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Abstract: This research analyses the relation between building and housing attributes and energy
consumption and CO2 emissions, considering the spatial dependence present on the Spanish
residential market and the different climatic areas. The paper uses a hedonic model with spatial
correlation. To measure the spatial dependence, we have combined the Lag Model and the Error
Model. The data has been obtained from three different sources and merged in a complex geolocated
database, for the provinces of Castellón and Valencia. The results of both regressions indicate that
there is a spatial dependence in the sample and a relation between some building attributes and
energy consumption and CO2 emissions. The regressions show the existence of low consumption and
low emission clusters in the metropolitan area of Valencia and Castellón. Moreover, the endogenous
variables indicate that characteristics such as the age, the size, the typology of the house building or
dwelling, the use of the surface, or the climatic area have an effect in the energy consumption and the
CO2 emissions of the houses in Castellón and Valencia.

Keywords: spatial dependence; autocorrelation; energy consumption; emissions; hedonic regressions;
geostatistical; housing; listing prices

1. Introduction

Household energy consumption has grown in recent decades due to changes in society. Currently,
the buildings and construction sector consumed around 36% of the final energy produced in 2018,
and accounted for 39% of the CO2 emissions [1].

There are several reasons why the energy consumption of homes is relevant. Firstly, because it
is an expense for families, materialized through electricity and gas bills. This fact is related to the
problem of energy poverty [2]. In addition to this, it is a factor that contributes to global warming since
the use of polluting energy sources based on coal or other fossil fuels increases emissions [3]. Finally,
it affects house prices. Energy consumption can be considered an additional characteristic of the house
to be considered in purchasing or renting decisions [4–7]. For these reasons, it is necessary to know the
energy consumption of homes and the factors that have an impact on it.
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Energy consumption is a complex variable that depends on multiple factors. While it is possible
to have a real measurement of energy consumption using meters, monitors, and appropriate software,
establishing what causes this consumption is complex. In some cases, there is no real measurement
of energy consumption, so it is necessary to estimate it with the factors from which it derives.
The consumption of energy depends largely on the physical characteristics of the property and
variables such as climate and location [5,8]. Although these variables have the greatest influence on
energy consumption levels, there are other types that could contribute to a more precise estimation,
such as those related to the household and their lifestyle [5,8]. This information is difficult to obtain,
so most estimations of energy consumption are made from known physical variables. This is the case
of the Energy Certification applied in Spain. The energy certificates make an estimation, measuring the
CO2 emissions and energy consumption for each use (heating, cooling, DHW production, and lighting).
In addition to this, it considers whether the consumption comes from renewable or non-renewable
sources and values the insulation of the thermal envelope, the type of building, the climate zone,
and space use.

Some authors, such as [5] or [9] among others, affirm that energy certificates are valid instruments
to know the energy consumption of a house since the data approximate the real consumption obtained
from direct measurement. Thus, most studies and research about energy savings in housing use energy
certificates or eco-labels as a source of information [10].

The purpose of this study is to find out how the physical attributes of the dwelling and the building
influence the energy consumption and the emissions of them. For this purpose, a semilogarithmic
hedonic regression controlled by spatial autocorrelation is applied. In the analysis, the characteristics
of the building are used as independent variables, which explain the environment of the dwelling
and their attributes, and the contextual characteristics, which identify the location, the climate, etc.
The article is divided into five parts: part I is dedicated to the Introduction; part II to the review of the
bibliography on housing characteristics, energy consumption, and emissions; part III to an explanation
of the methodology and data; part IV to the presentation of the results of the model; and, finally, part V
to the conclusion and reflection of the results.

2. Literature: Characteristics of the Dwelling, Energy Consumption, and Emissions

Energy consumption is a variable that depends on multiple factors, so it is complex to establish
which characteristics cause it, and which of them are more relevant [11]. However, it can be
approximated by using the characteristics that make up the dwelling (or building) and the household.
These characteristics can be divided into four groups: supply, demand, contextual, and behavior [8].

Supply characteristics are those related to housing attributes and construction quality [9,10,12].
The literature usually classifies these characteristics into two sub-groups: those referring to the quality
of construction, which would include energy insulation, efficiency system, and construction materials,
and those regarding the physical attributes of the building, which includes the type of dwelling and
size, among others [8].

In the group of physical attributes, size, age, equipment, and type of dwelling stand out. Size is
one of the most representative variables in energy consumption, observing that when it increases,
energy consumption does too [8,13,14]. This factor can be measured by area (m2 and ft2), height,
or number of rooms [14] (p. 914). However, the use of the number of rooms as an approximation of the
size of the dwelling can be confusing, since some authors also consider it a socio-economic factor that
measures or approximates the size of the household [13,15] (p. 111). These authors consider that larger
households require more space and, therefore, choose larger dwellings [15] (p. 111). Another relevant
feature is the age. Antiquity is a factor with a confusing effect. Although older buildings have higher
energy consumption, authors such as [14] (p. 926) noted that a new building has higher consumption
due to their greater equipment. However, articles such as [16] (p. 113) concluded that new buildings
are more efficient than older ones. In addition to these factors, the type of dwelling is also a relevant
variable in the measurement of the level of energy spending [8,9]. Houses can be classified as mobile,
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single-family, semi-detached, apartments in buildings with two or four units, and apartments in
buildings with five or more units, although the most common classification is between single-family
and multi-family houses, with single-family houses consuming the most energy [13,17]. This is because
this type of housing is often associated with larger sizes [17] and has higher energy needs for heating
and air conditioning [13].

The sub-group of quality of construction characteristics includes variables capturing quality
(construction materials and methods), thermal insulation, and community facilities. Construction
quality includes construction materials, since they have a high potential for reducing emissions
and energy consumption because of technological advances [18]. Improvements in construction
processes, along with an increase in the quality of the products used, would help reduce energy
consumption, as well as improve the value of the building and homes on the market [4,5,19]. In addition
to this characteristic, the literature also considers in its analysis the number and type of installations,
and whether these are centralized for the building or whether each dwelling presents an individual
system. Installations can be added at the time of construction or once the construction is complete.
Among the systems that are added at the end of the construction are: hot water systems or boilers,
lighting, and sometimes heating and air conditioning. From this list, boilers and heating are the systems
that consume the most energy [8]. In both cases, the most recommended measures to reduce energy
consumption are to replace the boiler with a more efficient one and opt for photovoltaic solar energy as
a source [10,20]. Another feature of special relevance to energy consumption is thermal insulation,
which has great energy-saving potential [10,21–23]. Thermal insulation can be improved with changes
in the air chambers of the walls or insulating the attic in the houses that have it. Studies show that
poor thermal insulation is often associated with higher energy consumption and lower comfort in
the home [24].

