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1. ABSTRACT 33 

Seagrasses are key habitat-forming species of coastal areas. While previous research has 34 

demonstrated considerable small-scale variation in seagrass abundance and structure, 35 

studies teasing apart local from large-scale variation are scarce. We determined how 36 

different biogeographic scenarios, under varying environmental and genetic variation, 37 

explained variation in the abundance and structure (morphology and biomass 38 

allocation), epiphytes and sexual reproduction intensity of the seagrass Cymodocea 39 

nodosa. Regional and local-scale variation, including their temporal variability, 40 

contributed to differentially explain variation in seagrass attributes. Structural, in 41 

particular morphological, attributes of the seagrass leaf canopy, most evidenced regional 42 

seasonal variation. Allocation to belowground tissues was, however, mainly driven by 43 

local-scale variation. High seed densities were observed in meadows of large genetic 44 

diversity, indicative of sexual success, which likely resulted from the different 45 

evolutionary histories undergone by the seagrass at each region. Our results highlight 46 

that phenotypic plasticity to local and regional environments need to be considered to 47 

better manage and preserve seagrass meadows.  48 

 49 

Keywords: angiosperms, phenotypic plasticity, environmental variability, demographic 50 

compensation hypothesis, Mediterranean, Canary Islands, Seagrass distribution range, 51 

meadow genetic diversity, Seed bank, Shoot density  52 

 53 

 54 
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2. INTRODUCTION  56 

Identifying factors driving patterns of abundance, size and reproduction of species 57 

throughout their distribution ranges has always been one of the main objectives in 58 

ecology and conservation (Hardie & Hutchings, 2010; Thomas et al., 2004). While 59 

different hypotheses have been put forward to explain these patterns, few of them have 60 

been supported with empirical data (Villellas et al., 2015). For example, one of the most 61 

cited hypotheses in macroecology is the “Abundant-Centre Hypothesis” (ACH; Brown, 62 

1984), which states that the largest abundances of a species are found in the middle 63 

zones throughout its distribution range while, on the other hand, lowest abundances 64 

occur at the range limits. However, several empirical studies (Angert, 2006; Jongejans 65 

et al., 2010; Sagarin & Gaines, 2002; Villellas et al., 2015), mainly with plants, reject 66 

this hypothesis as a general norm. In fact, it has been observed that local population 67 

dynamics play a crucial role in determining population abundances. For instance, the 68 

“Demographic Compensation Hypothesis” (DCH) has been proposed, in this sense, to 69 

explain the stochasticity of species’ abundances across their ranges (Kilkenny & 70 

Galloway, 2008; Villellas et al., 2015). This hypothesis considers the relevance of 71 

processes influencing the vital rates of species, which allow them to persist, despite 72 

being at their distribution range limits (Villellas et al., 2015). The DCH considers a 73 

spatio-temporal framework, incorporating local environmental variability, while also 74 

taking into account genetic flow, population size, and variations in life history traits of 75 

populations at localities across the distribution range of a target species (Jongejans et 76 

al., 2010; Zanne et al., 2018).  77 

Variation in the abundance and structure (e.g. size, morphology) of plants can arise 78 

from large-scale variation in the evolutionary histories of species across their ranges of 79 

distribution, which is often reflected in genetic variation (Masucci et al., 2012), but also 80 
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from varying environmental scenarios throughout varying scales of spatial and temporal 81 

variability (Reynolds & D’Antonio, 1996). There is a general consensus that plant 82 

populations at their limit ranges exhibit less genetic variability and are more divergent 83 

than populations from the center of their distribution ranges (Hardie & Hutchings, 84 

2010). For clonal plants, which are capable of both sexual and asexual reproduction, 85 

this is typically associated with a reduction in the intensity of sexual reproduction at 86 

their range limits (Billingham et al., 2003; Eckert, 2001; Paulo et al., 2019a). In these 87 

areas, the environment often imposes harsh conditions for the normal development of 88 

plant populations and, consequently, established populations  tend to favor asexual over 89 

sexual reproduction, as it allows a faster expansion or persistence of plants via clone 90 

formation, eliminating the need of the high energy investment that sexual reproduction 91 

requires (Alberto et al., 2006; Eckert, 2001).  92 

Importantly, the phenotypic plasticity of plant species to acclimate to a fluctuating 93 

environment, for example in terms of demographic or morphological responses, varies 94 

along environmental gradients and according to the intrinsic biological peculiarities of 95 

the species (Kilminster et al., 2015; O’Brien et al., 2017; Villellas et al., 2015). For 96 

instance, differences in demography and population dynamics between central and 97 

