to spin-orbit interactions, much the
same as what was predicted for quantum wires with spin-orbit
interaction [54–57].

For topological QWs exceeding a specific thickness, k · p
calculations hint at a burying of the crossing point of the
topological mode inside the camelback of the valence band
[50,52]. Within the BHZ model this configuration is recovered
in the case of Fig. 2(c), and we will from now concentrate on
this sort of configuration. The bending of the bands in this
way, here implemented as a smooth on-site potential at the
edge, not only accounts for finite-size effects, but can also
reproduce interface electrostatic effects, inhomogeneous gat-
ing, electrostatic screening due to the existence of topological
metallic states, or any other interface effects resulting in a
smooth modulation of the bands towards the edge. Indepen-
dently of where it may come from, it is used here to obtain the
physical situation of interest. In addition to the band structure,
we can analyze the local density of state (LDOS), which we
will refer to as ρ(x, y). In KWANT the LDOS is calculated for
an open system, a scattering region connected to source and
drain leads. The states in the scattering region, which is char-
acterized by its scattering matrix, are the result of incoming
modes at a given energy, from a given lead. In a clean system
ρ is translationally invariant along the transport direction [and
so has only a lateral variation ρ(y)] and it is sufficient to
study line cuts, as in Fig. 3(b). Here we have summed over
all modes, coming in from the top (source) lead, at energies
specified in the band structure of Fig. 3(a). This reveals that
the massive states observed in yellow in the band structure
of Fig. 3(a) only have a nonzero weight near the edges. It also
tells us that the topological states exist closest to the edges and
the consecutive ME states spread out away from the edge. This
spatial distribution of the LDOS should be observable in local
probe experiments, such as scanning tunneling spectroscopy
(STS) or scanning gate microscopy (SGM) experiments (cf.
Secs. IV A and IV B). Furthermore, the ME states present an
oscillating behavior along the y direction that is not observed
for the topological one. The origin of the oscillations in the
LDOS can be found in the interference of modes at a fixed
energy E ; these are characterized by different values of the
longitudinal momentum ki

x(E ). We can express the LDOS of
each mode of the system as

ρ(y, E ) =
∑

m

∣∣∣∣∣
∑

i

ψm
[
y, ki

x (E )
]∣∣∣∣∣

2

, (6)

where m is the associated mode index and we sum up over
all the modes with energies smaller than or equal to E . Modes
with a higher energy E oscillate more because they penetrate
further into the bulk region of the QW.

Using the same method as for the LDOS, we can calculate
the spin polarization. As known from the QSHE, the electrons
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FIG. 3. (a) Band structure with smooth band inversion and band pinning, together with (b) the corresponding local density of states at
energies as indicated in the band structure. The blue line shows the LDOS when the system contains only the topological edge states, one on
each edge. For the orange, green, red, and purple lines, one spin-split and doubly degenerate edge mode is added each time, hosting two edge
states at each edge. The brown LDOS line is in the conduction band, giving rise to bulk states. (c) The z-spin-resolved local density of states for
the topological state (blue) and the first ME modes (orange). The gray area is shown in (d), containing the topological mode and consecutively
adding the four ME states, as shown in the band structure of (a). For more details, see the Appendix.

in the topological conduction channels are spin-z polarized
[see Fig. 3(b), blue line]. The polarization is of opposite sign
on opposite edges (upper part of the panel), as expected. The
massive edge states also show polarization with respect to spin
z, which is asymmetric on opposite edges; similarly to the
LDOS, the behavior is oscillatory. For a system containing
the topological state and one massive state on each edge (or-
ange curves) there are two positive oscillations, for a system
containing two massive states at the edge (green lines) there
are three positive oscillations, etc. The expectation values of
the spin-x and spin-y components are zero, as expected. There
is, in the BHZ model, no Rashba or Dresselhaus type of
spin-orbit interaction, because the model does not include any
structural inversion asymmetry. If one were to add structural
inversion asymmetry, one would shift the crossing point away
from the � point, moving it to finite momentum values. The
trivial edge states would also be shifted, but would otherwise
stay unaffected. Due to the Rashba spin-orbit coupling, the
massless and massive edge states would acquire a nonzero
spin component along the y direction. Spin-orbit interaction
effects in a BHZ-type model were discussed in detail in
Ref. [58].

