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Abstract

Information on rice phenological stages from Synthetic Aperture Radar (SAR)

images is of prime interest for in-season monitoring. Often, prior in-situ

measurements of phenology are not available. In such situations, unsuper-

vised clustering of SAR images might help in discriminating phenological

stages of a crop throughout its growing period. Among the existing unsu-

pervised clustering techniques using full-polarimetric (FP) SAR images, the

eigenvalue-eigenvector based roll-invariant scattering-type parameter, and

the scattering entropy parameter are widely used in the literature. In this

study, we utilize a unique target scattering-type parameter, which jointly

uses the Barakat degree of polarization and the elements of the polarimetric

coherency matrix. Likewise, we also utilize an equivalent parameter proposed

for compact-polarimetric (CP) SAR data. These scattering-type parameters

are analogous to the Cloude-Pottier’s parameter for FP SAR data and the
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ellipticity parameter for CP SAR data. Besides this, we also introduce new

clustering schemes for both FP and CP SAR data for segmenting diverse

scattering mechanisms across the phenological stages of rice. In this study,

we use the RADARSAT-2 FP and simulated CP SAR data acquired over

the Indian test site of Vijayawada under the Joint Experiment for Crop As-

sessment and Monitoring (JECAM) initiative. The temporal analysis of the

scattering-type parameters and the new clustering schemes help us to in-

vestigate detailed scattering characteristics from rice across its phenological

stages.

Keywords: Unsupervised clustering, Entropy, RADARSAT-2, Crop

monitoring, PolSAR, Roll-invariant parameter

1. Introduction1

Variations in crop phenological stages can be characterized by Synthetic2

Aperture Radar (SAR) data due to its high sensitivity to the dielectric and3

geometrical structure of the canopy. However, depending on the frequency4

of the transmitted electromagnetic (EM) wave, the interaction with crop5

canopy layers and the underlying soil varies significantly (Davidson et al.,6

2000). Previous studies reported that phenological changes could be ade-7

quately captured with high-frequency SAR sensors utilizing backscattered8

information from vegetation canopy (Wiseman et al., 2014; De Bernardis9

et al., 2015; McNairn and Shang, 2016; McNairn et al., 2018). In general, the10

SAR backscatter signal might be affected by the underlying surface during11

early vegetative growth stages when the canopy was sparse and open (Palos-12

cia, 2002).13
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One of the primary parameters associated with the changes in the SAR14

backscatter coefficient is the crop canopy distribution (e.g., tillers, leaves, and15

panicles) at each phenological stage. Moreover, this distribution in the crop16

fields also leads to randomness in scattering (Yuzugullu et al., 2015). In such17

situations, polarimetric entropy (H) is an important parameter to quantify18

this randomness. In Cloude and Pottier (1997), an unsupervised classification19

scheme (H/α) was proposed using H and the average scattering-type param-20

eter (α). The H/α plane is sub-divided into nine zones to suitably cluster21

various scattering mechanisms. The properties of different scattering mech-22

anisms determine the boundaries between the zones. Hence certain assump-23

tions are utilized in the proper setting of these boundaries. Subsequently, the24

2D clustering plane is extended to 3D H/A/α space by introducing the scat-25

tering anisotropy parameter A. This parameter, which is complementary to26

H, is useful to discriminate targets when H > 0.7. However, for lower values27

of H, this parameter is noisy and could introduce inaccuracies in determining28

the clusters.29

Lopez-Sanchez et al. (2011) reported the importance of the H/α plane to30

discriminate phenological stages of rice along with the temporal correlation31

of HH and VV and their ratio. The clustering results show that at the32

beginning of the cultivation period of rice, the data cluster was denser in33

the region with medium entropy and low alpha, which was primarily due to34

the presence of sparse vegetation in the fields. However, at the advanced35

phenological stages, the cluster density shifted towards the region of high36

entropy and high alpha in the H/α plane.37

In another study, Lopez-Sanchez et al. (2012) utilized the dominant scattering-38
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type information (α1) instead of α. In this study, the temporal behaviour of39

α1 and the scattering entropy was shown with the phenological stages of rice.40

At the initial stage, α1 and entropy were both within low to medium values,41

and they jointly increased during the plant emergence stage. During the42

advanced vegetative stage, both parameters show the dominance of multiple43

scattering from the fields. In contrast, at the harvest stage, α1 < 30◦ and44

the scattering entropy remained high due to the field roughness condition.45

Praks et al. (2009) proposed alternative scattering-type and randomness46

parameters equivalent to α and H for clustering PolSAR data. These pa-47

rameters can be directly obtained from the elements of the coherency matrix48

without utilizing the eigenvalues and the eigenvectors. It was shown that in-49

stead of α and H, the surface scattering fraction and the scattering diversity50

that are equivalent polarimetric descriptors can be utilized for classification,51

visualization, or interpretation. Later, Yin et al. (2015) proposed a new52

parameter, αB, defined by the co-polarization ratio and their coherence to53

capture various scattering mechanisms. This new parameter was able to dis-54

tinguish scattering from oriented and randomly distributed targets. In their55

study a new ∆αB/αB plane was proposed which showed better separation ca-56

pability than the H/α clustering plane. It was also stated that the stability57

of the proposed method was better with multi-temporal SAR data.58

In another work, Ratha et al. (2019) proposed a roll-invariant scattering-59

type parameter (αGD), the helicity parameter (τGD), and the purity parame-60

ter (PGD) using a geodesic distance between two Kennaugh matrices. A new61

PGD/αGD unsupervised classification scheme is proposed which is analogous62

to H/α. However, the PGD/αGD clustering plane showed better performance63

4



than earlier proposed schemes.64

The study using compact-polarimetric (CP) SAR data holds promise65

due to the upcoming constellation of satellites such as the Canadian RAD-66

ARSAT Constellation Mission (RCM), SAOCOM (TOPSAR with experi-67

mental CP-mode), and the NISAR (the NASA-ISRO SAR) L- and S-band68

mission. Similar to the full-polarimetric (FP) case, scattering-type clustering69

assessment using compact polarimetric (CP) SAR data and its decomposition70

parameters (Raney, 2007; Cloude et al., 2011; Raney et al., 2012) are lately71

gaining interest (Ainsworth et al., 2009; Charbonneau et al., 2010; Ballester-72

Berman and Lopez-Sanchez, 2011; Sabry and Vachon, 2013). Brisco et al.73

(2013) assessed hybrid-compact, circular, and linear polarimetric SAR data74

for rice and wetlands mapping. Also, different dual-channel combinations and75

m − δ decomposition parameters for CP data were assessed in their study,76

where the classification accuracy for CP data was comparatively better than77

linear dual-polarimetric SAR data.78

Lopez-Sanchez et al. (2014) used the radar backscatter coefficients and79

the H/α plane to investigate the dynamics of rice phenological changes for80

full, dual, and compact polarimetric SAR data. In this study, the dominant81

scattering-type parameter (αs) for CP data is used instead of α. For CP data,82

the entropy, in particular, is equivalent to the Barakat degree of polarization.83

