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Abstract 

Surfactant-templating is one of the most effective and versatile synthetic 

strategies for the construction of well-defined porous architectures in solids. 

Though the principles of molecular self-assembly were disclosed in biological 

systems since long, the use of amphiphiles to generate porous architectures in 

inorganic matter has merely emerged at the very end of the 20th century. The 

present review proposes a voyage from the early developments of surfactant-

templating for designing ordered mesoporous solids to the application of its 

principles for the generation of hierarchical zeolites. A thorough overview on the 

various strategies employing supramolecular chemistry to designing 

mesoporosity in zeolites is presented. The efficiency of the post-synthetic 

surfactant-templating approach in bridging the gap between zeolites and 

amorphous mesoporous molecular sieves is depicted through assessing their key 

properties, such as hydrothermal stability, texture, and acidity. Finally, the impact 

of hierarchical zeolites in the industry will be highlighted through a review of the 

catalytic performance of mesostructured zeolites as components of FCC catalysts 

in various refineries.  
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1. Surfactant-templating: A unique toolbox for the design of mesoporous materials 

Surfactant-templating (also referred as supramolecular templating) emerged as 

general term to describe the chimie douce approaches for conceiving solids with 

tunable porosity. These soft chemistry strategies in materials design comprise the 

evolution of porous features, determined by supramolecular assemblies that act as 

templates, which develop from individual amphiphilic molecules, i.e. surfactants. 

Surfactant-templating might indeed be defined as: a synthetic strategy leading to 

materials featuring tailored porosity, both in terms of pore size and architecture, 

by employing the self-assembly properties of surfactant molecules, which act as 

porogen, and their interactions with moieties of the forming material. At present, 

surfactant-templating has established as a versatile strategy especially suited for 

the preparation of well-defined porous materials of various chemical natures 

typically in the mesopores range organized in a variety of architectures.  

Though the principle of surfactant-templating was firstly applied in 1969 for the 

achievement of mesostructured amorphous silica using trimethylalkylammonium-

based amphiphilic molecules, it was not until more than 20 years later that the 

potential of this strategy was realized, possibly due to the lack of appropriate 

characterization of the developed material.[1,2] In 1990 Yanagisawa et al.[3] 

reported the achievement of surfactant-templated silica by exposing kanemite to 

trimethylalkylammonium-based surfactants at basic pH. The authors observed the 

development of several peaks in the low angle XRD region, ascribable to the 

formation of an ordered mesoporous network in the silica material. Further, they 

observed the size-dependency of the developed porosity as a function of the 

length of the hydrocarbon chain of the surfactant, which is a characteristic feature 

of surfactant-templating. Yet, it was only through the famous publication by 

Mobil Oil scientists in 1992 that surfactant-templating embarked in its amazing 

success story for the design of tailored porous materials.[4,5] Therein the authors 

described the achievement of three mesoporous silica materials featuring porous 

architectures of different space groups, today known as M41S family. This class 

of ordered mesoporous materials undoubtedly epitomizes the versatility of the 

surfactant-templating approach for the development of mesoporous architectures 

with extremely narrow and tunable pore size.[6]  

These early developments gave rise to the evolvement of a new field in materials 

chemistry and served as inspiration for the design of a plethora of mesoporous 
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materials of well-defined architectures. Promptly the principles of surfactant-

templating were applied for the design of a great variety of metal oxides based on 

magnesium, aluminum, manganese, iron, cobalt, nickel, zinc, tungsten, as well as 

of non-oxide compounds, such as phosphates, sulfides, nitrides, carbides and 

selenides by judiciously selecting the appropriate surfactants and adjusting the 

synthesis conditions.[7-11] These advancements went hand in hand with the 

development of a diversity of synthetic strategies based on the use of charged 

(cationic or anionic salts) and non-ionic surfactants in a wide range of pH 

conditions. A detailed description of the choice of surfactants and synthesis 

conditions for the achievement of different mesophases has been outlined in the 

excellent review by Wan and Zhao.[9]  

A variety of assembly mechanisms have been disclosed attending to the nature of 

the employed surfactant and to the synthetic conditions (particularly the pH). A 

charge matching model was developed by Huo et al.,[10] who introduced a 

specific nomenclature to describe the synthetic path leading to the mesostructured 

material. When employing ionic surfactants, the development of the mesophase is 

essentially governed by columbic interactions, which is the case when either the 

surfactant (S) or the inorganic species (I) are oppositely charged. The two 

possibilities hereto are the S+I- or S-I+ paths. When synthetic conditions are 

chosen in such a way that both inorganic moieties and the surfactant molecules 

present the same charge, anions (X) or cations (M) present in the solution 

participate in the structuration process. The resulting mechanisms can be 

described as to follow S+X-I+ or S-M+I- paths. In the case non-ionic surfactants 

are employed, the path can be described as S0I0 and is based on hydrogen bond or 

dipolar interactions. The latter is often denominated N0I0 when amines (N) are 

used as surfactants. Soler-Illia et al. were the first to propose to schematically 

represent these pathways as a function of the chemical interactions (Figure 

1A).[11] 

It is the hydrophilic – hydrophobic interactions between the surfactant and the 

solvent (in most cases water) that are the driving force for the assembly into 

various micellar shapes of thermodynamically stable phases giving rise to 

mesostructures of different architectures with long range order. The micellar 

packing parameter is particularly useful to predict the achieved mesophase in the 

case ionic surfactants are employed (Figure 1B).[12] Important evidence has been 

Page 3 of 76

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

4 

 

produced that in the mesostructuration employing non-ionic surfactants the 

mesophase is determined by the hydrophilic/hydrophobic volume ration (VH/VL) 

of the surfactant.[13,14] 

The principles of surfactant-templating could further be applied to the synthesis 

of periodic mesoporous carbons. In this case, most approaches rely on the S0I0 

path by employing non-ionic surfactants. Indeed, it is the hydrogen bridges that 

form between the phenolic resins (used as carbon source) and the block 

copolymers that lead to mesostructuration. Here surfactants are removed by 

extraction and final carbonization of the mesoporous polymer leads to the 

mesoporous carbon material. This strategy was recently reviewed by Ma et al.[15] 

In 2008, surfactant-templating was further adapted to produce a new class of 

hierarchical organic-inorganic hybrid materials described as mesostructured 

metal organic frameworks (meso-MOFs).[16] Lately, Bradshaw et al.[17] reviewed 

the different strategies based on supramolecular assembly of amphiphiles for the 

achievement of the mesoporous hybrid materials.  

Thanks to the knowledge gained in the design of a wide variety of porous 

amorphous solids (Fig 1C), a handful of strategies based on surfactant-templating 

have emerged to produce hierarchical crystalline materials and in particular for 

conceiving mesoporosity in zeolites. These approaches are particularly stimulated 

by the long-standing goal to finally bridge the gap between mesoporous materials 

and zeolites. The application of surfactant-templating for the development of 

hierarchical zeolites has emerged as a set of extremely promising techniques that 

up to date constitute the sole possibility to truly tailor mesoporosity in zeolites. 

These strategies will be highlighted in the following sections. 

 

2. The need for surfactant-oriented strategies for the conception of hierarchical 

zeolites 

The development of ordered mesoporous inorganic materials, and in particular 

aluminosilicates, created very high expectations in the early 1990s as many 

researchers believed that this new class of porous materials would revolutionize 

chemical industry, and especially replace the use of zeolites in processing bulky 

hydrocarbons. Yet, it soon became clear that the achieved materials present major 

drawbacks, especially related with their weak acidity and poor hydrothermal 

stability.[18] 
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It was soon pointed out that the ideal material should contain the advantages of 

both zeolites (strong acidity and excellent hydrothermal stability) and 

mesoporous molecular sieves (high accessibility of reactant molecules to active 

sites and fast diffusion of product molecules out of the catalyst), through the 

development of mesoporous materials with zeolitic pore walls.[19] This powerful 

image has been the driving force for the development of hierarchical zeolites for 

over two decades. 

With the aim to realize the depicted materials class, researchers initially 

developed an approach that relied on the direct crystallization of amorphous 

mesoporous materials (e.g. MCM-41).[20] This strategy proved highly 

unsuccessful and up to date, there is no report claiming the complete 

crystallization of the mesoporous skeleton of periodic porous amorphous 

materials.[21,22] It has later been indicated that the zeolite lattice is incompatible 

with the mesoporous curvature and it is thus that these approaches lead to partial 

or total loss of the textural mesoporous properties of the original silica. Yet, this 

limitation was overcome through the crystallization of SBA-15/CMK-5 

composites by the treatment with tetrapropylammonium hydroxide (TPAOH). 

Here, the carbon mold acts as scaffold allowing for maintaining the mesoporosity 

even after complete zeolitization of the amorphous silica.[23] 

Various strategies, which do not require the use of surfactants have been put 

forward with the aim of achieving hierarchical zeolites.[24-30] A very first strategy 

aiming at conceiving mesoporosity in zeolites was based on creating cavities 

through the dissolution of alumina or silica species from the zeolite framework. 

Indeed the formation of secondary porosity in zeolites can readily be achieved 

through simple treatment of the solids with bases, acids or steam. Though rather 

simple and cost efficient, these strategies produce uncontrolled porosity that often 

is not connected in the zeolite crystals. The forming secondary porosity can 

hardly be tuned and defined porous architectures cannot be achieved by these 

means. These techniques feature the additional inconvenience that the nature and 

strength of the acid sites are altered during the treatment and the integrity of the 

zeolite is damaged.  

Additionally, the hard-templating approach was developed for the conception of 

mesoporous zeolites and firstly reported through the use of carbon nanoparticles 

within the synthesis gel.[31] An important variety of hard templates have been 
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investigated for this approach, such as carbon nanotubes or nanofibers, 

mesoporous carbons and carbon aerogels. This approach yet presents important 

drawbacks, chiefly the high cost of sacrificial templates.[32] 

In contrast to the aforementioned approaches, surfactant-oriented strategies 

present a much higher degree of flexibility and permit to achieve tailored textural 

properties and a variety of architectures based on the nature of the amphiphiles 

and their interaction with the zeolitic species. In the following sections, we will 

consider the variety of surfactant-oriented approaches that have been disclosed in 

the recent scientific literature with specific focus on the nature of the interactions 

between surfactant and the inorganic species.  

 

3. Surfactant-oriented strategies for achieving mesoporous zeolites 

3.1 Double or dual templating   

Moved by the explosive development of surfactant-templating for the conception 

of mesoporous inorganic materials, researchers attempted to directly transpose 

this synthetic strategy to the design of mesoporous zeolites. The surfactant is 

added right from the beginning to the zeolite synthesis gel composition that, 

depending on the target zeolite phase, is usually composed of a silica and alumina 

source in basic pH with the eventual employment of zeolites structure directing 

agents (SDA). This process is hence frequently referred as dual or double 

templating as the surfactants and the zeolite SDA are simultaneously present in 

the zeolite synthesis solution.  

Very few of these attempts have revealed fruitful, as in most cases, phase 

segregation is the leading process; yielding a purely microporous and mesoporous 

phase. Kloetstrat et al.[33] were the first to observe the formation of two distinct 

phases by adding cetyltrimethylammonium chloride (CTAC, (CH3)3NC16H33Cl) 

directly to the synthesis gel of zeolite Y. The authors reported the achievement of 

1 micron sized zeolite Y crystals, overgrown with a thin layer of amorphous 

MCM-41. Later, Karlsson et al.[34] described the double templating approach for 

MFI materials employing trimethylalkylammonium-based surfactants. Aware that 

the MFI phase requires high crystallization temperatures whilst mesoporous 

phases can readily be obtained at room temperature, they implemented multi-step 

treatments at various temperatures and using different surfactant to SDA ratios. 
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The authors concluded that both templates act in competitive manner, invariably 

yielding two distinct phases.  

