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Abstract

In this paper, we present a mixed oligopoly model where electric power generators
compete in supply functions in a liberalized market. A former monopolist, the state-
owned generator, is assumed to be (partially) privatized. First, we obtain that there
is a relationship between privatization and the number of electric power generators
concerning the level of consumer surplus and total welfare. Indeed, a fully state-owned
generator is socially optimal, lowering private generators’ profits and enhancing con-
sumer surplus; i.e., if the degree of privatization decreases, consumer surplus increases
compensating the damage imposed on generators’ profits. Second, as the number of
generators increases, full privatization may provide similar levels of consumer surplus
and social welfare than those observed in a mixed oligopoly. Moreover, it is also ob-
tained that price-cost margins increase as marginal cost increases. Overall, our results
suggest that the state-owned generator should be privatized when entry barriers are
low enough, and competitiveness is enhanced. Otherwise, a state-owned generator may
protect consumers, enhancing consumer surplus.
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1 Introduction

During the last decade of the XX century, a number of countries began a liberalization process
of the electricity system. Traditionally, the electric power generation sector was a state-
owned monopoly. As a result of huge demand increases, government budget constraints, and
technology improvements, the sector was ready to introduce competition. At the same time,
governments decided a total (or partial) privatization of the state-owned power generation
monopolist, while a reduced number of private electric power generators entered the market.
Thus, it is interesting to study the effects that two distinct policies (liberalization of the
market and partial or total privatization of the state-owned power generator) have in the

market.1 Since liberalization, wholesale electricity markets were mostly organized as bidding
markets where electric power generators compete by submitting price-quantity bids in daily
interaction.2 Although regulatory authorities expect both, competitive price-cost margins
and absence of electric fall-outs, wholesale electricity markets were found to have prices well
above competitive levels.

In this paper, we investigate the extent to which privatization, the cost structure, and the
number of competitors affect market outcomes in a context where electric power generators
strategically interact in supply schedules. In fact, such schedules can be seen as a continuum
of bids, that is, a supply function. Since the seminal paper by Klemperer and Meyer (1989),
the literature in electric power markets organized as bidding systems borrows this model to
characterize generators’ bidding behaviour.3 Moreover, from a technical point of view, the
use of supply function schedules to model electric power generation is also advised (see, for
instance, Day et al. (2002)). In this strand, a pioneering paper by Green and Newbery (1992)
analyzed the British wholesale electricity markets in a context of supply function competi-
tion. It is shown that the Nash equilibrium in supply schedules implies a high markup over
marginal cost and substantial deadweight losses. Green (1996) introduces in the discussion
the effect of the government policies aimed to increase the amount of competition in the elec-
tricity spot market in England and Wales. Under linear supply function competition with
asymmetric firms, it is found that partial divestiture should lead to a substantial reduction
in deadweight losses. In Green (1999), it is also analyzed the impact of long-term contracts
in spot electricity prices for the England and Wales market. More recently, in Holmberg and
Newbery (2010) and Holmberg et al. (2013), various features of recent developments con-
cerning spot electricity markets, and technical features of supply function competition have
been studied. In addition, Newbery and Greve (2017) also emphasize that markup models
may explain competitive behaviour in electricity markets and thus, they can also be used as a
modeling approach. There are also in the literature some refinements of the supply function
model and its comparison with the traditional oligopoly models where the implications to
model real markets are presented. For instance, in Vives (2011) supply function competition
with random costs is introduced. A Bayesian supply function equilibrium is characterized
where supply functions are steeper with a higher correlation among the cost parameters. He
shows that as correlation becomes maximally negative, the competitive outcome is obtained,
whereas a positive correlation enhances strategic behaviour. Concerning the use of alter-
native models to characterize oligopoly competition, Delbono and Lambertini (2016) shows
that the ranking of firms’ profits under the supply function competition and its comparison
with Cournot and Bertrand strongly depend on the marginal cost. In particular, they remark
that Bertrand-Nash equilibria provide higher profits and lower social welfare than the supply
function and Cournot equilibria when the marginal cost is high and, consequently, that the
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choice of the different ways to model market competition should take it into account. In
this line, several papers have considered the relationship between competition and the op-
timal privatization policy using different competition models. More precisely, De Fraja and
Delbono (1989) and subsequent literature (see, for instance, Matsumura 1998) showed that
in a homogeneous oligopoly, in some cases, a public firm should be privatized and should
maximize profits rather than welfare. The intuition is that privatization might increase wel-
fare since with a large number of private firms, the public firm must produce a very high
level of output, driving private profits to a very low level. When the possibility of partial
privatization is also considered, partial privatization is the optimal policy in the short-run,
whereas full nationalization becomes optimal in the long-run with free entry among private
firms (see Matsumura and Kanda 2005). Considering a price-setting game with product
differentiation, Anderson et al. (1997) show that full nationalization is the best policy in the
short-run with an exogenous number of firms while, in the long run, privatization may lead
to further entry and become beneficial.

To the best of our knowledge, the study of mixed oligopolies in electric power generation
has been neglected in the literature. Electric power generation was traditionally covered
by firms under state-ownership. The inefficiency of most of these generators acting as mo-
nopolists was the main argument for partial or full privatization in such a way that, in the
path towards liberalization, some governments decided that the former state-owned gener-
ator were partially or fully privatized whereas in other countries electric power generation
remains under public hands.