It was noticed that the pattern of αs was similar for full, dual, and compact84

polarimetric SAR data for rice crops. Alongside this, it was also observed85

that αs precisely provides similar information like the FP mode, throughout86

the phenological cycle of rice.87

Subsequently, Yang et al. (2014) showed improved classification accuracy88
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in discriminating transplanted and direct-sown rice fields. In this study, the89

use of the m − χ decomposition parameters along with αs, the degree of90

polarization (m), relative phase (δ) and conformity coefficient (µ) improved91

the classification accuracy from 88 % to 95 %. Besides, the classification92

accuracy confirmed the advantage of CP data over other dual-polarized SAR93

data. Several other studies (Xie et al., 2015; Uppala et al., 2015; Guo et al.,94

2018; Kumar et al., 2020) also indicated the potential of CP SAR data for95

rice mapping and monitoring.96

Recently, Yin et al. (2019) proposed a new parameter, αBCP , for improve-97

ment in the clustering results for land-cover features. In particular, αBCP is98

rotation-invariant and ∆αBCP/αBCP resembles the existing ∆αB/αB clus-99

tering for FP SAR data. However, the differences between αBCP and αB100

depend on the polarization of the received wave. Moreover, the derivation101

of specific scattering models is needless for separate CP modes. It was also102

observed that circular CP data provides almost similar results as FP data103

for various scattering targets.104

The literature, as mentioned above, provides a vital foundation for the105

utilization of H and the scattering-type parameters (i.e., α and αs) for rice106

crop monitoring and mapping using FP and CP SAR data. Nevertheless,107

these techniques are formulated either by fitting scattering models or by di-108

agonalizing the coherency (or covariance) matrix of the received wave. Hence,109

these techniques might miss the received antenna basis invariant information110

while characterizing various targets. The importance of the received antenna111

basis invariant information in terms of the degree of polarization helps to112

effectively exploit complete information from SAR data (Touzi et al., 2015,113
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2018).114

In this study, our main objective is to characterize changes in scatter-115

ing mechanisms utilizing the temporal series of full- and compact polari-116

metric SAR data across the growth stages of rice. The received antenna117

basis invariant information, i.e., in particular, the Barakat degree of polar-118

ization (Barakat, 1977, 1983) is useful to capture changes in scattering ran-119

domness due to crop foliage development. At the same time, the elements120

of the coherency (or, covariance) matrices provide information about crop121

canopy geometry as well as the soil and vegetation water content. In this re-122

gard, a new scattering-type parameter is derived by jointly using the received123

antenna basis invariant information and elements of coherency (or, covari-124

ance) matrix for both FP and CP SAR data. Alongside this, we present a125

comparative study of the performance of novel clustering schemes for FP and126

CP data for rice phenology mapping. It is noteworthy that the formulation127

of this new scattering-type parameter is equivalent for both FP and CP SAR128

data.129

Here, we have proposed new clustering schemes using θFP and θCP along130

with H for both FP and CP SAR data, respectively. Unlike the H/α plane,131

the proposed segmentation scheme utilizes a polar representation, which of-132

fers a natural choice. Suitable entropy apportionment (radially) together133

with angular extent of θX ∈ [−90◦, 90◦] (where the subscript X is either FP134

or CP) provides a reliable target discrimination strategy. The segmentation135

scheme produces 12 feasible clustering zones that better characterize natural136

and human-made targets. The usefulness and performance of the scattering-137

type parameters θFP and θCP, along with the new clustering schemes, are138
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assessed by utilizing them with the time-series C-band RADARSAT-2 data139

for monitoring rice.140

2. Study area and field measurement141

The study area is located near Vijayawada in the state of Andhra Pradesh,142

India (16◦24′6.2′′N, 8◦41′2.4′′E) as shown in figure 1 (Mandal et al., 2019).143

The climatic zone of this area varies from sub-humid to humid, with mostly144

clayey soil texture. Areal coverage of this test site is ≈ 25 × 25 km2. Rice145

is one of the primary and major crops cultivated in this area. The sowing146

period of rice varies from mid of June to mid of July depending on the147

variety and cultivation practices. Majorly, the cultivation starts after the148

pre-monsoon rain and is harvested during mid-December. The average size149

of each field was ≈ 60 × 60 m2, and in each field, two sampling locations150

were chosen for in-situ measurements. Information about the crop growth151

stages, management practices, and biophysical parameters was noted during152

the field campaign from June to December 2018.153

Table 1: Statistics (mean ± standard deviation) of bio-physical and soil parameters at
different phenology stages of rice. Here, PH: plant height, PAI: plant area index, SM: soil
moisture and Nan: Not a number

Date PH (cm) PAI (m2 m−2) SM(%) Growth stage

05/07/2018 Nan Nan 35.92 ± 6.6 Bare field
29/07/2018 26.30 ± 5.21 0.40 ± 0.20 Saturated Early tillering

22/08/2018 46.26 ± 9.12 1.76 ± 0.26 Saturated
Advanced
tillering

09/10/2018 92.16 ± 5.76 4.03 ± 0.20 Saturated Flowering
02/11/2018 95.93 ± 7.76 4.06 ± 0.16 47.60 ± 0.42 Early dough
26/11/2018 98.32 ± 6.82 3.86 ± 0.22 45.16 ± 6.04 Maturity
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A total number of 14 in-situ field measurements were considered in this154

study. We measured soil moisture at each field in two sampling locations,155

arranged in two parallel transects along the row direction. The separation156

between each transect was ≈ 40 m. We measured the pointwise soil moisture157

using theta-probe. Nevertheless, the soil underlying the rice crops was satu-158

rated during the majority of the growth stages due to irrigation and rainfall159

events. We measured vegetation samples at two points of each field due to160

the spatial heterogeneity within the field, which is due to the irregular growth161

pattern of rice. Vegetation sampling included the measurement of PAI, plant162

height, and phenology through non-destructive methods. The PAI is mea-163

sured using the notion of hemispherical digital photography. During each164

measurement day, we took ten photos along two transects which are sepa-165

rated by 2m in each sampling point, using a wide-angle lens mounted on a166

digital camera. All images were post-processed using the CanEYE software167

to provide an estimate of PAI. We have sampled the vegetation crop water168

content intermittently at few phenological stages. At the maturity stage,169

the water content in the grain was 14.2 % to 19.6 % (wet basis) while the170

stem water content got reduced by 36 % to 42 % (wet basis) as compared171

to the dough stage. The overall phenology of rice is usually expressed with172

three major stages: vegetative, reproductive, and mature (or ripening). The173

statistics of bio-physical and soil parameters are given in Table 1.174

3. Satellite data pre-processing175

We acquired RADARSAT-2 images in Fine Quad (FQ) wide mode from176

July to November 2018 over the test site as shown in Table 2. We then177
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Figure 1: The Google Earth image of the JECAM test site over Vijayawada, India is
overlaid with a Pauli RGB image obtained from SAR data acquired on 29 Jul 2018. The
samples from region 1 and 2 are used for temporal analysis and clustering. The distribution
of five in-situ data points is shown in the sampling unit of region 1 and region 2.

apply a multi-look factor of 2× 3 pixels in the range and azimuth directions,178

respectively, to generate ≈ 15 m square pixel images. In general, the parcel179

sizes in this test area are small. However, during rice cultivation, many fields180

are cultivated alongside the field boundaries. Therefore, the fields seem to181

be quasi-homogeneous, depending on cultivation practices. Since the area is182

quasi-homogeneous, we apply a 3×3 boxcar filter (Lee and Pottier, 2009) to183

each coherency matrix (T) in the images for speckle reduction. Furthermore,184

we generate simulated compact polarimetric (CP) SAR data from the FP185

data with 0◦ orientation angle and −45◦ ellipticity angle (shown in Appendix186

B). We co-register all FP and CP images with the RMSE ≤ 0.25 m.187
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Table 2: Specification of the C-band full-pol RADARSAT-2 acquisitions over the test site
during the field campaign (az: azimuth resolution and rg: range resolution)

Acquisition
date

Beam
mode

Incidence angle
range (deg.)

