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ABSTRACT. We report a study using Pt(111) and Pt(100) electrodes of the role of 

adsorbed formate in both the direct and indirect pathways of the electrocatalytic 

oxidation of formic acid. Cyclic voltammetry at different concentrations of formic acid 

and different scan rates, as well as pulsed voltammetry, were used to obtain a deeper 

insight into the effect of formate coverage on the rate of the direct pathway. Pulsed 

voltammetry also provided information on the effect of the concentration of formic acid 

on the rate of formation of adsorbed CO on Pt(100). At low to medium coverage, 

increasing formate coverage increases the rate of its direct oxidation, suggesting that 

decreasing the distance between neighboring bidentate adsorbed formate favors its 

interconversion to and/or stabilizes monodentate formate (the reactive species). 

However, increasing the formate coverage beyond approximately 50% results in a 

decrease of the rate of the direct oxidation, probably because bidentate formate is too 

closely packed for its conversion to monodentate formate to be possible. Cyclic 

voltammetry at very high scan rates reveals the presence of an order-disorder phase 

transition within the bidentate formate adlayer on Pt(111) when the coverage 

approaches saturation. The dependence of the potential of maximum rate of 
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dehydration to adsorbed CO, and of the rate at the maximum, on the concentration of 

formic acid is in good agreement with predictions made for a mechanism in which 

adsorbed CO is formed through the adsorption of formate followed by its reduction to 

adsorbed CO, thus confirming that monodentate adsorbed formate is the last 

intermediate common to both the direct and indirect pathways.

1. INTRODUCTION

The electrocatalytic oxidation of formic acid on platinum electrodes is among the 

electrochemical reactions that has attracted most interest for a long time.1-2 The main 

reasons for this long-standing interest are (i) the relative simplicity of the reaction (only 

two electrons and two protons need to be transferred for its complete oxidation to CO2) 

and (ii) the possibility of using formic acid as a liquid fuel in fuel cells. Moreover, the 

knowledge gained in the study of this oxidation reaction can be transferred to those of 

other, more complex, organic molecules. 
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4

The formation of a catalytic poison during the oxidation of formic acid on platinum was 

proposed as early as 1928 based on the oscillatory behavior of the reaction3 (92 years 

later, the formic acid oxidation reaction remains the archetype electrochemical 

oscillator), but Capon and Parsons4 were the first to propose that the reaction must 

proceed through two possible parallel pathways, one leading directly to the formation of 

CO2 without breaking any of the C–O bonds (the so-called direct path) and a second 

one in which an adsorbed species that acts as a catalytic poison is formed and then 

oxidized to CO2 (the so-called indirect path). The actual adsorbate responsible for the 

poisoning of the Pt surface was the subject of intense debate for some time, until in situ 

infrared reflection absorption spectroscopy (IRRAS) provided unambiguous proof that 

the catalytic poison is adsorbed carbon monoxide5 (i.e., the indirect path involves the 

dehydration of formic acid to yield adsorbed CO, which must then be oxidized to CO2 to 

complete the reaction). 

Identification of the species mediating the direct path and the formation of adsorbed CO 

took much longer. In 2002 Miki et al.6 detected for the first time, using surface-enhanced 
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infrared absorption spectroscopy in the attenuated total reflection configuration (ATR-

SEIRAS), the presence of bidentate adsorbed formate on the surface of a Pt electrode 

during the oxidation of formic acid, and proposed it to be the intermediate in the direct 

pathway. Later, based on the very good correlation between the rate of formation of 

adsorbed CO and the coverage by adsorbed bidentate formate as determined by ATR-

SEIRAS, Cuesta et al.7-8 suggested that this species is also the intermediate in the 

dehydration of formic acid (in other words, that this species corresponds to the point 

where the reaction separates into two pathways).

The correlation between the reaction rate and the coverage by this species seemed to 

support these claims, but work by others suggested that bidentate adsorbed formate is 

too stable to be the reactive intermediate9-10 and the activation energy for breaking the 

C–H bond in this species is far too high11 for it to be the intermediate in any of the two 

paths. Chen et al. performed ATR-SEIRAS experiments coupled with a thin-layer 

electrochemical flow cell and proposed that formate would be a spectator species in a 

so-called “three pathway mechanism” in which the active intermediate would be 
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6

different from adsorbed formate.12-13 This was supported by further experiments by 

Okamoto et al.14 and DFT calculations by Neurock et al., who suggested that adsorbed 

formate is relatively stable and proposed that a carboxylic acid species adsorbed 

through the carbon atom (-COOH) would be the active species.15 More recently, Chen 

et al. suggested, based on modeling of galvanostatic potential oscillations, that the 

reactive intermediate in the direct pathway would be an unspecified anionic species.16 

However, neither –COOH nor other intermediate species different from formate have 

been experimentally detected, and the dependence of the reaction rate on the pH of the 

electrolyte has unambiguously demonstrated that formate is the reactive intermediate. 