There is large evidence across the world of state-owned firms competing with private
electricity generators. Jamasb and Pollitt (2005) introduced the energy market liberalization
process and the long-term objective of a single European energy market. They discussed
the emerging issues of market concentration, investments, and security of supply as well as
some aspects of the market design and its regulation. They also remark the importance of
the transition from state-owned generator firms towards private competition. The evidence
in EU country members after two decades of liberalization is mixed. For instance, the
Central Electricity Generating Board (CEGB) was the state-owned responsible for generation
and transmission in the United Kingdom. The two major generators, National Power and
PowerGen, were sold in 1991. The government retained a 40% equity position, while the
remaining shares were picked up by institutional and foreign investors. The government also
sold South of Scotland (currently Scottish Power) and North of Scotland Hydro (currently
Scottish Hydro) but retained 100% of Nuclear Electric. Électricité de France (France),
the former state-owned monopolist, remains almost entirely owned by the state. Electric
power generation is dominated by nuclear power (accounted for 72.3% of total production
in 2016) which is almost entirely owned by the French government. In the other extreme
case, firms as Endesa (Spain), a former state-owned firm, were partially privatized during
the last decade of the XX century, reaching 100% of private equities during the first decade
of the XXI century. In Germany, the electricity sector is traditionally characterized by a
coexistence of public, private and mixed-economy firms. Sweden shows similarities with the
German electricity sector for it is made up from public, mixed-economy as well as private
firms and had at no time been neither completely nationalized nor privatized. In Italy,
the former state-owned firm ENEL was also fully privatized. Some countries, most notably
the US, opted to supply electricity using regulated private monopolies that owned both the
generation capacity and the regional transmission networks. In Canada, the electricity sector
is dominated by large state-owned integrated firms playing a leading role in the generation,
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transmission, and distribution organized along provincial and territorial lines. Exceptions to
this rule are Ontario and Alberta, which have recently created electricity markets in order
to increase competition. Results of privatization in less developed countries are also mixed.
Some of these countries have favoured public ownership of electric power supply since it is
considered part of the infrastructure of the economy and thus, an important ingredient of
economic growth. While electricity can be generated using small stand-alone plants, the
cost is usually much higher than the marginal cost of grid power. The problem is that
the up-front investment costs for an electricity grid are very large. As demand for power
may not be sufficient to justify the private investment, the government might undertake this
task. For instance, this is the case of the Mexican industry where electric power generation
is under the control of the Comisión Federal de Electricidad (CFE), which is a vertically
integrated firm controlling most of the generation (75%), transmission and distribution of
electricity in the country. In Brazil, Centrais Elétricas Brasileiras SA, a former state-owned
monopolist, is almost entirely owned by the state. In contrast, the gradual privatization
process in Argentina has found to increase both access to and quality of service. In Chile,
where the electric power sector was fully privatized, Fisher and Serra (2004) find that the
sector has improved in installed capacity, generation, energy sold, labour productivity, and
profitability of the utility. A complete survey for Latin America countries can be found in
Balza et al. (2013).

In this approach, we highlight the role that the state-owned generators play in liberalized
wholesale electric power markets. As we pointed out above, during the liberalization process,
it was a stylized fact that the former state-owned electric power generator was partially
or almost privatized in order to compete with the private generators emerged during the
second middle of the XX century. Then, it is interesting to explain how a state-owned
generator may modify the competitive behaviour of the private generators. Indeed, we
think it is interesting to analyze how the level of privatization affects market results and
consequently, welfare. Moreover, the level of marginal cost and the number of generators
active in the market may have a different impact on market outcomes as a result of the
different levels of privatization. In our model, a state-owned generator competes with private
power generators. As a benchmark, we first characterize a market outcome where a state-
owned generator and n ≥ 2 private generators compete in supply schedules. As mentioned
above, the literature including supply function competition in mixed oligopolies is scarce.
Recently, Yasui and Haraguchi (2018) have presented a supply function duopoly model
with a partially privatized public firm and a profit-maximizing firm. They found that the
public firm’s aggressive behaviour makes the private firm more aggressive in supply function
competition and consequently full nationalization is optimal. In Gutiérrez-Hita and Vicente-
Pérez (2018) supply function competition with heterogeneous goods in a mixed oligopoly is
also analyzed. It is found that social welfare and in particular consumer surplus are affected
by the nature of the heterogeneity of goods (substitutes or complements). Another exception
is Menezes and Pereira (2017) that investigate the optimal environmental policy in a dynamic
setting with R&D where firms compete in supply schedules. They show that the impact of
increased competition on welfare depends on the extent of the market and the nature of
preferences and technology.

In the present paper, once the benchmark model is solved, we introduce the discussion of
how variations in the degree of privatization, free entry, and the level of marginal costs, affect
market outcomes (price and electric power traded), consumer surplus, and social welfare.
Overall, it is shown that, in our context of linear supply functions, consumer surplus and
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social welfare are enhanced when free entry is allowed or, alternatively, when the former state-
owned monopolist remains under public hands.4 Moreover, when cost increases, generators
apply higher price-cost margins yielding an increase in market power. Our results suggest
that in those countries where electric power generation is provided by a reduced number
of firms, the state should control a significant volume of equities of the partially privatized
state-owned generator. If the aim of the government is to minimize market intervention, the
regulatory body of rules should allow almost free entry in order to enhance competitiveness.
As mentioned above, in the nineties, many countries like United States, Chile, and others
within the EU (Great Britain, Spain, Germany, etc.) begin to implement reforms aimed to
privatize and restructure the electric power industry. Several authors though have found
that wholesale prices increased well above marginal cost and that some degree of collusion
can be observed in the market. Many involved in electricity restructuring have expressed
concern about supplier market power that may raise prices in a deregulated market.5 In
this line, Hyman (2010) has shown that in the United States and the UK, the old regulated
electric industry provided often a reliable service with declining real prices. Even though
the old industry had weak incentives to operate efficiently, and that in the present semi-
competitive markets the electricity suppliers can perhaps operate more efficiently than before,
the consumers do not obtain benefits significantly greater than they would have under the
old market structure.

The rest of the paper is organized as follows. Section 2 presents the benchmark model
and characterizes the equilibrium. Section 3 analyzes how the level of privatization, free
entry, and changes in production costs affect strategic behaviour. Section 4 studies the
extent to which free entry makes it unnecessary the presence of a state-owned generator in
the market. Section 5 concludes and gives some policy implications. Proofs are relegated to
the Appendix.