The contextual characteristics concern those factors that are given by the environment and location
of the dwelling [8], such as climate and temperature [14] and the energy market [25]. In the case
of global temperature, its increase has caused homes, especially new homes, to boost their energy
consumption because of a greater thermal response [14]. The local climate is also a determining attribute
for accurately measuring energy consumption, since the energy consumption of the dwelling will
vary depending on whether the dwelling is located in a temperate, tropical, arid, cold, or continental
zone [7,8,17]. Thus, homes located in areas with the coldest days have higher consumption because
heating is energy intensive [8,17]. Another relevant factor in the literature is location, which is analyzed
using variables related to neighborhood, the housing market, region, and proximity to work, distance
from the city center, or distance from a public transport stop [15]. The effect on the energy consumption
of the location is confusing. Studies show that homes located on the outskirts of cities have higher
energy consumption, while those located in the center of cities have lower energy consumption [15].
This may be because the location variable is linked to other characteristics of the dwelling, such as size.
In this way, single-family houses tend to be larger. Meanwhile, in the center of cities, dwellings are
usually apartments in small multi-family buildings [15].

The international evidence also includes socioeconomic characteristics that describe the household,
its members and their behavior [8,26,27]. Socio-economic variables include household size and
composition [9,28–30], age [31], income level [32–35], type of tenure [10,15], level of education [36],
length of stay [15], race, and gender [8,15].

From the methodological perspective, the evidence in the real estate sector relative to the
contribution of the exogenous variables to the endogenous variables suggest that there are other
factors to be considered. This is the case of the spatial dependence between houses. Several studies
indicate that there is a relationship between spatial effects and the emergence of real estate sub-markets
within the housing market [37–39]. Real estate is a substitute for each other, so an increase in the
price of one of the houses causes an increase in the demand for others. In this way, [37] indicated that
those goods that present similar characteristics can be substitutes and, in equilibrium, their prices are
equal. If this assumption is transferred to the real estate market, it is observed that, within different
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real estate sub-markets, household prices are similar because each of these clusters contains close
substitutes. Following this argument, the characteristics of the dwellings are similar in each cluster for
the same reasons.

Autocorrelation or spatial dependence refers to the existence of covariances in errors in hedonic
price estimation for residential markets. Given the price similarities of the characteristics of dwellings
in a sub-market, errors are more likely to be correlated within the same sub-market than between
different sub-markets [38]. For this reason, controlling for clusters in the analysis of hedonic equations
can reduce the estimation of errors [38].

When hedonic equations are controlled by clusters, it is assumed that either you have a set of
predefined sub-markets or they are going to be defined by some method. An option for predefined
clusters is the use of already defined geographical areas, either by real estate agents or by valuers.
In the case that they must be determined, the sub-markets can be defined by the characteristics of the
dwellings, the neighborhoods, or by the census units, by means of the analysis of clusters or the main
components, among others [38].

There is not much empirical evidence on the determination of submarkets using energy
consumption or emissions as a homogeneous characteristic. Previous publications include the study of
Blázquez et al. [40], who indicated that residential energy consumption in Spain is spatially correlated,
and the study of Bottero et al. [41], which analyzed the effect of energy efficiency on residential prices
in Turin (Italy), considering spatial effects.

3. Materials and Methods

Considering previous literature, CO2 emissions are a function of energy consumption and the
technology used [42]. Thus, energy efficiency would help to lower the level of emissions, reducing
energy consumption [33,43]. Hence, the function can be represented as follows:

CO2 = Ec − tE (1)

where Ec is the energy consumption and tE is the type of energy used.
Energy consumption (Eq) depends on the multiple physical, socioeconomic, and contextual

characteristics that make up the dwelling and the household, as well as the behavioral factor. This being
a non-linear relationship, it is represented by the following function:

Ec = ө0 + ө1 − [Hphys] + ө2-[So] + ө3 − [Ci] + ө4 − [Be] + ε (2)

where өis the estimated parameter of the explanatory capacity of each characteristic, Hphys is the
vector of physical characteristics, So represents the socioeconomic characteristics, Ci represents the
contextual characteristics, and Be represents the behavioral factor.

The analysis tool used is a non-linear semilogarithmic hedonic regression for both emissions and
energy consumption. This tool is used since the literature has shown that the regression of equations
allows for the analysis of which factors influence energy consumption in relation to the use of the
dwelling [44]. For the regression, the physical characteristics of the dwelling, the building, its elements,
and contextual characteristics that appear in Table 1 are used.
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Table 1. Summary variables and sources.

Type of Variable Variables Description Source

Consumption EMIS_CO2 Global CO2 emissions (kg CO2/m2-year)

IVACE
CONS_KWH Primary E. Consumption (kWh/m2-year)

Physical variables of
the building

VALENCIA House located in Valencia province
CASTELLÓN House located in Castellón province

AGE Age of the building (reference 2016)

Cadastre

RESIDENTIAL USE Usable area for residential use in proportion to the Total Building Surface
PUBLIC_USE Usable area for public use in proportion to the Total Building Surface

RELIGIOUS_USE Usable area for religious use in proportion to the Total Building Surface
OFFICES_USE Usable areafor offices in proportion to the Total Building Surface

COMMERCIAL_USE Usable area for commercial use in proportion to the Total Building Surface
SPORT_USE Usable area for sports use in proportion to the Total Building Surface

HOTELS_USE Usable area for hostelry use in proportion to the Total Building Surface
EDUCATION_USE Usable area for teaching use in proportion to the Total Building Surface

LEISURE_USE Usable area for leisure use in proportion to the Total Building Surface
INDUSTRY_USE Usable area for industrial use in proportion to the Total Building Surface

OTHERS_USE Usable area for other uses in proportion to the Total Building Surface
OPEN BLOCK Type: Multi-family open block

CLOSED BLOCK Type: Multi-family closed block
SINGLE FAMILY Type: Single-family home
NUM_HOUSES Number of dwellings in the building

Physical variables of
the dwelling

SIZE Total built surface (m2) in the residential unit (m2)

NUM_ELEM
Accounts for the existence of more than one space associated to the house,

different from annexes/garages. Any value greater than 0 indicates that there is
at least ONE dwelling.