Orbit az(m)× rg(m)

05/07/2018 FQ15W 33.73–36.65 Ascending 4.73× 5.11
29/07/2018 FQ15W 33.73–36.65 Ascending 4.73× 5.11
22/08/2018 FQ15W 33.73–36.65 Ascending 4.73× 5.11
09/10/2018 FQ15W 33.73–36.65 Ascending 4.73× 5.11
02/11/2018 FQ15W 33.73–36.64 Ascending 4.73× 5.11
26/11/2018 FQ15W 33.73–36.64 Ascending 4.73× 5.11

4. Methodology188

In this section, we present the newly proposed scattering-type parameters189

for both full- and compact-pol SAR data (Dey et al., 2020) for monitoring190

rice crop. Alongside this, we propose an unsupervised clustering scheme191

utilizing these new parameters along with the scattering entropy parameter192

(i.e., a measure of randomness) derived from full (FP) and compact-pol (CP)193

SAR data.194

4.1. Full-polarimetry195

In FP SAR, the 2×2 complex scattering matrix S encompasses complete196

polarimetric information about backscattering from targets for each pixel.197

It is expressed in the backscatter alignment (BSA) convention in the linear198

horizontal (H) and linear vertical (V) polarization basis as,199

S =

 SHH SHV

SVH SVV

 (1)
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Each element of the matrix represents the backscattering response of the tar-200

get at a specific polarization. The diagonal elements of the matrix represent201

the co-polarized scattering information, while the off-diagonal terms repre-202

sent the cross-pol information. In the monostatic backscattering case, the203

reciprocity theorem constrains the scattering matrix to be symmetric, i.e.,204

SHV = SVH.205

To reduce the speckle effect in S, the multi-looked Hermitian positive

semi-definite 3×3 coherency matrix T is obtained from the averaged outer

product of the target vector kP (derived using the Pauli basis matrix, ΨP )

with its conjugate (Lee and Pottier, 2009).

ΨP =

√2

1 0

0 1

 ,√2

1 0

0 −1

 ,√2

0 1

1 0


kP =

1

2
Tr(SΨP ) =⇒ kP =

1√
2

[SHH + SV V , SHH − SV V , 2SHV ]T

T =
1

N

N∑
i=1

kPik
∗T
Pi

where N denotes the square window size for spatial averaging and Tr is the206

sum of the diagonal elements of the matrix.207

When a polarized electromagnetic (EM) wave scatters from a random208

mixture of targets, it becomes partially polarized. The state of polarization209

of a partially polarized EM wave is characterized in terms of the degree of210

polarization (0 ≤ m ≤ 1). The degree of polarization is defined as the ratio211

of the (average) intensity of the polarized portion of the wave to that of the212

(average) total intensity of the wave. For a completely polarized EM wave,213
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m = 1 and for a completely unpolarized EM wave, m = 0. In between these214

two extreme cases, the EM wave is said to be partially polarized, 0 < m < 1.215

Barakat (Barakat, 1977) provided an expression of m for the N × N216

coherency matrix. This expression is used in this study to obtain the degree217

of polarization mFP from the 3× 3 coherency matrix T for FP SAR data as,218

mFP =

√
1− 27|T|(

Tr(T)
)3 , (2)

where | · | is the determinant of a matrix.219

From the interpretation of the Huynen parameters in terms of certain220

general properties of the target geometry, it can be inferred that T11 is the221

generator of target symmetry and represents the scattered power from a222

regular, smooth and convex parts of the scatterer. Similarly, (T22 + T33) is223

the generator of the target structure and represents the scattered power from224

an irregular, uneven and non-convex parts of the scatterer (Lee and Pottier,225

2009). Therefore, with respect to the total polarized scattered power (i.e.,226

mFPSpan) from a scatterer, let us denote,227

tan η1 =
T11

mFP Span
and tan η2 =

T22 + T33
mFP Span

, (3)

where, T11 = 〈|SHH + SVV|2〉, T22 = 〈|SHH − SVV|2〉, and T33 = 4〈|SHV|2〉 are228

the diagonal elements of the T matrix. The total power, Span is defined in229

terms of the elements of the T matrix as,230

Span = T11 + T22 + T33. (4)
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Here, η1 and η2 are two auxiliary variables representing the tangent of the231

ratios between the diagonal elements (T11 and T22 + T33) of the coherency232

matrix, T, and the total polarized scattering power (mFP Span).233

We define:234

tan γFP = tan (η1 − η2) , (5)

where γFP can be related to the average scattering-type parameter, Cloude235

α ∈ [0◦, 90◦] (Cloude and Pottier, 1997). However, in order to compare236

the two parameters within the same range, they are suitably modified as,237

α̂ = 90◦ − 2α and θFP = 2γFP, which is a roll-invariant parameter (detailed238

in Appendix A.1) is given as,239

θFP = 2 tan−1
(
mFP Span (T11 − T22 − T33)
T11 (T22 + T33) +m2

FP Span2

)
∈ [−90◦, 90◦]. (6)

It can be noticed from equation (6) that when T11 = 0 and mFP = 1,240

then Span = T22 + T33 and θFP = −90◦. Similarly, when T22 + T33 = 0 and241

mFP = 1, then Span = T11 and θFP = 90◦. Besides, as θFP approaches 0,242

scattering randomness increases and at θFP = 0◦, the scattering is purely243

random (or depolarized).244

The eigen-decomposition of T can be expressed as,245

T = U3ΣU−13 (7)

where Σ is the 3× 3 diagonal matrix with non-negative elements, λ1 ≥ λ2 ≥246

λ3 ≥ 0, which are the eigenvalues of T. The pseudo probabilities, pi obtained247
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from the eigenvalues are defined as,248

pi =
λi∑3
k=1 λk

, (8)

which are then used to define the scattering entropy (Lee and Pottier, 2009)249

as,250

HFP = −
3∑

k=1

pk log3 (pk), (9)

However, in this study, we use the quantity HFP = 1−HFP in the HFP/θFP251

polar plot as shown in figure 2. The feasible regions in the HFP/θFP polar

Figure 2: The HFP/θFP plane displayed in polar plot. Curve I and Curve II represent the
azimuthal symmetry lines. No scattering mechanisms exist in the shaded portion of the
plane.