marginal populations of two species of monkeyflowers (Mimulus) differed strikingly 98 

between both species; whereas M. lewisii exhibited higher survivorship and fecundity in 99 

central populations, population growth and investment on sexual reproduction was, in 100 

contrast, dominant in marginal populations of M. cardinalis. Critically, a reduction in 101 

sexual reproduction at the limits of the distribution range could be associated with more 102 

threatened populations under a changing environment, because of associated lower 103 

genetic diversity (Wernberg et al., 2018), which would decrease the capacity of 104 

individuals to adapt and survive to new conditions (Eckert, 2001).  105 
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While identification of sources of spatial and temporal variability of species across 106 

their distribution ranges is a pivotal goal in ecology and conservation, it becomes 107 

particularly important for habitat-forming species (Araújo et al., 2014; Casas-Güell et 108 

al., 2015; Del Vecchio et al., 2018), given that they directly and indirectly supply 109 

resources that the rest of organisms from the same ecosystem require  (Jones et al., 110 

1997). 111 

Seagrasses are a group of angiosperms that have adapted to a fully submerged life in 112 

marine environments (Hemminga & Duarte, 2000), having successfully colonized both 113 

temperate and tropical coastal areas around the world where they create coastal 114 

ecosystems of great ecological, socio-cultural and economic importance (Lilley & 115 

Unsworth, 2014; Sherwood et al., 2017). These seagrass species are “habitat formers”, 116 

providing habitat and food for many organisms, creating the base of many coastal food 117 

webs (Coll et al., 2011), and acting as important carbon sinks (Fourqurean et al., 2012). 118 

Due to the high occupation of coastal areas by humans, and the negative impact of 119 

associated anthropogenic activities, seagrass meadows are receding throughout the 120 

world (Papathanasiou & Orfanidis, 2018; Waycott et al., 2009). Therefore, unravelling 121 

the sources of variability related to the structure and functioning of these meadows 122 

throughout their distribution range is key for decision-making to ensure their 123 

conservation. The abundance (e.g. shoot density) and structure (e.g.  biomass allocation 124 

and plant size) of seagrasses may vary across their distribution ranges (Larkum et al., 125 

2006; Short & Coles, 2001). While a large body of research has demonstrated 126 

considerable small-scale (local) variation in seagrass abundance and structure, studies 127 

teasing apart small (local) from large-scale variation are scarce (Mascaró et al., 2009; 128 

Xu et al., 2018).  129 
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Ecological studies partitioning the relevance of scales of spatial and temporal 130 

variation of biota, particularly from the marine realm, have been typically framed using 131 

nested ANOVA models (Anderson et al., 2000; Burnham et al., 2011; Mundry, 2011). 132 

However, in the last decade, the suite of statistical tools available to ecologists, as well 133 

as the complexity of biological data analyses, have grown concurrently (Gutiérrez-134 

Cánovas & Escribano-Ávila, 2019; Zuur et al., 2010). Model selection strategies, in 135 

particular, allows for the inclusion of a wide range of predictor variables, operating at 136 

varying scales, to explain ecological patterns from local to biogeographic scales and 137 

through seasons to years (Diniz-filho et al., 2008; Melis et al., 2006). In this sense, such 138 

approach has not been used before, to best of our knowledge, to study variation in 139 

seagrass structure through varying scales of spatial and temporal variability.    140 

In this study, our goal was to determine how different biogeographic scenarios, 141 

which are here typified by varying scenarios of environmental and genetic variation, 142 

contribute to explain variation in seagrass abundance (shoot density), structure 143 

(morphology and biomass allocation), associated epiphytes, and intensity of sexual 144 

reproduction. We used Cymodocea nodosa as our model species, given that this 145 

seagrass is distributed throughout the whole Mediterranean Sea, as well as through the 146 

adjacent Atlantic coast, from Southern Portugal to the Northern African coasts, 147 

encompassing different environmental and ecological conditions, as well as 148 

evolutionary scenarios (Alberto et al., 2006; Tuya et al., 2019).  149 

 150 

3. MATERIALS AND METHODS 151 

3.1. Study species 152 

Cymodocea nodosa (Ucria) Ascherson is a marine dioicous angiosperm, which 153 

reproduces mainly vegetatively (forming ramets), but also sexually through seeds. This 154 

Jo
urn

al 
Pre-

pro
of



species is found in subtidal and intertidal zones, from subtropical to temperate regions, 155 

along the NW coast of Africa, Madeira and the Canary Islands, the south Atlantic coast 156 

of the Iberian Peninsula and the entire Mediterranean Sea (Pavón-Salas et al., 2000; 157 