Contextual variables

DB3 Dummy Climatic zone B3 according to Código Técnico de la Edificación (CTE)
DC1 Climatic zone C1 according to CTE
DC2 Climatic zone C2 according to CTE
DD1 Climatic zone D1 according to CTE
DE1 Climatic zone E1 according to CTE

Thus, the model to be applied in the analysis would be the following:
• For emissions:

Log_CO2 it = α + βit [Xit] + ε (3)

• For energy consumption:

Log_Ec it = α + βit [Xit] + ε (4)

where Xit is a matrix of the characteristics of the dwelling, the building, and the elements.
To introduce the spatial autocorrelation in a hedonic regression, the model applied is a combination

of the Lag Model and the Error Model. In this case, the model analyses if the regression presents both
substantive (Lag) and residual (Error) dependence. The equation will be as follows:

y = ρw_y + Xβ + ε (5)

ε = λw_ε + µ (6)

where y is a vector Nx1; ρwy is the autoregressive structure in the endogenous variable to explain
the spatial lag; wy is the matrix of lags of the dependent variable; X is the matrix of the exogenous
variables; ρ is the autoregressive spatial parameter; wε is the matrix of spatial lags in the error term;
and λ is the autoregressive coefficient and µ is the normal distribution N(0, σ2I).

The model adopted in this paper was a spatially weighted model of Least Squares in 2 Stages
(2SWLS). This is a hedonic based model which uses the physical and contextual variables of buildings
and dwellings. The model interpretates the effect of the building attributes in the energy consumption
and the CO2 emissions, considering the different climatic areas and the presence of spatial dependence
in the housing markets (Equations (8) and (9)).

lnConsum = α i + ρ
(
Wi j·lnConsumit

)
+ βit·

NT∑
i=1

Xit + λWµit + µit (7)
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lnEmisio = α i + ρ
(
Wi j·lnEmisioit

)
+ βit·

NT∑
i=1

Xit + λWµit + µit (8)

where ρWlnConsum and ρWlnEmisio is the autoregressive structure in the endogenous variable to
explain the spatial lag;

(
Wi j·lnConsumit

)
and

(
Wi j·lnEmisioit

)
are the matrix of lags of the dependent

variable; ρ is the autoregressive spatial parameter; Xit is the matrix of the exogenous variables
(Tables 2 and 3 show the independent variables used in the analysis); βit refers to the regressive
parameters; λWµit is the matrix of spatial lags in the error term; λ is the autoregressive coefficient;
and µit is the normal distribution N(0, σ2I).

Table 2. Descriptive statistics of Castellón.

Medium Standard
Deviation Asymmetry Kurtosis

EMIS_CO2 43.313 18.981 1.550 4.362

LnCO2 1.599 0.179 0.051 0.167

CONS_KWH 172.768 73.899 1.652 5.003

LnKWH 2.203 0.172 0.143 0.236

AGE 26.305 21.598 1.475 3.254

LnAGE2 3.006 0.783 0.171 −1.269

NUM_HOUSES 64.158 95.730 3.475 17.493

LnNUM_HOUSES 3.332 1.381 −0.249 −0.261

SIZE 89.769 33.248 1.550 4.819

LnSIZE 4.436 0.349 0.075 0.351

CASTELLÓN 1.000 0.000

VALENCIA 0.000 0.000

RESIDENTIAL_USE 0.733 0.143 0.023 −0.432

COMMERCIAL_USE 0.023 0.050 2.815 9.238

OFFICES_USE 0.005 0.027 11.958 273.413

INDUSTRY_USE 0.002 0.020 11.398 146.942

EDUCATION_USE 0.001 0.007 23.902 771.559

HOTELS_USE 0.006 0.028 8.496 103.468

PUBLIC_USE 0.000 0.004 51.439 2748.292

SPORT_USE 0.005 0.020 7.479 78.578

RELIGIOUS_USE 0.000 0.003 39.012 1586.784

LEISURE_USE 0.000 0.005 33.211 1214.259

OTHERS_USE 0.017 0.050 4.015 21.010

OPEN BLOCK 0.224 0.417 1.322 −0.253

CLOSE BLOCK 0.649 0.477 −0.626 −1.609

SINGLE FAMILY 0.125 0.331 2.265 3.132

NUM_ELEM 1.181 0.497 3.016 9.329

DB3 0.961 0.194 −4.748 20.549

DC1 0.006 0.075 13.225 172.954

DC2 0.029 0.169 5.564 28.963

DD1 0.003 0.056 17.724 312.218

DE1 0.001 0.031 32.234 1037.284
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Table 3. Descriptive statistics of Valencia.