However, one has to take into account the fact that realistic
samples always contain some amount of disorder, and this
might blur the effect somewhat, especially if one has to
deal with charge puddles [16]. However, as we will show in
Sec. IV A, even in the presence of disorder, in STS measure-
ments one should still observe clear signatures of ME states.

D. Transport properties

As we mentioned before, the BHZ model is especially
suited for doing transport calculations. We will start here with
a device with a geometry such as depicted in Fig. 1(a), i.e., a
scattering region connected to a source and a drain lead. The
parameters used in this section are the same as in the preced-
ing section, thus giving us the band structure of Fig. 3(a). By
tuning the position of the Fermi level, simulating what is done
experimentally by applying an overall back-gate potential, one
can scan through the entire band structure, thereby changing

the number of ME bands crossing the Fermi energy and thus
contributing to transport. For the system under investigation
this means that moving the Fermi level from the VB through
the gap and into the CB, we successively add ME states, thus
stepwise increasing the conductance.

Despite the fact that the additional edge states are not
topologically protected, one can expect to observe their pres-
ence in transport measurements. If present, the two-terminal
conductance in the gap will exceed 2e2/h for clean (or short)
enough devices [see Fig. 4(b)]. In the case of a defect-free
sample, transport of ME states is ballistic and one observes
a step each time the Fermi level crosses the energy onset
of a ME state. Starting just above the VB with a 2e2/h
conductance, one would add 4e2/h at each opening of a ME
state, as the two spin-split bands are doubly degenerate and
run on each edge of the sample.

In a more realistic scenario the presence of disorder will
substantially decrease the contribution of ME states to device
conductance. We implement Anderson-type disorder, which
means we take random on-site energies within an energy
range [−U0/2,U0/2]. How much the contribution of the ME
states decreases depends on both the device channel length
and the disorder strength. Results for 500 × 1000 nm2 sys-
tems are shown in Fig. 4(b). In the weak-disorder limit one
should still observe steps in the conductance curve as one
sweeps the Fermi level, such as for U0 = 50 − 100 meV. For
systems with strong disorder or for sufficiently long channels,
the conductivity decreases to 2e2/h in the gap, meaning the
only conducting state left in the system is the topologically
protected one. Here we have considered a wide enough sample
and uncorrelated disorder so that percolation from one edge
to the other across the bulk does not occur, even for strong
disorder. Therefore, in our model, conduction cannot decrease
below 2e2/h. In narrow devices, strong Anderson disorder
can decrease the conductance below 2e2/h, due to percolation
between the two opposite conducting edges via favorable
energy paths [59]. If one were to implement correlated disor-
der, charge puddles could form. Then the conductance could
decrease below 2e2/h due to percolation between the lateral
edges via charge puddles throughout the entire device or due
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Substrate

(a)

Cap layer
2D-TI layer

Buffer layer

FIG. 4. Conductance as a function of Fermi energy for 500 × 1000 nm2 systems, for a material with the band structure of Fig. 3(a).
The black curve is for a clean system (no disorder) and the lines in purple are for successively stronger disorder, averaged over 80 disorder
configurations.

to trapping of particles in the puddles resulting in inelastic
scattering.

In Fig. 4(b) we observe a shifting of the energy of the
conduction band opening as we increase the disorder strength.
This is associated with a renormalization of the gap parameter
and the Fermi energy due to the presence of the disorder,
which was extensively discussed in Refs. [59–61] in the
context of the topological Anderson insulator. The renormal-
ization of the gap parameter Mint → Mint + δM in the case
of Anderson on-site energy disorder proportional to σ0 is
negative δM < 0, thereby increasing the effective inverted
band gap.

While hints of the existence of ME states can be extracted
from transport measurements, we discuss in the next section
other experimental approaches that could provide a more
direct observation and characterization of the properties of
ME states. On the one hand, STS spatial maps directly address
the distribution of the system LDOS and can also be used to
obtain the dispersion relations of the states through quasipar-
ticle scattering, as shown in Sec. IV A. On the other hand, by
exploring the effect of a movable local gate in the transport
measurements, we can distinguish between conduction from
bulk or edge states by using a so-called SGM, as shown in
Sec. IV B.