2 A mixed market of electric power generation

In a mixed oligopoly, a (partially) state-owned electric power generator, that we denote by
firm 0, and n private generators compete by offering simultaneously price-quantity auctions
in a supply function fashion.6 The aggregate supply function provides electric power to meet
consumers’ demand. Moreover, as price-quantity auctions are performed day-ahead, the
final realization of demand is somehow uncertain, in the sense that the amount of electric
power that consumers are willing to demand is not known a priori. Thus, it is necessary to
assume some level of uncertainty in the demand side (see, for instance, Klemperer and Meyer
1986). Indeed, by submitting supply functions, firms adapt better to changing conditions.
Once the resolution of uncertainty takes place, a unique market equilibrium is reached where
the aggregate supply function meets consumer demand.7 We denote by p the market price
and qi firm i’s electric power generation, for i = 0, 1, . . . , n, q = (q0, q1, . . . , qn) ∈ Rn+1

+ and
Q =

∑n
i=0 qi. The representative consumer maximizes her surplus CS(Q) = U(Q) − pQ,

yielding an aggregate demand D(p) = α − p + ε, where U(Q) = (α + ε)Q − Q2/2 is the
utility function and ε is an additive shock with strictly positive density f(ε) everywhere on
the support Ω ⊂ R+ such that E(ε) = 0 and V (ε) = σ2. In line with the literature, social
welfare is assumed to be consumer surplus plus generators’ profits. Firms bear a quadratic
cost function8 given by Ci(qi) = (c/2)q2

i , with c > 0. We assume that the state-owned
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generator and the private generators have the same level of efficiency because electric power
generation technology is widespread and accessible regardless of the ownership of the firm.

Competition takes place as follows. Generators submit supply functions to the market
(price-quantity pairs) that we assume to be continuous according to the linear9 function
qi = βip. We denote β = (β0, β1, . . . , βn) ∈ Rn+1 and β−j ∈ Rn the vector containing all the
components of β except βj. Ex-ante market clearing conditions yield prices

p(β) = (α + ε) · 1

1 +
n∑
i=0

βi

. (1)

Taking (1), a supply function of generator i ∈ 0, 1, . . . , n is then given by

qi(β) = βip(β). (2)

Consequently, total electric power produced and traded is given by Q(β) =
∑n

i=0 qi(β). Each
generator chooses a strategy by fixing its supply function’s slope βi ≥ 0 which determines
the amount of electric power generated at any market price p. On the one hand, the state-
owned generator, which is assumed to be (partially) privatized according to the parameter
λ ∈ [0, 1], maximizes the expected utility function that ranges between the social welfare
when λ = 1 (the generator behaves as a pure state-owned firm) and its own profits when
λ = 0 (the generator is fully privatized), that is,

max
β0≥0

∫
Ω

[λSW (β) + (1− λ) π0(β)]f(ε)dε, (3)

where SW (β) = CS(β) +
∑n

i=0 πi(β) is the social welfare function, and πi(β) = p(β)qi(β)−
Ci(qi(β)) is the generator i’s profit function, for i ∈ {0, 1, . . . , n}. On the other hand, private
generators j ∈ {1, 2, . . . , n} maximize their own expected profits,

max
βj≥0

∫
Ω

πj(β)f(ε)dε. (4)

Observe that, taking into account (1) and (2), it is possible to rewrite generators’ profits,
consumer surplus, and social welfare as functions of β, namely,

πi(β) = (α + ε)2 · βi(2− cβi)

2
(
1 +

n∑
i=0

βi
)2
, CS(β) = (α + ε)2 ·

( n∑
i=0

βi
)2

2
(
1 +

n∑
i=0

βi
)2
,

SW (β) = (α + ε)2 ·

( n∑
i=0

βi
)2

+ 2
n∑
i=0

βi − c
n∑
i=0

β2
i

2
(
1 +

n∑
i=0

βi
)2

.

The strategic behaviour of the state-owned and private generators, derived from the first
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order conditions in (3) and (4), provides the best response functions:

β0(β−0) =

1 + (1− λ)
n∑
i 6=0

βi + λc
n∑
i 6=0

β2
i

(1− λ) + c
(
1 +

n∑
i 6=0

βi
) ,

βj(β−j) =

1 +
n∑
i 6=j

βi

1 + c
(
1 +

n∑
i 6=j

βi
) ,

that satisfy the appropriate second order sufficient conditions. From now on, we shall assume
that all the private generators are symmetric in the sense that βj = βr (hence, qj = qr) for
all j, r ∈ {1, . . . , n}. Consequently, the symmetry among private generators makes that the
above best responses come down to

β0(βj) =
1 + (1− λ)nβj + λcnβ2

j

1− λ+ c(1 + nβj)
,

βr(β0, βj) =
1 + β0 + (n− 1)βj

1 + c(1 + β0 + (n− 1)βj)
,

(5)

which yield the optimal strategies reported in the following theorem.

Theorem 1. The optimal supply functions for the state-owned and (symmetric) private
generators are

β∗0(n, c, λ) =
(n− 1)cξ2 + (2 + c− n)ξ − 1

1− cξ
,

β∗r (n, c, λ) = ξ,

(6)

where ξ is the unique positive value satisfying a3ξ
3 + a2ξ

2 + a1ξ + a0 = 0 with

a3 = nc2(n− 1 + λ),

a2 = −c
(
n2 + (3λ− 2c− 4)n+ c+ 1− λ

)
,

a1 = −2(c+ 1− λ)n+ c(c+ 4− λ) + 2(1− λ),

a0 = λ− 2− c.

It is interesting to report the case in which λ = 0, that is, when the state-owned generator
is fully privatized and thus, the model is a pure supply function oligopoly with n+ 1 private
generators. In this case, as the following proposition shows, the symmetric optimal strategy
for the n+ 1 generators collapses to

ϑ(n, c) :=
n− c− 1 +

√
(n− c− 1)2 + 4nc

2nc
(7)

for every n ∈ N and c > 0. This value coincides with the result in Delbono and Lambertini
(2016), which in turn was previously reported in Ciarreta and Gutiérrez-Hita (2006). The
following proposition states two technical issues that help us to further present the main
results of the paper.
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Proposition 1. Let n ∈ N, c > 0 and consider ϑ(n, c) as defined in (7). It holds that
{ϑ(n, c)}n∈N is an increasing sequence of positive numbers and

(i) 1
c+1

< ϑ(n, c) < β∗r (n, c, λ) < ϑ(n+ 1, c) < 1
c

for all λ ∈ (0, 1].

(ii) β∗0(n, c, 0) = β∗r (n, c, 0) = ϑ(n, c).