Medium Standard
Deviation Asymmetry Kurtosis

EMIS_CO2 40.348 18.305 1.656 5.499

LnCO2 1.565 0.189 −0.170 0.736

CONS_KWH 162.165 71.277 1.746 6.142

LnKWH 2.173 0.180 −0.094 0.790

AGE 34.142 24.396 1.211 3.620

LnAGE2 3.278 0.804 −0.355 −1.100

NUM_HOUSES 48.602 66.053 3.511 17.947

LnNUM_HOUSES 3.193 1.261 −0.358 0.073

SIZE 95.500 33.571 1.504 4.629

LnSIZE 4.503 0.333 0.030 0.677

CASTELLÓN 0.000 0.000

VALENCIA 1.000 0.000

RESIDENTIAL_USE 0.762 0.135 −0.526 0.649

COMMERCIAL_USE 0.032 0.054 2.277 7.274

OFFICES_USE 0.005 0.025 9.461 141.376

INDUSTRY_USE 0.008 0.032 7.025 72.013

EDUCATION_USE 0.001 0.013 16.947 418.789

HOTELS_USE 0.002 0.017 14.434 325.555

PUBLIC_USE 0.001 0.008 22.915 784.168

SPORT_USE 0.006 0.028 8.191 100.843

RELIGIOUS_USE 0.000 0.005 44.572 2716.045

LEISURE_USE 0.000 0.006 44.029 2553.198

OTHERS_USE 0.007 0.027 7.613 88.255

OPEN BLOCK 0.193 0.395 1.558 0.426

CLOSE BLOCK 0.687 0.464 −0.807 −1.349

SINGLE FAMILY 0.118 0.323 2.362 3.579

NUM_ELEM 1.165 0.474 3.270 11.771

DB3 0.970 0.170 −5.523 28.502

DC1 0.002 0.044 22.519 505.131

DC2 0.023 0.150 6.340 38.200

DD1 0.005 0.069 14.397 205.287

DE1 0.000 0.000

Data

The data used have been extracted from the Valencian Community Energy Certification database,
managed by the Institut Valencià de Competitivitat Empresarial (the energy certificates are the source
of data used in this paper; they are compiled and published by the Institut Valencià de Competitivitat
Empresarial (IVACE, https://gcee.ave.es), which is a public regional institution of the Valencian
Community that is in charge of the databases and information of the regional industry), and from
the Cadaster database (a public national institution that is in charge of all the cadastral information,
with the exception of the Basque Country and Navarra). Information related to energy consumption

https://gcee.ave.es
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and emissions has been extracted from the first database, in addition to some characteristics of the
dwelling, such as age. From the Cadaster database, one can obtain the physical characteristics of the
dwelling, the building, and the elements, as well as information of the climatic zones (Table 1).

Heterogeneity is a key issue related to building and their construction features, which is why we
have obtained a detailed definition of each building from the Cadaster database in order to identify the
type of building (to control for surface exposure), size, number of units in the building, as well as the
type of house. We are conscious that construction features are critical for energy consumption and
emissions, but there is no more detailed information on, for instance, the walls’ energy transfer or any
other technical detail. However, the homogeneity of the construction technique in the analyzed cities
and the controls used in the econometric models give us the confidence that the results can be trusted.

To build the database for this analysis, the technique followed is the one proposed by [45]. It is a
database that merges two micro-databases. Firstly, the municipal data have been merged to create
the cadastral database. Cadaster provides information about all buildings and properties, organized
by municipalities. Thus, the data for all populations have been downloaded, distinguishing between
rustic and urban properties. During this process, two documents were obtained with all the cadastral
information of the provinces of Valencia and Castellón, identifying each observation through its
cadastral reference.

The second step was to merge the cadastral database with the available information on energy
certification. The energy certificates do not identify the property of the house, since the Organic Law of
Protection of Personal Data and Guarantee of Digital Rights prevents it. However, each registry is
linked to a cadastral reference, so both databases can be merged by matching the cadastral references.
During this step, the size of the sample has been reduced, since the majority of dwellings or buildings
do not have an energy certificate due to the fact that, in Spain, energy certificates only become obligatory
when: (a) it is a new construction, (b) the existing building/dwelling is going to be sold or rented, or (c)
it is a public building with a space frequently visited greater than 250 m2.

Although the initial sample had 715,020 observations for Castellón and 2,279,161 for Valencia,
after referring the energy certification database, the final sample was reduced to 7291 observations for
the province of Castellón and 27,542 for Valencia, with a total of 34,833 observations.

The final database was cleaned up using four steps. First, those variables that could not be
analyzed or had no relevance in the analysis (such as province and town codes, direction, etc.),
were deleted. Second, variables with no missing values were selected to have the most complete
information available in the sample. Third, it was observed whether there was a correlation between
the selected variables. In cases where there was a correlation between some of the characteristics,
one of them was selected to avoid distorting the effect on the dependent variables. In addition to this,
we have eliminated those observations in which the surface area of the house was less than 25 m2,
and those that were land. In these cases, the associated energy consumption is a work consumption,
so it can distort the result. Thus, the database analyzed has 27 variables, including energy consumption,
CO2 emissions, and a set of variables for the building and the dwelling.

4. Results

The descriptive statistics of the province of Castellón (Table 2) show that the average emission
level is 43.31 kg CO2/m2 per year, and the average energy consumption is 172.77 kWh/m2 per year.
Regarding the variables that describe the building and the environment of the dwelling, it was observed
that the average age of the dwellings was 26.31 years, the average number of dwellings that make up a
building was 64.16 units, and that, on average, 73% of the surface area of the buildings was destined
for residential use, 2% was destined for commercial use, and 1.7% for other.
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In addition to this, statistics show that 64.9% of the sample are closed-block multi-family dwellings
(CLOSE BLOCK) and 22.4% are open-block multi-family dwellings (OPEN BLOCK), compared to
12.5% for single-family dwellings (SINGLE FAMILY). On the other hand, the characteristics of the
dwelling indicate that the average surface area of the dwellings is 89.77 m2 and that the number
of elements making up the dwelling is on average 1.18 units, disregarding annexes and garages.
Regarding climatic zones, 96.1% of the observations can be said to be found in climatic zone B3, located
on the Mediterranean coast. The remaining observations are distributed as follows: 0.6% in climate
zone C1, 2.9% in C2, 0.3% in D1, and 0.1% in E1.

In the case of Valencia (Table 3), descriptive statistics show that the average emission level is
40.35 kg CO2/m2 per year, and the average energy consumption is 162.17 kWh/m2 per year. Regarding
the variables that describe the building and the environment of the dwelling, it is observed that the
average age of the dwellings is 34.14 years, the average number of dwellings that make up a building is
48.6 units and that, on average, 76.2% of the surface area of the buildings is destined for residential use,
3.2% is destined for commercial use, and less than 1% of the surface area is destined for other uses.

In addition to this, statistics show that 68.7% of the sample are closed-block multi-family dwellings
(CLOSE BLOCK), 19.3% are open-block multi-family dwellings (OPEN BLOCK), and 11.8% are
single-family dwellings (SINGLE FAMILY). On the other hand, the characteristics of the dwelling
indicate that the average surface area of the dwellings is 95.5 m2 and that the number of elements
making up the dwelling is on average 1.16 units. As far as climatic zones are concerned, 97% of the
observations are found in climatic zone B3, while the rest are distributed in indoor climatic zones as
follows: 0.2% in climatic zone C1, 2.3% in C2, 0.3%, and 0.5% in D1. In the province of Valencia, there is
no climatic zone E1.