IV. PROPOSALS FOR EXPERIMENTAL
DETECTION AND TUNING

A. Local density of states mapped by scanning
tunneling spectroscopy

In the analysis of the local density of states in Sec. III C,
we have seen that it is possible to have several ME states in
the system. The exact number will depend on the details of
the system, namely, on how strong the band bending is and
how long the interface length is. The number of ME states
that will be filled depends on the position of the Fermi energy.
Experimentally, this can be set by the potential applied to an
overall back-gate electrode.

Assuming only elastic tunneling of electrons between the
tip and sample, STS allows one to directly map the LDOS
of a sample. The applied bias voltage between the tip and
sample Vbias determines the energy of electrons injected into
the sample eVbias and the measured differential tunneling
conductance at a given value of Vbias is directly proportional

to the LDOS at EF + eVbias [62]. Hence maps of differential
conductance taken at a given Vbias are effectively spatial maps
of the LDOS, at a given energy EF + eVbias. One could also
address the LDOS at different energies by mapping the LDOS
at near-zero Vbias and use a back-gate potential VBG to tune
the Fermi energy through the gap, producing maps at energies
EF(VBG).

In the example of certain HgTe QWs as in Fig. 3(a),
moving from the VB, through the gap, and into the CB
increases the number of ME states contributing to the LDOS.
Those states spread out away from the edge as more and more
are added. In order to demonstrate the presence of additional
dispersive modes in a 2D TI, one can therefore monitor the
changes of the spatial distribution of the LDOS as a function
of energy via STS maps. A prerequisite for observing the ME
states in transport experiments is that the system is not too
dirty, as disorder will eventually localize the unprotected edge
states. However, as can be seen in Fig. 5, even in the presence
of disorder the widening of the edge areas when increasing the
number of available ME states can clearly be observed in the
LDOS maps.

In Fig. 5 we note that the topological state is homogeneous
in the x direction, even in the presence of disorder. In contrast,
the ME states display standing-wave-type interference pat-
terns, for which the period depends on the energy at which the
LDOS is probed. Measuring the relation between the energy
and the interference period, one can extract the dispersion
relation of the one quasi-1D edge state (for a related example
in another quasi-1D system, see Refs. [63,64]). A parabolic
dispersion relation from quantum interference measurements
would be a smoking gun for the existence of ME states.
Quantum interference experiments have been used to probe
the electronic structure of other topological systems [65]. At
low energies, e.g., in Figs. 3(b)–3(d), the interference patterns
are typical for quasi-1D modes, whereas Fig. 3(e) shows more
typical interference patterns for a two-dimensional electron
gas (2DEG) with impurities, as the highest ME state pene-
trates substantially into the bulk.

However, performing scanning tunneling microscopy ex-
periments in buried structures is a rather challenging task.
This phenomenology could be more easily explored in ex-
posed 2DEG systems with an inverted band structure, such
as bismuthene [32–34], the single layers of the 1T ′ of some
transition-metal dichalcogenices [30,31], or other layered
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FIG. 5. Local density of states within the gap for a system with disorder with U0 = 20 meV (upper panels), starting with only the
topological state (left) and including ME states successively, at energies corresponding to the lines in Fig. 3(a). The gradient of the LDOS
(lower panels), which can be calculated after measurement of the LDOS, reveals the pattern of the wave functions, as well as interference
effects due to scattering on impurities.

materials [35]. However, the necessary resolution in energy
might be limited by the small size of the inverted gap, finite-
temperature effects, and substrate interactions, which are yet
more important for single-layer materials.

B. Conductance measurements with scanning gate perturbation

Scanning gate microscopy is a technique especially suited
to spatially mapping scattering in quasi-one-dimensional sys-
tems. In a SGM experiment we monitor the reaction of the
system conductance to the perturbation induced by a local gate
probe. The scanning gate is maneuvered above the sample and
a positive or negative voltage is applied to the tip, experienced
by the system as a locally applied electric field of positive or
negative sign. The tip is typically held rather far away from
the sample, some 10–100 nm. Due to this distance and to the
conical shape of the tip, this typically results in a rather large
region of the sample being subject to the tails of the electric
field distribution. The spatial resolution therefore depends on
the intensity of the response of the conductance of the system
to small changes on electric field.