Numerous reasons have been put forward aiming at explaining the unsuitability 

of such approaches in attaining truly hierarchical zeolites. From a synthetic point 

of view, zeolite crystallization and mesophase formation feature very different 

mechanisms and kinetics. Whilst periodic mesostructures of amorphous solids 

usually form fast and at low temperatures, zeolite synthesis requires longer 

crystallization times and often hydrothermal conditions.  

Interestingly, Du et al.[35] reported very recently the achievement of the 

hierarchical titanosilicate TS-1 featuring intracrystalline mesoporosity through 

the employment of the non-ionic surfactant Triton X-100 (polyethylene glycol 

tert-octylphenyl ether) simultaneously to the zeolite SDA tetrapropylammonium 

hydroxide (TPAOH). The obtained TS-1 crystals were smaller in size than the 

reference microporous TS-1 achieved in the absence of the surfactant and 

featured wide size distribution of mesopores with mesoporous volumes of up to 

0.17 cm3 g-1. Yet, the development of a wide size distribution of mesopores is a 

strong indication that the surfactant-templating was not very effective. 

 

3.1.1 The effect of polymers and polymer/surfactants in the dual synthesis 

approach 

Direct synthesis approaches based on the use of employing charged high 

molecular weight polymers have further been described. Such polymers cannot 

strictly be defined as surfactants due to their inability to form supramolecular 

assemblies through self-assembly.[36] Yet, the formation of the mesophase relies on 

a soft-templating approach and on the efficient interactions of the positive surface 

charge of the polymers with the forming zeolite species in the synthesis gel.  

The first to explore this synthesis route were Xiao et al.[36,37] who added 

polydiallyldimethylammonium chloride (PDADMAC) to the synthesis gel of 

zeolite *BEA. The authors reported the synthesis of a zeolite featuring disordered 

intracrystalline mesoporosity presenting a wide size distribution. The 

intracrystalline nature of the mesoporosity was assessed through electron 

diffraction tomography (EDT) that allows for the three-dimensional (3-D) 

reciprocal space reconstruction of the crystals. This reconstruction rendered a part 

of the reciprocal lattice of the framework of the zeolite *BEA and represents by 
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projections along a*, b* and c* axes of the crystal. The authors furthermore 

highlighted the fact that the reflections along the b* plane were elongated which 

would suggest a certain degree of structural disorder of the crystal lattice which 

can readily be attributed to the presence of highly dense mesopores (Figure 2). 

Additionally, high angle annular dark field scanning transmission electron 

microscopy (HAADF-STEM) further allowed for imaging the crystalline 

nanostructure containing three-dimensionally interconnected mesoporosity of 

high density in the entire crystal.   

The same group reported the achievement of mesoporous ZSM-5 by the use of 

polystyrene-co-4-polyvinylpyridine (C-PSt-co-P4VP) previously treated with 

methyl iodide directly in the synthesis mixture.[38] ZSM-5 crystals featuring 

intracrystalline mesoporosity aligned along the b-axis of the zeolite crystallinity 

were achieved. Yet, mesoporosity is not well-defined and its size distribution 

covers the entire mesoporous range.  

Liu et al.[39] succeeded in synthetizing mesoporous MFI zeolites of various Si/Al 

ratios by the use of the anionic polymer poly(acrylic acid) in combination with 

the cationic surfactant CTAB and the zeolite SDA TPAOH. The authors reported 

that the use of the negatively charged polymer does not allow for the formation of 

hierarchical zeolite with MFI structure. Yet, by the addition of the cationic 

surfactant, a polymer-surfactant complex develops where the negative charge 

density of the polymer is efficiently reduced allowing the electrostatic attraction 

of the organic template with the negatively charged inorganic species. Hence, 

MFI type zeolites with mesopores in the range of 5-20 nm were achieved. 

The group of Pinnavaia[40] developed polymers with the ability to covalently bind 

to the forming inorganic zeolite network. The group designed silylated 

polyethylamines able to connect to the inorganic species through hydrolysis and 

condensation. This strategy yielded mesoporous ZSM-5 (named MSU-MFI), 

which presents a well-defined capillary condensation regime in the nitrogen 

physisorption isotherm. The textural properties of the achieved MSU-MFI could 

be further modulated by altering the molecular weight of the polymer.  
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3.1.2 Combining zeolite seeds and surfactants: amorphous mesoporous materials 

with zeolite characteristics 

An alternative to the direct synthesis approach is the use of nanosized zeolites so-

called “zeolite seeds” as precursors of the crystalline phase through their 

combination with surfactants during the hydrothermal treatments (Figure 3A). 

Such nanosized zeolites are usually synthesized through classical zeolite 

synthesis conditions but at shorter synthesis times and often lower temperatures. 

These seeds show no X-ray diffraction peaks; yet typical vibrational bands 

ascribable to the zeolite phase are observable by IR and Raman spectroscopy, 

which indicates the existence of small zeolite units but the absence of long-range 

crystallinity (Figure 3B).[41] 

Inspired by the insights disclosed for the synthesis of the M41S family, the group of 

Pinnavaia was the first to investigate the use of protozeolitic species in combination 

with the cationic ammonium-based surfactant, namely CTAB.[42] They prepared zeolite 

Y seeds with a Si/Al ratio of 9, lowered the pH of the seed solution to 9 and then added 

an aqueous surfactant solution prior to aging the mixture at 100 ºC for 20 h. Through 

this approach, a material composed of a single phase (Al-MSU-S) presented 

hexagonally ordered mesopores, yet they lacked zeolite crystallinity as determined by 

X-ray diffraction (Figure 3C). Nonetheless, from their careful characterization through 
27Al MAS NMR, the retention of a zeolite-like connectivity of the AlO4 tetrahedra upon 

the assembly of the mesostructure could be deduced, which was taken as evidence of 

the presence of a FAU local structure within the mesopore walls. The authors evidenced 

moreover the superior hydrothermal stability and improved cumene cracking activity of 

the Al-MSU-S materials compared to Al-MCM-41 with equal Si/Al ratio, which was 

taken as further proof of the presence of zeolite fragments within the pore walls of the 

mesoporous structure. 

The same research group expanded this approach by using MFI and BEA zeolite 

seeds to obtain MSU-S materials with hexagonal periodic order of the 

mesopores.[43] Here, they evidenced the presence of the pentasil subunit in the 

pore walls of the mesopores by IR spectroscopy. During the same year, Zhang et 

al.[44,45] employed *BEA and ZSM-5 seeds in combination with CTAB and 

named the achieved material, obtained through hydrothermal treatment, MAS-5. 

The authors confirmed the presence of zeolite fragments in the pore walls of 

MAS-5 through Raman spectroscopy. Li et al.[46,47] disclosed that optimized 
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aging times of the zeolite Y seeding gel leads to materials with higher 

hydrothermal stability, acidity, and long range hexagonally structured 

mesoporosity.  

The group of Pinnavaia further disclosed synthetic conditions that lead to the 

development of the cubic Ia3d mesophase by adding ethanol as co-solvent to the 

synthetic mixture that containing the surfactant CTAB and the FAU zeolite seeds 

formed from metakaolin.[48] The use of the alcohol was previously disclosed for 

the synthesis of MCM-48 as it permits to efficiently augment the micelle packing 

parameter, which causes the denser micelle arrangement.[49] The by this means 

achieved cubic mesoporous aluminosilicates featured zeolite fragments in their 

pore walls and was named Al-MSU-S48.   

Approaches based on different paths other than S+I- where investigated 

employing protozeolitic species. The group of Pinnavaia extended this approach 

by combining zeolite seeds in acidic conditions with non-ionic surfactants.[50] 

Hereto, the pH of the zeolite seeding solution was lowered below 7 before adding 

the neutral surfactant Pluronic 123 ((EO)20(PO)70(EO)20) and trimethylbenzene 

(TMB) as micelle swelling agent and hydrothermally treating the mixture. The 

authors evidenced that the porous features of the obtained materials could be 

influenced by the pH of the synthesis solution. Indeed, when the pH was between 

2.5 and 6, a foam-like structure built up by strut-like walls, which frame windows 

opened into spherical cells with narrow pore size distributions. The material was 

denominated MSU-S/F. When the pH of the synthesis solution was higher (pH = 

6 – 7), MSU-S/H materials where obtained. These materials featured long range 

ordered hexagonal mesoporosity. Analogous to the previously described MSU-S 

materials, the MSU-S/F and MSU-S/H present zeolite fragments in their pore 

walls, as evidenced by IR spectroscopy.  

The achievement of distinct mesophases as a function of the pH strongly suggests 

that the synthesis follows different mechanistic routs. Both syntheses were 

performed at pH above the isoelectric point of the zeolite precursor species, 

which indicates that in either case the inorganic species were negatively charged.  

Moreover, wormhole mesostructured aluminosilicates (Al-MSU-SW) were 

achieved by employing the non-ionic compound tallow tetraamine in slightly 

basic conditions in combination with Y zeolite seeds.[48] In this case, the 

supramolecular assemblies formed through π- π stacking. It is yet not evident to 
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ascribe to which favorable interactions between the neutral amine and the 

negatively charged zeolite seeds the formation of the mesostructured material 

under the applied pH conditions may result. Indeed, in a more recent publication 

by the same group, the experimental section states acidic synthesis conditions for 

the formation of the Al-MSU-SW material employing tallow tetaamine.[51] In such 

conditions, the formation mechanism can readily be described to follow a N0H+I- 

interaction.  

It is important to mention now, that the examples presented up to this point do not 

achieve truly hierarchical zeolites as they lack crystallinity and therefore cannot 

be described as zeolites. However, they have paved the way to fully crystalline 

hierarchical zeolites and are excellent examples of the versatility of surfactant-

templating for the achievement of various complex mesoporous architectures. In 

fact, the employment of zeolite seeds in combination with surfactants has further 

been reported to achieve truly hierarchical zeolites. Here, the critical key factors 

enabling the obtaining of crystalline mesopore walls are based on the nature of 

the zeolite seed (i.e. the condensation degree) and the nature of the surfactant 

head group (and the eventual use of co-solvents). 

 

3.1.3 Hierarchical zeolites through judicious choice of surfactant-templating 

conditions employing seeds  

Mesoporous zeolite assemblies were achieved by the self-assembly of zeolite 

FAU seeds with the cationic surfactant CTAB in the presence of co-solvents and 

micelle swelling agents during hydrothermal synthesis.[52] The authors indicated 

that trimethylbenzene (TMB), used as swelling agent, and tert-butyl alcohol 

(TBA), employed as co-solvent, both work synergistically to produce the 

hierarchical zeolites. The authors argue the ability of the tertiary alcohol to 

reduce repulsive forces of the surfactant headgroups, leading thus to an increase 

in the micelle packing parameter and hence in the micelle charge density. 

Through this strategy the affinity between the micelles and the aluminosilicates 

species are enhanced. The authors further estimated that as TMB promotes the 

zeolite surfactant assembly by swelling the surfactant micelle allowing to match 

to the zeolite precursor species size.  