In this way, the results of both provinces would indicate that on average the buildings in Castellón
are newer (by approximately eight years) and with a greater number of dwellings per building
(approximately 18 units more) than those in Valencia. As far as the uses of the surface of the buildings
are concerned, they are similar in both provinces, with most of the surface destined for residential use
and, to a lesser extent, for commercial use. The same occurs with the number of elements that make up
the dwelling, being close to 1 in both provinces; that is, in most cases, the dwelling is only element
of each analysed property (without storage rooms, garages, and other annexes). In both provinces,
closed-block multi-family dwellings predominate, followed by open-block multi-family dwellings,
as opposed to single-family dwellings. Regarding the average size of the dwelling, in Valencia it
is slightly larger than Castellón (by approximately 6 m2). This contradicts the results of the 2011
Census, elaborated by the Instituto Nacional de Estadística (INE). This may be due to several reasons:
(a) because the INE does not take into account secondary-use dwellings (as the certificates are fromsales
or rentals, it is very likely that these observations are, in many cases, secondary-use dwellings);
(b) because in the case of Castellón they are dwellings located on the coast, whereas in Valencia they are
located mainly in the metropolis and its surroundings; (c) because of the difference in the number of
observations between the two provinces (27,542 in Valencia, as opposed to 7291 in Castellón). Besides,
if the climatic zones are observed, in both provinces, most of the samples are from climatic zone B3.
In addition to these data, descriptive statistics show that the levels of energy consumption and average
emissions are higher in Castellón.

The spatial analysis has been applied using the model proposed by [46]. The analysis, carried out
jointly for both provinces, indicates that there is spatial autocorrelation in the sample (Figure 1).
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Figure 1. (a) Moran’s I for energy consumption. (b) Moran’s I for CO2 emissions.

In the energy consumption case, Moran’s I (Figure 1a) shows that the autocorrelation is 0.22.
Moreover, in the case of the emissions, Moran’s I (Figure 1b) indicates that this autocorrelation is
slightly higher, around 0.23. This is because the analysis is done at province level driving the global
Moran’s I to be small. However, the values are around 0.2 (or 20%, positive), suggesting that the
spatial association is not at a global level but at a local level. This is why the Local Indicators of Spatial
Association (LISA) test was performed, to find clusters of common energy consumption and emissions
which could give evidence of similar pattern associated to the space. LISA confirmed that the clusters
are located only in some points of the provinces, as for example the main cities (Figures 2 and 3).
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Figure 2. (a) Climatic zones in the Valencia and Castellón provinces; (b) energy rating by primary
energy consumption (kWh/m2 year); (c) energy rating by global emissions (kgCO2/m2year). For (b)
and (c), the energy rating is, obtained from the CE3X program and the CTE 2006 regulations.
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Figure 3. Housing clusters by emission levels.

The maps represented in Figures 2–7, show the definition of sub-markets or clusters using the
energy consumption and the CO2 emissions as a characteristic. In the first maps, Figure 2 represents
the boundaries of the climatic areas; Figure 3 shows the cluster in energy emissions, a low-low cluster
is in the cities of Valencia (Figures 4 and 5) and Castellón (Figures 6 and 7). That means that when my
neighbor’s consumption is low, mine is too. In addition to these, several high-high clusters are in the
coastal towns of both provinces and in the inland towns of Valencia. The rest of the clusters (low-high
and high-low) are transition positions located around the other cases. This fact would corroborate the
theory that efficient ecosystems are created in cities. In this case, sustainability efficiency, bi-variate
LISA clusters for energy consumption and emissions were also estimated for the robustness test,
since the similarity of their cluster maps suggests a dependence between both.
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Figure 7. Housing clusters by emissions in Castellón de la Plana city.

The results of the parameters of the semilogarithmic model are similar for energy consumption
(Table 4) and emissions (Table 5), whether spatial autocorrelation (2SWLS) is considered or not
(OLS Model). The OLS model captures the presence of spatial effects in the observed sample, so it is
necessary to include spatial autocorrelation in the model; for this reason, the results will be explained
with the two-stage spatially weighted Least Square Model (Lag + Error). This semi-logarithmic model
has an explanatory capacity of 20.32% for energy consumption and 20.95% for emissions once spatial
effects have been considered. In this type of modeling, low adjusted R2s are common. Such values are
not the result of misspecification, but because of the complexity of the models explaining the energy
consumption. The model results are quite precise, and the multicollinearity captured is controlled by
the spatial correlation included in the model.

Table 4. Results of the semilogarithmic analysis of energy consumption.

OLS Lag Error Lag + Error

Dependent Variable:
Energy Consumption (Logs) β SE β SE B SE β SE

CONSTANT 2.689 *** 0.016 2.166 *** 0.050 2.610 *** 0.018 2.174 *** 0.053

OPEN BLOCK −0.093 *** 0.005 −0.080 *** 0.005 −0.073 *** 0.005 −0.074 *** 0.005

CLOSE BLOCK −0.092 *** 0.004 −0.081 *** 0.004 −0.070 *** 0.005 −0.074 *** 0.005

COMMERCIAL_USE −0.061 *** 0.017 −0.058 *** 0.017 −0.038 * 0.018 −0.049 ** 0.018

EDUCATION_USE 0.062 0.071 0.059 0.069 0.084 0.070 0.071 0.070

HOTELS_USE 0.110 * 0.044 0.104 * 0.043 0.105 * 0.044 0.105 * 0.044

INDUSTRY_USE −0.008 0.030 −0.001 0.029 0.041 0.030 0.023 0.029

SPORT_USE 0.384 *** 0.035 0.308 *** 0.035 0.309 *** 0.038 0.294 *** 0.037

OFFICES_USE −0.113 *** 0.034 −0.090 ** 0.033 −0.047 0.035 −0.063 0.034

PUBLIC_USE −0.231 * 0.111 −0.229 * 0.109 −0.178 0.110 −0.203 0.110

RELIGIOUS_USE 0.096 0.170 0.113 0.166 0.165 0.165 0.148 0.166

LEISURE_USE −0.160 0.156 −0.131 0.152 −0.063 0.151 −0.088 0.152

RESIDENTIAL_USE 0.050 *** 0.008 0.039 *** 0.008 0.048 *** 0.008 0.041 *** 0.008

OTHERS_USE 0.202 *** 0.027 0.168 *** 0.026 0.171 *** 0.029 0.164 *** 0.028

LnAGE2 0.050 *** 0.001 0.047 *** 0.001 0.056 *** 0.002 0.050 *** 0.002
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Table 4. Cont.