The intuition behind Proposition 1 is twofold. First, as the number of private power
generators increases their behaviour is more pro-competitive (β∗r (n, c, λ) increases). Second,
in the extreme case where the state-owned firm is totally privatized, its behaviour coincides
with that of the private power generators, no matter the number of firms n, and the level
of efficiency c. We also see from this result that β∗0(n, c, λ) in Theorem 1 is well-defined.
Indeed, for the case λ ∈ (0, 1] (it is obvious from (ii) if λ = 0) and having β∗r (n, c, λ) = ξ as
in (6), one gets 1−cξ > 0 and (n−1)cξ2 +(2+c−n)ξ−1 > 0 from (i) above, where the last
inequality, for n ≥ 2, follows from the fact that ϑ(n− 1, c) ≤ ϑ(n, c) < ξ and (n− 1)c > 0,
and for n = 1, it follows since 1 < (c + 1)ξ. Furthermore, since β0 just depends on βr
according to (5), then one can equivalently write the formula for β∗0(n, c, λ) in (6) as

β∗0(n, c, λ) =
1 + (1− λ)nξ + λcnξ2

1− λ+ c(1 + nξ)
. (8)

Before introducing the discussion on the level of privatization of the state-owned gener-
ator, the effect of free entry, and the level of marginal cost, it is interesting to present some
particular cases of our model. Firstly, we note that the mixed duopoly model with differen-
tiated products studied in Gutiérrez-Hita and Vicente-Pérez (2018) is somehow a particular
case of our model for the case λ = 1, n = 1, and c = 1, but including a parameter γ to
capture the degree of product differentiation. And secondly, it is also interesting to consider
as a benchmark case the model with a pure state-owned generator and n private generators,
in order to compare it with the generalized model that we will introduce in the following sec-
tion where partial privatization will be considered. In this respect, a simple duopoly model
with a state-owned firm and a private firm can be found in Yasui and Haraguchi (2018),
where the authors state that a full public firm provides the highest social welfare. In our
model though, we allow for an arbitrary number n of private generators, which has a direct
impact on market behaviour. Letting λ = 1, the optimal strategies in (6) become

β∗0(n, c, 1) =
1 + ncξ2

c(1 + nξ)
, β∗r (n, c, 1) = ξ,

where, according to Theorem 1, ξ is the unique positive value satisfying n2c2ξ3 − c(n2 −
(2c+ 1)n+ c)ξ2 + c(c+ 3− 2n)ξ = 1 + c. Here, it is interesting to note that as the number
of generators increases the strategic behaviour of the fully state-owned generator mimics
the ones followed by the private generators, since lim

n→+∞
β∗0(n, c, 1) = ξ. Thus, social welfare

could be higher if free entry is allowed. However, in electric power generation, entry barriers
are present for a number of reasons: technical restrictions, licenses, and access to financial
markets to invest in generation equipment. Then, in practice, electric power oligopolies
include a reduced number of power generators. In what follows, we will use our model to
investigate how the level of privatization and the number of generators can be used as a way
to enhance consumer surplus and social welfare.
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According to Theorem 1, the optimal strategy of the state-owned generator depends
on the symmetric optimal strategies of the n private generators. Thus, optimal market
price, electric power traded, generators’ profits, consumer surplus, and social welfare can be
presented also as functions of β∗r (n, c, λ) = ξ, namely,

p∗(n, c, λ) = (α+ ε) · 1− cξ
ξ(2− cξ)

,

q∗0(n, c, λ) = (α+ ε) · (n− 1)cξ2 + (2 + c− n)ξ − 1

ξ(2− cξ)
,

q∗r (n, c, λ) = (α+ ε) · 1− cξ
2− cξ

,

π∗0(n, c, λ) = (α+ ε)2 ·
(
(n− 1)cξ2 + (2 + c− n)ξ − 1

) (
c2(1− n)ξ2 + c(n− c− 4)ξ + 2 + c

)
2ξ2(2− cξ)2

,

π∗r (n, c, λ) = (α+ ε)2 · (1− cξ)2

2ξ(2− cξ)
,

CS∗(n, c, λ) = (α+ ε)2 · (cξ2 − (2 + c)ξ + 1)2

2ξ2(2− cξ)2
,

SW ∗(n, c, λ) = (CS∗ + π∗0 + n · π∗r )(n, c, λ).

3 Partial privatization, free entry, and cost variation

In this section, we present the main results of the paper. We shall study the asymptotic
behaviour of generators’ optimal strategies β∗0(n, c, λ) and β∗r (n, c, λ) whenever the degree of
privatization, the number of generators, or the cost parameter changes, all other things being
equal. As a result of the asymptotic behaviour of the optimal strategies, market outcomes,
consumer surplus, and social welfare, also change.

3.1 Variation in the degree of privatization

In what follows we study how optimal strategies change with the degree of privatization.
Liberalization of electric power generation opens a debate about the extent to which a state-
owned generator, the former monopolist, should be privatized. Obviously, it implies different
levels of consumer surplus.

Proposition 2. For every (n, c, λ) ∈ N× (0,+∞)× (0, 1) one has

∂β∗0(n, c, λ)

∂λ
>
∂β∗r (n, c, λ)

∂λ
> 0.

This result states that given a number of electric power generators n and a cost parameter
value c, as the partially privatized state-owned generator becomes less private, all generators
exert lower market power. In particular, the state-owned generator has lower market power
than the one exerted by private generators. In the opposite case, when the state-owned
generator is fully privatized, the n + 1 private generators mimic a pure supply function
oligopoly (see Figure 1) and the results obtained in Ciarreta and Gutiérrez-Hita (2006)
arise. Intuitively, one could argue that if the goal of the government is to enhance consumer
surplus, privatization is not advised since it induces generators to behave less aggressively
in the market.
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Figure 1: Optimal supply functions β∗0(2, 1, λ) and β∗r (2, 1, λ).

3.2 Variation in the number of generators

We consider here the effect of variations in the number of generators in choosing their optimal
strategies. Intuitively, as the number of generators increases, competition is enhanced and
therefore, generators behave more aggressively.

Proposition 3. For every (n, c, λ) ∈ N× (0,+∞)× [0, 1] one has:

(i) If λ > 0, then β∗r (n, c, 0) < β∗r (n, c, λ) < β∗r (n+ 1, c, 0).