In the setup we propose here, by perturbing the system
with the tip, one locally shifts the energy level that the sample
area has within the band structure. Locally applying a negative
electric field acts as placing a local barrier in the system, by
lowering the energy of the electrons under the influence of
the tip. On the other hand, a positive tip voltage will locally
increase the energy of the underlying electrons. If we assume
that the Fermi energy of the unperturbed system lies within
the bulk band gap of the topological 2DEG, the action of
the tip can therefore open or close underlying edge modes,
depending on the sign of the tip voltage. If the effective tip size
is comparable to the system length but smaller than the width,
this will result in selective closing, or opening, of the edge
or bulk modes over the entire device length. If the effective
tip size is small compared to the device system length, it will
not result in additional conduction channels for positive tip
voltages, as the new channels will not extend from one end
of the device to the other. However, closing of channels can
still occur, if the tip size is larger than the spatial (lateral)
extent of the edge channel. For very small tip sizes, the system
will see the tip action as an impurity, which will interfere
with open modes but will not cause the complete closing of
channels.

In Fig. 6 we simulate the perturbation effect on the sample
of the electric field created by the tip in the form of a Gaussian
on-site energy potential [see Fig. 6(a)]. Taking into account
the convention E = −eV , where −e is the electron charge,
the positive (negative) on-site energies represent negative
(positive) tip voltages applied in experiment. The Gaussian
potential of the tip is characterized by two parameters, its
maximum height V0 and its half width σ . If the tip is placed
at position (x0, y0) above the device, the on-site potential
function is written as

V (x, y) = V0exp

[
(x − x0)2 + (y − y0)2

2σ 2

]
.

The full width at half maximum is then 2
√

2 ln(2)σ ≈ 2.4σ

[Fig. 6(a)].
The numerical experiment is started by tuning the entire

system so that its chemical potential lies within the gap, for
example, at E = −3 meV, as given by the red line in Fig. 3(a).
The system can then be expected to have a conductance close
to 14e2/h = (2 + 3 × 4)e2/h, as there are three doubly degen-
erate ME states running on each edge. Then a suitable local
electric field for the tip is chosen, which after testing turns out
to be several tens of meV. This is the maximum height of the
Gaussian on-site energy we use for simulating the tip; the half-
width is 50 nm for the simulations of Fig. 6. The simulated tip
is applied at the halfway point of the length of the sample, at
L/2, and is run from the edge, up to the middle of the bulk,
while calculating the resulting two-terminal conductance. As
a negative tip voltage suppresses states lying in the sample
directly under it, conductance should decrease when the tip
lies above open channels. Clearly (see Fig. 6), such channels
lie at the edge, at in-gap energies. In Fig. 6 is can be seen
that stronger tip potentials suppress more of the ME states.
Also, even in a disordered system the features of edge state
suppression should be readily observed.

On the other hand, the application of a positive voltage
to the local probe in our simulations locally increases the
Fermi energy level of the underlying electrons. However,
for small tip sizes this will not open a complete channel
conducting from the source on one side to the drain at the
other side of the device. Therefore, one cannot expect any
increase in conductance. In experiments with real samples the
signatures of scattering induced in topological states due to
charge puddles have been shown using this technique [41] for
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FIG. 6. (a) Cartoon of the experimental SGM setup. (b) Conductance results in a clean system at four different back gates [−18 meV to
−3 meV, blue to red; see the corresponding horizontal cuts in Fig. 3(a)] and tip energies of 10 meV (dashed lines) and 20 meV (solid lines).
(c) Same as (b) but for a 20 meV tip energy compared to results for a weakly disordered system (dotted lines).

devices with large stretches of edge. For shorter devices, we
propose the selective tuning of states in a separate work [66].