OLS Lag Error Lag + Error

Dependent Variable:
Energy Consumption (Logs) β SE β SE B SE β SE

LnNUM_HOUSES −0.017 *** 0.001 −0.015 *** 0.001 −0.016 *** 0.001 −0.015 *** 0.001

LnSIZE −0.120 *** 0.003 −0.111 *** 0.003 −0.111 *** 0.003 −0.110 *** 0.003

NUM_ELEM 0.026 *** 0.003 0.024 *** 0.003 0.028 *** 0.003 0.026 *** 0.003

VALENCIA −0.035 *** 0.002 −0.028 *** 0.002 −0.038 *** 0.004 −0.030 *** 0.003

DB3 −0.040 *** 0.006 −0.030 *** 0.006 −0.041 *** 0.008 −0.031 *** 0.007

DC1 0.040 * 0.017 0.025 0.017 0.038 0.021 0.024 0.019

DD1 0.208 *** 0.014 0.167 *** 0.014 0.210 *** 0.021 0.172 *** 0.018

DE1 0.232 *** 0.061 0.180 ** 0.059 0.257 *** 0.077 0.196 ** 0.070

W_Log_Cons 0.217 *** 0.019 0.202 *** 0.022

lambda 0.430 *** 0.007 0.264 *** 0.022

Adj R2 0.2034

Pseudo R2 0.2420 0.2008 0.2393

Spatial Pseudo R2 0.2050 0.2032

N. obs. 34833 34833 34833 34833

No. var. 23 24 23 24

F 405.141

Degrees of Freedom 34810 34809 34810 34809

Moran I (error) 55.8660 ***

Lagrange Multiplier (Lag) 2748.0920 ***

Robust LM (Lag) 67.5540 ***

Lagrange Multiplier (Error) 3097.3620 ***

Robust LM (Error) 416.8240 ***

Lagrange Multiplier SARMA 3164.9160 ***

Anselin−Kelejian Test 44.5720 ***

*** Level of confidence at 0.1%; ** 1% confidence level; * 5% confidence level. Instrumented: W_LnKWH. Instruments:
W_OPEN BLOCK, W_CLOSE BLOCK, W_ COMMERCIAL_USE, W_ EDUCATION_USE, W_ HOTELS_USE,
W_ INDUSTRY_USE, W_ SPORT_USE, W_ OFFICES_USE, W_ PUBLIC_USE, W_ RELIGIOUS_USE,
W_ LEISURE_USE, W_ RESIDENTIAL_USE, W_OTHERS_USE, W_ LnAGE2, W_ LnNUM_HOUSES, W_ LnSIZE,
W_NUM_ELEM, W_VALENCIA, W_DB3, W_DC1, W_DD1, and W_DE1.

Table 5. Results of semilogarithmic analysis of CO2 Emissions.

OLS Lag Error Lag+Error

Dependent Variable:
CO2 Emissions (Logs) β SE β SE B SE β SE

CONSTANT 2.149 *** 0.017 1.762 *** 0.039 2.050 *** 0.019 1.759 *** 0.042

OPEN BLOCK −0.090 *** 0.005 −0.078 *** 0.005 −0.070 *** 0.006 −0.072 *** 0.006

CLOSE BLOCK −0.087 *** 0.004 −0.077 *** 0.004 −0.065 *** 0.005 −0.069 *** 0.005

COMMERCIAL_USE −0.079 *** 0.018 −0.074 *** 0.018 −0.045 * 0.019 −0.059 ** 0.019

EDUCATION_USE 0.072 0.074 0.071 0.072 0.106 0.072 0.091 0.073

HOTELS_USE 0.121 ** 0.046 0.115 ** 0.045 0.117 * 0.046 0.117 * 0.046

INDUSTRY_USE −0.007 0.031 0.001 0.030 0.052 0.031 0.033 0.031

SPORT_USE 0.370 *** 0.037 0.302 *** 0.036 0.303 *** 0.039 0.292 *** 0.039

OFFICES_USE −0.148 *** 0.035 −0.119 *** 0.035 −0.062 0.036 −0.081 * 0.036

PUBLIC_USE −0.248 * 0.116 −0.244 * 0.113 −0.179 0.114 −0.208 0.114

RELIGIOUS_USE 0.090 0.178 0.106 0.173 0.165 0.172 0.148 0.173

LEISURE_USE −0.152 0.162 −0.120 0.158 −0.037 0.156 −0.065 0.158

RESIDENTIAL_USE 0.058 *** 0.008 0.046 *** 0.008 0.057 *** 0.009 0.050 *** 0.008

OTHERS_USE 0.206 *** 0.028 0.173 *** 0.027 0.172 *** 0.030 0.167 *** 0.029

LnAGE2 0.053 *** 0.001 0.049 *** 0.001 0.060 *** 0.002 0.054 *** 0.002

LnNUM_HOUSES −0.020 *** 0.001 −0.017 *** 0.001 −0.018 *** 0.001 −0.017 *** 0.001

LnSIZE −0.135 *** 0.003 −0.125 *** 0.003 −0.123 *** 0.003 −0.123 *** 0.003
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Table 5. Cont.