Mascaró et al., 2009; Tuya et al., 2014), forming meadows that provide habitat for 158 

different fish and invertebrates species (Espino et al., 2011). These seagrass meadows 159 

are found in sandy-muddy bottoms, reaching up to 30-40 meters deep, but also 160 

inhabiting coastal lagoons at very low depth. This is a fast-growing species (sensu Orth 161 

et al., 2006) with an annual reproduction pattern, typically producing two seeds per 162 

plant (Caye & Meinesz, 1985).   163 

 164 

3.2. Study area and sampling design 165 

To assess the spatial variability in meadows of the seagrass Cymodocea nodosa across 166 

nearshore Atlantic and Mediterranean waters, we selected three regions, from west to 167 

east: Gran Canaria Island (eastern Atlantic Ocean), Alicante (south-western 168 

Mediterranean) and Mallorca Island (Balearic Sea) (Figure 1). 169 

 170 
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Figure 1. Location of the Cymodocea nodosa meadows studied in each region: Gran 171 

Canaria (North Atlantic Ocean), Alicante (Mediterranean Sea) and Mallorca (Balearic 172 

Sea).  173 

 174 

At each region, we selected three seagrass meadows, which were seasonally monitored 175 

throughout two successive years. To encompass intra-regional (local) variation in 176 

seagrass genetic diversity, we selected the meadows within a gradient of intra-regional 177 

genetic diversity (Tuya et al., 2019). This approach accounts for the different 178 

evolutionary histories of each region, but also incorporates levels of local (small-scale) 179 

variation (Table 1). In particular, seagrass populations on Gran Canaria Island suffered a 180 

“founder effect” in their colonization of the archipelago (Alberto et al., 2006). This has 181 

resulted in large differences in seagrass allelic richness and heterozygosity between 182 

Gran Canaria and Mediterranean regions (Alberto et al., 2006; see Table 1 in Tuya et 183 

al., 2019). At each of the nine meadows, a range of seagrass attributes (e.g. leaf 184 

morphology, plant biomass, abundance; see details below) were seasonally collected, 185 

from November 2016 to November 2018, for a total of 9 sampling times (except for 186 

Autumn 2017 in Mallorca due to bad weather) via SCUBA.  187 

 188 

Na Ne Ho He R 

mean SD mean SD mean SD mean SD mean 
Gran 
Canaria Castillo 1.800 0.200 1.431 0.171 0.237 0.103 0.242 0.083 0.625 

Gando 2.900 0.348 1.598 0.196 0.278 0.085 0.308 0.071 0.647 
  Arinaga 2.600 0.340 1.378 0.164 0.191 0.071 0.212 0.066 0.545 
Alicante San Juan 1.900 0.547 1.411 0.394 0.377 0.137 0.313 0.100 0.636 
  Tabarca 2.000 0.577 1.385 0.398 0.244 0.086 0.339 0.102 0.952 

Albufereta 2.700 0.300 2.041 0.268 0.510 0.098 0.463 0.076 0.929 
Mallorca Formentor 4.000 0.632 2.772 0.262 0.675 0.076 0.620 0.041 0.914 

Aucanada 3.500 0.792 2.276 0.434 0.558 0.096 0.477 0.088 0.778 

  
Es 
Barcarés 3.500 0.582 2.099 0.298 0.479 0.084 0.500 0.065 0.971 

 189 
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Table 1. Summary of the genetic descriptors at the nine studied meadows (mean ± SD). Na: allele 190 

number; Ne: effective allele number; Ho: observed heterozygosity; He: expected heterozygosity, 191 

R:clonal richness. Results of this table are also presented in Tuya et al. (2019). 192 

 193 

3.3. Environmental data 194 

We extracted local (i.e. at the meadow-scale) monthly means of Sea Surface 195 

Temperature (SST), surface Photosynthetically Active Radiation (PAR) intensity, and 196 

Chlorophyll-a, through the entire study period (2016-2019), from the Moderate 197 

Resolution Imaging Spectroradiometer facility (MODIS-Aqua), available at the NASA 198 

Giovanni system facility (https://giovanni.gsfc.nasa.gov/giovanni/). All data correspond 199 

to a spatial resolution of a 4 x 4 km grid. 200 

 201 

3.4. Seagrass attributes and epiphytes 202 

Leaf morphology and epiphytic load 203 

A total of 20 seagrass shoots were randomly collected by hand at each meadow and 204 

sampling time. In the laboratory, we quantified the number of leaves per shoot, as well 205 

as the length and width (mm) of all leaves. Macroscopic epiphytes were removed using 206 

a razor blade and epiphytes and leaves were subsequently oven-dried to estimate 207 

epiphytic load (i.e. dry weight, DW, of epiphytes per DW of leaf biomass). Total leaf 208 

area was calculated as the sum of all individual leaf areas per shoot, and the Leaf Area 209 