Zhu et al.[53] put forward that the achievement of hierarchical zeolites by using 

seeds is critically influenced by the polymerization degree of the nanometer sized 
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species. The authors kinetically controlled the seed formation, which then in a 

second step, were subjected to hydrothermal treatment in combination with 

CTAB. Depending on the amount of surfactant and of co-solvent used in the 

synthesis, hierarchical ZSM-5 featuring disordered mesoporosity with narrow 

size distribution could be achieved (Figure 4).   

A similar approach was developed through the combination of CTAB with 

pluronic F127 and ZSM-5 zeolite seeds.[54] Here, the zeolite building units firstly 

aggregated with the CTAB micelles before assembling with the F127 (which 

concentration gradually augments during the temperature treatment by the 

evaporation of the solvent). The authors observed that the F123 micelles stacked 

along the b direction of the crystals. Hence, a hierarchical ZSM-5 with a dual 

pore size distribution composed out of smaller CTAB-templated disordered 

mesopores and larger mesopores oriented along the b-axis of the ZSM-5 crystals 

were achieved.  

Further, the nature of the polar headgroup was indicated to have a major 

influence in the efficient assembly of zeolite seeds. It was described that the 

imidazolium-based ionic liquid [C16MIm]Cl when employed as surfactant in the 

hydrothermal treatment with MFI seeds, proved to be suitable for the 

achievement of hierarchical ZSM-5 with partially ordered mesoporosity.[55] 

Indeed, it was previously indicated for the synthesis of MCM-41 that the 

imidazolium headgroup allows for a stronger binding strength to charged silica 

species and to a higher binding density.[56] It is these features that critically 

influence the surfactant-templating ability. 

Protozeolitic FAU and *BEA seeds have further been combined with the cationic 

polymer PDADMAC to achieve zeolites containing disordered mesopores.[57,58] It 

remains yet questionable whether the reported zeolites truly contains 

mesoporosity, as the presented nitrogen physisorption experiments indicate type I 

isotherms and the narrow pore size distribution put forward by the authors should 

more correctly be ascribed to cavitation than to tailored mesoporosity.[59] 

 

3.1.4 Hierarchical zeolites through the functionalization of seeds with 

organic functions  

A devised approach was developed by the group of Serrano based on the 

functionalization of zeolite seeds and their subsequent crystallization.[60-62] They 
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developed protozeolitic units comprised between 2 and 5 nm. These were 

subsequently silylated through standard grafting techniques employing 

phenylaminopropyltrimethoxysilane in order to achieve zeolite seeds 

functionalized with aromatic groups. Further, the functionalized seeds were 

subjected to hydrothermal conditions to promote zeolite crystallization (Figure 

5). Hence, zeolites composed out of aggregates of small size developed. The 

authors assessed the role of the organic surface moieties to perturbate the zeolite 

crystallization leading to the formation of interparticular mesoporosity within the 

single aggregates. It was furthermore shown that the amount of formed 

mesoporosity was determined by the amount of grafting agent used in the 

synthesis. Diversely, the functionalization of zeolite seeds with hydrocarbon 

chains of different length revealed not very successful to develop hierarchical 

features and bulk zeolites were obtained. Based on the observation that solely the 

functionalization with phenyl groups allowed for the achievement of the 

intergrown zeolite structures, it could be put forward that π- π interactions 

between the functional moieties during the crystallization process play a crucial 

role in the assembly of the nanozeolites. Here, a so far unexplored approach can 

be put forward, which would represent the simultaneous use of surfactants 

comprising aromatic groups that could interact through π- π interactions with the 

moieties on the surface of the functionalized seeds. 

Recently, the assembly of protozeolites without the use of surfactants was 

reported to yield Al-rich MFI featuring intercrystalline mesoporosity through the 

rod-like assembly of the zeolite precursors.[63] 

Although the assembly of nanosized zeolites with surfactants produced 

hierarchical zeolites, presenting zeolite X-ray diffraction peaks, it appears that 

this strategy leads to the formation of zeolite aggregates (Figure 5C). Indeed, 

such approaches have yet yielded individual zeolite crystals featuring 

intracrystalline mesoporosity. 

 

3.2 Hierarchical zeolite synthesis with silane-terminated quaternary amines: 

linking the surfactant to the zeolite precursor  

Ryoo and coworkers have greatly contributed to the development of surfactant-

templated hierarchical zeolites, through the design of a new family of surfactants 

based on amphiphilic silanes comprising a hydrophobic tail and a modified 
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headgroup, which is covalently linked to a trialkoxysilane moiety. These 

surfactants enable to circumvent the typical drawbacks encountered with classical 

cationic amphiphiles in the synthesis of hierarchical zeolites, by presenting 

unique features: i) the ability to form covalent bonds with inorganic species by 

hydrolysis and condensation, ii) the capability of the ammonium head group to 

act as zeolite SDA and iii) the ability of the hydrophobic chains to efficiently 

form mesophases through self-assembly. These features together allow to achieve 

hierarchical zeolites by preventing phase separation into two distinct phases.  

The first silylated surfactant that was described was 3-(trimethoxysilyl)propyl-

hexadecyldimethylammonium chloride (TPHAC),[64] that was directly added to 

the synthesis mixture of ZSM-5 and LTA prior to hydrothermal treatment. The 

achieved zeolite phases feature disordered, wormhole-like porosity with very 

narrow mesopore size distributions (Figure 6). They proved the surfactant-

templating ability of this new type of surfactant through the tunability of the 

mesoporous size distribution by varying the length of the hydrophobic chain 

between 12 and 18 carbon atoms. They furthermore proved that synthesis time 

and temperature crucially influences the size distribution of the mesoporosity. 

Additionally, the amount of the organosilane added during the synthesis is a 

critical parameter that influences the mesoporous size distribution and generated 

mesoporous volume. The intracrystalline nature of the mesophase was assessed 

by a combination of high resolution scanning electron microscopy (HR-SEM) 

with cross-sectioning through an argon beam.[65] Further, the presence of 

disordered, interconnected wormhole-like mesoporosity was evidenced by 

visualizing the porous architecture through the formation of Pt nanowires within 

the zeolite crystals, which were subsequently imaged by TEM.[66] 

The same group successfully employed this approach for the development of 

mesoporous sodalite, describing its first application as basic catalyst.[67] TPHAC 

revealed moreover as a suitable surfactant for the achievement of the hierarchical 

zeotypes ALPO4-5 and ALPO4-11 featuring in both cases tailored 

mesoporosity.[68] 

Inayat et al.[69] were the first to employ the silylated surfactant TPHAC for the 

synthesis of FAU type zeolites displaying a unique hierarchical porous structure 

that is built up by zeolite nanosheets assembled in a house-of-cards like fashion, 

featuring macroporous interstices located within the nanosheet stacks. The 
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distance between the individual nanosheets in this construction is of 

approximately 7 nm through which the zeolite macropores are accessible. Very 

recently, Qamar and co-workers reported the synthesis of nanocrystalline 

mesoporous Y zeolite featuring octahedral facets using again TPHAC as 

surfactant.[70] The authors further evidenced that the amount of the employed 

surfactant represents a critical factor that controls the dimensions of the obtained 

nanocrystals.  

TPHAC was furthermore used in combination with micelle expanding agents in 

the zeolite LTA synthesis.[66] Triblock co-polymer P123 (EO20PO70EO20) was 

employed as swelling agent, which allowed to efficiently increase the mesopore size 

from 7.4 to 23.7 nm. The authors assumed that the non-ionic surfactant permeates into 

the hydrophobic region formed by the TPHAC surfactant chains, which thus leads to an 

expansion of the micelles and hence to larger mesopores. 

A novel surfactant based on amphiphilic silanes, developed by Han et al.[71] and 

featuring a double-acyloxy with double C12 alkyl chains, 2,3-

bis(dodecanoyloxypropyl)-[3-(trimethoxysilyl)-propyl]dimethylammoniumiodide 

(BTDAI) was used to produce hierarchical ZSM-5. More precisely, the presence 

of BTDAI within the zeolite synthesis gel allowed for the achievement of 

hierarchical ZSM-5 zeolites with platelet-like morphology and a wide mesopore 

size distribution. Shortly thereafter, the authors studied the influence of varying 

both the chain length of the BTDAI-type surfactants and its concentration in the 

synthesis mixture. Under optimized conditions mesoporous volumes up to 0.19 

cm3 g-1 were achieved.[72] 

 

3.3 Hierarchical zeolites by surfactants with multiple quaternary ammonium 

centers 

A major breakthrough in the surfactant-templating of zeolites was achieved by 

Ryoo and co- workers through the design of surfactants featuring various 

quaternary ammonium centers. In their pioneering publication, the group 

presented the achievement of MFI-type zeolites composed by nanosheets of a 

size of a single unit cell.[73] In this way, ultrathin zeolite layers were produced 

that were three-dimensionally intergrown to form the hierarchical zeolite 

structure. The employed surfactant, namely C22-6-6 (C22H45-N(CH3)2-C6H12-

N(CH3)2-C6H13Br2), is composed of two quaternary ammonium centers spaced by 
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C6 alkyl chains, that together form the structure directing group of the MFI phase 

whilst the long hydrocarbon tail (C22) acts as mesostructuring template by 

forming supramolecular micellar assemblies via hydrophobic interactions. The 

secondary role of the hydrophobic chain is to restrict the growth of the zeolite, 

leading to sheets of thicknesses of a few pentasil units of 2 nm spaced by 2.8 nm 

thick micellar layers (Figure 7 top). 

The same research group evidenced by low and wide angle XRD that the 

nanosheet assembly develops from an initial hexagonal organized mesophase 

with amorphous pore walls, which is subsequently transformed through heat 

treatment into a lamellar mesophase with walls that are built up by the crystalline 

zeolite framework (Figure 7 bottom).[74,75] 

Very recently Xi et al.[76,77] carried out computational simulations in order to 

describe the distribution of the LUMO (lowest unoccupied molecular orbital) on 

multiple quaternary ammonium centered surfactants. Through this study the 

authors were able to reason the role of the inner ammonium groups to direct the 

synthesis of the MFI phase.  

An excellent example that highlights the importance to rationally design 

surfactants by taking into account their charge density and their structure was 

presented by the group of Ryoo, who developed tricationic surfactants composed 

out of two long alkyl chains of identical length and where the ammonium groups 

were spaced by C6 alkyl segments (18-N3-18).[78] This surfactant allowed for the 

achievement of an ordered mesoporous structure which presents broad peaks in 

the high angle XRD region of very low intensity, suggesting a regular stacking of 

lattice planes with atomic-scale ordering at least to some extent (Figure 8). 

Indeed, the determination of the crystalline framework structure is bounded and 

can rather be ascribe as “pseudocrystallinity”. The flexibility of this approach was 

further pointed out by using surfactants with four ammonium groups spaced by 

C6 alkyl segments (18-N4-18) and additionally feature aromatic groups as 

spacers; giving rise to the surfactants N4-phe, N6-diphe, and N8-triphe. The 

authors reported that through the increase of the amount of cationic centers in the 

surfactants the obtained mesostructure lost structural order. In the same direction, 

the wall thickness increased from 2.9 to 5.1 nm for the surfactants with four and 

eight cationic centers, respectively. 
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Micron sized SSZ-13 zeolite (CHA structure) assembled to form mesoporous 

aggregates was achieved by Wu et al.[79] through the use the bi-quaternary 

surfactant C22H45–N(CH3)2–(CH2)4–N(CH3)2–C4H9Br2 together with the zeolite 

SDA, N,N,N-trimethyl-1-adamantanammonium hydroxide (TMAdOH). 