OLS Lag Error Lag+Error

Dependent Variable:
CO2 Emissions (Logs) β SE β SE B SE β SE

NUM_ELEM 0.026 *** 0.003 0.024 *** 0.003 0.028 *** 0.003 0.026 *** 0.003

VALENCIA −0.039 *** 0.002 −0.031 *** 0.002 −0.043 *** 0.004 −0.034 *** 0.003

DB3 −0.047 *** 0.006 −0.036 *** 0.006 −0.047 *** 0.009 −0.037 *** 0.008

DC1 0.041 * 0.018 0.026 0.018 0.038 0.021 0.025 0.020

DD1 0.200 *** 0.015 0.163 *** 0.015 0.204 *** 0.023 0.169 *** 0.020

DE1 0.220 *** 0.063 0.172 ** 0.062 0.257 ** 0.081 0.196 ** 0.075

W_Log_Emis 0.210 *** 0.019 0.190 *** 0.022

lambda 0.451 *** 0.007 0.314 *** 0.020

Adj R2 0.2104

Pseudo R2 0.2508 0.2073 0.2467

Spatial Pseudo R2 0.2117 0.2095

N. obs. 34833 34833 34833 34833

No. var. 23 24 23 24

F 422.7911

Degrees of Freedom 34810 34809 34810 34809

Moran I (error) 60.4340 ***

Lagrange Multiplier (Lag) 3121.1090 ***

Robust LM (Lag) 57.9710 ***

Lagrange Multiplier (Error) 3625.6610 ***

Robust LM (Error) 562.5230 ***

Lagrange Multiplier SARMA 3683.6320 ***

Anselin-Kelejian Test 62.2120 ***

*** Level of confidence at 0.1%; ** 1% confidence level; * 5% confidence level. Instrumented: W_LnCO2. Instruments:
W_OPEN BLOCK, W_CLOSE BLOCK, W_ COMMERCIAL_USE, W_EDUCATION_USE, W_ HOTELS_USE,
W_ INDUSTRY_USE, W_ SPORT_USE, W_ OFFICES_USE, W_ PUBLIC_USE, W_ RELIGIOUS_USE,
W_ LEISURE_USE, W_RESIDENTIAL_USE, W_ OTHERS_USE, W_ LnAGE2, W_ LnNUM_HOUSES, W_ LnSIZE,
W_NUM_ELEM, W_VALENCIA, W_DB3, W_DC1, W_DD1, and W_DE1.

The tests Log-likelihood and F-statistics (Table 6) support the significance of the model results
(with large values) and Breusch-Pagan and Koenker-Bassett confirms the presence of heteroskedasticity,
which is a sign of the existence of a spatial association among observations.

Table 6. Test comparison.

Energy Consumption CO2 Emissions

F-statistic 405,1407 422,7911

Log likelihood 14509,067 13054,535

Breusch-Pagan test 210,882 229,446

Koenker-Bassett test 159,994 177,693

Since the Moran and Lagrange’s tests also confirm the presence of spatial autocorrelation, the OLS
parameters are biased when explaining the relation between the independent variables and energy
consumption and CO2 emissions. If we compare the three spatially weighed models applied to the
hedonic regression of energy consumption, we see that some of the variables do not present robust
results (with different degree of statistical significance). This is the case of the commercial ratio
(percentage of commercial space in the building) and when the house is located in a building with
areas for offices and public use. By introducing spatial dependence into the model, both variables lose
explanatory power. The climate zone C1 also loses its significance when the spatial effect is considered
in both the Spatial Lag and Spatial Error models (the Anselin-Kelejian test estimate after the model is
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controlled by spatial lag still suggests the existence of remaining and unobservable spatial association,
so that the spatial error should be included). In the climatic zone E1, the significance varies only in the
Spatial Lag model.

If the same comparison is made for the hedonic regression of emissions, the result is similar.
The commercial and hospitality ratios also lose significance when the spatial dependence on errors
is considered, going from being significant to 1% to 5%. In climatic zones, there are also changes in
significance when spatial dependence is introduced with both the Spatial Lag model and the Spatial
Error model. In the case of zone C1, the significance disappears, while zone E1 goes from being
significant to 0.1% to 1%.

Regarding the coefficients obtained, the results indicate that the variables of the building, such as
age or typology, are relevant for explaining the level of energy consumption and emissions of a
dwelling [7,47] (p. 27). In the case of age, an increase of 1% in the age of the building would increase
energy consumption by 5% and emissions by 5.4%. Moreover, the type of building indicates that an
increase in one unit in multi-family buildings (both open and close blocks) contributes to reduce energy
consumption by 7.4% each. In the case of emissions, the results are similar: an increase in a dwelling
in open block buildings reduces emissions by 7.2%, and in an isolated-close block by 6.9%. If the
effect that the number of dwellings forming the building has on the dependent variables is observed,
the model determines that a 1% increase in dwellings will reduce energy consumption by 1.5% and
emissions by 1.7%.

With regard to the relationship between the different types of use of the surface of buildings
and energy consumption and emissions, the results indicate that when the surface of the building is
increased for several uses like residential, sports, hotel, religious and other unspecified uses, the energy
consumption of the dwelling increases by 4.1%, 29.4%, 10.5%, and 16.4%, respectively. Meanwhile,
if the surface has greater commercial use, energy consumption decreases by 4.9%. When the effect
on emissions is analyzed, a greater proportion of the surface area destined for residential, sports,
hotel, and other unspecified uses cause an increase in the level of emissions of 5%, 29.2%, 11.7%,
and 16.7%, respectively. Meanwhile, a higher ratio of surface area for commercial and office use implies
a decrease in emissions of 5.9% and 8.1%. These results are consistent with those studies that indicate
that characteristics of the housing environment, such as those corresponding to the building, affect the
energy consumption and emissions of the dwellings or elements that form part of it [8,10,14,15,34,48].

On the other hand, among the variables that make up the block of characteristics of the dwelling
or residential units, it is observed that the size of the dwelling and the number of elements that make
up the dwelling have a significant effect on energy consumption and emissions. In the case of the size
of the dwelling, measured as the number of m2 of a residential unit, an increase of 1% in the residential
area would produce a reduction in energy consumption of 11%. The same is true when emissions are
analyzed. In this case, when the size of the dwelling increases by 1%, the level of emissions is reduced
by 12.3%. These data do not coincide with the conclusions obtained in previous studies, in which the
larger the size of the dwelling, the greater the energy consumption—and, therefore, the higher the
emissions [8,14]. One possible explanation is the fact that most of the sample is in a low-low cluster
in the metropolitan area of Valencia, as can be seen in Figure 2. On the contrary, when observing
the variable that collects the number of elements that make up the dwelling—which can be used as
an approximation of the size or distribution of a dwelling—the result is similar to previous studies.
The analysis indicates that when a dwelling element increases, both energy consumption and emissions
increase by 2.6%.

When the variables referring to the location of the dwellings are observed, it is observed that the
dwellings located in the province of Valencia consume 3% less energy than those in the province of
Castellón. This figure is slightly more significant (−3.4%) when analyzing the effect of localization on
emissions. Regarding the effect that climatic zones have on energy consumption and emissions levels,
the model determines that dwellings located in zone B3 (coast) consume 3.1% less than those located
in zone C2 (interior reference zone) and emit 3.7% less. Meanwhile, dwellings located in zones D1
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and E1 consume 17.2% and 19.6% more than zone C2 and emit 16.9% and 19.6% more than zone C2,
respectively. Zone C1 does not present a significant result when spatial dependence is introduced into
the sample. This result coincides with the conclusions on location, climate, and radiation of [14,17].