Index (LAI) was subsequently calculated, at each meadow and time, by multiplying the 210 

mean leaf area per shoot by the mean shoot density (see below). 211 

 212 

Plant biomass allocation and abundance 213 
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Seagrass tissues were collected, at each meadow and time, using corers (20 cm of inner 214 

diameter, n=10). In the laboratory, seagrass samples were subsequently cleaned of 215 

sediment, fractioned into leaves, rhizomes and roots and dried (60º C, ca. 48 h) to obtain 216 

the biomass of each compartment (i.e. above and belowground compartments). We 217 

further estimated the Root Weight Ratio (RWR, Reynolds & D’Antonio, 1996; 218 

modified by Mascaró et al., 2009), i.e. the relative allocation of biomass to the above 219 

(leaves) against the belowground (rhizome and roots) compartments.  220 

Shoot density, i.e. a measure of seagrass abundance, was obtained by randomly 221 

deploying a 20 x 20 cm quadrat (n=10) and counting seagrass shoots within each 222 

quadrat. The density of shoots was expressed per m2. 223 

 224 

Intensity of sexual reproduction 225 

As an indicator of sexual reproduction, seeds were counted from  corers (10 cm of inner 226 

diameter, n = 50), haphazardly placed in each meadow in October 2016, 2017 and 2018, 227 

i.e. six months after the main flowering season of the species in the Mediterranean 228 

(Terrados, 1993) and the Canary Islands (Reyes et al., 1995). We estimated seed 229 

production as the product of seed density (seeds per m2) per shoot density (shoots per 230 

m2). 231 

 232 

 233 

3.5. Data analysis  234 

We firstly visualized and tested for correlations (Pearson correlations) between each 235 

pair of explanatory variables (environmental data and genetic attributes; Fig. A.1) 236 

through the 'corrplot' R library (Wei & Simko, 2017). This was necessary to limit the 237 

inclusion of over-correlated predictor variables (R2 > 0.7, (Harrison et al., 2018)) in the 238 
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subsequent modelization. When two predictive variables were correlated, we selected 239 

that one with, a priori, larger biological significance (Bolker, 2008). For example, in the 240 

case of genetic descriptors operating at the meadow-scale (Table 1), we only included 241 

the observed heterozygosity (Ho). Genetic diversity (Ho) was correlated with meadow 242 

genotypic diversity (clonal richness, R, Table 1), a correlation which has also been 243 

observed for other seagrass species (e.g.  Posidonia oceanica; Jahnke et al., 2015), so 244 

both mechanisms covary and cannot be disentangled. 245 

To partition the relative effects of environmental (mean monthly SST and mean 246 

monthly surface PAR at each meadow during the study) and genetic attributes (Ho) on 247 

seagrass responses, Generalized Linear Models (GLMs) were implemented in the R 248 

statistical environment (R Core Team 2019). For each seagrass response variable, we 249 

selected a particular family error structure and link function (see results, Table 2) to 250 

reach the assumptions of linearity and homogeneity of variances, which were checked 251 

through visual inspection of residuals and Q-Q plots (Harrison et al., 2018). In the 252 

particular case of the RWR, we used the ‘betareg’ R (Cribari-Neto & Zeileis, 2010) 253 

package to fit a  beta family error distribution, which is ideal for proportional data. To 254 

validate our model selection, we used the 'MuMIn' R library (Bartoń, 2019), a flexible 255 

package for conducting model selection and model averaging with a variety of 256 

candidate GLMs. Model averaging is a way to incorporate model selection uncertainty; 257 

the parameter estimates for each candidate model are weighted using their 258 

corresponding model weights and summed. This is a way to obtain models containing 259 

the most parsimonious predictor variables for each response variable. Models were 260 

ultimately ranked by their AICc (Akaike Information Criterion corrected for small 261 

sizes), and importance weights (wi) for individual predictor variables were then 262 

provided. The sum of all the importance weights of the models adds up to a value of 1. 263 
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This model-selection strategy was implemented for all seagrass responses, except for 264 

seed densities, for which the model only included one predictor, Ho, given that 265 

collection of seeds was carried out once each year.  266 

While seagrass structure traits might considerably vary across small-scales, 267 

environmental data (here, SST and PAR) typically vary at larger spatial scales, mostly 268 

to reflect regional and/or seasonal variation. While environmental drivers may explain 269 