Since formate can adsorb in either monodentate or bidentate configuration, it has been 

proposed that the former is the actual reaction intermediate.17-21 Bidentate formate is 

nonetheless not a dead end, as it can still affect the reactivity by being in equilibrium 

with the reactive intermediate and/or contributing to stabilizing the reactive intermediate 

in its neighborhood21-22. Monodentate adsorbed formate has also been suggested to be 

the intermediate leading to adsorbed CO,23-24 i.e., to play the role of the last common 

intermediate in the dual path initially assigned7-8 to bidentate formate.
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We report here a detailed study using Pt(111) and Pt(100) electrodes, cyclic 

voltammetry and pulsed voltammetry that provides further insight into the roles of both 

forms of adsorbed formate in the formic acid oxidation reaction. We show that 

adsorption of formate is necessary for both pathways to proceed and that only at high 

coverage does bidentate formate become a blocking species. Our results regarding the 

dependence of the potential at which the rate of dehydration is maximum and of the rate 

of dehydration at that maximum on the concentration of formic acid are in good 

agreement with previous predictions8 based on a mechanism for the indirect path in 

which the adsorption of formate is followed by its reduction to adsorbed CO.

2. EXPERIMENTAL SECTION

The platinum single-crystal electrodes, namely Pt(111) and Pt(100), were prepared 

from small Pt beads ca. 2 mm in diameter, following the method described by Clavilier 

et al.25 Before every measurement, the electrode was flame annealed, cooled in an 

Ar/H2 (3:1) atmosphere and protected with an ultrapure water drop saturated with these 

gases. They were then transferred to the glass electrochemical cell. This preparation 
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procedure assures that the obtained experimental surfaces correspond to the nominal 

topographies.26 All measurements have been conducted using a Pt counter electrode 

and a reversible hydrogen electrode (RHE) as reference. 

The solutions were prepared using 60% HClO4 (Merck, for analysis), HCOOH (Merck, 

for analysis), H2SO4 (Merck, suprapur) and ultrapure water (Elga PureLab Ultra, 18.2 

MΩ cm).  Electrochemical measurements were carried out by using a signal generator 

EG&G PARC and eDAQ EA161 potentiostat with an Edaq e-corder ED401 recording 

system. Experiments in hydrodynamic conditions were performed with the hanging-

meniscus rotating disk electrode (HMRDE) configuration using an EDI101 rotating 

electrode and a Radiometer CTV 101 for controlling the rotation rate (both from 

Radiometer Analytical). All experiments were carried out at room temperature.

3. RESULTS AND DISCUSSION

3.1. Adsorbed formate in the direct path. Although qualitatively Pt(111) and Pt(100) 

electrodes behave similarly for the formic acid oxidation reaction, there are significant 
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differences in the dependence of the measured currents on the applied potential and 

the concentration of formic acid. These differences are evident even when simply 

comparing the voltammetric profiles the Pt(111) and Pt(100) electrodes in the presence 

of formic acid. Figure 1A shows a typical cyclic voltammogram (CV) of Pt(111) in the 

presence of 0.05 M HCOOH. It is important to highlight that the profiles do not change 

with successive cycling for all the electrodes used in this study, indicating the absence 

of possible contaminants and the stability of the surfaces in the potential window 

employed. For the Pt(111) electrode, currents in the positive and negative scan 

directions are almost identical, which indicates that the formation and accumulation of 

CO on the surface at low potentials is negligible. In fact, it has been shown that on 

Pt(111) electrodes the formation of CO only takes place at measurable rates on defect 

sites.27 

The Pt(100) electrode is significantly more active for the oxidation of formic acid 

through the direct path than the Pt(111) surface, as revealed by the considerably higher 

current densities achieved in the negative scan direction (Figure 1B). Moreover, the 
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Pt(100) surface is also very active for the formation of adsorbed CO at low potentials,28 

as revealed by the negligible oxidation currents recorded in the positive scan direction. 

At potentials below 0.4 V, Pt(100) is a more active catalyst than Pt(111) for the 

dehydration of formic acid to adsorbed CO, resulting in poisoning of the catalyst and a 

very low activity for the dehydrogenation of formic acid to CO2 in the positive-going 

scan.27 It should be noted that the actual currents measured in the first scan depend 

strongly on the time required to form the hanging meniscus and start the CV. Slightly 

higher currents can be measured when the meniscus is formed and the scan started 

rapidly. Above 0.8 V, oxidative stripping of adsorbed CO reactivates the surface for the 

oxidation of formic acid. In the negative scan direction, high currents are measured 

which are associated with the oxidation of formic acid through the active intermediate. 

Below 0.5 V, the current diminishes due to the combination of three different factors: (i) 

the lower overpotential, (ii) the less favorable adsorption of formate in both bidentate 

and monodentate configurations (see below) and (iii) CO poisoning.28 
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Figure 1. Voltammetric profiles at 0.05 V s-1 and 1600 rpm in 0.1 M HClO4 + 0.05 M 

HCOOH of the Pt(111) (A) and Pt(100) (B) electrodes in a HMRDE configuration.

These voltammetric profiles must be analyzed in view of the mechanism of the 

reaction, for which it is generally accepted that the active intermediate is monodentate 

adsorbed formate. 17-21 As aforementioned, formate can also be adsorbed in a bidentate 

configuration, 6-8 which is the most stable form but also very unreactive.9-11 Adsorbed 

formate in the monodentate form can evolve either to the formation of CO2 or to the 

bidentate form. The latter, which would deactivate the species, is inhibited by the 
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12

presence of other neighboring adsorbed species, including other specifically adsorbing 

anions and bidentate formate itself. 21-22 Thus, the electrocatalytic oxidation of formic 

acid requires the adsorption of formate in the monodentate form and its stabilization by 

the presence of neighboring adsorbed molecules, such as formate in the bidentate 

configuration, to prevent its transformation into the unreactive form. 21  

The increase and subsequent decrease of the current corresponding to the direct path 