The group of Ryoo further developed a new surfactant composed out of three 

cationic centers bridged by C6 unities and ended symmetrically by two C18 tails. 

By the addition of this surfactant to the ZSM-5 synthesis gel, ultrathin MFI 

nanosheets of a single pore thickness of 1.5 nm were obtained, which represents 

less than a single crystal unit-cell dimension (2.0 nm).[80] Compared to the bulk 

zeolite, the obtained nanosheets present comparable acidity, thermal and 

hydrothermal stability. The examples presented up to now strongly indicated the 

necessity of at least two ammonium headgroups in the surfactant in order to reach 

hierarchical organized structures.[28]  

This assumption was counterevidenced by the group of Che[81] who designed 

surfactants featuring merely one cationic center able to produce the nanosheets, 

organized in such a way to form hierarchical assemblies. The authors firstly 

studied the role of CTAB in the synthesis of MFI type zeolites, which in the 

appropriate conditions acts as conventional short chain SDA of the MFI structure, 

in which the surfactant tails are located in the straight channels of the zeolite 

framework.[82] The authors suggest that the sole interaction between the 

surfactant tails is not strong enough to prevent the zeolite crystallization to occur 

in the conventional way. Based on this evidence, surfactants were rationally 

designed by ending the surfactant tails with aromatic groups, which enables them 

to interact through π- π stacking (Figure 9). This allowed for the formation of 

ordered MFI nanosheets, spaced by the surfactant micelles in which center the 

aromatic groups were located.[83] Furthermore, they prepared bolaform type 

surfactants that due their π- π stacking ability proved suitable candidates for the 

preparation of single crystalline MFI nanosheets, which were assembled through 

a 90º rotational intergrowth of the sheets. The authors further indicated that single 

and double-branched ammonium-based surfactants featuring aromatic groups 

were restricted to direct the synthesis to lamellar nanosheets of the MFI structure 

(Figure 9C). The same group rationalized a new family of surfactants which can 

be seen as triple branched surfactants where the three branches are connected to a 

common aromatic center and which branches contain multiple cationic 
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ammonium groups. Through the use of this surfactant in the synthesis gel, a 

single crystalline mesoporous ZSM-5 could be achieved featuring intracrystalline 

slit-like mesoporous arrangements.[84] The authors reasoned the achievement of 

this structural feature by dividing the role of the three branches of the surfactant. 

Whilst two of the surfactant branches align within the straight MFI microporous 

channels, the remaining branch directs the micropores along the zigzag channel. 

The aromatic centers of the surfactant assemble through π- π stacking leading to 

the development of tailored mesoporosity. 

The up to now described approaches for the formation of hierarchical structures 

proved to be of great versatility. A considerable variety of surfactants have been 

developed up to the point of presenting an entire design concept for the 

development of mesoporous features (Figure 10). Yet, the synthesis of such 

functional surfactants is often complex and expensive. It is difficult to conceive 

any commercial application of hierarchical structures described by the above 

techniques. Furthermore, in most cases aggregation of nanosized zeolites and/or 

the development of intergrown nanosheets is observed. Indeed, these bottom-up 

surfactant-oriented approaches do not produce truly zeolite crystals that feature 

intracrystalline mesoporosity and at the same time intense zeolite crystallinity. 

Nonetheless, these developed strategies have greatly contributed to the 

comprehension of the interaction of surfactants during zeolite growth.  

 

4. Surfactant-templating strategies through post-synthetic treatment of zeolites 

Post-synthetic treatment of zeolites in the presence of surfactants has revealed as a 

powerful and convenient approach for the development of hierarchical porosity. Two 

main approaches can be distinguished within the post-synthetic strategies that yield 

markedly different materials. Hence, a careful consideration of both approaches is 

critically important. These two strategies have been coined with the terms “zeolite 

recrystallization” and “zeolite surfactant-templating”. Occasionally, these strategies are 

mistaken in the literature.[85] The fundamental difference between the strategies is that 

whilst in recrystallization the zeolite is exposed to severe basic conditions prior to the 

addition of the surfactant, in zeolite surfactant-templating the zeolite is treated with a 

milder basic solution that contain the surfactant (Figure 11).  
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4.1 Zeolite recrystallization in the presence of surfactants: A dissolution and 

precipitation process 

Goto et al.[86] were the first to describe materials achieved through the post-

synthetic treatment of various zeolites in basic conditions followed by the 

addition of surfactants and thermal processing. The authors reported the treatment 

of zeolites with solutions of different basicities (from 0.75 to 3 M of aqueous 

NaOH) for a fixed time interval (30 min) prior to the addition of the surfactant 

(CTAB) and hydrothermal treatment at 150 ºC with intermediate pH adjustment 

to 8.5. Composite materials consisting of a purely mesoporous yet amorphous 

phase and of the parent zeolite were obtained. The amount of the mesoporous 

amorphous phase revealed to be dependent on the concentration of the base, as 

the dissolution of the zeolite was favored at increased pH (Figure 12). The 

authors found striking similarities in the obtained composite materials when 

MOR and ZSM-5 were used, yet the employment of Al rich zeolites, i.e. zeolites 

with low Si/Al ratios (such as Y and LTA) reveled as unfruitful. Most likely, the 

high Al content of the zeolite hinders the process. It is important to stress, that 

whilst the information gathered from nitrogen physisorption and from the XRD 

does not allow to distinguish between the presence of a truly hierarchical zeolite 

and a composite material, the SEM images clearly indicate the presence of two 

phases for the materials prepared by Goto et al. (Figure 12). The described 

example illustrates the importance to characterize the materials through 

complementary techniques that together allow to discriminate between truly 

hierarchical solids and composites.  

Ivanova and co-workers eventually coined the terms “zeolite recrystallization” to refer 

to this process.[87] Yet, this denotation is somewhat deceptive as actually a non-

crystalline phase is produced as a result of the treatment and therefore there is no real 

recrystallization. It appears more adequate to refer to a dissolution and re-assembly 

process. As a function of the severity of the dissolution step, the authors divided the 

achieved composites into three distinct materials classes (Figure 11).[88,89] The RZEO-1 

materials (also described as RMI) are obtained through the treatment of zeolites with 

mild basic conditions (generally below 1 M) and can be described as partially 

desilicated zeolite covered by a thin layer of amorphous mesoporous material. Through 

applying more sever basic conditions; composite materials described as RZEO-2 were 

achieved. RZEO-3 materials (also named RMII) are achieved through more severe basic 
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treatments (basic concentrations above 1 M) and can be described as purely amorphous 

mesoporous aluminosilicates that contain zeolite fragments within the pore walls. It is 

important to mention that a pH readjustment is required for synthesis where the pH 

exceeds 12, through the intermediate addition of acid to lower pH values in the range of 

8 and 10.5 to allow the precipitation of the amorphous phase in the presence of the 

surfactant. The RZEO materials where extensively studied by ex situ MAS NMR and 

IR. Based on the observations on H-MOR zeolite, Ivanova et al.[90] proposed the 

following mechanism to account for the formation of the RZEO-1, 2 and 3 materials:  

1) As result of the exposure of the zeolite to the basic solution (NaOH), fast ion 

exchange between the sodium cations with the zeolite protons and destruction 

of the silicon-oxygen bonds through alkali are observed, leading to desilication 

and the formation of large mesopores (3-20 nm) within the crystal and even 

wider pores in between the crystals. 

2) Owing to the addition of CTAB, the diffusion of surfactant molecules within 

the inter- and intracrystalline space takes place, leading to ion exchange of the 

sodium cations with CTA+. The surfactants then form micelles inside the in 

step 1) developed cavities. 

3) The mesophase finally forms through the condensation of the inorganic species 

dissolved from the zeolite framework in step 1) around the surfactant micelles.   

 

Though the RZEO-3 were described as purely amorphous ordered 

aluminosilicates featuring no zeolite crystallinity, spectroscopic techniques 

allowed for evidencing the presence of zeolite subunits within the pore walls that 

built up the mesoporous structure. The authors ascribed to the presence of these 

zeolitic fragments within the walls superior hydrothermal stability and enhanced 

catalytic properties of these materials over Al-MCM-41.[89,91]  

Boukoussa et al.[92] further described the influence of the amount of employed 

CTAB on the textural characteristics of the composite materials by using ZSM-5 

as starting zeolite. Similar conclusions were drawn by Liu et al.[93] using ZSM-

22. Na et al.[94] reported the control of the pore size as a function of the chain 

length of the employed trimethylalkylammonium-based surfactant. The synthesis 

rout was further applied to TS-1, leading to titanosilicates with mesoporosity of a 

wider size distribution.[95] 
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Solely one article reports the employment of other than 

trimethylalkylammonium-based surfactants in the zeolite recrystallization 

process.[96] Here, mesoporous titanosilicates were achieved by employing the 

unsymmetrical Gemini surfactant C18H37Me2N(CH2)6NPr3Br2. A core/shell 

titanosilicate consisting of a highly crystallized MFI (TS-1) structure both in the 

core and in the shell yet featuring different framework unit cell long-range 

extensions was produced (Figure 13).  

 

4.2 Zeolite mesostructuring through post-synthetic zeolite surfactant-templating 

A post-synthetic surfactant-based strategy allowing for the introduction of 

mesoporosity within zeolite crystals was firstly reported by Garcia Martinez et 

al.,[97] and later described as mesostructuring to emphasize the precise control 

over the mesopore size and organization ascribable to the use of surfactants.[98] 

This post-synthetic strategy differs substantially from the previously described 

recrystallization process as it permits for the development of intracrystalline 

mesoporosity within a wide number of zeolites comprising the FAU, MFI, CHA, 

*BEA and MOR structures, among others.[97] The mesostructuring process is 

rather simple and relies on the treatment of a parent zeolite with cationic 

surfactants in basic pH conditions. 

Through comparing the TEM micrographs of the parent and the mesostructured 

zeolite, the introduction of tailored mesoporosity distributed homogenously 

throughout the entire crystal becomes evident (Figure 14D and E). This was 

further proved from the FE-SEM micrographs, which show smooth crystal 

surface for the parent zeolite whilst the mesostructured zeolite presents abundant 

mesoporosity (Figure 14B and C). Moreover, the crystal morphology of the 

original zeolite is maintained after the mesostructuring process; it is for this 

reason that this treatment has been described as pseudomorphic 

transformation.[99]  

A strong evidence of the surfactant-templating effect was obtained through the 

use of surfactants with increasing aliphatic chain lengths (Figure 14F and G). 

From argon physisorption experiments, an excellent linear correlation between 

the number of carbon atoms in the surfactant and the achieved mesopores 

diameter was observed; tailorable in the range from 3.0 to 5.5 nm.[100] 
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Very recently, the development of tailored mesoporosity was observed through in situ 

XRD synchrotron radiation (Figure 14G).[101] This study revealed the gradual evolution 

of two peaks in the low angle range of the diffractogram corresponding to the formation 

of the mesoporosity within the zeolite by the surfactant CTAB. These peaks were 

interpreted through theoretical calculations, revealing the development of short-range 

ordered mesoporosity. Indeed, through progressively decreasing the size of a zeolite 

crystal containing hexagonally ordered mesopores, the merging of the corresponding 

(11) and (20) planes in the simulated diffractograms was observed (Figure 14H). It can 

hence be assumed that the features in the low angle XRD range that develop during 

surfactant-templating can readily be ascribed to a local hexagonal order of the forming 

mesoporosity. The theoretical calculations further evidenced a slight decrease of the 

intensity of the XRD peaks due to a less efficient diffraction caused by the introduction 

of intracrystalline mesoporosity. This is in agreement to what has been observed 

experimentally. Furthermore by analyzing the intensity and the FWHM of the XRD 

peaks it could be evidenced that the mesoporous zeolites present a larger coherent 

crystal size, which consists of small lattice domains aligned to form part of a single 

crystal.  