both temporal (i.e. seasons and years) and spatial (i.e. sites and regions) variation in 270 

seagrass responses, genetic attributes (Ho) exclusively denote spatial variation in 271 

seagrass structure at local and, majorly, regional scales (Table 1).  272 

 273 

4. RESULTS 274 

4.1. Environmental descriptors 275 

Environmental descriptors varied through time with a clear seasonal pattern at each 276 

region (Figure 2). While PAR peaked in spring and summer in all regions, temperatures 277 

reached their maximum values in summer in the Mediterranean, whereas highest 278 

temperatures were observed in autumn in Gran Canaria Island. In general, both mean 279 

monthly SST and mean monthly surface PAR availability were less variable in Gran 280 

Canaria than in the other two regions (Figures 2a and 2b, respectively). For instance, 281 

while temperatures ranged between ca. 19ºC and 23ºC in Gran Canaria, they exhibited a 282 

wider range (i.e. from ca. 14ºC to 27ºC) in the Mediterranean meadows.  283 
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 284 

Figure 2. Mean (+ SD) in a) monthly SST and b) monthly surface PAR intensity 285 

throughout the study period at each region. 286 

 287 

4.2. Seagrass attributes 288 

Leaf morphology and epiphytic load 289 

Overall, leaf width varied between ca. 0.15 and 0.23 cm at Gran Canaria and Alicante 290 

and ca. 0.13 to 0.27 cm at Mallorca (Figure 3a, Figure S2). Leaf area varied between ca. 291 

1.38 and 10.1 cm2 per shoot across all regions throughout the study (Figure 3b, Fig. 292 

A.3) and LAI ranged between ca. 0.2 and 0.9 in Gran Canaria, between ca. 0.16 and 293 
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0.58 in Alicante, and between ca. 0.07 and 0.35 in Mallorca (Figure 3c, Fig. A.4). Most 294 

variation in seagrass leaf morphological descriptors (Figure 3) was accounted by 295 

variation in PAR (p<0.001, Table 2, Table A.1). Coefficients derived from the GLMs 296 

(Table 2) revealed that leaf width, leaf area and LAI increased with PAR.  297 

 298 

Leaf width family=Gamma (link=log)   

Predictor Estimate 
Adjusted 

SE 
z statistic p-value 

Relative 
importance 

Intercept -2.119 0.149 14.564 <0.001 - 
PAR 0.0001 0.00001 5.062 <0.001 1 
SST 0.010 0.009 1.122 0.262 0.32 
Ho 0.100 0.179 0.558 0.58 0.19 
Leaf area  family=Gamma (link=log)   

Predictor Estimate 
Adjusted 

SE 
z statistic p-value 

Relative 
importance 

Intercept 0.459 0.387 1.186 0.235 - 
PAR 0.0001 0.00001 5.901 <0.001 1 
Ho -1.021 0.457 2.23 0.025 0.72 
SST 0.026 0.023 1.15 0.249 0.24 
Leaf area index  family=Gamma (link=log)   

Predictor Estimate 
Adjusted 

SE 
z statistic p-value 

Relative 
importance 

Intercept -2.406 0.434 5.54 <0.001 - 
PAR 0.0001 0.00001 5.65 <0.001 1 
Ho -0.753 0.605 1.24 0.213 0.31 
SST 0.019 0.031 0.625 0.531 0.19 
Epiphytic loads  family=Inverse gaussian (link=inverse)   

Predictor Estimate 
Adjusted 

SE 
z statistic p-value 

Relative 
importance 

Intercept 1.885 3.557 0.530 0.596 - 
Ho -6.295 3.018 2.085 0.037 0.53 
SST 0.213 0.134 1.582 0.114 0.39 
PAR 0.0001 0.00001 1.401 0.161 0.35 
Aboveground 
biomass  

family=Gamma (link=inverse) 
  

Predictor Estimate 
Adjusted 

SE 
z statistic p-value 

Relative 
importance 

Intercept 1.420 0.227 6.276 <0.001 - 
PAR -0.019 0.004 5.156 <0.001 1.00 
Ho 0.337 0.257 1.311 0.190 0.35 
SST -0.009 0.013 0.639 0.523 0.19 
Belowground family=Gaussian (link=identity)   
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biomass  

Predictor Estimate 
Adjusted 

SE 
z statistic p-value 

Relative 
importance 

Intercept 2.450 2.462 0.995 0.320 - 
Ho 9.614 2.425 3.964 <0.001 1.00 
PAR -0.0002 0.0001 1.919 0.055 0.79 
SST 0.213 0.12 1.78 0.07 0.50 
RWR  family=Beta   