An alternative experiment to infer the spatial distribution
of states is the characterization of the spatial distribution
of supercurrents flowing in a Josephson junction with a 2D
TI material as the weak link. For HgTe quantum wells, in
Ref. [67], a certain evolution of the spatial distribution of
current as a function of applied gate voltage can be observed,
which could correspond to the tuning of massive states, but
could also correspond to other inhomogeneous electrostatic
effects, or a combination of both.

C. Selective tuning edge conductance via
dedicated gate electrodes

In this section we propose an experimental design that
allows one to selectively tune the contributions to conductance
of ME states. On the one hand, in the case of systems
with strong disorder this setup will reveal the presence of
additional in-gap ME states and unequivocally distinguish
their contribution to conductance from bulk percolation. On
the other hand, and more interestingly, this setup allows one
to isolate the contribution to conductance of the topological
state from that of the ME extra states, which in most cases is
undesired.

The setup is unsophisticated and technologically feasible,
which makes its realization easily possible. One needs a 2D
QW layer, with a back gate for sweeping the entire sample
through the gap as well as a split top-gate electrode for the

edge and a top-gate electrode for the bulk, both running over
the entire length [see Fig. 7(a)].

In our simulations we fixed the back gate so as to start from
the top of the valence band, with a system containing only
one topological state running at each lateral edge. Once this
is fixed, one sweeps either the edge or the bulk gate through
the energy range of the gap while measuring the two-terminal
conductance.

In case there is anything more in the gap than just the
topological state, one will find the conductance increasing in
the gap while sweeping the edge gate. On the other hand, as
there are no bulk states in the gap, the conductance should stay
at (or close to) the 2e2/h value while sweeping the bulk gate.
By subtracting one from the other, one can more precisely
detect the difference. Even in systems with strong disorder,
by subtracting bulk and edge gate sweeps, one can remove the
disorder contribution to conductance.

This experimental setup would also allow for minimizing
the effects of ME states. By applying edge gates to both
lateral edges and tuning those suitably, one could dispose
of a substantial number of the interface effects as described
above.

D. Quantum capacitance measurements

The capacitance of a device gives us information about
how the electron density increases as we increase the electric
potential applied to the system. It is the ratio of the electronic
charge to the applied electric potential. In nanoscale systems,

(a)

FIG. 7. (a) Experimental setup with local edge and bulk gates. (b) Conductance for a system with a local edge gate and a local bulk gate,
when scanning through the local edge gate or the local bulk gate. The difference between these two measurements clearly shows there is more
than the topological edge state in the gap. (c) Same as (b) but for a disordered system with U0 = 100 meV. In the presence of this disorder the
gap is larger due to the negative renormalization of the gap parameter.
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(a)

FIG. 8. (a) Possible experimental setup (see Ref. [73]). (b) In-gap
density of states for a gap containing only topological bands (dashed
red line) and for a gap containing topological bands (solid red line)
and ME bands (dotted orange line).

besides the classical geometrical capacitance, there is also a
contribution due to the quantum effects that become important
at both small length scales and low temperature. The total
capacitance is then given as

C−1
t = C−1

g + C−1
q , (7)

where C−1
g is the geometrical capacitance and C−1

q is the
quantum capacitance. It can easily be shown that the quantum
capacitance of a system is proportional to the density of
states (DOS) around the electrochemical potential [68,69].
Measuring quantum capacitance is therefore a common tool
in studying electronic properties in the topological phase
[70–72]. Experimental evidence of VP states in 3D TI was
observed in quantum capacitance experiments [45], and recent
experimental reports in 2D HgTe QWs show values of the
quantum capacitance exceeding the value due to the sole pres-
ence of topological edge states [73] [for a typical experimental
setup see Fig. 8(a)]. In the case of a low-temperature system,
we can write express the quantum capacitance as

Cq = −e2
∫ +∞

−∞
dE ρ(E )

(
∂ f

∂E

)
= e2ρ(EF + eV ), (8)

where ρ(EF + eV ) is the DOS at the Fermi energy shifted
by an applied gate potential V . The total capacitance is thus
dominated by the smallest of the geometrical or quantum ca-
pacitance. In the case of a gapped semiconductor the quantum
capacitance in the gap is zero, as the in-gap density of states
is zero. In topological materials, with an in-gap edge state, the
DOS is constant but nonzero in the gap [see Fig. 8(b)].