(ii) If λ > 0, then β∗r (n, c, λ) < β∗0(n, c, λ).

(iii) β∗r (n, c, λ) < β∗r (n+ 1, c, λ).

(iv) lim
n→+∞

β∗r (n, c, λ) = lim
n→+∞

β∗0(n, c, λ) =
1

c
.

Firstly, this result states that an increase in the number of generators always yields
to a more competitive behaviour by the private generators than keeping the state-owned
generator fully or partially in public hands. In other words, liberalization provides the
first best result in terms of consumer surplus. Secondly, if the state-owned generator is
not fully privatized, then it always behaves more aggressively than private generators. It
is also shown that, since the state-owned generator is (to some extent) a social welfare-
maximizer, it has an incentive to increase output in order to reduce the market price and,
therefore, the state-owned generator’s optimal supply function is always above the one chosen
by the private generators. This pro-competitive effect followed by the state-owned firm as
the number of firms increases is also noted by De Fraja and Delbono (1989) in a Cournot
framework. Moreover, we also note that for every level of privatization an increase in the
number of entrants enhance competitiveness and consequently, the market price decreases
and consumer surplus increases. Finally, for a sufficiently high number of generators, the
state-owned and private generators’ strategies converge to the inverse of the marginal cost
parameter, minimizing thus generators’ profits.

Remark 1. Numerical simulations suggest that β∗0(n, c, λ) < β∗0(n+1, c, λ) and furthermore
β∗0(n, c, λ)−β∗r (n, c, λ) ≥ β∗0(n+1, c, λ)−β∗r (n+1, c, λ) for all (n, c, λ) ∈ N× (0,+∞)× [0, 1],
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having that {β∗0(n, c, λ) − β∗r (n, c, λ)}n∈N is a decreasing sequence of non-negative numbers
such that

lim
n→+∞

β∗0(n, c, λ)− β∗r (n, c, λ) = 0

as a consequence of Proposition 3 (iv).

Indeed, it is also interesting to note that the asymptotic behaviour of the optimal strate-
gies towards 1/c as the number of firms increases means that price approaches marginal cost
and then, perfect competition is reached and social welfare is maximized.

3.3 Variation in the cost parameter

Changes in the cost functions might be due, for instance, to a variation in the price of the
inputs. In particular, the electric power generation is probably more sensitive than other
markets in this respect. Sometimes, to generate power at peak demand hours can be difficult
because the cheapest plants are capacity constrained and consequently, it is necessary to
generate power with those plants with expensive inputs (like fuel, for instance). In other
cases, the lack of wind, rain or ultraviolet rays makes it almost impossible to generate power
by renewable plants. In our model, this effect might be captured by the parameter c. The
following proposition describes the optimal behaviour of generators as a result of a change
in this parameter.

Proposition 4. For every (n, c, λ) ∈ N× (0,+∞)× [0, 1] one has:

(i)
∂β∗0(n, c, λ)

∂c
≤ ∂β∗r (n, c, λ)

∂c
≤ 0.

(ii) lim
c→0+

β∗r (n, c, λ) = lim
c→0+

β∗0(n, c, λ) = +∞.

(iii) lim
c→+∞

β∗r (n, c, λ) = lim
c→+∞

β∗0(n, c, λ) = 0.

The main result enclosed in Proposition 4 states that if c increases, generators enlarge
price-cost margins; in particular, private generators exert more market power than the state-
owned generator. As a consequence, consumer surplus decreases. In addition, when the level
of c is close to zero, generators’ behaviour resembles the one under perfect competition (notice
that lim

c→0+
1/c = +∞). Finally, the intuition of the third statement is that, if c is extremely

large, market power is extremely high, and consequently, generators may impose excessive
prices.

4 State-owned generator versus free entry

Liberalization usually implies that entry barriers have to be minimized or almost eliminated
in order to increase the number of electric power generators. In addition, it often implies
that the former state-owned monopolist is also privatized. This seems to be the wave ob-
served within the OECD countries, where mixed oligopolies have passed, and pure private
oligopolies have emerged. The question arises, therefore, of what happens, in terms of con-
sumer surplus and generators’ profits, in the transition from a state-owned generator towards
a market with private generators. In our model, this issue can be studied by comparing the
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market outcome at λ = 1 and λ = 0. If the goal of the state is to protect consumer surplus,
the privatization of the former state-owned generator may yield a more competitive market
and thus, enhancing consumer surplus. Conversely, the privatization of the state-owned gen-
erator may enhance generators’ profits lowering consumer surplus if the number of generators
is low enough. In the following proposition, we present the effect of the privatization on the
market outcomes of our model.

Proposition 5. Keeping fixed the number of generators and the cost parameter, when the
level of privatization decreases (λ→ 1) one has:

∂p∗

∂λ
< 0,

∂q∗r
∂λ

< 0,
∂q∗0
∂λ

> 0, q∗r ≤ q∗0.

Figure 2: (expected) optimal price and quantities (assuming α = 1 ).

Observing Figure 2 and from Proposition 5, one can note that consumer surplus increases
in λ, since, for a given number of generators, as the state-owned generator becomes less
private, the price decreases. In addition, although the amount of electric power generated
by private generators also decreases, it is not low enough to compensate the output increase
from the state-owned generator and, as a consequence, the total quantity generated increases.
In what follows, we present the main result of this section. Later on, we conduct a numerical
simulation in order to highlight these results.

Proposition 6. Keeping fixed the number of generators and the cost parameter, a fully
privatized state-owned generator (λ = 0) is the best policy to maximize generators’ profits,
as

∂π∗r
∂λ

< 0,
∂π∗0
∂λ

< 0, π∗r ≤ π∗0.

However, a pure state-owned generator (λ = 1) is the best policy to maximize consumer
surplus and social welfare, as

∂CS∗

∂λ
> 0,

∂SW ∗

∂λ
> 0.