in the negative scan is sharper for Pt(100) than for Pt(111), which, according to the 

proposed mechanism, should be related to differences in the adsorption behavior of 

formate on the two surfaces. The adsorption of formate, whether from formic acid 

(Reaction (2)) or from formate at higher pH or after the dissociation of HCOOH 

(Reaction (3)), involves the transfer of one electron, and, as happens with the specific 

adsorption of most, if not all, anions, is a very fast, equilibrium process

(2)HCOOH + ∗ ⇌HCOOad + H + + 𝑒 ―

(3)HCOO ― + ∗ ⇌HCOOad + 𝑒 ―
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Recently accumulated evidence regarding the dependence of the rate of oxidation of 

formic acid on the electrolyte pH18-20 suggests that HCOO-, and not HCOOH, is the 

active species, i.e., that dissociation of HCOOH ( ) precedes the HCOOH⇌HCOO ― + H +

formation of adsorbed formate, which is therefore better described by Reaction (3).

The current due to the adsorption of formate has, therefore, a pseudocapacitive 

nature, and will scale linearly with the scan rate. On the contrary, the current for the 

overall direct oxidation process scales with the square root of the scan rate, as it 

involves the diffusion of formic acid to the electrode surface. At very low scan rates, the 

current in the CV is overwhelmingly dominated by that corresponding to the overall 

faradaic process (see, e.g., CVs at 50 mV s-1 in Figure 1). However, if the scan rate 

increases, the pseudocapacitive current eventually becomes significantly higher than 

that due to the faradaic process and dominates the CV. An equivalent explanation is 

that, as the rate-determining step is the oxidation of monodentate adsorbed formate to 

CO2, the scan rate can eventually become too fast for this process to be observed, and 

the electroadsorption of formate is the only process contributing to the current in the CV. 
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In the case of the Pt(111) electrode, this strategy enables to observe and analyze the 

formate adsorption process.29 As can be seen in Figure 2A, as the scan rate increases, 

the shape of the CV evolves towards that typical of anion adsorption. In fact, the shape 

measured at 40 V s-1 resembles that obtained for acetic acid solutions for the same 

electrode.29 When the current is normalized by the scan rate, the CVs between 0.06 and 

0.35 overlap at all scan rates, because this region correspond to the hydrogen 

adsorption process on the Pt(111) surface, also a pseudocapacitive process. On the 

other hand, the normalized current between 0.4 and 0.8 V decreases with increasing 

scan rate (Figure 2C) because it includes contributions from faradaic and 

pseudocapacitive processes. The normalized CVs for 20 and 40 V s-1 overlap, 

indicating that above 20 V s-1 the faradaic contribution to the voltammogram is 

negligible, and the current recorded between 0.4 and 0.8 V corresponds exclusively to 

the adsorption of formate. As can be seen when the CVs at low scan rates (Figure 2E) 

are compared with those at 20 or 40 V s-1 (Figs. 2A and C), the onset of the oxidation is 

seen to coincide with the onset of formate adsorption and the inhibition of the oxidation 

at high potentials occurs when the formate adlayer is just over 50% complete. 
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Moreover, the small wave observed at high scan rates in the negative scan direction at 

ca. 0.6 V, which is probably associated to changes in the formate adlayer, also has an 

effect in the oxidation current, as indicated by a sharp increase in the current at low 

scan rates at exactly the same potential. A similar effect has been observed during the 

oxidation of formic acid on Au(111)30 and was attributed to a disorder-order transition 

within the formate adlayer at high coverage, as confirmed recently by comparing the 

behavior of formate with that of unreactive acetate on Au(111) electrodes. 31 As far as 

we know this is the first report of this phase transition in the formate adlayer also taking 

place on Pt(111) electrodes, although this process can also be identified in the recently-

reported CVs of Pt(111) in very concentrated solutions of perchloric acid containing 

formic acid. 32 
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Figure 2. Scan rate dependence of the voltammetric profile of the Pt(111) (A) and 

Pt(100) (B) electrodes in 0.1 M HClO4 + 0.01 M HCOOH. C) and D) are Capacitance 

(i.e., current density normalized by scan rate) vs. potential plots of the Pt(111) and 

Pt(100) electrodes, respectively. E) and F) are the voltammetric profiles the Pt(111) and 
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Pt(100) electrodes in 0.1 M HClO4 + 0.01 M HCOOH electrode at 0.05 V s-1. IR drop 

has been corrected in all cases.

The same strategy can be used with Pt(100), although the high currents recorded for 

the direct oxidation may impede the observation of the adsorption process. As can be 

seen in Figure 2B and D, the qualitative evolution of the voltammogram is the same as 

that of Pt(111), however, faradaic currents are still not negligible for 30 V s-1. For this 

scan rate, the voltammogram is already distorted due to the fraction of the total IR drop 

that cannot be compensated. In spite of that, the voltammetric profile of the Pt(100) 

electrode measured at 20 V s-1, especially in the negative scan direction, already 

resembles that measured for the same electrode in acetic acid solutions.33 In fact, a 

sharp peak at ca. 0.35 V is observed, which is equivalent to that observed in the same 

conditions in acetic acid solutions, and the shape of the voltammogram below that 

potential is essentially the same as that measured in acetic or sulfuric acid solutions. 