It is important to note that an in situ XRD experiment preformed in the absence of 

CTAB shows a very fast decrease of intensity of the zeolite phase (and falls to zero 

within 10 min of the experiment) whilst no additional peaks could be distinguished in 

the low angle region. This result hence highlights the striking difference between 

desilication and zeolite surfactant templating. 

Liquid-Cell Transmission Electron Microscopy (Liq-TEM) has developed to a powerful 

tool for the in situ characterization of processes in materials chemistry.[102] Liq-TEM 

was used for the first time in the direct visualization of the changes in the morphology 

of individual zeolite crystals during surfactant-templating.[101] The progressive 

reconstruction of the zeolite crystals could be evidenced by the time-resolved imaging 

of larger mesopores (due to steaming) present in the parent zeolite (Figure 14I). 

These evidences strongly suggest that the development of intracrystalline 

mesoporosity produces the rearrangement of the zeolite structure (Figure 

14A).[98] Although the exact mechanism of this process is yet not fully 

understood, it has been suggested that the first stage of the transformation is 

related with the fast uptake of the cationic surfactant by the zeolite at basic pH. 

The base reacts with some of Si-O-Si bonds allowing for the fragilization of the 
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structure that rearranges in order to accommodate the forming surfactant micelles 

within the structure. 

The proposed mechanism does not involve the dissolution and recrystallization of 

the zeolite species, as misrepresented in some publications,[85,103] but the short-

scale rearrangement of the zeolite framework to accommodate the developing 

surfactant-micelles. Consequently, the zeolite crystals expand throughout the 

process as was inferred by measuring crystal sizes from electron microscopy 

micrographs.[104]  

The occurrence of desilication or dealumination could be unambiguously 

discarded through the careful analysis of the filtrates throughout the process and 

by observing constancy of the Si/Al ratio and of the unit cell size (UCS) of the 

zeolites during the process. Further, recovery yields of calcined mesostructured 

zeolites approximate to 100%. This is a further evidence that the employment of 

the surfactant during the basic treatment prevents any significant dissolution of 

the zeolite and leads to the mesostructuration. Moreover, it was observed that the 

employment of small tetraalkylammonium cations (such as 

tetrapropylammonium hydroxide) preserve the zeolite crystallinity during base 

treatment, indicating the ability of such cations to preserve from zeolite 

desilication.[105] Yet, in these cases no tailored mesoporosity develops due to the 

inability of these cations to form micelles and hence no surfactant-templating is 

observed. 

As previously betoken, zeolite phases featuring low Si/Al ratios (i.e. Si/Al < 3) 

are not prone to react in basic conditions as a result of the stability of the Si-O-Al 

bonds at high pH. To overcome this limitation, Garcia Martinez and co-workers 

proposed a mild acid pre-treatment, which allows to selectively open some of the 

Al-O-Si bonds yet without significantly dealuminating the zeolite.[106] Merely a 

slight reduction of the UCS of the framework and a small increase in the Si/Al 

ratio indicated limited removal of Al species from the zeolite structure. For 

example, the acid treatment applied to a Na-Y zeolite with Si/Al = 2.5, results in 

the increase to the same ratio to 3.5. This ratio is significantly lower than the 

elevated Si/Al ratios required by USY and other zeolites (typically Si/Al > 15) for 

the formation of mesoporosity. Yet, the subsequent surfactant-templating of the 

acid-treated Na-Y zeolite in the presence of both, the base and CTAB, allows for 

the introduction of tailored mesoporosity within aluminum-rich zeolites.  
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Due to the efficiency that surfactant-templating presents for the introduction of 

tailored mesoporosity within zeolites, Galarneau et al.[107] employed 

mesostructured zeolites as model structures for assessing the validity of the t-plot 

method. The authors reported that the classically employed t-plot approach 

considerably underestimates microporous volume in hierarchical materials. Based 

on their observations an abacus for correcting the values obtained from the t-plot 

method was proposed. Ascribable to their well-defined structure, mesoporous 

zeolites obtained by surfactant-templating can be seen as unique model materials 

since the size and amount of introduced mesoporosity can readily be tailored. 

This anticipates their future use as reference materials in a wide variety of fields.  

Sachse et al.[108] recently employed new surfactants relying on imidazolium and 

pyridinium based ionic liquids, in the zeolite surfactant-templating process. The 

authors observed that despite the fact that all of the surfactants present similar 

templating ability for the formation of ordered mesoporous silica, their 

employment in zeolite surfactant-templating allows for the achievement of 

different porous features. Based on this observation the authors suggest that 

micellization occurs differently in the confined zeolite spaces. These findings are 

a further proof that fosters the rearrangement mechanism.[98]  

 

5. Key characteristics of mesostructured zeolites required for industrial 

applications 

The development of mesoporosity in zeolites is driven by the quest for 

overcoming their diffusion limitations in many industrially relevant catalytic 

processes. In order to understand to which extent the main zeolite properties are 

affected upon introducing mesoporosity the in-depth characterization of various 

key features is essential; these are: (i) the textural properties of the mesoporous 

zeolites, including the pore size and porous architecture, (ii) the crystallinity, (iii) 

the density, strength and nature of the acid sites and (iv) the hydrothermal 

stability. The assessment of these key properties is critically important to assert 

the suitability of mesoporous zeolites for large scale applications. In order to 

diligently describe these key features a variety of advanced characterization 

techniques are being developed and are becoming available. Some of the latest 

evolutions in this field have recently been reviewed by Perez-Ramirez and co-

workers.[109]  
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5.1 Textural and diffusional properties 

The full textural characterization of hierarchical zeolites comprises a detailed 

quantitative and qualitative appreciation of their porous architecture and porous 

interconnectivity at different length scales. The by far most widespread 

characterization technique for analyzing the porosity of hierarchical zeolites is 

nitrogen physisorption. Yet, nitrogen features a quadrupole moment, which 

implies that its molecular orientation strongly depends on the surface chemistry 

of the adsorbent. This leads to the major inconvenience of high uncertainty of its 

molecular cross-sectional area. Moreover, the presence of the quadrupole 

moment strongly affects the micropore filling pressure, which in some cases 

renders the measurement of equilibrated adsorption isotherms difficult. 

Additionally, the nitrogen molecule can hinder the pore entrances of small 

micropores through pre-adsorption, which makes the estimation of the micropore 

size distribution difficult.[110] In this respect, argon physisorption techniques 

present important advantages. Argon features a smaller kinetic diameter and no 

quadrupole moment, weaker fluid-wall interactions and a higher adsorption 

temperature compared to nitrogen. These characteristics reduce diffusion 

limitations and allow for observing the micropore filling at higher relative 

pressures compared to nitrogen for zeolites.[111] 

Moreover, measuring Ar isotherms at lower temperatures than its boiling 

temperature (e.g. 77 or 65 K) allows to gain structural insights in the porous 

features of mesoporous zeolites. Recording Ar isotherms at such low 

temperatures influences the thermodynamic state of the confined fluid and allows 

for the observation of hysteresis even for very small mesopores (below 4 nm). 

This is of crucial importance for mesoporous zeolites that feature small 

mesopores, where nitrogen physisorption reveals a reversible capillary 

condensation step. In a recent paper, Ar isotherms were recorded at 77 and 65 K 

for surfactant-templated USY zeolite. A combination of H1 and H2 hysteresis 

was observed, indicating that the majority of the mesopores are freely accessible 

without constriction (H1 loop). The part of the hysteresis related to the H2 loop is 

due to mesopores accessible through the narrow microporous channels, i.e. 

mesopores imbedded in the zeolite crystal; which leads to the cavitation 

phenomena (Figure 15).[112] A confirmation of this observation was gathered by 

analysis of hysteresis scanning measurements, where the pore system was 
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partially filled up to defined partial pressures. By preforming several cycles 

through adsorbing various amounts of adsorbate, the presence of cavitation was 

unambiguously assessed as the scanning curves returned directly to the 

desorption boundary curve. The combination of these two techniques allowed for 

quantifying the amount of accessible and constricted mesoporosity in the 

mesostructured USY zeolites and amounted to 64 and 36%, respectively for the 

material presenting a total mesoporous volume of 0.23 cm3 g-1. It has been argued 

that the presence of the constricted mesoporosity accounts as proof of the 

rearrangement process in which the diffusion of individual surfactant molecules 

within the microporous network and their subsequent self-assembly lead to the 

formation of mesoporosity within the zeolite crystals. It is important to mention, 

that longer surfactant-templating treatment times, yield materials which isotherms 

do not present the H2 loop, indicating that if enough time is allowed for the 

mesopore formation to occur all of the mesopores are accessible from the exterior 

of the crystal.  

Microscopy techniques are undoubtedly one of the major tools allowing for the 

study of porosity at different length scales. Novel visualization techniques 

become ever more available for the detailed description of the porous features in 

hierarchical zeolites. One example hereof is electron tomography, allowing for 

the study of mesopore connectivity in zeolites.[113] For deeper insights to these 

techniques the reader is oriented to consult the excellent review by Wei at al.[114] 

that summarizes the existing visualization methods with special focus on the 

determination on the interconnectivity between the porosities. 

The unique hierarchical and intracrystalline nature of the mesopores in surfactant-

templated zeolites was recently visualized though the combination of electron 

diffraction and  microscopy studies by employing two advanced characterization 

techniques, i.e. electron tomography (ET) and rotation electron diffraction (RED).[115] 

The combination of these techniques features the paramount advantage of overcoming 

the limitations of electron tomography (which does not permit for resolving the zeolite 

microporosity), as the RED method provides 3D structural information at the atomic 

level.[116] Hence, the combination of these two techniques allowed for the 

unprecedented description and direct visualization of the porous architecture of the 

hierarchical zeolite from the atomic to the mesoscale (Figure 16). This allowed for the 

illustration of the porous architecture and of the mesoporous connectivity through the 
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reconstructed model.[117] The development of this technique has indeed been described 

as major advancement for the characterization of hierarchical crystalline solids.[118] Here 

it allowed to unambiguously proof the crystallinity of the mesoporous zeolites and to 

discard the presence of any mesoporous amorphous material in the surfactant-templated 

material.  