Finally, the variables collected by spatial autocorrelation indicate that 20.2% of the energy
consumption of an observation depends on the spatial effects of the energy consumption of the
surrounding observations and 26.4% depends on the structural spatial dependence not explained
by these variables. In terms of emissions, 19% is explained by the emissions from the rest of the
observations, while structural spatial dependence has an effect of 31.4%.

5. Discussion

If these results are analyzed in the light of their political context, several conclusions can be drawn,
which constitute the contribution of this analysis to the literature. EU policies to reduce the impact
of climate change have focused on reducing energy consumption and emissions, setting general and
sometimes specific targets for each economic sector. Among these measures, the Energy Performance
of Buildings Directive (EPBD) stands out, whose framework of action focuses on the reduction of
emissions in the real estate and construction sector. The 2018EPBD review, concluded that the rate
of rehabilitation and energy reforms in existing buildings had been very low. This demonstrated the
need to focus on housing energy policies on the existing housing stock [49].

Studies such as [49] show that current EU efforts are not achieving results in line with the
objectives set by the Conference of the Parties 21 (COP21) and the Paris Agreement. For this reason,
new, more stringent and precise regulations will be necessary.

Continuing with these premises, in this research it can be observed that, in some countries and
regions where there are large differences between climatic zones and between cities of different sizes,
the behavior of the housing market is not the same. In the case of Valencia and Castellón, the most
notable differences are between dwellings located in coastal and inland climatic zones and between
those located in metropolitan cities and in other types of towns.

In the case of coastal areas, despite having a lower energy consumption in the total sample,
high-high clusters appear in certain areas (with a strong tourist presence), i.e., submarkets with
high energy consumption. This could be due to two reasons: either there could be a rebound effect
(newer and better-equipped dwellings, with higher consumption) or it could be due to the fact that
the property stock is old and is not being improved or rehabilitated (this case is closely related to
the profile of a secondary dwelling intended for tourist rental or use by the owner for short stays).
In both cases, mechanisms to promote energy rehabilitation through market incentives (greater energy
efficiency, a greater value of housing on the market) would not have the expected results. However,
in indoor areas where energy consumption is also high (this may be due to the type of dwelling—more
single-family and rural dwellings—and more old dwellings), this mechanism could have a greater
impact. The internal housing market tends to focus on rentals or purchases for long-term stays,
so market incentives for investment in energy rehabilitation could work.

On the other hand, it is observed that in both metropolitan cities (Valencia and Castellón), low-low
clusters appear, which could demonstrate some theories that indicate that in cities and urban centers,
‘ecosystems’ of efficiency are produced in different aspects such as transport, energy consumption, etc.
In these cases, incentives to invest in rehabilitation would also be effective, since inefficient housing
would lose value in a market where most homes have better sustainability standards.

In addition to this, it is worth noting the fact that there are differences between energy consumption
and emissions in terms of significance, spatial dependence, and the relationship between the
characteristics. In the hedonic analysis of emissions, spatial dependence and coefficients are slightly
higher, this may be because, as [37] indicates, the level of emissions depends directly on energy
consumption and the type of energy source, and therefore, the model is indirectly capturing this factor.

The empirical evidence here is analyzing the role of the physical components of the house to
explain energy consumption/CO2 emissions. The literature is clear in the former as the consumption
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mainly depends on other non-technical variables, such as the use of the house, family features, and other
non-physical or technical variables. The goodness of fit of the models explains 20% of the variability
on consumption due to housing physical features. The explanatory capacity is not small when the
task is to explain energy consumption and emissions. The results obtained and the significance of the
indicators, according to other previous analysis, allow to quantify how much energy can be saved in
buildings, if the physical features of a house are improved.

6. Conclusions

This study analyzes the effect that the physical attributes of a building and a dwelling have,
as well as some contextual characteristics, such as location or climate, on energy consumption and the
level of emissions of a dwelling. The study has been carried out for the Spanish provinces of Valencia
and Castellón, and includes as control variables: climatic zones, following the studies of [14,17],
who indicated that climate is a relevant variable for energy consumption, and the presence of spatial
autocorrelation in real estate sub-markets depending on some characteristics, as indicated by [38,41].

To resolve the analysis, two semilogarithmic regressions have been proposed (one for energy
consumption and the other for emissions), which have been resolved by applying a spatially weighted
model of Least Squares in 2 Stages (2SWLS). The results of both regressions indicate that the results for
energy consumption and emissions are similar. There is a relationship of spatial dependence in the
sample that delimits real estate clusters for energy sustainability.

On the one hand, low consumption and low emission clusters are observed in the metropolitan
area of Valencia and Castellón and, on the other hand, high consumption and emission clusters
are delimited both in coastal tourist towns and in inland areas. Taking this spatial dependence into
account, endogenous variables indicate that older dwellings have higher energy consumption and
emissions. In addition to this, when part of the surface of a building is used for sports, catering or
other uses, energy consumption, and emissions increase. On the contrary, when this area is destined
for commercial or office use (this value is only significant for emissions), energy consumption and
emissions decrease, so that the home would be more sustainable. The analysis also indicates that when
dwellings belong to multi-family buildings, energy consumption and emissions are lower. This is
also the case if the number of dwellings that make up the buildings is observed. The higher the
number of dwellings in a building, the lower the energy consumption and emissions of the individual
dwellings. This is probably because the multi-family typology variable is related to the number of
dwellings in the building. On the other hand, the results also indicate that the more elements that
form part of the dwelling, the higher the levels of energy consumption and emissions it will have.
However, if we look at the size measured per m2, the results show that an increase in size has a
less than proportional increase in energy consumption and emissions. Finally, if the contextual and
location variables are analyzed, it is observed that energy consumption and emissions are lower in
Valencia and that dwellings on the coast (zone B3) are more energy sustainable than dwellings in inland
areas (zones C1, C2, D1, and E1). The fact that, on the coast, by climatic zone, consumption is lower,
but high-high clusters appear, could indicate that the existence of rebound effects or the presence of
a short-stay tourist housing market. Similarly, the presence of low-low clusters in the metropolitan
areas of the two main cities (Castellón and València) could corroborate the theory that cities create an
ecosystem of efficiency in different aspects, including energy efficiency and sustainability.
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