These results are in line with those recently stated by Yasui and Haraguchi (2018) in

a similar environment.10 In particular, if firms compete in supply functions, any level of
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Figure 3: (expected) optimal profits (assuming α2 + σ2 = 10).

privatization makes the partially state-owned firm less aggressive, inducing private firms
also to behave less aggressively as well. Social welfare decreases because profit increases are
lower than the reduction of consumer surplus due to a higher price and a lower amount of
electricity traded, resulting from higher market power. Conversely, when the state-owned
generator remains in public hands, social welfare increases because, although generators’
profits decrease (see Figure 3), consumer surplus increases compensating the damage imposed
on generators’ profits due to a lower price and a higher amount of electric power generated
(see Figure 2). Indeed, since the marginal cost increases with the amount of output produced,
a lower price-cost margin is obtained. In other words, for a given number of generators, an
increase in the level of government participation in the state-owned generator is positive in
order to enhance electric power generation at moderate prices.

Hereinafter, we present the results concerning potential simultaneous variations in the
level of privatization and in the number of generators. Our results suggest that there is a
trade-off between these two parameters. As the model does not provide explicit functions
to check this insight, we conduct numerical simulations in order to check differences in
market outcomes between total privatization (λ = 0) and a pure mixed oligopoly (λ = 1)
for n = {1, 3, 5, 10}. Without loss of generality, we take α2 + σ2 = 10 and c = 1. First,
let us present the effect of λ and n in the consumer surplus. Our simulations show that
CS(n, 1, 1) > CS(n, 1, 0). After privatization, it is thus always necessary to increase the
number of generators to get the same level of consumer surplus of a pure mixed oligopoly,
i.e., CS(n, 1, 1) = CS(n̂, 1, 0) for some n̂ > n. To avoid integer problems, the number of
generators is treated as a continuous variable. Table 1 includes these numerical simulations.

λ = 1 CS λ = 0

n = 1 1.812 n̂ = 1.32
n = 3 2.883 n̂ = 3.09
n = 5 3.487 n̂ = 5.04
n = 10 4.133 n̂ = 10.001

Table 1: CS, privatization, and n.

Second, we focus on the social welfare, where SW (n, 1, 1) > SW (n, 1, 0) . It is also necessary
to increase the number of generators to get the same level of social welfare of a pure mixed
oligopoly, i.e., SW (n̄, 1, 1) = SW (n, 1, 0) for some n̄ > n. We notice that the number of

13



generators that meet the level of social welfare under a mixed oligopoly is lower than the
one needed to get the equivalent level of consumer surplus. This is because market power
exerted by the private oligopoly is higher when the number of generators decreases and thus,
it further enhances private firms’ profits at the cost of reducing consumer surplus. Table 2
includes these numerical simulations.

λ = 1 SW λ = 0

n = 1 3.284 n̄ = 1.07
n = 3 3.988 n̄ = 3.01
n = 5 4.282 n̄ = 5.001
n = 10 4.583 n̄ = 10.0001

Table 2: SW , privatization, and n.

In order to enhance consumer surplus, it is necessary to increase the number of generators. If
the number of generators in a private oligopoly is lower, private generators’ profits are surely
enhanced but consumer surplus will be lower than the one obtained in a mixed oligopoly.
In other words, if the goal of the government is to protect consumer surplus, competition
should be enhanced through an increase in the number of generators, and thus, lowering
entry barriers, or instead, keeping the state-owned generator in public hands. Our results
also suggest that, since electric power generation is often characterized by a reduced number
of generators competing in the market due to the high technological and regulatory entry
barriers, a compelling argument to maintain certain levels of public equities in the former
state-owned from partially privatized firms can be used.

5 Conclusions

Although liberalization was intended to enhance competition and, consequently, to provide
electric power at moderate prices without interruptions in the service, this does not seem to
be the case in many countries. Two features contribute to understanding this observation:
demand is often almost perfectly inelastic, and the market is highly concentrated. Indeed, in
the last twenty years, demand has increased and the entry barriers were maintained, yielding
higher generators’ market shares in narrow oligopolies.

We have presented in this paper a mixed oligopoly model where generators compete in a
supply function fashion, and where the state-owned generator can be partially (even fully)
privatized. In this context, consumer surplus and social welfare are enhanced when the
entry cost is low enough or, alternatively, when the state maintains the former generator’s
monopolist as a state-owned generator. Moreover, when cost increases, generators apply
higher price-cost margins yielding an increase in their market power. Our results suggest
that those countries where electric generation is provided by a few generators, the state
should probably control a significant volume of equities of the partially privatized state-
owned generator. Besides, it seems that an appropriate policy could also be to manage a
regulatory body of rules aimed to increase competition by entering more generators in the
market especially whenever the former incumbent has been almost fully privatized.

As a matter of fact, the framework we have worked with represents a particular approach
to a more general issue. To analyze a real-world electricity system, further research is
required. As mentioned above, the results of this paper imply that the optimal policy
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could be the nationalization of a public generator, and at the same time, removing entry
barriers. Possible extensions include a dynamic model with entering that could explain
the privatization of public generators. For example, the regulator could commit to either
privatize the public generator or not and, later, private firms could decide either to enter or
not, incurring, in the former case, a fixed entry cost. In this setting, entry could only occur if
the government commits to privatization.11 Additionally, incorporating spillovers in the case
of a privatization policy affecting the production cost, or cross-ownership would probably
enrich our analysis. We believe that those are subjects for future research.
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Appendix

Proofs of the main results

Proof of Theorem 1.
Given (n, c, λ) ∈ N × (0,+∞) × [0, 1], the optimal supply functions β∗0(n, c, λ) and

β∗r (n, c, λ) in (6) are obtained by combining the equations in (5). Let

Pn,c,λ(x) := a3x
3 + a2x

2 + a1x+ a0.

Since Pn,c,λ(0) = a0 < 0 and limx→+∞ Pn,c,λ(x) = +∞ (observe that a3 > 0 except for n = 1
and λ = 0, in which case a3 = 0 and a2 = c2 + 2c > 0), in virtue of the well-known Bolzano’s
Theorem one gets that Pn,c,λ has a positive root, say ξ depending on (n, c, λ).