252
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plot is represented by two bounding curves, Curve I and Curve II in figure 2.253

Curve I, [T]I =


1 0 0

0 m 0

0 0 m

 0 ≤ m ≤ 1 (10)

Curve II, [T]II =


2m− 1 0 0

0 1 0

0 0 1

 0.5 ≤ m ≤ 1 (11)

4.2. Compact-polarimetry254

The CP mode measures a projection of the 2 × 2 complex scattering255

matrix S as,256  ECH

ECV

 =
1√
2

 SHH SHV

SV H SV V

 1

±i


=

1√
2

 SHH ± iSHV
SV H ± iSV V

 (12)

where the subscript C can be either the left-hand circular (L) transmit with257

a + sign or the right-hand circular (R) transmit with a − sign. The 2 × 2258

covariance matrix is then obtained from the elements of the scattering vector259

as,260

C2 =

 〈|ECH |2〉 〈ECHE∗CV 〉

〈ECVE∗CH〉 〈|ECV |2〉

 . (13)

For CP-SAR data, the 4 × 1 Stokes vector ~g can be written in terms of261

16



the elements of the 2× 2 covariance matrix C2 as,262

~g =


g0

g1

g2

g3

 =


C11 + C22

C11 − C22

C12 + C21

±j (C12 − C21)

 , (14)

where ± corresponds to left and right circular polarization respectively.263

From the elements of ~g, the backscatter power in the same sense (SC =264

g0 − g3
2

) and opposite sense (OC =
g0 + g3

2
) to the transmitted circular po-265

larization is utilized to derive the scattering-type parameter for the compact-266

polarimetric SAR data similar to the FP case. Here, OC is the generator of267

target symmetry and represents the scattered power from a regular, smooth268

and convex parts of the scatterer. Similarly, SC is the generator of the target269

structure and represents the scattered power from an irregular, uneven and270

non-convex parts of the scatterer:271

tan ζ1 =
OC

mCP Span
, and tan ζ2 =

SC

mCP Span
(15)

where the total power Span is defined as,272

Span = SC +OC (16)

Here, ζ1 and ζ2 are two auxiliary variables representing the tangent of the273

ratios between the opposite and same sense circular polarized backscatter274

powers (OC and SC) and the total polarized scattering power (mCP Span).275
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Similar to FP, we define:276

tan γCP = tan (ζ1 − ζ2) (17)

where γCP can be analogously related to the polarization ellipticity parameter277

χ ∈ [−45◦, 45◦]. However, in order to compare, the two parameters within278

the same range, they are suitably scaled as, χ = −2χ and θCP = 2γCP which279

is a roll-invariant parameter (detailed in Appendix A.2) is given as,280

θCP = 2 tan−1
(
mCP Span (OC − SC)

OC × SC +m2
CP Span2

)
∈ [−90◦, 90◦] (18)

Similar to θFP, it can be noticed from (18) that for a pure dihedral scat-281

terer, i.e., when OC = 0 and mCP = 1, then Span = SC and θCP = −90◦.282

Similarly, for a pure trihedral scatterer, i.e., when SC = 0 and mCP = 1,283

then Span = OC and θCP = 90◦. Besides, as θCP approaches 0, scattering284

randomness increases and at θCP = 0◦, the scattering is purely random (or285

depolarized).286

The expression for the Barakat degree of polarization for the compact-287

polarimetric case is given as,288

mCP =

√
1− 4|C2|(

Tr(C2)
)2 . (19)

The eigen-decomposition of C2 can be expressed as,289

C2 = U2ΣU−12 , (20)
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where Σ is a 2× 2 diagonal matrix with non-negetive elements, λ1 ≥ λ2 ≥ 0,290

which are the eigenvalues of C2. The pseudo probabilities, pi obtained from291

the eigenvalues are defined as,292

pi =
λi∑2
k=1 λk

, (21)

which are then used to define the scattering entropy (HCP) for CP-SAR data293

as,294

HCP = −
2∑

k=1

pk log2 (pk). (22)

As mentioned earlier for the FP case, we use the quantity HCP = 1 − HCP295

in the HCP/θCP polar plot as shown in figure 3. Similar to FP, the feasible

Figure 3: The HCP/θCP plane displayed in polar plot. Curve I and Curve II represent the
azimuthal symmetry lines. No scattering mechanisms exist in the shaded portion of the
plane.

296
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regions in the HCP/θCP polar plot is represented by two bounding curves,297

Curve I and Curve II in figure 3.298

Curve I, [C]I =

 2m+1
4

i2m−1
4

−i2m−1
4

2m+1
4

 0 ≤ m ≤ 0.5 (23)

Curve II, [C]II =

 2m+1
4

−i2m−1
4

i2m−1
4

2m+1
4

 0 ≤ m ≤ 0.5 (24)

4.3. Clustering299

In this study, we propose clustering schemes equivalently for both FP300

and CP SAR data by utilizing the 2D HFP/θFP and HCP/θCP planes respec-301

tively. Besides, the zones and the boundaries of both the clustering planes302

are identical. From analysis with scattering model (random volume model),303

it has been observed that the scattering-type from vegetation lies approxi-304

mately in the range −10◦ to 20◦ (Antropov et al., 2011). The upper bound305

for multiple scattering (θX = 20◦, where the subscript X refers to either FP306

or CP) is characterized by equal contributions from the ensemble of horizon-307

tal and vertical dipole scattering components from vegetation structure. In308

contrast, the lower bound (θX = −10◦) is the characteristic of multiple scat-309

tering phenomena predominantly described by vertical vegetation structure.310

Hence, this region is subdivided for multiple scattering mechanisms. Unlike311

the H/α plane, the proposed clustering scheme divides the plane into twelve312

zones. The scattering-type parameter θX divides the HX−θX plane into four313

sub-planes (P1:(Z1, Z2, Z3); P2:(Z4, Z5, Z6); P3:(Z7, Z8, Z9); P4:(Z10, Z11,314

Z12)) which consists of (1) pure even-bounce scattering (−90◦ to −10◦) in P1;315

(2) even-bounce with multiple scattering (−10◦ to 0◦) in P2; (3) odd-bounce316
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with multiple scattering (0◦ to 20◦) in P3; (4) pure odd-bounce scattering317

(20◦ to 90◦) in P4. The quantity HX = 1−H divides the plane into (1) high318

entropy (0 to 0.3); (2) medium entropy (0.3 to 0.5); (3) low entropy (0.5 to319

1). The H/α and the HX/θX clustering plane along with the zones are given320

in figure 4. Target characterization parameters extraction and the clustering

Figure 4: (a) H/α clustering plane for FP SAR data with 8 clusters and (b) HX/θX
clustering plane for both FP and CP SAR data with 12 clusters. Two half-circles at
0.3 and 0.5 divide HX into high, medium and low entropy regions while −90◦ to −10◦

represents even bounce scattering, −10◦ to 20◦ represents multiple bounce scattering and
20◦ to 90◦ represents odd bounce scattering. No scattering mechanisms exist in the shaded
portion of the plane for both the FP and CP modes.