Above 0.4 V, the faradaic currents are not negligible at 20 V s-1, distorting the expected 

shape. Thus, the adsorption behavior of formate on the Pt(100) surface is essentially 
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the same as that observed in acetic acid/acetate solution. The peak at 0.35 V, therefore, 

corresponds to the competitive adsorption processes of hydrogen and formate. At 0.06 

V, the surface is covered by an adsorbed hydrogen monolayer. The desorption of this 

layer starts at 0.2 V. As hydrogen is desorbed, formate can adsorb on the surface in a 

competitive process, which gives rise to the sharp peak at 0.35 V.33 Finally, the 

adsorption process of formate is completed at ca. 0.45 V. Since at 0.85 V bidentate 

adsorbed formate forms a compact layer on Pt(100), currents are very low, as happens 

for the Pt(111) surface.

It is worth noting that the adsorption process of formate takes place on a much 

narrower potential window on Pt(100) than on Pt(111). On the Pt(100) electrode, it 

starts around 0.25-0.3 V, and it is completed at 0.45-0.5 V, whereas for the Pt(111) 

surface, the adsorption region spans between 0.3 and 0.7 V. This difference in the 

adsorption behavior has its effect in the current corresponding to the direct oxidation of 

formic acid. On the Pt(100) surface, the process is faster leading to a sharp current 

increase in the region below 0.4 V. Similarly, as the completion of the formate layer is 
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attained at lower potentials, the decay above 0.5 V is also stepper. On the other hand, 

the formate adsorption process on Pt(111) occurs over a wider potential region, and the 

changes in the formic-acid oxidation current are therefore more gradual.

DFT calculations indicate that the adsorption energy of formate (in both 

configurations, bidentate and monodentate) on both surfaces is very similar and, 

therefore, the differences described above must be due to the competition between 

formate and hydrogen for the adsorption sites on Pt(100).21 In absence of adsorbed 

hydrogen, the onset of formate adsorption on Pt(100) should have occurred around its 

potential of zero free charge (pzfc). The experimental value of the pzfc of Pt(100) is not 

available. However, it can be estimated from that of the Pt(111) electrode (0.34 V)34-35 

and the difference between the work functions of Pt(100) and Pt(111) (ca. 0.1 eV).36 

Thus, the onset for adsorption, in absence of adsorbed hydrogen, would have occurred 

around 0.25 V, and probably the region where formate coverage changes are recorded 

would have also spanned ca. 0.4 V, as with Pt(111) (on which surface formate 

adsorption indeed starts around the pzfc when, coincidentally, desorption of hydrogen is 
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nearly complete). However, due to the presence of adsorbed hydrogen, adsorption of 

formate on Pt(100) only occurs once some hydrogen has been already desorbed. As 

soon as hydrogen is displaced from the surface, the formate coverage should reach its 

equilibrium values, and a fast change in coverage is observed. Thus, the number of 

formate species adsorbing on the surface as the potential changes is higher on the 

Pt(100) surface, which implies a higher possibility of adsorbing in the monodentate 

configuration and higher currents.

Figure 3A shows CVs of a Pt(111) electrode in 0.1 M HClO4 with different formic acid 

concentrations (the same data with the complete set of studied concentrations is shown 

in Figure S1A). In all cases, a HMRDE configuration has been used to avoid problems 

arising from transport limitations when low formic acid concentrations are used. For 

clarity, only the negative scan direction is shown. The observed behavior agrees with 

the proposed mechanism. As expected, the onset shifts to lower potential values and 

higher currents are measured as the formic acid concentration increases from 0.005 to 

2 M. However, the increase in current is lower than expected: a three orders of 
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magnitude increase in the concentration (from 0.001 to 1 M) leads to just a roughly 3-

fold increase in the currents at the maximum (from 1.9 to 6 mA cm-2), clearly indicating 

the presence of a limitation in the kinetics of the reaction.

Page 21 of 52

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22

 

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

0.001 M
0.01 M
0.05 M
0.1 M
0.25 M
1 M
2 M

E vs. RHE/V
j/m

A
 c

m
-2

A

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25 0.005 M
0.01 M
0.05 M
0.1 M
0.25 M
1 M
2 M

j/m
A

 c
m

-2

E vs. RHE/V

B

0.30 0.35 0.40

0

2

4

6

8

j/m
A

 c
m

-2

E vs. RHE/V

Figure 3. Evolution of the voltammetric profile of the Pt(111) (A) and Pt(100) (B) 

electrodes in a HMRD configuration with increasing formic acid concentration in 0.1 M 

HClO4. Scan rate: 50 mV s-1; rotation rate: 1600 rpm.

Figure 3B (and S1B) shows the evolution of the CV of a Pt(100) electrode as the 

formic acid concentration increases from 0.005 M to 2 M (0.005 M formic acid was 
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chosen as lower concentration because, below this value, a significant part of the 

voltammograms already shows a diffusion-controlled behavior). The effects of 

increasing the concentration of formic acid on the voltammogram differ from those 

observed with Pt(111) electrodes (Figure 3A), showing a more complex behavior.  In the 

region between 0.85 and 0.5 V, the oxidation onset and the current maximum shift to 

lower potential values as the concentration increases, as expected if the current in this 

region is related to the creation of free sites in the bidentate formate adlayer to allow for 

the adsorption of the active intermediate (as the concentration increases, the desorption 

in the negative scan direction starts at more negative potential values). On the other 

hand, currents at potentials below 0.5 V follow a different trend: (i) peak currents are 

constant between 0.01 and 0.05 M and then decrease as the concentration increases; 

(ii) the currents between 0.4 and 0.3 V first increase with increasing concentration 

between 0.005 and 0.25 M, but decrease above 0.25 M (inset in Figure 3B). This 

behavior clearly reveals some important kinetic limitation for the reaction as well as the 

effects of CO poisoning on the voltammogram, because the rate of formation of 

adsorbed CO also increases with increasing concentration (see below), affecting the 
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final shape of the voltammogram. This latter effect is not observed on the Pt(111) 

surface, because the rate of the CO poisoning is negligible for all the studied 

concentrations (positive and negative scan directions of the voltammetric profile almost 

overlap completely for all concentrations, as shown, e.g., in Figure 1A and 2E for the 

particular cases of 0.05 M and 0.01 M HCOOH, respectively).