For a system of length L the 1D contribution of the topo-
logical state to the DOS is given by

ρQSH(E ) = ρQSH = 2L

π h̄vF
, (9)

giving a quantum capacitance of C0
q = 0.19 nF m−1 [74]. If

there are in-gap ME states however, the DOS behaves very
differently, having in-gap contributions of the ME states with
paraboliclike dispersion. The DOS of these states is written
as

ρME(E ) = L
∑

n

√
2m∗

π h̄

�(E − En)√
E − En

, (10)

where m∗ is the effective mass of the charge carriers and En

is the onset energy of the nth massive band [75]. This gives a

quantum capacitance per unit length of

Cq = C0
q + e2

√
2m∗

π h̄

∑
n

�(E − En)√
E − En

, (11)

implying that Cq > C0
q in the presence of ME states. Here

we are supposing the quantum contributions come only from
(quasi)-1D edge states. In order to show that this is indeed
the case, one could measure the capacitance of systems of
different lengths [45,73,76]. Doing this type of measurement,
one can separate the geometric capacitance contribution from
the quantum capacitance. One can also do AC microwave
capacitance spectroscopy that additionally gives access to the
resistive response of the system, reflecting on the ability of
the system to conduct. This resistive part should therefore
additionally give information about how many states con-
tribute to transport [77].

V. CONCLUSION

In this work we have studied quantum wells hosting
two-dimensional topological insulators within the Bernevig-
Hughes-Zhang model. We have assumed that the mass and
the on-site energy terms can vary smoothly at the interface
between the bulk of the quantum well and the vacuum. We
have shown the appearance of massive edge states in addition
to the standard linearly dispersing mode of the quantum spin
Hall effect. These massive edge states are characterized by
a finite probability only close to the boundary of the system
and by a spin-split paraboliclike energy dispersion. We have
shown how these states can strongly affect the transport
properties of a two-terminal system: The conductance of the
system can increase above the nominal value of 2e2/h of
the topological states. However, due to the parabolic energy
dispersion, these massive edge states are susceptible to the
effect of local disorder. We have proven that in the case of
strong disorder, their effect on the transport properties can
be completely eliminated. We have proposed various exper-
imental setups that could pave the way for the detection and
tunability of these massive edge states; these are mostly based
on employing local probes and the design of local electrodes.
Realistic samples are characterized by a more complex type
of disorder as inhomogeneity and charge puddles. The latter
can be included in our model, but their presence should not
modify our findings substantially. Our results apply to the
case of HgTe/CdTe and also to InAs/GaSb quantum wells;
additionally, the general features we have shown should also
be observable in two-dimensional materials presenting the
quantum spin Hall effect such as silicene, bismuthene, and
other van der Waals topological materials.
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APPENDIX: A DEEPER LOOK INTO THE LOCAL
DENSITY OF STATES

Here we will discuss how the different modes of the wave
function add up to the local density of states. For each mode
m, the wave function is the sum over all intersections ki

x in the
band structure at energy ε,

ψm(y, ε) =
∑

i

ψm
[
y, ki

x (ε)
]
, (A1)

where y gives the lateral dependence of the wave function.
The local density of states is the square of the wave function,
summed over all modes available at the Fermi energy,

ρ(y, ε) =
∑

m

ρm(y, ε) =
∑

m

|ψm(y, ε)|2. (A2)

In a similar fashion, for the spin polarization we have

〈σ j〉(y, ε) =
∑

m

〈σ j (y, ε)〉m

=
∑

m

∑
i

ψ∗
m

[
y, ki

x (ε)
]
σ jψm

[
y, ki

x (ε)
]
. (A3)

As the ME states are two doubly degenerate spin-split modes,
their spin components have both positive and negative values
near each edge, resulting in local oscillations of each mode.
Consecutive modes of higher energies move more and more
into the bulk, resulting in more oscillations for higher-energy
modes, as can be seen from Fig. 9. We also observe that
for each consecutive mode, the main contribution to ρ(ε)
moves farther away from the edge. This results in an overall
oscillating ρ(ε), with the number of oscillations depending on
the number of ME modes available at energy ε.
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