321

framework are implemented using Matlab R2019b environment (the steps322

along with a flowchart are detailed in Appendix C). The proposed cluster-323

ing framework is analyzed for the C-band San-Francisco RADARSAT-2 SAR324

data and further utilized for phenology clustering of rice.325
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5. Results and Discussion326

In this section, we analyze the proposed clustering framework using the327

C-band San-Francisco RADARSAT-2 SAR data. Following this, we perform328

a detailed case study for the unsupervised clustering of rice phenology over329

Vijayawada, India.330

5.1. Analysis of the novel clustering framework331

Figure 5: The scattering type parameters, α, θFP, θCP and the H/α, HFP/θFP, HCP/θCP

clustered image of San Francisco Bay, USA using C-band RADARSAT-2 SAR data. Re-
gion A represents the oriented urban area, region B and C represents forest and ocean
areas, respectively. The white box shows the oriented urban area where the major change
during clustering occured. H/α identified it as scattering from vegetation while HFP/θFP
and HCP/θCP correctly identified it as scattering from urban region.

The difference between the geometrical structures of theH/α andHFP/θFP332

2D clustering planes can be observed in figure 4. As stated earlier, it may333
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(a) Rotated urban

(b) Forest

(c) Ocean

Figure 6: A comparison of the percentages of even, odd and multiple bounce scattering
over (a) rotated urban, (b) forest and (c) ocean surfaces for the C-band RADARSAT-2
San Francisco Bay area image using H/α, HFP/θFP and HCP/θCP clustering techniques.

be noted that the parameter α is scaled to α̂ = 90◦ − 2α solely for the334

sake of qualitative comparison. The ability of the two clustering planes, i.e.,335
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HFP/θFP and HCP/θCP to classify different land-cover classes is apparent in336

this figure. Region A, B and C in figure 5 are respectively the oriented urban337

area, forest area and ocean areas. The dashed white box in figure 5 high-338

lights distinct changes in the scattering types as well as the clustering zones339

for differently oriented targets.340

It can be observed from figure 6 that in the H/α plane, the even-bounce341

scattering mechanism over oriented urban area (A) is only 17 % while the342

odd-bounce and multiple-bounce scattering mechanism are 38 % and 45 %,343

respectively. In contrast, the contribution of even-bounce dominant scatter-344

ing mechanism in HFP/θFP and HCP/θCP are 84 % and 79 %, respectively.345

On the other hand, over the forest area (B), the multiple-bounce scatter-346

ing mechanism is 8 % higher for HFP/θFP and 6 % higher for HCP/θCP as347

compared to H/α. Similarly, over the ocean area (C) the odd-bounce scat-348

tering mechanism has increased marginally by 2 % and 1 % for HFP/θFP and349

HCP/θCP, respectively.350

This suggests that the discriminating ability of HFP/θFP and HCP/θCP351

scheme is by and large higher than H/α. This marked ability might be due352

to 1) the joint utilization of the Barakat degree of polarization along with353

essential information from elements of the coherency matrix in deriving the354

scattering-type parameters, 2) the notion of an extended clustering procedure355

(i.e., 12 clusters) using entropy and the scattering-type parameters. Hence,356

we use the proposed clustering schemes with θFP and θCP, for the temporal357

analysis of two different varieties of rice crops over Vijayawada, India using358

FP RADARSAT-2 data and simulated CP SAR data. In this study, we359

analyze the phenological changes of rice using these parameters and the new360
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clustering scheme.361

5.2. Temporal variations of θX and HX/θX clustering planes for rice362

In this section, we discuss the temporal analysis of θFP and θCP along with363

phenology clustering of rice in the HFP/θFP and HCP/θCP polar plane. The364

temporal variation of θFP and θCP for FP and CP SAR data, respectively, are365

shown in figure 7. Both qualitative and quantitative analyses of the temporal366

variations in θFP and θCP utilizing data from five in-situ points (viz., P012,367

P054, P064, P034, and P053) are shown in figure 8. Besides, theHFP/θFP and368

HCP/θCP planes are divided into 12 zones based on different scattering-type369

information. In figure 4, zones (Z1, Z2, Z3), (Z10, Z11, Z12), and (Z4, Z5, Z6,370

Z7, Z8, Z9) represent even, odd and multiple scattering types respectively.371

In this study, these clustering zones (figure 16) are utilized to monitor the372

growth stages of rice using full and simulated compact polartimetric SAR373

data. The temporal variations of the clusters are shown in figures 9 to 14.374

In figure 9a and figure 9b, the θFP and θCP values are majorly within the375

odd-bounce scattering region on 05 Jul depending on soil surface condition.376

Although the overall values of θFP and θCP are comparable, the FP image377

can better capture the subtle variations over the land cover compared to the378

CP image. During this period, the field condition differs depending on the379

ploughed and non-ploughed situation. The comparatively low values (≤ 90◦)380

for θFP and θCP are likely due to soil roughness as compared to the incident 5.6381

cm C-band wavelength (Mandal et al., 2020). Hence, dense clusters are seen382

in Z10, Z11, and Z12, which corresponds respectively to low entropy even-383

bounce scattering, medium entropy even-bounce scattering, and high entropy384

even-bounce scattering regions. Moreover, a few data points lying in region385
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Figure 7: Variation of θFP and θCP images for FP and CP over the study area. The growth
stages are: 5-Jul: Bare field, 29-Jul: Early tillering, 22-Aug: Advanced tillering, 9-Oct:
Flowering, 2-Nov: Early dough, and 26-Nov: Maturity

Z3 is due to the early transplantation stage. Besides, tillage operation in386

some fields has produced soil surface roughness, which increased the entropy,387
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(a) FP data (b) CP data

Figure 8: Temporal variation of θFP and θCP for rice using FP and CP data for five in-situ
points: P012, P054, P064, P034, and P053. The growth stages are: 5-Jul: Bare field, 29-
Jul: Early tillering, 22-Aug: Advanced tillering, 9-Oct: Flowering, 2-Nov: Early dough,
and 26-Nov: Maturity

and hence, a sparse cluster can also be seen in Z9 and Z6. The proportion388

of pixels over different scattering regions at each phenological stage is shown389

in Table 3 and figure 16. High odd bounce scattering (86.26 %) was noted390

for FP data. Besides, due to the slight roughness a small component of391

multiple bounce scattering (12.24 %) is observed during this period, whereas392

even bounce scattering contribution was only 0.90 %.393

A significant change in the data cluster is seen on 29 Jul (figure 10a and394

figure 10b). During this period, most of the rice fields were in the early395

tillering stage, while other non-cultivated fields had moist soil with high396

roughness that is evident from in-situ data. During this period, variation397

of θFP is −17◦ to −51◦ while θCP ranges from −23◦ to −62◦ as seen in398

figure 8. Also, this highly rough soil surface during this period has generated399

a high degree of randomness in the received EM wave, which resulted in400

an increased entropy. Hence, a shift from low entropy zone (Z10) to high401

(Z12) and medium (Z11) entropy zones is evident on 29 Jul. Also, some data402
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(a) FP (b) CP

(c) Reference cluster (FP) (d) Reference cluster (CP)

Figure 9: The HX/θX scatter plane for rice using FP and CP SAR data on 05-Jul.

points in zones Z11 and Z12 are θFP ≤ 30◦, which is due to the scattering from403

the water surface in the rice fields (Lopez-Sanchez et al., 2014). However,404

compared to θFP, the values of θCP are 5◦ to 10◦ higher in this period.405

The density of the data points in Z6 and Z9 zones has also increased406

on 29 Jul, while rice transplantation was undergoing in some other fields.407

Therefore, a moderately high accumulation of data points can also be seen408

in Z3 (figure 10a and figure 10b). Moreover, the previously sown rice fields409

had achieved a higher vegetative stage due to which the areal coverage by the410

crop canopy had increased, thereby slightly decreasing the scattering entropy.411
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(a) FP (b) CP

(c) Reference cluster (FP) (d) Reference cluster (CP)

Figure 10: The HX/θX scatter plane for rice using FP and CP SAR data on 29-Jul.