In order to properly analyze these differences in the behavior of Pt(111) and Pt(100), 

the rate of the direct path needs to be measured. For the Pt(111) electrode, during the 

voltammetric scan at 50 mV s-1, the formation of CO through the dehydration reaction of 

formic acid is negligible, and thus, the measured currents correspond to the direct 

oxidation path. On the other hand, on the Pt(100) surface, CO formation rate is 

significant, especially below 0.5 V.28 Thus, the measured currents in the voltammogram 

correspond to a surface which is partially blocked by CO. In order to obtain the true 

activity of a free surface, pulsed experiments were performed.28, 37  During the 

conditioning pulse at potentials above 0.8 V, CO is fully oxidized. After 1 second at this 

potential, the potential is stepped to the desired potential, and the oxidation current 
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transient is recorded (Figure 4). The decay in the transient reflects the progressive 

increase of the CO coverage, whereas the initial current at t=0 would be the current 

measured in the absence of CO. Since this value is not directly measurable, because of 

double layer charging at short times, a kinetic model for the reaction needs to be used 

to fit the transients. 28 The kinetic model employed here is the same one used 

previously, 28 in which the current measured for the oxidation of formic acid in the 

potential region where adsorbed CO cannot be oxidized is directly proportional to the 

fraction of the surface not covered by CO:

(4)𝑗 = 𝑗𝜃 = 0(1 ― 𝜃CO)

where j = 0 is the current at t = 0 when CO = 0 (with CO the relative coverage by CO). 

The overall reaction for the formation of adsorbed CO can be described as:

(5)HCOOH +𝑝 ∗ ⟶COad + H2O

where p corresponds to the number of free Pt sites required. The rate of formation of 

COad will therefore be given by:

(6)
𝑑𝜃CO

𝑑𝑡 = 𝑘ads(1 ― 𝜃CO)𝑝
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where kads is the apparent rate constant for the dehydration reaction (see below for a 

discussion of the mechanism of the dehydration reaction and the meaning of kads). 

Integration of Eq (6) leads to the following expression for CO:

(7)𝜃CO = 1 ― ( 1
1 + 𝑘ads𝑡(𝑝 ― 1))

1
𝑝 ― 1

for p ≠ 1. For p = 1, an exponential decay is obtained,27 but as will be shown below, this 

is not the case for the present experimental results. The substitution of Eq. (6) into Eq. 

(4) yields:

(8)𝑗 = 𝑗𝜃 = 0( 1
1 + 𝑘ads𝑡(𝑝 ― 1))

1
𝑝 ― 1

Eq. (8) is able to reproduce the experimental results at E < 0.6 V, and allows obtaining 

jt = 0 and kads, the best fittings corresponding to values of p around 2 (as we will see 

below, this is in excellent agreement with the experimental determination of the 

minimum atomic ensemble required for the dehydration of HCOOH on Pt38-39). At E > 

0.6 V the current transients are constant because no formation of adsorbed CO takes 

place. Accordingly, the current measured in the transient is a direct measure of the rate 

of CO2 formation along the direct path.
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Figure 4. Transients measured for the pulsed voltammetry at different potentials for the 

Pt(100) electrode in 0.1 M HClO4 + 0.01 M HCOOH.

Figure 5 shows the values of jt=0 on the Pt(100) electrode for different concentrations 

of formic acid (Figure S2 shows the same data for all the studied concentrations).  For 

the lowest concentration (0.005 M), the magnitude of jt=0 is nearly constant between 

0.42 and 0.57 V, a clear indication that in this region and for this concentration, the rate 

of the reaction is limited by the diffusion of formic acid molecules to the surface. On the 

other hand, for the range of concentrations between 0.1 and 0.01 M, the values of jt=0 

around the maximum are nearly independent of the concentration, within the error of the 
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measurements. In this range of concentrations, the only significant change is the slight 

displacement of the onset to lower potential values. It should be noted that the onset of 

the reaction coincides with that of formate adsorption on this electrode, as described 

above, which expectedly shifts negatively with increasing concentration of formic acid. 

For the higher concentrations, the current decreases with increasing concentration.
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Figure 5. Values of jt=0 for the different formic acid concentrations in 0.1 M HClO4 

obtained after the analysis of the transients obtained with the pulsed voltammetry on the 

Pt(100) electrode.