Next we prove that the equilibrium given in (6) is unique. We just need to show that
the polynomial Pn,c,λ has a unique positive root. For that purpose, we apply differentiation
and study the polynomial P ′n,c,λ(x) = 3a3x

2 + 2a2x+a1 in order to analyze the monotonicity
and stationary points of Pn,c,λ. Let assume that n 6= 1 or λ 6= 0, and so a3 > 0. Otherwise,
it is easy to see that ϑ(1, c) is the unique positive root of P1,c,0. Thus, P ′n,c,λ(0) = a1 and

P ′n,c,λ(x) = 0 if and only if x = −a2±
√

∆
3a3

where ∆ := a2
2 − 3a1a3. We discuss the following

cases:

• If a1 < 0, then ∆ > a2
2 ≥ 0 and Pn,c,λ has two stationary points with different sign,

say x < 0 and x > 0. This means that Pn,c,λ is strictly decreasing in (0, x) and strictly
increasing in (x,+∞), and so it has a unique positive root.

• If a1 ≥ 0 and ∆ < 0, then Pn,c,λ has no stationary points and it is strictly increasing
in R, which shows that it has a unique positive root.

• If a1 ≥ 0 and ∆ ≥ 0, then we get a2 ≥ 0. This follows from the fact that

inf{a2 : a1 ≥ 0,∆ ≥ 0, n ∈ N, c ≥ 0, λ ∈ [0, 1]} = 0,

obtained by using the software BARON.12 Hence, in this case, Pn,c,λ has (at most two)
stationary points which are lower or equal than 0, and so it is strictly increasing in
(0,+∞), which shows again that Pn,c,λ has a unique positive root.

We finally observe that in all of the three cases above one has P ′n,c,λ(ξ) > 0.

Proof of Proposition 1.
Fixed c > 0, it can be checked (we omit the details) that 1

c+1
< ϑ(n, c) < ϑ(n+ 1, c) < 1

c

for all n ∈ N, and so, {ϑ(n, c)}n∈N is a (bounded) increasing sequence of positive numbers.

(i) Let λ ∈ (0, 1]. Recalling the polynomial Pn,c,λ introduced in Theorem 1, one gets

Pn,c,λ(ϑ(n, c)) =
λ

2n2

(
2n− (n+ c+ 1)2 + (n+ c+ 1)

√
(n− c− 1)2 + 4nc

)
< 0

(being this inequality equivalent to −4n2 < 0) and

Pn,c,λ(ϑ(n+ 1, c)) =
1

2c(n+ 1)3

(
uλ+ v

)
≥ 1

2c(n+ 1)3

(
u+ v

)
≥ 1

c(n+ 1)3
> 0 (9)
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where u = 6c−2n−3nc2+3nc−n2+2c2−cn2−2c2n2−nc3−cn3+(n2c+nc2+nc−2−2c−n)
√
w,

v = −3nc2 − 2cn2 − 4nc+ n2 − 9c2 − 8c+ 2n+ n3 − 2c3 + (nc+ n+ 5c+ n2 + 2c2 + 2)
√
w

and w = (n + c)2 + 4c. The first two inequalities in (9) follow from the fact that λ ∈ [0, 1],
u ≤ 0 and u+ v ≥ 2 since

sup{u : n ∈ N, c ≥ 0} = 0,

inf{u+ v : n ∈ N, c ≥ 0} = 2,

again by using the software BARON. Hence, by applying again the Bolzano’s Theorem one
has that ϑ(n, c) < β∗r (n, c, λ) < ϑ(n+ 1, c).

(ii) If λ = 0, one can write Pn,c,0(x) = (ncx2 + (1 + c− n)x− 1) · ((n− 1)cx+ 2 + c).
The unique positive root of that polynomial is β∗r (n, c, 0) = ϑ(n, c). The identity β∗0(n, c, 0) =
β∗r (n, c, 0) follows as a consequence of the expression of β∗0(n, c, 0).

Proof of Proposition 2.
Let ξ = β∗r (n, c, λ). In order to compute ∂ξ

∂λ
, we use that Pn,c,λ(ξ) = 0 and employ implicit

differentiation. Consequently, we get that

∂ξ

∂λ
= −Gn,c,λ(ξ)

P ′n,c,λ(ξ)

where Gn,c,λ(x) := ∂a3
∂λ
x3 + ∂a2

∂λ
x2 + ∂a1

∂λ
x + ∂a0

∂λ
= nc2x3 + (−3nc + c)x2 + (2n− c− 2)x + 1.

The proof of Theorem 1 guarantees that P ′n,c,λ(ξ) > 0. Thus, we just need to show that

Gn,c,λ(ξ) < 0. Since limx→−∞Gn,c,λ(x) = −∞, Gn,c,λ(0) = 1 > 0, Gn,c,λ(
1
c
) = −1

c
< 0 and

limx→+∞Gn,c,λ(x) = +∞, then Gn,c,λ has one negative root and two different positive roots.
Furthermore, one has

Gn,c,λ(ϑ(n, c)) =
1

2n2

(
2n− (n+ c+ 1)2 + (n+ c+ 1)

√
(n− c− 1)2 + 4nc

)
< 0

and so, as 0 < ϑ(n, c) < ξ < 1
c

and Gn,c,λ is continuous, then Gn,c,λ(ξ) < 0 and so ∂ξ
∂λ
> 0.

Now,
∂(β∗0 − β∗r )

∂λ
=
∂(β∗0 − β∗r )

∂ξ
· ∂ξ
∂λ

=
−nc2ξ2 + 2ncξ + 1− n

(1− cξ)2
· ∂ξ
∂λ

> 0

since ∂ξ
∂λ
> 0 and −nc2ξ2 + 2ncξ + 1− n > 0. Observe that the last inequality is equivalent

to Fn,c(ξ) > 0 where Fn,c(x) := −nc2x2 + 2ncx + 1 − n. Since Fn,c(x) > 0 if and only if

x ∈
(
n−
√
n

nc
, n+

√
n

nc

)
, and n−

√
n

nc
< ϑ(n, c) < ξ < 1

c
< n+

√
n

nc
, then Fn,c(ξ) > 0 and the conclusion

follows.

Proof of Proposition 3.
(i) It is a straightforward consequence of Proposition 1.