Predictor Estimate 
Adjusted 

SE 
z statistic p-value 

Relative 
importance 

Intercept 2.45 2.46 0.995 0.319 - 
PAR -0.0002 0.0001 1.198 0.055 1.00 
Ho 9.61 2.425 3.963 <0.001 1.00 
SST 0.0213 0.119 1.783 0.07 - 
Shoot density family=Gaussian (link=log)   

Predictor Estimate 
Adjusted 

SE 
z statistic p-value 

Relative 
importance 

Intercept 6.260 0.166 37.613 <0.001 - 
PAR 0.00004 0.00001 3.803 <0.001 1.00 
Ho 0.264 0.236 1.117 0.264 0.32 
SST -0.002 0.001 0.138 0.890 0.17 
Seed production family=Negative binomial   

Predictor Estimate 
Adjusted 

SE 
z statistic p-value 

Relative 
importance 

Null - 28 217.07 - - 
Ho 186.05 21 31.02 <0.001 1.00 

 299 

Table 2. Results of the model selection of the relative importance of predictor variables 300 

affecting seagrass abundance and structure, epiphytic load and intensity of sexual 301 

reproduction. The family error structure and their link functions are included for each 302 

response variable. Values of model estimates and associated SE are also included; p-303 

values of significant predictors are also shown and highlighted in bold when significant 304 

(<0.05). 305 

 306 

In addition, variation in leaf area was also partially accounted by spatial variation 307 

associated with Ho (p<0.025; Table 2, Table A.1); leaf area decreased with increasing 308 
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Ho. Epiphytic load was only explained by spatial variation associated with Ho (p<0.05, 309 

Table 2, Figure. 3d). 310 
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Figure 3. Violin plots for seagrass leaf morphological descriptors, at each of the three 312 

regions, including:  a) Leaf width, b) Leaf area, c) Leaf area index and d) Epiphytic 313 

load. Boxplots denote the minimum and maximum values, as the lower and upper part 314 

of the whiskers. Each box represents the second quartile, and the median is represented 315 

as a black horizontal line. Outliers are represented as dot points. 316 

 317 

Plant biomass allocation and abundance 318 

Aboveground biomass varied between ca. 24.80 and 158.30 g DW m-2 in Gran Canaria, 319 

between 3.90 and 424.40 g DW m-2 in Alicante, and between ca. 15.30 and 78.80 g DW 320 

m-2 in Mallorca (Figure 4a, Fig.A.5). Most variation in aboveground biomass was 321 

accounted by variation associated with PAR (p<0.0001, Table 2), with aboveground 322 

biomass increasing with increasing PAR (Table 2, Table A.1). 323 

Belowground biomass ranged between ca. 10.00 and 539.20 g DW m-2 in Gran Canaria, 324 

between 16.30 and 322.80 g DW m-2 in Alicante, and between 36.30 and 242.20 g DW 325 

m-2 in Mallorca (Figure 4b, Fig. A.6). Both Ho and PAR significantly contributed to 326 

explain variation in belowground seagrass biomass (Table 2, Table A.1). Belowground 327 

biomass decreased with increasing PAR, while increased with increasing Ho (Table 2).   328 

The RWR varied between ca. 0.21 and 0.66 in Gran Canaria and between ca. 0.53 and 329 

0.99 in Alicante and Mallorca (Figure 4c, Fig. A.7). Both PAR and Ho contributed to 330 

explain variation in RWR (Table 2, Table A.1), following similar patterns to those of 331 

belowground biomass (Table 2).   332 
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 333 

Figure 4. Violin plots for seagrass biomass allocation at each of the three regions, 334 

including: a) Aboveground biomass, b) Belowground biomass and c) Root to Weight 335 

Ratio (RWR).  336 

 337 
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Seagrass shoot density ranged between ca. 597 and 1140 shoots m-2 at the three regions 338 

(Figure 5, Fig. A.8). Variation in shoot density was explained by variation in PAR 339 

(p<0.0001, Table 2, Table A.1), with shoot density increasing with increasing PAR 340 

(Table 2). 341 

 342 

Figure 5. Violin plots for seagrass shoot density at each of the three regions.  343 

 344 

4.3 Intensity of sexual reproduction 345 

We observed large differences in seed production between Gran Canaria (ca. 0.0003-346 

0.018 seeds per shoot) and the Mediterranean regions (0.013-0.84 seeds per shoot, 347 

Figure 6). These differences were denoted by a significant effect of Ho (p<0.0001, 348 

Table 2); the larger the Ho of the meadow, the higher the production of seeds (Table 2).  349 Jo
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 350 