Due to this aspect, a few data points are sparsely clustered in the Z2 region412

on 29 Jul. Furthermore, in zones Z2 and Z3, the values of θCP is 2◦ to 5◦413

higher than θFP. Hence, the even bounce scattering had increased by 75.89 %414

and multiple scattering had increased by 16.49 %. A noteworthy decrease in415

the odd bounce scattering (82.38 %) is observed which is most likely due to416

the increase of double-bounce for the presence of stems, which also helps to417

reduce the surface roughness and the contribution from the ground.418

On 22 Aug, dense clusters can be seen in Z3 for FP and CP data (fig-419

ure 11a and figure 11b), which is due to the tillering stage of rice. Dur-420
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(a) FP (b) CP

(c) Reference cluster (FP) (d) Reference cluster (CP)

Figure 11: The HX/θX scatter plane for rice using FP and CP SAR data on 22-Aug.

ing this stage, the fields are flooded with water, and the stems are almost421

vertical, which acts as dihedral scatterers and generates even-bounce scat-422

tering (Yonezawa et al., 2012). Hence, a significant shift in the scattering423

mechanism from odd-bounce to even-bounce is visible during 22 Aug. During424

this period, HCP is lower than HFP, which might be due to less polarimetric425

information content. Similar to 29 Jul, θCP is higher than θFP at this time.426

Additionally, due to the variation in the θCP and HCP values according to427

crop morphology, significant change among Z5, Z6, Z8, and Z9 zones can428

be observed compared to 29 Jul. Also, we observe an increasing trend in429
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the plots in figure 8 due to the reduction in even-bounce multiple scattering.430

Besides, the orientation, shape, and size of each crop were not the same, and431

hence there was also a possibility of rough soil surface stretching out from the432

water surface. Therefore, these phenomena could induce high randomness in433

the scattered EM wave. Besides, similar to 29 Jul, some fields progressed to a434

higher vegetative stage due to which a cluster can be seen in Z2. Furthermore,435

fields that reached the booting stage display even-bounce multiple scattering436

due to which the even bounce scattering power had decreased by 11.19 %,437

while multiple bounce scattering had marginally increased by 3.67 %.438

(a) FP (b) CP

(c) Reference cluster (FP) (d) Reference cluster (CP)

Figure 12: The HX/θX scatter plane for rice using FP and CP SAR data on 09-Oct.
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On 09 Oct, both HFP/θFP and HCP/θCP planes show a shift towards439

the medium entropy region (i.e., Z2 and Z5 zones) which is evident in fig-440

ure 12a and figure 12b. During this period, most of the rice fields were in441

the inflorescence emergence stage, with θFP and θCP indicating even-bounce442

and even-bounce multiple scatterings. Moreover, the amount of cross-pol443

components has increased during this period and the coherence between the444

co-polarized channels decreased significantly. A similar type of increase in445

cross-pol components from transplantation to maturity stages was reported446

by He et al. (2018). The shift towards the Z2 and Z5 zones indicates an447

even-bounce scattering mechanism of the scattered EM wave. Such a re-448

sponse might be due to the extinction of the vertical polarization due to the449

canopy structure. Also, the amount of odd-bounce scattering reduced during450

this period, and rice foliage generated moderate odd-bounce multiple scatter-451

ing due to which dense cluster in the Z8 zone is noticed. The contribution of452

multiple bounce scattering was 40.02 % due to the full-grown rice crop with453

differently oriented stem, leaf structures and flowers.454

Around 02 Nov, the rice fields reached the early dough stage, during455

which, the milky white substance begins to accumulate in rice panicle. Si-456

multaneously, the crop water content during this period remains very high,457

while leaf and stem produce overall complex canopy structure, which leads458

to high randomness in the SAR backscatter. Due to this fact, the values459

of HFP and HCP are low. Moreover, at this point, the clusters in Z3 and460

Z2 zones are due to the scattering from compound leaf and stem structure461

(figure 13a and figure 13b). In contrast, clusters in Z6, Z5, Z8, and Z9 zones462

are due to multiple scattering contribution from the intermediate complex463
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(a) FP (b) CP

(c) Reference cluster (FP) (d) Reference cluster (CP)

Figure 13: The HX/θX scatter plane for rice using FP and CP SAR data on 02-Nov.

rice canopy layer. The cluster in the Z12 zone corresponds to the scattering464

of the wave directly from the leaves of the uppermost canopy layer. During465

this time further decrease in even bounce scattering is evident.466

On 26 Nov, the rice fields reached the maturity stage, and the grains467

become firm and heavy. At this point, the crop becomes dry, whereas the468

moisture content in grains remains ≈20 %. Due to the weight of the grains,469

lodging of rice is usually visible in the fields due to which the morphological470

condition becomes further complicated than the dough stage. Hence, an471

additional increase in the scattering entropy during this period is apparent for472
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(a) FP (b) CP

(c) Reference cluster (FP) (d) Reference cluster (CP)

Figure 14: The HX/θX scatter plane for rice using FP and CP SAR data on 26-Nov.

both FP and CP SAR data. High densities of clusters in Z3, Z6, Z9, and Z12473

zones can be noticed in figure 14a and figure 14b, which is due to scattering474

from the complex geometrical structure of rice at this stage. However, a475

small cluster can also be observed in the Z11 zone, which might be due to476

fully or partially harvested rice fields. At this stage, the highest contribution477

of multiple scattering mechanisms (73.23 %) is profound due to the increase478

in scattering randomness within the SAR resolution cell. We performed479

hypothesis testing to show that these changes in the scattering mechanisms480

for different dates are related to rice phenological changes. In this regard, the481

34



null hypothesis states that there exists no relationship between the changes in482

the clusters and rice phenology (i.e., the change is due to randomness). The483

p-values (95 % confidence level) as shown in Table 3 indicates that we can484

reject the null hypothesis, and therefore, there is evidence that the changes485

in the unsupervised clusters are due to rice phenology.486

Table 3: Changes in the scattering mechanisms across different dates and between FP
and CP data. we have considered (Z1, Z2, Z3) as even bounce scattering, (Z10, Z11,
Z12) as odd bounce scattering and (Z4, Z5, Z6, Z7, Z8, Z9) as multiple bounce scattering.
The dominant scattering mechanism(s) at each date is highlighted in bold font. Also, the
p-values at 95 % significance level is provided