In addition to the textural characterization of hierarchical zeolites, the assessment 

of the impact of the porosity on the diffusion properties of the materials is of 

paramount importance. Galarneau et al.[119] recently reported the study of mass-

transfer properties of post-synthetic surfactant-templated USY zeolite by pulsed 

field gradient nuclear magnetic resonance (PFG NMR). The authors compared 

the transport phenomena in USY zeolite, in surfactant-templated USY and in a 

mechanical mixtures of USY zeolite and Al-MCM-41 (Figure 17). Diffusion in 

the mechanical mixture could be described as a superimposition of the transport 

properties of the microporous zeolite and mesoporous solid. Differently, the 

effective diffusivity obtained for the surfactant-templated zeolite proved to be 

intermediate between that for the zeolite and the one observed for the mesoporous 

material and inferior to the one achieved in the mechanical mixture. This set of 

data not only proves the interconnectivity of the micro- (zeolitic) and 

mesoporosity (surfactant-templated) in one single phase but further that the 

hierarchical structure is effective in improving the diffusion properties of greatly 

hampered microporous solids. In addition, these results discard the formation of 

composite materials (mechanical mixture) through surfactant-templating as 

previously suggested.[85,103]  

 

5.2 Acidity 

The employed strategy for the formation of mesoporosity within the zeolites can 

have an important impact on the acid sites as their electronic environment may 

vary compared to the sites in the bulk zeolite. This is typically observed for 

hierarchical zeolites that are prepared through destructive techniques such as 

desilication.[120] These strategies affect greatly the Si/Al ratio and further lead to 

defects in the structure as well as to partial amorphization of the material. This 

results in a substantial increase of Lewis acidity to the expense of Brønsted 

acidity and alters thus the acid characteristics of the parent zeolites. [121] 
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The post-synthetic surfactant-templating process does not present this 

inconvenient due to the employment of mild basic conditions and the protective 

role of the surfactant, allowing to maintain the acidic properties of the zeolites in 

a very unique manner while introducing a significant amount of mesoporosity.[98]  

Various techniques have been developed to quantitatively and qualitatively assess 

the acidity of hierarchical zeolites, which are generally based on the adsorption of 

probe molecules. One of the most widely employed methods to determine the 

total acidity of zeolites is temperature programmed desorption of ammonia (TPD-

NH3). Yet, this method has been argued of not being accurate, as in many cases, 

adsorption on non-acid sites and re-adsorption of the probe molecule during the 

temperature treatment can readily occur, which makes it difficult to compare 

TPD-NH3 profiles of bulk and hierarchical zeolites.[122] Despite, Chal et al. 

compared the TPD-NH3 profiles of USY zeolite and of mesostructured USY 

through surfactant-templating, finding very similar global acidity in both samples 

(Figure 18A).[99]  

A more comprehensive assessment of the acidity in zeolites is given through 

infrared spectroscopy.[123] Indeed, through identifying characteristic vibrational 

bands it is possible to follow the development of silanol groups during the 

surfactant-templating process (Figure 18B).[98] In pristine NH4-Y zeolite, two 

bands at 3640 and 3740 cm-1 are observed, characteristic for the vibrational 

frequencies of strong Brønsted acid Si-(OH)-Al bonds and silanol Si-OH bonds, 

respectively. After the acid treatment, the band centered at 3740 cm-1 increases 

substantially whereas the band at 3640 cm-1 decreases. This observation indicates 

the formation of new terminal silanol groups (sometimes also referred as 

hydroxyl nest) confirming the partial opening of the Si-O-Al bonds. Upon 

surfactant-templating, the 3640 cm-1 band significantly decreases which can be 

explained through the exchange of protons by CTA+ and Na+. Through surfactant 

removal and exchange with NH4
+, Brønsted acidity is then recovered. The 

selective opening of the Si-O-Al bonds was also proved through 27Al MAS NMR 

(Figure 18C). Here, the sole observation of tetrahedral Al indicates the absence 

of the formation of extraframework Al species throughout the entire process.[98]  

One of the most suited techniques for the quantitative analysis of acid sites in 

zeolites is pyridine titration through the assignment of modes of the pyridine ions 

formed at Brønsted acid sites (1544 cm-1) and coordination complexes formed at 
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Lewis acid sites (1455 cm-1). This technique was used to analyze the impact of 

the introduction of mesoporosity through surfactant-templating on USY zeolite. 

The pyridine adsorption followed by infrared spectroscopy indicated the presence 

of Brønsted and Lewis acidity for both, parent USY and surfactant-templated 

USY. It is quite remarkable that the introduction of a large amount of 

mesoporosity (0.41 cm3 g-1) within USY zeolite almost did not affect the acidic 

properties of the zeolite. Whilst the concentration of Brønsted sites diminished 

slightly for desorption temperature at 150 ºC (from 0.28 to 0.23 mmol g-1), the 

concentration of Lewis acid sites remained constant (0.08 mmol g-1). At 

desorption temperatures of 350 ºC equal concentration of Lewis and Brønsted 

acid sites within both materials were determined (0.06 and 0.15 mmol g-1), 

indicating that the strongest acid sites remain unaffected through surfactant-

templating (Figure 18D). 

 

5.3 Hydrothermal stability 

Hydrothermal stability is an important key characteristic especially relevant for 

industrial applications, as the presence of steam at elevated temperature is 

common in industrial processes. The rapid loss of structural integrity is indeed 

one of the major drawbacks surfactant-templated silica-aluminas (such as Al-

MCM-41) present, making their industrial application impractical.[124] Corma 

stated in his introductory 1997 review: “A strong improvement in stability could 

be obtained if one could make the walls crystalline. If this could be achieved one 

can dream of producing materials not only more stable and with stronger acidities 

than the current MCM-41 but also having in the same structure a combination of 

well-defined micro- and mesopores.” In this respect, the development of 

intracrystalline mesoporosity within zeolites through surfactant-templating 

represents the achievement of this long lasting goal and allows the bridging of the 

gap between MCM-41 and zeolites.[104]  

In order to assess the hydrothermal stability of mesostructured USY zeolite, its texture 

and crystallinity were compared before and after deactivation by steaming. To this 

purpose, their nitrogen isotherms and the X-ray diffractograms were compared at 

different steps during the preparation and after the deactivation (Figure 19). The 

nitrogen isotherm of the mesostructured Y zeolite featured a typical sharp nitrogen 

uptake at a relative pressure of approximately 0.5 as a result of the filling of surfactant-
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templated mesoporosity. Through the additional ultrastabilization process - that 

converts the mesostructured Y zeolite in mesostructured USY zeolite - the mesopores 

size became wider. Yet, the total mesoporosity remained almost constant. The 

deactivation of mesostructured USY zeolite simulating the process occurring in a FCC 

unit was achieved through treating the mesostructured USY at 788 ºC in pure steam for 

4 h. Though the mesoporous size distribution became wider throughout the treatment, 

its mesoporous volume kept constant, confirming excellent hydrothermal stability of the 

mesostructured zeolite.[98]  

In the next section we will describe the impact of the mesostructured Y zeolite in 

fluid catalytic cracking (FCC). Proceeding to this, we would like to highlight that 

the excellent hydrothermal stability of the mesostructured zeolite was confirmed 

in month-long commercial FCC trials in a North American refinery.[125] Hereto, 

the evolution of the zeolite surface area (ZSA, calculated through the t-plot 

method) and the mesoporous surface area (MSA, also called matrix surface area 

in industry; as the matrix accounts for a significant fraction of the mesopore 

surface area of the FCC catalyst it is calculated by subtracting the ZSA from the 

BET area) was monitored throughout the trial through periodic sampling of the 

equilibrium catalyst (Figure 19C). It was inferred that the ZSA of the 

equilibrium catalyst increased from 115 to 123 m2 g-1 (+ 7%), as a result of 

slightly higher ZSA in the fresh surfactant-templated zeolite. At the same time, an 

important increase in the MSA of the equilibrium catalysts, from 30 m2 g-1 before 

the trial to 50 m2 g-1 (+ 70%) towards the end of the trial was observed. The 

chemical analysis of the equilibrium catalysts further revealed the presence of 

1000 ppm of vanadium and 200 ppm of nickel in the equilibrium catalysts. The 

presence of vanadium is known to harm FCC catalysts through the formation of 

vanadic acid, which forms through hydrothermal conditions present in the FCC 

unit. Notwithstanding, it was evidenced that the activity of the catalyst remained 

constant as to before of the trial through Micro Activity Tests (MAT). The 

excellent hydrothermal stability of the surfactant-templated USY, confirmed both 

in the lab and in the refinery, is an additional evidence of the presence of 

intracrystalline mesoporosity and discard the suggested amorphous nature of the 

mesoporous phase, as this would not stand the severe hydrothermal conditions 

applied. 
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6. Mesoporous zeolites in fluid catalytic cracking (FCC) and refining applications 

Zeolites play a central role in the petrochemical industry, being the main 

component of catalysts used in the processing of hydrocarbons through cracking, 

hydrocracking, isomerization and aromatization reactions, among many others. 

Especially the big five zeolite family (which comprises the phases Y, ZSM-5, 

FER, MOR and *BEA) presents unique properties such as strong Brønsted 

acidity, large surface area and hydrothermal stability, rendering them especially 

prone for these applications. 

Activity, selectivity and deactivation are the key parameters that determine the 

efficiency of a catalytic process. All of them are crucially influenced by the mass-

transfer properties of the zeolite. A variety of catalytic test reactions have been 

established with the aim to assess the role of the secondary porosity in 

hierarchical zeolites. Many of the established test reactions are of industrial 

interest and comprise both the transformation of hydrocarbons and the production 

of chemicals, such as the methanol to olefins reaction and the Friedel-Crafts 

alkylation, just to cite a few examples. Hartmann et al.[126] recently reviewed 

frequently employed test reactions that allow to determine the effect of secondary 

porosity in zeolites on their catalytic efficiency. Commonly, the employment of 

hierarchical zeolites affects the catalytic properties by (i) improving conversion 

of bulky molecules, (ii) enhancing selectivity by avoiding secondary reactions (as 

a result of shorter diffusion path length) and (iii) reducing catalyst deactivation.  

The role of intracrystalline mesoporosity on the catalytic activity and selectivity 

of hierarchical zeolites will here be exemplified through the application 

surfactant-templated USY in catalytic cracking. This represents the first example 

of an industrial application of a hierarchical zeolite moreover in a very 

demanding and important process such as fluid catalytic cracking (FCC).[100]  

FCC is a key process in the petroleum refinery industry, which allows for 

transforming the high boiling point high molecular weight hydrocarbons present 

in the crude oil into lighter and more valuable fractions such as diesel, gasoline 

and olefinic gases. For a thorough introduction to FCC the reader is referred to 

the specialized literature.[127,128] 

The main component of the FCC catalyst is zeolite Y as it is responsible for most 

of the catalytic cracking due to its unique structure, featuring 3D interconnected 

micropores, and to its strong acidity. Yet, a significant fraction of the reactant 
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molecules in the feedstock are of larger size than the microporous channels of 

this zeolite.[129] Consequently, mass-transfer is importantly hampered as solely 

the active sites located on the external surface of the zeolite crystals are able to 

transform the bulky molecules. The effect of diffusion limitations on the product 

distribution in FCC is schematically depicted in the simplified tree-lump model 

(Figure 20A). Under such conditions less vacuum gas oil (VGO) is converted 

into gasoline and light cycle oil (LCO) due to the accessibility issues. At the same 

time, as a result of the long diffusion path lengths in the bulk zeolites, secondary 

reactions occur (overcracking), which increases the selectivity towards undesired 

gases and coke. 

To overcome this scenario, an important amount of work has been carried out 

with the aim to reduce the diffusion path length and to increase the number of 

accessible active sites in zeolites. It has indeed been reported that through 

employing nanosized zeolites, the selectivity towards reaction intermediates (i.e. 

gasoline and LCO) was increased whilst reducing the production of gases and 

coke.[130] The achieved selectivity can be explained by taking into account the 

reduced diffusion path length in the nanosized zeolites, as the reaction 

intermediates, i.e. gasoline and LCO, reside less time within the crystalline 

structure and are thus less prone to undergo secondary reactions (i.e. 

overcracking) to form undesired gases and coke which deactivates the 

catalyst.[131] 

Despite the increased selectivity towards the gasoline fraction in FCC for which 

nanocrystalline Y zeolite accounts, several important drawbacks render their 

industrial application difficult. These are based on the low yield of the 

nanocrystals and their rather complex separation after synthesis. Additionally, 

such nanocrystals present lower hydrothermal stability than the bulk zeolites. [131]  

A practical alternative for reducing the diffusion path length and at the same time 

maximizing the accessibility of active sites – and which does not present the 

afore mentioned drawbacks - is the introduction of mesoporosity within zeolite Y. 