Figure 6. Seagrass production at each meadow from a) Gran Canaria, b) Alicante and c) 351 

Mallorca. Error bars are + SD of means (n=50). Note the difference in scale for the Y 352 

axis in panel a.  353 
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 354 

5. DISCUSSION 355 

In this study we initially aimed at describing variation in the abundance and structure 356 

(i.e. morphology and biomass allocation) of a seagrass (Cymodocea nodosa) across 357 

regions under different environmental conditions and evolutionary contexts. Our results 358 

indicate that both regional and local-scale variation, as well as temporal variation, 359 

differentially contribute to explaining variation in seagrass attributes across populations, 360 

thus supporting the Demographic-Compensation Hypothesis (Villellas et al., 2015).  361 

Phenotypic plasticity is the capacity of organisms to adjust to environmental 362 

heterogeneity through alteration of physiological, morphological and/or demographic 363 

responses (Pigliucci, 2001). In our study, morphological (leaf width, leaf surface and 364 

LAI), structural (above-ground biomass) and abundance (shoot density) attributes of the 365 

seagrass leaf canopy exhibited a significant and positive relation with PAR, most likely 366 

reflecting regional seasonal variation, as it has been previously described for this 367 

species (Enríquez et al., 2004; Guidetti et al., 2002; Tuya et al., 2006). Typically, C. 368 

nodosa has a peak in leaf canopy development in spring and summer (seasons of high 369 

PAR), while decreasing (senescence) in autumn and winter (Cancemi et al., 2002; 370 

Reyes et al., 1995), and such patterns were stronger in Gran Canaria, which exhibits 371 

lower annual PAR variability but a higher annual mean PAR.  372 

Beyond PAR regional patterns driving seagrass attributes, we also detected that leaf 373 

morphology exhibited strong local differences across meadows, and  this variation was 374 

also significantly accounted by local genetic diversity. The same occurred among 375 

regions with respect to variation in epiphytic loads. We observed that meadows from 376 

the Atlantic waters had less variability than those from the Mediterranean Sea. Large 377 
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variability through local scales in epiphytic loads of Mediterranean meadows has been 378 

reported in the past (e.g. Castejón-Silvo & Terrados, 2012). At present, however, we 379 

lack conclusive reasons behind such biogeographical differences.  380 

Leaf area was larger at meadows from Alicante and Gran Canaria, which are deeper 381 

than meadows from Mallorca (ca. 5 - 12 vs. 1.5 – 4 m, respectively), and shoot densities 382 

were also higher in the former two regions. Interestingly, this is the opposite pattern that 383 

is typically observed whereby an inverse relationship between these two variables 384 

exists, with shoot densities being lower in deeper meadows, as a way to decrease self-385 

shading. For example, a 40 to 60% reduction in shoot density (e.g. from 305 shoots/m2 386 

to 128 shoots/m2; Aoki et al. 2020, and from 76.1 shoots/m2 to 34 shoots/m2; Beca-387 

Carretero et al. 2019) has been observed for Z. marina when colonizing deeper waters. 388 

Most likely, however, in our study meadows, shoot densities are not high enough to 389 

promote self-shading. Indeed, our study encompassed the upper bathymetric distribution 390 

ranges of the species, where light limitation and thus self-shading are unlikely to be an 391 

issue.  392 

Investment in belowground compartments (i.e. roots and rhizomes) has been previously 393 

related with several abiotic processes, such as wave exposure (De Los Santos et al., 394 

2009; Peralta et al., 2006), light availability (Olesen et al., 2002) and sediment nutrients 395 

(Jiang et al., 2019). In our study, we observed that belowground biomass was 396 

(positively) predicted by meadow genetic diversity, suggesting that allocation of 397 

resources to belowground tissues was mainly driven by differences not related to light 398 

or temperature. In this sense, meadows with the highest belowground biomasses (i.e. 399 

those from Mallorca), are not only those with the highest genetic diversity, but are also 400 

probably more exposed to wave action, as they occupy (relatively) shallow waters. Such 401 

investment in belowground tissues, therefore, could be explained by potentially stronger 402 
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hydrodynamic conditions at these shallow-water sites, which require enhanced 403 

anchorage of plants (Beca-Carretero et al., 2019; Peralta et al., 2006). Seagrasses at very 404 

low depth, moreover, do not have to invest a large amount of resources in aboveground 405 

tissues to absorb light, as our data has indicated. Hence, these seagrasses can invest their 406 

resources in a larger production of belowground organs, which can promote their 407 

capacity to uptake nutrients. With regard to the RWR, low values are often connected 408 

with eutrophic conditions, as less root tissue is required to incorporate nutrients (Oliva 409 

et al., 2012). In this study, we observed very low values at Arinaga (Gran Canaria), 410 

which has undergone several eutrophication events associated with human activities 411 

and, in particular, impacts derived from the development of an industrial port (Manent 412 

et al., 2020). 413 

High seed production was observed in meadows exhibiting high genetic diversity (i.e. 414 

observed heterozygosity), which is usually indicative of sexual reproduction success 415 