Page 28 of 52

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



29

The almost identical values of jt=0 around the maximum for [HCOOH] < 0.1 M suggest 

that the reaction rate for the Pt(100) electrode in this potential region is almost 

independent of the concentration of formic acid in solution. As in any heterogeneous 

catalyzed reaction, the formation of the active intermediate requires a solution species, 

formate in this case, and a surface site. The independence of the rate on the 

concentration implies that the surface site is the limiting reactant for the kinetics. The 

activity at a given potential must then be controlled by the residence time of the active 

intermediate on the surface, that is, the turnover rate of the site. Thus, all the available 

sites for the reaction are occupied by the active intermediate, provided that diffusion 

suffices to maintain its coverage, that is for [HOOH] > 0.005 M. The time elapsed 

between adsorption of formate and its transformation to CO2, will determine the reaction 

rate at a given potential.

The behavior for the Pt(111) electrode is different, displaying a clear increase of the 

current with increasing concentration at all concentrations and at all potentials. In order 

to discard whether these difference is due to a different reaction mechanism, the 

reaction order for HCOOH was determined for both surfaces, by plotting either the 
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current density in the CV at constant potential (Pt(111) electrode) or jt=0 at constant 

potential (Pt(100) surface) vs. the HCOOH concentration in a double logarithmic plot 

(Figure 6). The selected potentials were chosen close to the onset of the reaction 

because, in this region, the formate coverage is low and therefore the number of free 

sites is still large, and the reaction rate increases with potential for both Pt(100) and 

Pt(111). As can be seen in Figure 6, for Pt(100) a linear plot is observed for 

concentrations lower than 0.5 M. At higher concentrations, other effects are playing a 

role in the activity. The slopes of the double logarithmic plots in the linear region are ca. 

0.6 at 0.300 and 0.325 V. At E = 0.350 V, the slope is lower because this potential is 

closer to the maximum current, and thus the reaction rate is controlled by the coverage 

of the adsorbed species. For Pt(111) a similar slope of ca. 0.66 is obtained in all cases. 

For this electrode and at E = 0.300 V, the points at the lowest concentrations deviate 

from linearity because of the errors in measuring the very small currents registered at 

these concentrations. For E = 0.375 V and [HCOOH] > 0.1 M, a deviation from linearity 

is observed because currents are reaching the peak values and they are no longer in 

the ascending branch of the voltammogram, but rather on the plateau region. The very 
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identical values, within the error of the experiments, of the reaction order for Pt(111) and 

Pt(100), imply that the mechanism is the same for both electrodes, i.e., the reaction rate 

is governed by the ability of the surface to form the active intermediate and the 

residence time of this adsorbed intermediate to yield CO2.
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Figure 6. Double logarithmic plots of jt=0 for Pt(100) and j for Pt(111) electrodes at 

constant potential vs. the formic acid concentration in 0.1 M HClO4. 

The effect of the specific adsorption of anions other than formate was examined by 

using a 0.1 M sulfuric acid solution as supporting electrolyte. In this electrolyte, 
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adsorbed sulfate is present on the surface in the potential region in which the formic 

acid oxidation reaction takes place. As can be seen in Figure 7 the qualitative behavior 

is the same as that measured in perchloric acid solutions (Figure 3): for Pt(111), the 

currents increase and the onset is displaced to more negative potentials as the 

concentration increases, whereas for Pt(100) surface, the current is almost independent 

of the concentration in the range between 0.01 and 0.1 M and the onset also shifts to 

lower potentials with increasing concentration, but only up to 0.25 M. This implies that, 

in the presence of an adsorbed species that induces the positioning of formate in the 

right configuration, the current depends on the interaction of formate with the surface. In 

fact, as can be seen in Figures S3 and S4, where voltammograms for the same formic 

acid concentration in both electrolytes are compared, the onset of the reaction is slightly 

lower in sulfuric acid solutions. Moreover, currents for the Pt(100) electrode in sulfuric 

acid are higher than in perchloric, whereas for the Pt(111) surface, currents are similar 

except for the lowest concentration. All these results reinforce the idea that the driving 

force for the reaction is the nature of the interaction between formate and the surface, 

which is potential dependent. 
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Figure 7. Evolution of the voltammetric profile of Pt(111) (A) and Pt(100) (B) in a HMRD 

configuration with increasing formic acid concentration in 0.1 M H2SO4. The inset shows 

an enlargement of the region between 0.3 and 0.4 V. Only negative scan directions are 

shown for clarity. Scan rate: 50 mV s-1; rotation rate: 1600 rpm.
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3.2. Adsorbed formate in the indirect path. The dual-path mechanism of formic acid 

oxidation requires that there must be a last intermediate common to both paths. We will 

provide here additional evidence showing that, as has been previously suggested,23-24 

adsorbed monodentate formate is this last common intermediate. According to this 

hypothesis, in the indirect path leading to adsorbed CO, Reaction 2 would be followed 

by the reduction of monodentate adsorbed formate:

(8)HCOOad + H + + 𝑒 ― ⟶COad + H2O

which would be the rate determining step in the Pt-catalyzed dehydration of formic acid. 