Dates Modes
Even bounce

scattering
Odd bounce
scattering

Multiple bounce
scattering

Growth
Stage

p-value

05/07/2018
FP 0.90% 86.86% 12.24%

Bare field
2.30× 10−11

CP 0.60% 88.28% 11.12% 2.18× 10−11

29/07/2018
FP 76.79% 4.48% 28.73%

Early tillering
2.20× 10−16

CP 64.60% 2.10% 33.30% 2.18× 10−15

22/08/2018
FP 65.60% 2% 32.40% Advanced

tillering
2.20× 10−16

CP 63.87% 2% 34.13% 1.96× 10−16

09/10/2018
FP 58.10% 1.88% 40.02%

Flowering
2.10× 10−16

CP 56.33% 1.88% 41.79% 2.10× 10−16

02/11/2018
FP 39.40% 3% 57.60%

Early dough
2.40× 10−14

CP 31.60% 2% 66.40% 1.82× 10−14

26/11/2018
FP 25.61% 1.16% 73.23%

Maturity
2.20× 10−16

CP 16.76% 0.92% 82.30% 1.98× 10−16

It is noteworthy that the differences in the characterization capability be-487

tween FP and CP SAR data depends on the type and geometry of the targets.488

Moreover, the spatial heterogeneity induces the changes in the intensity of489

the co-pol and cross-pol components. Hence, a change in the scattered EM490

wave is sometimes evident between FP and CP SAR data.491

6. Conclusions492

In this study, we have proposed two scattering-type parameters, θFP and493

θCP for identifying target scattering mechanism for both full (FP) and com-494
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Figure 15: Variations in the number of pixels in different clusters for each date in FP and
CP data.

pact polarimetric (CP) SAR data. These quantities are roll-invariant and495

vary in the range, −90◦ to 90◦. In particular these two scattering-type pa-496

rameters jointly utilize the received antenna basis-invariant parameters, i.e.,497

the Barakat degree of polarization and the total scattering power (Span) and498

the elements of the coherency matrix. The two extreme values of their range499

correspond to even-bounce (−90◦), and odd-bounce (90◦) scattering mecha-500

nisms, while θFP = 0◦ and θCP = 0◦ denotes diffused scattering mechanism.501

Furthermore, θFP and θCP within the range, −10◦ to 0◦ indicates even-bounce502

multiple scattering components, and 0◦ to 20◦ denotes the odd-bounce mul-503

tiple scattering components.504

In this study, we have suitably fulfilled our primary objective to char-505

acterize changes in the scattering mechanism with the advancement of crop506

phenological stages. We have used the scattering-type parameters for the507
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Figure 16: Variation of HFP/θFP and HCP/θCP clustered images for FP and CP over
the study area. The growth stages are: 5-Jul: Bare field, 29-Jul: Early tillering, 22-Aug:
Advanced tillering, 9-Oct: Flowering, 2-Nov: Early dough, and 26-Nov: Maturity

temporal analysis of rice over the Vijayawada test site in India using FP and508

CP SAR data. The sensitivities of θFP and θCP with growth stages of rice509

are significantly evident from this study. We have introduced novel new clus-510
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tering schemes, HFP/θFP and HCP/θCP in this study by utilizing θFP, θCP,511

and the scattering entropies, HFP and HCP. The clustering plane is split into512

12 zones, where each zone represents a distinct dominant scattering mecha-513

nism. In this regard, the HFP/θFP and HCP/θCP clustering planes provide514

necessary information about targets without any apriori knowledge of the515

scene.516

The target characterization parameters as well as the clustering planes517

provide information about changes in the scattering mechanism at different518

crop phenological stage. They could be beneficial in providing essential in-519

formation about crop conditions for engaging different cultivation measures.520

Therefore, further investigation to track and map crop growth stages could521

be conducted for different crop-types around the globe. The sensitivity of522

these parameters for different crop geometry could be examined for differ-523

ent incident angles using both FP and CP SAR data. We could adequately524

utilize these parameters for the newly launched RADARSAT Constellation525

Mission (RCM) and several upcoming missions.526

Appendix A. Roll-invariant parameters527

A parameter which is independent of target orientation angle along the528

radar line of sight is called roll-invariant. In this section, we show the roll-529

invariant nature of θFP and θCP.530
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Appendix A.1. Roll-invariant nature of θFP531

To show that θFP is a roll-invariant parameter, let the coherency matrix532

T be unitarily rotated by R(Ψ) as,533

T(Ψ) = R(Ψ) T R(Ψ)−1, (A.1)

where534

R(Ψ) =


1 0 0

0 cos 2Ψ sin 2Ψ

0 − sin 2Ψ cos 2Ψ

 . (A.2)

with,535

T11(Ψ) =T11

T22(Ψ) =T22 cos2(2Ψ) + T32 cos(2Ψ) sin(2Ψ)+

T23 cos(2Ψ) sin(2Ψ) + T33 sin2(2Ψ)

T33(Ψ) =T22 sin2(2Ψ)− T32 cos(2Ψ) sin(2Ψ)−

T23 cos(2Ψ) sin(2Ψ) + T33 cos2(2Ψ)

(A.3)

Therefore, T11(Ψ)−T22(Ψ)−T33(Ψ) = T11−T22−T33 and T22(Ψ)+T33(Ψ) =536

T22 + T33 i.e., both T11 − T22 − T33 and T22 + T33 are independent of the537

unitary rotation by an angle Ψ. Alongside this, note that the total power538

i.e., Span = T11(Ψ) +T22(Ψ) +T33(Ψ) = T11 +T22 +T33 = Tr(T), and |T| are539

roll-invariant, where | · | is the determinant and Tr(·) is the trace of a matrix.540

Therefore, the 3D Barakat degree of polarization, mFP =

√
1− 27|T|(

Tr(T)
)3 is541

also independent of Ψ. Hence, we conclude that the proposed scattering-type542
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parameter for FP SAR,543

θFP = 2 tan−1
(
mFP Span (T11 − T22 − T33)
T11 (T22 + T33) +m2

FP Span2

)
(A.4)

is independent of Ψ, i.e., it is a roll-invariant parameter.544

Appendix A.2. Roll-invariant nature of θCP545

The 2× 2 covariance matrix can be expressed in terms of the elements of546

the Stokes vector ~S = [S0, S1, S2, S3] as547

C2 =
1

2

S0 + S1 S2 + iS3

S2 − iS3 S0 − S1

 . (A.5)

Let the C2 matrix be unitarily rotated by R(Ψ) as C2(Ψ) = R(Ψ) C2 R(Ψ)−1,548

where the rotation matrix is,549

R(Ψ) =

cos(Ψ) − sin(Ψ)

sin(Ψ) cos(Ψ)

 . (A.6)
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The elements of the C2(Ψ) matrix are:550

c11(Ψ) = cos2 Ψ(S0 + S1)− cos Ψ sin Ψ(S2 − iS3)−

cos Ψ sin Ψ(S2 + iS3) + sin2 Ψ(S0 − S1)

c12(Ψ) = cos Ψ sin Ψ(S0 + S1)− sin2 Ψ(S2 − iS3)+

cos2 Ψ(S2 + iS3)− cos Ψ sin Ψ(S0 − S1)

c21(Ψ) = cos Ψ sin Ψ(S0 + S1) + cos2 Ψ(S2 − iS3)−

sin2 Ψ(S2 + iS3)− cos Ψ sin Ψ(S0 − S1)

c22(Ψ) = sin2 Ψ(S0 + S1)− cos Ψ sin Ψ(S2 − iS3)−

cos Ψ sin Ψ(S2 + iS3) + cos2 Ψ(S0 − S1).