As previously described, mesoporous zeolite Y obtained through post-synthetic 

surfactant-templating presents excellent acidity and hydrothermal stability and at 

the same time tailored and interconnected mesoporosity. These features endow 

the mesostructured Y zeolite as ideal component of the FCC catalyst. 
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For this purpose, the FCC catalyst was produced employing commercial 

techniques and tools at a pilot plant.[100] Bulk NH4-Y zeolite was treated with a 

diluted citric acid solution in order to selectively open some of the Si-O-Al 

bonds. The sample was subsequently surfactant-templated to introduce tailored 

mesoporosity. The in this way achieved mesostructured Y zeolite was 

ultrastabilized by exposing it to 550 ºC during 2 h in 100% steam. In order to 

further improve its hydrothermal stability, the mesostructured USY zeolite was 

rare earth ion exchanged. Finally, it was combined with clay (kaoline) acting as 

filler and a binder (aluminium chlorohydrol) and shaped into the FCC catalyst 

through spray drying. In order to simulate the equilibrium catalyst (Ecat), the 

achieved catalyst was deactivated through fluidized steaming at 788 ºC during 8 h 

in 100% steam. [125]  

The catalytic performance of the FCC catalyst containing the mesostructured 

zeolite Y was compared to a system prepared in identical manner but comprising 

the original Y zeolite. The FCC tests were carried out in an advanced cracking 

evaluation (ACE) unit using both light and heavy VGO as feedstock. In both 

cases, higher yields in gasoline and LCO were observed whilst at the same time 

significantly less coke and bottoms (unconverted feed) were produced when 

using the mesoporous containing FCC catalyst (Figure 21). The selectivity 

towards gasoline and LCO was even better when employing heavy VGO. These 

results highlight the role of intracrystalline mesoporosity in zeolites in increasing 

the accessibility of the feedstock molecules to the active sites – which is 

evidenced by the more effective conversion of the bottom especially for heavy 

VGO (Figure 21C) - and in facilitating the ready exit of the intermediates that 

leads to a significant decrease in the production of coke and an increase of 

gasoline and LCO. The increased selectivity towards intermediates (gasoline and 

LCO) is a clear evidence of the role of shorter diffusion path length in reducing 

overcracking reactions (Figure 20B). 

A more realistic description of the various conversions occurring during FCC is 

given by the six-lump model (Figure 22). Here the conversion of VGO to the 

different fractions is modeled as a series of parallel and consecutive reactions. In 

FCC, all light products can be formed directly from the VGO, yet their formation 

from secondary reaction is also significant.[132] The shortening of the diffusion 

path length allows for minimizing the occurrence of secondary reactions and thus 
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increasing the yield of the desired gasoline and LCO. The model furthermore 

depicts liquefied petroleum gas (LPG), which is an important fraction of the FCC 

process. LPG consists of light paraffins (propane and butane) and olefins 

(propylene and butylene). Whilst olefins represent valuable FCC products, being 

the starting material for many other transformations, paraffins represent products 

with rather low economic interest. Indeed, maximizing propylene production has 

become a major issue in FCC due to an increasing demand/supply imbalance, 

although different markets have different needs at different times.[133] 

During the FCC process, olefins transform through hydrogen transfer reaction 

into the corresponding paraffins. In order to prevent the hydrogen transfer 

reaction to occur, the residence time of the olefins inside the catalyst must be 

reduced for example by shortening of the diffusion path length. In a commercial 

operation in a refinery,[134] a steady increase in  LPG olifinicity was observed 

through replacing the incumbent FCC catalyst by another containing the 

mesostructured Y zeolite. Commercial data confirmed the observed trend using 

an equilibrium catalyst from the refinery and analyzed in an ACE unit (Figure 

23A). A gradual increase in the LPG olefinicity was also observed at the refinery 

as the concentration of the FCC catalyst containing mesostructured Y zeolite in 

the circulating inventory steadily increased (Figure 23B). In this commercial 

trial, the most important yield shift was the increase in butylene selectivity 

(Figure 23C). Furthermore, a very valuable increase in gasoline octane was also 

observed due to a higher concentration of olefins in the lighter gasoline fraction 

(Figure 23D). 

A different commercial trial was carried out at Alon’s Big Spring, TX refinery, in which 

318 tons of the equilibrium FCC catalyst comprising mesostructured USY zeolite 

produced by Grace using Rive Technology surfactant-templating technology.[135] The 

catalyst addition to the FCC unit was of 3 tons/day, which represents the equivalent 

amount as for the incumbent catalyst. As a result of the improved bottom cracking 

ability of the FCC catalyst containing the mesostructured zeolite, the operation 

conditions of the refinery were allowed to be modified through lowering the riser 

temperature whilst at the same time increasing the feed throughput (Figure 24A). 

Consequently, a decrease in the temperature of the regenerator was induced, which yet 

did not affect the regeneration of the catalyst. Throughout the trial the combination of 

improved coke selectivity whilst increasing feed rate allowed to achieve a significant 
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increase in both gasoline (Figure 24B) and LCO production (Figure 24C). The 

observed selectivity towards intermediates confirms that the introduction of 

intracrystalline mesoporosity shortens the diffusion path length and hinders the 

occurrence of secondary reactions. At the end of the commercial trial, the additional 

value that was delivered to the refinery by replacing the incumbent catalyst with the 

mesostructured USY containing FCC catalyst was estimated to be over US$2.50/bbl of 

the FCC feed (Figure 24D). This value is well above the catalytic uplift estimated from 

extensive preliminary testing using an ACE unit (US$ 2.00/bbl of FCC feed). Sampling 

of the equilibrium catalyst during the entire duration of the trial, allowed to assess the 

excellent mechanical and hydrothermal stability of the catalyst containing 

mesostructured Y zeolite.[136] 

Several thousand tons of FCC catalyst featuring mesostructured USY zeolite have 

up to date been produced. The elevated cost of the surfactant-based process could 

be overcome through improving employed raw materials and operating 

conditions, which allowed to decrease manufacturing cost by a factor of ten 

during the up-scaling process. Moreover, it has been shown that the cost of the 

surfactant-templating process can be substantially minimized by recovering and 

recycling the surfactant.[137] 

Building on the successful commercialization of surfactant-templating 

technology for FCC, new hierarchical zeolites are being produced using this 

strategy to meet the needs of the refinery industry by providing more flexibility 

and improved performance in a rapidly changing environment. On this regard, the 

joint effort between Zeolyst International, CRI/Criterion Inc and Rive 

Technology for the commercialization of surfactant-templated zeolites as superior 

hydrocracking catalysts is a major step towards expanding this technology to new 

refining processes. Currently, surfactant-templated zeolites based on other 

structures such as ZSM-5, beta, mordenite and chabazite, among others, are being 

tested in refining, petrochemical and fine chemical applications. 

 

7. Further perspectives and concluding remarks 

An impressive variety of surfactant-oriented techniques has emerged in the last 

few years to design complex mesoporous architectures within a wide range of 

materials. Specifically, the use of surfactant-oriented strategies for the fabrication 

of mesoporous zeolites has allowed to overcome the drawbacks related with the 
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limited accessibility to the active sites of purely microporous zeolites. However, 

the development of mesoporous zeolites using surfactants is still at an early stage. 

Although, surfactant-oriented strategies allow for the preparation of hierarchical 

zeolites with interconnected porosity at different length scales, the control over 

their porous architecture is much poorer than in the case of amorphous solids. 

The quest remains opened for the synthesis of hierarchical zeolites featuring 

mesopores arranged in different geometries. 

As this and other challenges are being tackled by several groups, an exciting new 

opportunity opens with the use of surfactant-oriented strategies for the formation 

of tailored mesoporosity in other microporous materials. Indeed, surfactant-

templating strategies have lately been adapted for the development of 

mesoporosity in MOFs through careful choosing of the conditions of co-assembly 

of the surfactants and the individual MOF building units.[17] The mesoporous 

MOFs obtained using this strategy are very promising materials for gas storage, 

as the introduction of secondary porosity within MOFs allows for the acceleration 

of the adsorption kinetics and increases the overall storage capacity for bulkier 

molecules. In the particular, the application of surfactant-oriented strategies for 

the development of mesopororous zinc imidazolate frameworks (ZIFs) have 

recently proven successful.[138] Those structures are especially interesting, as 

some of their structural types are isomorphic to zeolite structures.  

The development of new synthetic strategies to produce tailored mesoporosity in 

zeolites that are at the same time inexpensive and eco-friendly is very much 

needed. The use of natural surfactants and biopolymers and the recycling of the 

surfactant are anticipated to play a major role in overcoming the current 

constraints.  

The introduction of mesoporosity in zeolites is an effective way to influence the 

diffusion properties of these microporous solids. However, a more detailed 

understanding on the impact of the secondary porosity in the mass transport 

properties of the zeolites is critical as they greatly influence key aspects of 

heterogeneous catalysis, such as activity, selectivity and catalyst lifetime. Various 

techniques are used to investigate mass transport phenomena in porous materials, 

such as invert gas and zero length column chromatography and pulse field 

gradient NMR (PFG-NMR).[139] Unfortunately, diffusion studies are not 

standardized, which makes cross comparisons very problematic.  
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Recent advances in visualization techniques are allowing for a better analysis of 

the location and interconnectivity of porosity in zeolites at different length scales. 

Specially, Environmental-TEM has been used to follow in-situ the transformation 

of the secondary porosity in zeolites during surfactant-templating in USY, 

providing valuable insights on the formation mechanism.[101] 

A better understanding on both, how surfactants produce mesoporosity in zeolites 

and the role of this in the diffusion properties of hierarchical zeolites, is essential 

for the rational design of new materials with improved properties. One of the 

field that can benefit from more accessible strong acid solid catalysts is the 

transformation of biomass into high value chemicals and fuels. For example, 

valuable oxygenated chemicals, such as furans, aldehydes, ketones have been 

obtained using zeolites with strong acidity and large mesopores in the 

transformation of very abundant but very bulky and highly recalcitrant lignin.[140] 

Moreover, mesoporous zeolites are promising in fields other than catalysis, such 

as in water treatment, gas separation, and as sensors.[141] Finally, new 

developments in the adsorption and transformation of CO2 by functionalized 

mesoporous zeolites reveal that the modification of the surface chemistry of 

zeolite, for example via grafting, could play a very important role in the 

future.[142] 