The rate of formation of adsorbed CO would therefore be:

(9)
𝑑𝜃CO

𝑑𝑡 = 𝑘oexp ( ―(1 ― 𝛽)𝐹𝜂
𝑅𝑇 )𝑐H + 𝜃formate(1 ― 𝜃CO)𝑝

where ko and  are the standard rate constant and the symmetry factor of Reaction 8, 

respectively,  is the overpotential (measured with respect to the standard potential of 

Reaction 8),  is the proton concentration and R and T have their usual meaning. At 𝑐H +

constant pH and defining  Equation 9 is identical to Equation 5, with 𝑘# = 𝑘o𝑐H + 𝑘ads = 𝑘#

.exp ( ―(1 ― 𝛽)𝐹𝜂
𝑅𝑇 )𝜃formate
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As described above, in the case of Pt(100) kads can easily be obtained from a fit of the 

current transients in Fig. 4 to Equation 7. The fact that the best fits are obtained for p  

2, suggesting that two Pt free adsorption sites are required in addition to that occupied 

by adsorbed monodentate formate, is in excellent agreement with the well-established 

fact that a minimum atomic ensemble consisting of three contiguous Pt atoms is 

required for the dehydration of formic acid.38-39 

Figure 8 shows a plot of kads on Pt(100) as a function of the electrode potential. At the 

initial stages of the reaction, CO = 0, and, therefore, , 
𝑑𝜃CO

𝑑𝑡 = 𝑘#exp ( ―𝛽𝐹𝜂
𝑅𝑇 )𝜃formate = 𝑘ads

i.e., kads corresponds to the rate of the dehydration reaction at t = 0. The bell-shaped 

plots in Figure 6 are in agreement with previously reported results,27-28 as well as with 

the reaction mechanism proposed in refs 7-8, 23-24, in which monodentate adsorbed 

formate is the precursor of adsorbed CO. The fact that no CO forms at all below 0.2 V is 

also consistent with this mechanism because, as has been shown above, at more 

negative potentials adsorption of formate is blocked by hydrogen adsorption. As 

discussed in 8, for this mechanism, and assuming that the adsorption of formate can be 
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described by a Langmuir isotherm, the potential at which the rate of dehydration is 

maximum (Emax) must shift negatively with increasing concentration of formic acid 

according to:

(10)𝐸max = {2.3
𝑅𝑇
𝐹 [log ( 𝛽

1 ― 𝛽) ―
1
2log 𝐾L] + 𝐸pzc} ―2.3

𝑅𝑇
𝐹 log 𝑐HCOOH

where KL is the Langmuir constant of the formate adsorption equilibrium, Epzc is the 

potential of zero charge and cHCOOH is the concentration of formic acid.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

2

4

6

8

k a
ds

/s
-1

E vs. RHE/V

0.005 M
0.01 M
0.05 M
0.1 M
0.5 M
1 M

Figure 8. kads vs. E measured for the transients recorded during the pulsed voltammetry 

in 0.1 M HClO4 for different formic acid concentrations.
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Similarly, as also predicted in 8, if the adsorption of formate follows a Langmuir 

isotherm, the rate of formation of adsorbed CO when CO = 0, i.e., kads, at the potential 

at which it is maximum, , must increase with increasing concentration of formic acid 𝑘max
ads

according to:

(11)log 𝑘max
ads = 𝐴 + (1 ― 𝛽)log 𝑐HCOOH

with . (Please note that 𝐴 = {log
𝑘o

2 ― (1 ― 𝛽)[(𝐸pzc ― 𝐸eq)
2.3𝑅𝑇 + [log 𝛽 ― log (1 ― 𝛽) ― log 𝐾L]]}

there is a typographical error in Eq. 30 of 8 which has been corrected here.)

A semilogarithmic plot of Emax vs. cHCOOH is shown on Figure 6B (black squares and 

dashed black line), according to which the potential at which the rate of dehydration of 

formic acid to yield adsorbed CO on Pt is maximum shifts negatively by 49 mV every 

tenfold increase of the formic acid concentration. This is smaller than the -59 mV shift 

predicted by Eq. 10. However, Eq. 10 assumes that the adsorption of formate is 

Langmuirian, which implies that the maximum corresponds always to the same formate 

coverage. This does not take into account the possibility of either repulsive or attractive 

interactions between neighboring adsorbed formate molecules at intermediate to high 

coverage, and, most importantly, does not take into account the overlap on Pt(100) 
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between hydrogen and formate adsorption. As discussed in the previous section, this 

overlap affects the formate adsorption isotherm exactly in the potential region where the 

maximum rate of dehydration happens. The consequence is that a potential more 

positive than expected in the absence of a competing adsorbate (hydrogen) will be 

required to achieve the formate coverage corresponding to the maximum rate of 

dehydration (which, furthermore, will not anymore be the same at all cHCOOH), and the 

shift of Emax with cHCOOH will be smaller than expected, as indeed observed.

A double logarithmic plot of  vs. cHCOOH is also included in Figure 9 (red circles 𝑘max
ads

and dashed red line). The slope of the plot, 0.16 is considerably smaller than expected 

from Eq. 11 if  = 0.5, which is in apparent contradiction with a previous determination 

of the Tafel slope of Reaction 8 of 128 mV.7 However, like Eq. 10, Eq. 11 is only correct 

if the adsorption of formate is Langmuirian and fails to take into account the competition 

for the adsorption sites between hydrogen and formate in the potential region where 

Emax occurs. In particular, whereas a Langmuirian adsorption implies that the formate 

coverage at Emax will always be the same whatever the concentration of formic acid, the 

shift of Emax into the hydrogen adsorption region when cHCOOH increases will result in a 
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lower formate coverage at Emax and, therefore, in a dehydration rate lower than 

expected from Eq. 11, thus explaining a gradient in Figure 6B (red line) smaller than 

expected.

0.01 0.1 1
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Figure 9. Plot of the potential for the maximum kads and it value vs. concentration. 