(A.7)

The total power S0 = c11(Ψ) + c22(Ψ) and the fourth element of the Stokes551

vector S3 = −i (c12(Ψ)− c21(Ψ)) are independent of the rotation angle Ψ.552

Since S0 and S3 are independent of Ψ, then SC = (S0 − S3) /2 and OC =553

(S0 + S3) /2 are also independent of Ψ, i.e. both parameters are roll-invariant.554

Alongside this, note that |C2| and Tr(C2) are roll-invariant, where | · | is the555

determinant and Tr(·) is the trace of a matrix. Therefore, the 2D Barakat556

degree of polarization, mCP =

√
1− 4|C2|(

Tr(C2)
)2 is also roll-invariant. Hence,557

we conclude that the proposed scattering-type parameter for CP SAR,558

θCP = 2 tan−1
(
mCP S0 (OC− SC)

OC× SC +m2
CP S

2
0

)
(A.8)

is independent of Ψ, i.e., it is a roll-invariant parameter.559

41



Appendix B. Simulating CP data from FP data560

The scattering matrix S for the FP SAR data can be written as,561

S =

SHH SHV

SV H SV V

 (B.1)

For general transmit and linear receive, the scattering vector ~kθ,χ can be562

written in terms of the elements of the S matrix as,563

~kθ,χ =

cos(χ) (cos(θ)SHH + sin(θ)SHV ) + i sin(χ) (sin(θ)SHH − cos(θ)SHV )

cos(χ) (cos(θ)SV H + sin(θ)SV V ) + i sin(χ) (sin(θ)SV H − cos(θ)SV V )


(B.2)

where, χ and θ are ellipticity and orientation angles respectively (Sabry and564

Vachon, 2013). For a general transmit and general receive mode (GTGR),565

the scattering vector can be related as,566

~kθr,χr|θ,χ = Uθr,χr
~kθ,χ (B.3)

where,567

Uθr,χr =

 cos(θr) cos(χr) + i sin(θr) sin(χr) sin(θr) cos(χr)− i cos(θr) sin(χr)

− sin(θr) cos(χr)− i cos(θr) sin(χr) cos(θr) cos(χr)− i sin(θr) sin(χr)


(B.4)

The 2× 2 covariance matrix for GTGR becomes,568

Cp(θr, χr|θ, χ) = Uθr,χr Cp(θ, χ) U†θr,χr
(B.5)
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where,569

Cp(θ, χ) = 〈~kθ,χ ~k†θ,χ〉 (B.6)

The coherent correlation between polarimetric channels or the inter-polarimetric570

correlation factors can be represented as,571

γH =
〈SHHS

∗
HV 〉√

〈|SHH |2〉
√
〈|SHV |2〉

; γV =
〈SV V S

∗
HV 〉√

〈|SV V |2〉
√
〈|SHV |2〉

; γHV =
〈SHHS

∗
V V 〉√

〈|SHH |2〉
√
〈|SV V |2〉

(B.7)

along with the ratio factors,572

a =
√
〈|SHV |2〉
〈|SHH |2〉

=

√
〈σ0

HV 〉
〈σ0

HH〉
; b =

√
〈|SHV |2〉
〈|SV V |2〉

=

√
〈σ0

HV 〉
〈σ0

V V 〉
; c = a

b
=
√
〈|SV V |2〉
〈|SHH |2〉

=

√
〈σ0

V V 〉
〈σ0

HH〉
(B.8)

where σ0 represents the normalized radar cross section. Using (B.6), (B.7)

and (B.8), the elements of the 2×2 covariance matrix Cp(θ, χ) for the General

Transmit and Linear Received (GTLR) can be expressed by,

Cp11(θ, χ) =
1

2

〈
|SHH |2

〉
{(1 + cos(2θ) cos(2χ)) + (1− cos(2θ) cos(2χ)) a2+

sin(2θ) cos(2χ)a (γH + γ∗H) + i sin(2χ)a (γH − γ∗H)} (B.9)

Cp12(θ, χ) = Cp∗21(θ, χ) =
1

2

〈
|SHH |2

〉
{(1 + cos(2θ) cos(2χ)) aγH+

(1− cos(2θ) cos(2χ)) acγ∗V + sin(2θ) cos(2χ)(cγHV + a2)+

i sin(2χ)(cγHV − a2)} (B.10)
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Cp22(θ, χ) =
1

2

〈
|SHH |2

〉
{(1 + cos(2θ) cos(2χ)) a2+(1− cos(2θ) cos(2χ)) c2+

sin(2θ) cos(2χ)ac (γV + γ∗V )− i sin(2χ)ac (γV − γ∗V )} (B.11)

Therefore, for right circular polarized transmit wave, we have considered,573

χ = −45◦ and θ = 0◦. In this work, we have used the European Space574

Agency’s (ESA) open-source toolbox for polarimetric SAR data processing575

and education PolSARpro (Polarimetric SAR Data Processing and Education576

Toolbox). We have used this toolbox for simulating CP data from FP SAR577

data.578

Appendix C. Software/Codes to extract FP and CP parameters579

We obtain the 3×3 coherency matrix, T from the full-polarimetric SAR580

data using the PolSARpro software. The compact polarimetric data is sim-581

ulated using the same software by assuming right-hand circular polarized582

transmit wave (i.e., χ = −45◦), where χ is the ellipticity parameter of the583

polarization ellipse.584

All the parameters used in this study (i.e., mFP, mCP, θFP, θCP, HFP, and585

HCP) are computed using scripts developed in Matlab R2019b environment586

as shown in figure C.17. For the full-polarimetry data, we read the 9 elements587

(i.e., 3 positive real diagonal elements and 3 complex off-diagonal elements)588

of the T matrix while for compact-polarimetry data, we read the 4 elements589

(i.e., 2 positive real diagonal elements and 1 complex off-diagonal element)590

of the C2 matrix. Thereafter, using array solution and iteration methods, we591

compute the spatial distribution of these parameters. The codes are available592

at: http://github.com/Subho07/Temporal-clustering-of-SAR-data/593
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Figure C.17: Flow chart for computing the Barakat degree of polarization (mFP, mCP),
target characterizing parameters (θFP, θCP) and scattering entropy (HFP, HCP) for FP
and CP data using Matlab R2019b environment.
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