Whilst the introduction of mesoporosity in zeolites present important advantages 

for a wide number of applications,[143] the industrialization of these materials is 

still in an early stage. However, the commercialization of surfactant-templated 

zeolites in FCC is expected to foster the development of new hierarchical zeolites 

and their use both in existing processes and new and exciting opportunities.  
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Figure 1. Key concepts of surfactant-templating. Summary of the different 
chemical interactions leading to mesostructured materials (A). Influence of the 
mesoporous architecture by the micellar packing parameter (B). Examples of the 
diversity of mesoporous architectures of amorphous silica (C). Adapted with 
permission from ref. 9, 11 and 14. 
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Figure 2. SEM (A) and TEM (B) micrographs of mesoporous *BEA obtained 
through the employment of PDADMAC. Inset: The chemical structure of 
PDADMAC. Reconstructed reciprocal lattice of the mesoporous *BEA projected 
along the c* (C), a* (D) and b* (E) directions. Representative HAADF-STEM 
image of mesoporous *BEA selected from a tilting series over a range from −75° 
to +75° at regular intervals of 1° (F). Reconstructed morphology of Beta-MS 
from HAADF-STEM tomography visualized by surface rendering (G). A slice to 
the [001] direction extracted from the reconstructed volume (H). Adapted with 
permission from ref. 36.  
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Figure 3. Schematic representation of the formation of Al-MSU-S materials (A). Evidence 
of the presence of zeolite Y building units by Raman spectroscopy (B). SEM images of Al-
MSU-S (C).  XRD patterns (D) and N2 adsorption and desorption isotherms at 77 K (E) 
before and after steaming (600  ºC, 5 h) of mesoporous aluminosilicates Al-MSU-SMFI 
prepared with ZSM-5 seeds (A) and Al-MSU-SBEA prepared with *BEA seeds (B).  
Adapted with permission from ref. 43, 46 and 47.  
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Figure 4. Schematic representation of the mechanism leading to the formation of 
mesoporous zeolites (A). Nitrogen adsorption and desorption isotherms at 77 K of 
mesoporous FAU with variation of Si/Al ratio in the synthesis mixture (B). SEM (C) and 
TEM (D) images of hierarchical FAU. Adapted with permission from ref. 52. 
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Figure 5. Schematic representation of the ZSM-5 zeolite subunits functionalized with 
phenylaminopropyl groups (A). Nitrogen adsorption and desorption isotherms at 77 K 
and BJH pore size distribution of mesoporous ZSM-5 and bulk ZSM-5 (B). TEM 
micrographs of mesoporous ZSM-5 (C). Adapted with permission from ref. 60 and 61. 
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Figure 6. TEM micrographs (A) and nitrogen physisorption isotherms at 77 K and BJH 
pore size distribution (B) of mesoporous ZSM-5 obtained with surfactants of various 
chain lengths. Adapted with permission from ref. 64 and 70. 
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Figure 7. Top: SEM (A) and TEM (B) images of mesoporous MFI nanosheet 
assemblies. Chemical structure of C22H45-N(CH3)2-C6H12-N(CH3)2-C6H13Br2 (C). 
Nitrogen adsorption and desorption isotherm at 77 K for bulk MFI and mesoporous MFI 
nanosheets (D). Bottom: Schematic representation of the development of the atomic and 
mesoscopic structure during the synthesis of MFI nanosheets. Initially amorphous silica 
framework (gray) with weak hexagonal mesoporous ordering (A). Intermediate 
nanolayered silicates (B) and zeolite MFI nanosheets (C). Blue and white spheres: Si 
and O framework atoms, respectively. Black circles and gray lines: surfactant 
headgroups and alkyl chain length, respectively. Adapted with permission from ref. 73 
and 75. 
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Figure 8. SEM (A) and TEM (C and E) micrographs of hierarchical materials obtained 
through the use of multicationic surfactants. Insets in C and E are the FFT of these 
micrographs. Chemical structure of the tricationic surfactant 18-N3-18 (B). Low and 
wide angle XRD patterns of achieved materials (D). Structure of the multicationic 
surfactants featuring aromatic groups (F). Framework thickness and XRD patterns of 
materials prepared with N4-phe, N6-diphe and N8-triphe. Adapted with permission from 
ref. 78. 
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Figure 9. Design concept for the achievement of mesoporous ZSM-5 zeolite. Top: 
Structures of designed surfactants. Structure of ammonium-based surfactants ended by 
aromatic groups (A). Bolaform surfactant (B). Triply branched multi cationic surfactants 
with aromatic center (C). Bottom: Schematic representation of the formation of the 
nanosheet structure build up through π- π interactions of surfactants  depicted in A (D) . 
SEM (E) and TEM (F) micrographs of hierarchical zeolites synthetized with surfactants 
depicted in A. SEM (G) and TEM (H) micrographs of hierarchical zeolite synthetized with 
Bolaform surfactant depicted in B. Schematic representation of the  formation of three 
dimensional mesopores zeolites through π- π stacking of surfactant cores depicted in C 
(G). Adapted with permission from ref. 83 and 84. 
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Figure 10. Structures of selected cationic surfactants employed in the development of 
hierarchical zeolites.   
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Figure 11. Schematic representation of the post-synthetic approaches using a base and 
surfactant. On the left side the zeolite recrystallization approach leading to the composite 
materials RZEO-1, -2 and -3. On the right side the post-synthetic surfactant templating 
leading to mesoporous zeolites (MZEO). At the bottom TEM and SEM micrographs of the 
various materials. Adapted with permission form ref. 89 and 100. 
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Figure 12. SEM micrograph of MCM-41/ZSM-5 composite material (A). False colored 
version of the original SEM micrograph, where the amorphous MCM-41 (orange) and 
crystalline (green) phases are distinguished (B).  Nitrogen adsorption and desorption 
isotherms at 77 K (D) and XRD patterns of composite materials synthetized with different 
zeolite/NaOH ratios. Adapted with permission from ref. 86. 
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Figure 13. SEM (A), TEM micrographs (B and C) and schematic representation (D) of 
the composite titanosilicates featuring the core/shell intersection and the irregular 
intracrystalline mesoporosity. Reprinted with permission from ref. 96. 
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Figure 14. Schematic representation of the proposed mechanism of the post-synthetic 
zeolite surfactant-templating (A). FESEM micrographs of parent NaY (B) and 
mesostructured Y (C). TEM micrographs of parent USY (D) and mesostructured USY 
(E). NLDFT pore size distribution curves calculated from Ar isotherms at 87 K for 
mesoporous zeolites obtained with trimethylalkylammonium-based surfactants with 
increasing alkyl chin length (C10 – C22) (F). Inset: linear correlation between mesopore 
diameter and number of carbon atoms in the surfactant chain. In situ time resolved 
synchrotron XRD study of USY zeolite surfactant-templating (G). Simulated XRD 
pattern (blue) based on the model shown in (a) and experimental (red) XRD of USY 
zeolite surfactant-templated. (H). Evolution of the void volume of the steamed porosity 
inparent zeolite throughout surfactant-templating (I). Adapted with permission from ref. 
101 and 118.  
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Figure 15. Gas physisorption experiments on surfactant-templated USY with CTAB. 
Argon (87 K) and nitrogen (77 K) adsorption/desorption isotherms (A). NLDFT pore-size 
distributions calculated from the argon (87 K) and nitrogen (77 K) isotherms (B). Argon 
adsorption isotherms at 77 K and 65 K (C). Hysteresis scanning isotherms on the argon (77 
K) isotherm (D). Reprinted with permission from ref. 118.  
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Figure 16. Rotation electron diffraction (RED) and electron tomography (ET) were used 
to investigate the intracrystalline mesoporous nature of surfactant-templated Y zeolite. 
Reconstructed 3D reciprocal lattices from the RED data with the reconstructed 3D 
morphology of the corresponding particle obtained from electron tomography 
superimposed (A). RED data shows that the particle is highly crystalline zeolite Y with 
two twin domains (lattices shown in red and green, respectively) sharing a common [111] 
axis. 3D reconstruction of a portion of a tomogram of mesoporous Y zeolite (B). Frame of 
the video of the combination of RED and ET (C). Reprinted with permission from ref. 118.  
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Figure 17. Top: Attenuation Ψ of the spin echo signal as a function of the gradient 
strength g measured from PFG NMR for hexane adsorbed in FAU, Al-MCM-41, mFAU 
(i.e. surfactant-templated USY zeolite), and a mechanical mixture of FAU + Al-MCM-
41. Bottom: Representation of the effective diffusivity Deff as determined from PFG NMR 
for hexane adsorbed at 298 K in FAU, Al-MCM-41, mFAU, and a mechanical mixture of 
FAU + Al-MCM-41. Adapted with permission from ref. 119.  
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Figure 18. TPD-NH3 profiles of parent USY (gray) and mesostructured USY (black) 
(A). FT-IR spectra of Y zeolite sampled along surfactant-templating (B). 27Al MAS 
NMR of parent Na-Y zeolite (a), after acid pre-treatment (b), after surfactant-templating 
in the presence of CTAB and NH4OH solution (c) and  after surfactant-templating in the 
presence of CTAB and NaOH solution (C). FT-IR spectra of pyridine chemisorbed 
parent USY and mesostructured USY recorded after desorption at 150 ºC (black), 250 
ºC (red) and 350 ºC (green) (D). Adapted from ref. 98 and 99.  
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Figure 19. Ar adsorption isotherm at 87 K of NH4-Y (black circle), mesostructured Y 
(blue square), and mesostructured USY before (green triangle) and after (red diamond) 
deactivation at 788 1C in 100% steam for 4 hours (A). The corresponding BJH pore size 
distributions of these samples are shown in the inset.  XRD patterns of, from bottom to top, 
the starting NH4-Y (CBV300), mesostructured Y, the mesostructured USY, and after its 
deactivation at 788 ºC in 100% steam for 4 h (B). The intensities of the last three samples 
were corrected using a 1.45 empirical factor to account for the radiation absorption by the 
rare earth oxides (5 wt%) in these materials. Zeolite surface area (ZSA, squares) and 
mesopore surface area (MSA, diamonds) of the equilibrium catalyst samples gathered 
from CountryMark Refinery FCC Unit every 2–3 days before (blue) and after (green) the 
trial started at day 0 (C). Reprinted with permission from ref. 98 and 125.  

 

 

 

 

 

 

Page 70 of 76

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

71 

 

Figure 20. Three-lump model of the catalytic cracking of vacuum gas oil (VGO) (A). In a 
diffusion limited reaction, overcracking reactions are favored, leading to reduced 
conversions towards gasoline and LCO and increased selectivity towards undesired light 
gases and coke. Schematic representation of the diffusion path length in bulk zeolites and 
in hierarchical zeolites featuring intracrystalline mesoporosity (B). 
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Figure 21. Advanced cracking evaluation (ACE) testing results of two FCC catalysts 
containing mesostructured USY zeolite to two state-of-the-art catalysts with 
conventional USY using two different North American refinery feeds. Light VGO feed: 
FCC catalyst containing mesostructured USY zeolite (green) and Conventional FCC 
catalyst (brown). Heavy VGO feed: FCC catalyst containing mesostructured USY 
zeolite (blue) and Conventional FCC catalyst (red). LCO + Gasoline yields vs. 
Conversion (A). Coke yields vs. Conversion (B). Bottoms yields vs. coke yields (C). 
Reprinted with permission from ref. 118. 
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Figure 22. Six-lump model of the conversion of gasoil. Shortening the diffusion path 
length in zeolites leads to significant increase in the yield of the desired products (blue) and 
a decrease in the undesired products (red). 
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Figure 23. Evolution of LPG olifinicity during a commercial operation obtained in an 
ACE unit using Ecat from the refinery. Refinery data as the trail evolved on LPG 
olefinicity (B) C4 olefinicity (C) and gasoline octane (D). Adapted with permission from 
ref. 134.  
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Figure 24. Observed trends during a trial at Alon’s Big Spring, Texas refinery: a) 
Increased feed rate by 700 BPSD (barrel per stream day); b, c) increased production of 
gasoline and LCO (the big spikes in the plant data were owing to process interruptions 
and not to the catalyst); d) an incremental value uplift owing to the change-out of the 
incumbent catalyst for the FCC catalyst containing mesostructured Y zeolite. Adapted 
with permission from ref. 135.  
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