We would like to finish this section by highlighting that the potential dependence of the 

rate of formation of adsorbed CO from the dehydration of formic acid (Figure 8) is only 

consistent with a mechanism in which an oxidative electroadsorption step is followed by 

a rate-determining reduction step. The only possible alternative to the sequence formate 

adsorption – formate reduction is the fast adsorption of -COOH followed by its rate-
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determining reduction, but this would imply the very unlikely fast activation of the C-H 

bond in formic acid. This, together with the reasonable agreement with the predictions 

made in 8 of the observed dependence on the concentration of both the potential at 

which the rate of dehydration is maximum and of the rate at that potential confirm that 

monodentate adsorbed formate is also the intermediate in the indirect path.

CONCLUSIONS

A thorough analysis of the dependence of the voltammetric profile of Pt(111) and 

Pt(100) electrodes in solutions containing formic acid on the scan rate and on the formic 

acid concentration, as well as of the current transients in pulsed voltammetry 

experiments, has allowed us to provide evidence that an adsorbed-formate species is 

the reactive intermediate both in the direct and the indirect path of the formic acid 

oxidation reaction. As bidentate adsorbed formate has been shown to be too unreactive, 

monodentate adsorbed formate must be the reactive species, the last common 

intermediate in the dual reaction path. After the oxidative electroadsorption of 
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monodentate formate, and depending on the potential, it can either be reduced to yield 

adsorbed CO (a catalytic poison) or oxidized to the final product, CO2.

In the direct path, although unreactive, bidentate adsorbed formate is not just an 

innocent spectator. At low to medium coverages, the presence of neighboring bidentate 

formate helps stabilize the monodentate reactive species, which might explain the 

second order of the reaction with respect to bidentate formate reported in previous 

work.8, 28 Other adsorbed species, like, e.g., specifically adsorbed sulfate, can also play 

this role. However, at coverages above 50% of the maximum, the blocking effect of 

bidentate formate overcomes its effect on the stabilization of monodentate formate, and 

increasing its coverage leads to the inactivation of the electrode surface. At very high 

coverages, a spike in the cyclic voltammograms suggests a disorder-order phase 

transition within the formate adlayer that leads to a further deactivation of the surface. A 

similar transition has been found previously on Au(111) electrodes30 but, as far as we 

know, had never been reported for Pt(111) before.
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Since the specific adsorption of formate starts around the pzfc, neither the dehydration 

to adsorbed CO nor the oxidation to CO2 can occur at a potential more negative than 

the pzfc. This leads to differences between Pt(111) and Pt(100) regarding the increase 

in the reaction rate along the direct path with increasingly positive potential, as well as 

regarding their activity for the formation of the catalytic poison. In the case of the 

Pt(100) surface, the pzfc occurs in a potential region in which the surface is covered by 

adsorbed hydrogen and prevents the adsorption of formate, whereas in the case of 

Pt(111), most of the hydrogen has desorbed at the pzfc. The consequence is that, in the 

case of Pt(100), formate immediately replaces hydrogen as soon at the latter desorbs, 

leading to a sharp rise in formate coverage and therefore in the current for the direct 

oxidation of formic acid. On the contrary, on Pt(111) both the formate coverage and the 

current increase gradually with increasing potential.

Regarding the formation of adsorbed CO, due to the more negative pzfc of Pt(100), a 

sufficiently high coverage of adsorbed formate can be reached at a relatively negative 

potential, leading to a high rate of reduction of adsorbed formate and a high rate of CO 
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poisoning. On the contrary, on Pt(111), a high coverage of adsorbed formate can only 

be reached at relatively positive potentials, at which the reduction of adsorbed formate 

to adsorbed CO is slow, thus explaining the slow poisoning by CO of Pt(111) electrodes 

in the absence of defects. On Pt(100), the dependence of the rate of formation of 

adsorbed CO on the potential shows a bell shape. The potential at which the rate of 

formation is maximum decreases and the rate at the maximum increases with 

increasing concentration of formic acid, in good agreement with previous predictions in 

which adsorbed CO is formed by the adsorption of formate followed by the reduction of 

adsorbed formate.

The presented results point out that monodentate adsorbed formate is the last common 

intermediate for both direct and indirect pathways on Pt electrodes, and this conclusion 

can be extrapolated to other metals. Depending on the energetics of each pathway on 

the different electrodes, their reaction rates would be different, giving different 

behaviour. For Pt electrodes, the reaction rates for the intermediate pathway on Pt(111) 

are negligible, because a sufficiently high formate coverage happens only at potentials 
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too positive for the step leading to the formation of CO through reduction of the 

monodentate adsorbed formate to be fast, whereas on Pt(100) there is a potential 

window where this reaction is possible at higher formate coverage. Evidence that 

oxidation of formic acid also proceeds through adsorbed monodentate formate on other 

metal surfaces has been provided in the case of Au30-31, 40-41 and Pd42 electrodes, as 

well as for several metal surfaces at the solid-gas interface.43-48 Cyclic voltammetry and 

DFT calculations suggested that the stabilization of monodentate adsorbed formate can 

take place by the presence of adatoms or other adsorbed species on the Pt surface,21 

and a similar effect has been proposed recently for Bi-modified Pd nanoparticles also 

supported by theoretical calculations.49 Thus, the mechanism presented here can be 

considered as general, the differences between different surfaces being due to the ratio 

between the rate constants for each pathway (as in the case of, e.g., Pd) and/or to a 

lower CO adsorption energy (as in the case of Au), both of which will depend on the 

electronic properties of each specific surface. 
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