(Jahnke et al., 2015; Paulo et al., 2019b; Ruiz et al., 2018). Differences in meadow 416 

heterozygosity amongst regions may be a result of the different evolutionary histories 417 

experienced by the meadows from each region and by the level of genetic connectivity 418 

among extant meadows. In this sense, meadows from Gran Canaria suffered a “founder 419 

effect”, whereby all meadows derived from a few common genotypes, and such 420 

bottleneck limited the allelic richness and heterozygosity of these meadows (Alberto et 421 

al., 2006; Blanch et al., 2006; Tuya et al. 2019).  422 

In addition, sexual reproduction (and thus heterozygosity) may also be driven by 423 

environmental conditions. For instance, plant populations at their range edges, or under 424 

low environmental variation, tend to decrease the intensity of sexual reproduction 425 

relative to vegetative (asexual) propagation, because it diminishes the energetic costs 426 

needed to guarantee population persistence (Eckert, 2001). Thus, in Gran Canaria 427 

Jo
urn

al 
Pre-

pro
of



meadows, an evolutionary “founder effect” coupled with a less variable environment 428 

may have driven populations to favor asexual propagation relative to sexual 429 

reproduction (Alberto et al., 2006, Manet et al. 2020). In contrast, sexual reproduction is 430 

often enhanced under short-terms stressful conditions particularly after undergoing 431 

disturbances (Cabaço & Santos, 2012; Jahnke et al., 2015; T. Liu et al., 2013; Qin et al., 432 

2014; Ruiz et al., 2018; Salo & Gustafsson, 2016a), and the  production of seeds has 433 

been associated with rapid recovery after disturbances (Larkum et al., 2006; Paulo et al., 434 

2019b). Indeed, meadows with high heterozygosity would favor the conditions for 435 

initial acclimation and adaptation to disturbances (Evans et al., 2017; Procaccini et al., 436 

2007; Salo & Gustafsson, 2016b). As a result of these different evolutionary and 437 

environmental constraints, leading to low genetic diversity and sexual reproduction, 438 

meadows of C. nodosa from Gran Canaria are likely to be more vulnerable to 439 

disturbances than meadows from other regions (e.g. Fabbri et al., 2015; Tuya et al., 440 

2014; Tuya et al. 2019; Manent et al. 2020). In the case of Mallorca meadows, i.e. those 441 

with the highest genetic diversity and seed densities, their location in shallow waters, 442 

where winter swells may directly disrupt plants (Infantes et al., 2012; Paulo et al., 443 

2019b; Pereda-Briones et al., 2018), may be an ecological driver promoting sexual 444 

reproduction.  445 

Cymodocea nodosa is considered an “opportunistic” seagrass (sensu Kilminster et al., 446 

2015), i.e. a species that has the ability to rapidly colonize soft bottoms, producing large 447 

amounts of seeds and seedlings, particularly to recover from  disturbances. Given the 448 

results we have obtained, this species appears to display a more “persistent” seagrass 449 

pattern (i.e.  a seagrass species for which the investment on sexual reproduction could 450 

compromise asexual reproduction) in Gran Canaria Island. In contrast, a more 451 

“colonizer” pattern (i.e. a seagrass species that invest in sexual reproduction without 452 
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compromising their ability to also reproduce asexually) is observed in Mallorca 453 

meadows. This observation somehow follows Jahnke et al. (2019), which concluded 454 

that inter-population ecological divergence of a seagrass (P. oceanica) is explained 455 

through adaptations to local environmental conditions.  456 

Overall, our results highlight that phenotypic plasticity to local and regional 457 

environments need to be considered to better manage and preserve seagrass meadows. 458 

In brief, not only do we need to differentiate among species, but also among potential 459 

ecotypes within seagrass species (King et al., 2018; Vivanco Bercovich et al., 2019).  460 

 461 
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HIGHLIGHTS  

● Seagrasses are key habitat-forming species worldwide 

● Different biogeographic scenarios explain variation in seagrass structure  

● Attributes of seagrass leaf canopy evidenced regional seasonal variation 

● Belowground allocation was driven by local-scale variation 

● High seed densities occurred in meadows of high genetic diversity 
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