(ii) Let λ ∈ (0, 1]. The inequality β∗r (n, c, λ) < β∗0(n, c, λ) is equivalent to

ncξ2 + (1 + c− n)ξ − 1

1− cξ
> 0.
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By Proposition 1 one has 1− cξ > 0 and ncξ2 + (1 + c− n)ξ − 1 > 0 since ϑ(n, c) < ξ and
nc > 0. Thus, the claimed inequality holds.

(iii) It easily follows from Proposition 1 since β∗r (n, c, λ) < ϑ(n + 1, c) < β∗r (n + 1, c, λ)
if λ > 0, and the fact that {ϑ(n, c)}n∈N is a strictly increasing sequence and so β∗r (n, c, 0) =
ϑ(n, c) < ϑ(n+ 1, c) = β∗r (n+ 1, c, 0).

(iv) As ϑ(n, c) < β∗r (n, c, λ) < 1
c
, then one has

1

c
= lim

n→+∞
ϑ(n, c) ≤ lim

n→+∞
β∗r (n, c, λ) ≤ 1

c
,

and so limn→+∞ β
∗
r (n, c, λ) = 1

c
. Now we claim β∗0(n, c, λ) < 1

c
. Hence, by applying a similar

reasoning, we shall get limn→+∞ β
∗
0(n, c, λ) = 1

c
since β∗r (n, c, λ) ≤ β∗0(n, c, λ). The claim

β∗0(n, c, λ) < 1
c

is equivalent to (n − 1)c2ξ2 + c(3 + c − n)ξ − (1 + c) < 0. To see this we
distinguish two cases.

• If n = 1, then the above inequality holds if and only if ξ < 1+c
2c+c2

, and this is equivalent

to say that Pn,c,λ
(

1+c
2c+c2

)
> 0, which is true since further computations lead to

Pn,c,λ

(
1 + c

2c+ c2

)
=

1

c(2 + c)3

(
1 + c+ (c2 + 3c+ 3)(1− λ)

)
> 0.

• If n > 1, then the above inequality holds if and only if ξ <
n−c−3+

√
(n+c−1)2+4(1+c)

2c(n−1)
=:

θ(n, c), and this is equivalent to say that Pn,c,λ(θ(n, c)) > 0. Again, further computa-
tions lead to

Pn,c,λ(θ(n, c)) =
1

2c(n− 1)3

(
uλ+ v

)
≥ 1

2c(n− 1)3

(
u+ v

)
> 0 (10)

where u = −4nc2 − 6nc− c− 1− 2c2n2 − cn3 − nc3 + n2 − 4cn2 − 2n3 − 6n+ (2n2 +
n+ 1 + cn2 + nc2 + 3nc)

√
w, v = −1− 2nc+ n3− n2− n+ cn2 + c+ (2n− n2− 1)

√
w

and w = (n+ c− 1)2 + 4(1 + c). The first two inequalities in (10) follow from the fact
that λ ∈ [0, 1], u ≤ 0 and u+ v ≥ 0 since

sup{u : n ∈ N, c ≥ 0} = 0,

inf{u+ v : n ∈ N, c ≥ 0} = 0,

again by using the software BARON.

Proof of Proposition 4.
(i) Let ξ = β∗r (n, c, λ). In order to compute ∂ξ

∂c
, we use that Pn,c,λ(ξ) = 0 and employ

implicit differentiation. Consequently, we get

∂ξ

∂c
= −Hn,c,λ(ξ)

P ′n,c,λ(ξ)
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where Hn,c,λ(x) := b3x
3 + b2x

2 + b1x+ b0 with bi = ∂ai
∂c

for i = 0, 1, 2, 3, that is,

b3 = 2nc(n− 1 + λ),

b2 = −n2 + (4c+ 4− 3λ)n− 2c− 1 + λ,

b1 = −2n+ 2c+ 4− λ,
b0 = −1.

We know that P ′n,c,λ(ξ) > 0 (see the proof of Theorem 1). So next, we prove Hn,c,λ(ξ) ≥ 0

which ensures ∂ξ
∂c
≤ 0. Observe that Hn,c,λ(0) = b0 < 0 and limx→+∞Hn,c,λ(x) = +∞ (since

b3 > 0, except for n = 1 and λ = 0, in which case b3 = 0 and b2 = 2c + 2 > 0). Now, we
claim that Hn,c,λ(ϑ(n, c)) ≥ 0. Further computations lead to

Hn,c,λ(ϑ(n, c)) =
1

2c2n2

(
uλ+ v

)
≥ 1

2c2n2

(
u+ v

)
≥ 0 (11)

where u = (nc− 5c2 − 1 + n2 − n3 − 2c3 + n− 2nc2 − 4c− cn2) + (−n2 + 3c+ 2c2 + 1)
√
w,

v = (1 + c2n2 + 2c+ n4 − 2n3 + 2n3c+ 2n2 + c2 − 2n) + (n− 1 + n3 − n2 + cn2 − c)
√
w and

w = (n+ c− 1)2 + 4c. The two inequalities in (11) follow from the fact that λ ∈ [0, 1], u ≤ 0
and u+ v ≥ 0 since

sup{u : n ∈ N, c ≥ 0} = 0,

inf{u+ v : n ∈ N, c ≥ 0} = 0,

again by using the software BARON. Now, we study the monotonicity of the polynomial

Hn,c,λ(x) in R+. We have H ′n,c,λ(0) = b1 and H ′n,c,λ(x) = 0 if and only if x = −b2±
√

∆
3b3

where

∆ := b2
2 − 3b1b3. We discuss the following cases:

• If b1 < 0, then ∆ > b2
2 ≥ 0 and Hn,c,λ has two stationary points with different sign,

say z < 0 and z > 0. This means that Hn,c,λ is strictly decreasing in (0, z) and strictly
increasing in (z,+∞). Consequently, Hn,c,λ(z) < Hn,c,λ(0) < 0 and so, in virtue of
(11), one gets z < ϑ(n, c) ≤ ξ. Thus, Hn,c,λ(ξ) ≥ Hn,c,λ(ϑ(n, c)) ≥ 0.

• If b1 ≥ 0 and ∆ < 0, then Hn,c,λ has no stationary points and it is strictly increasing
in R, which shows that Hn,c,λ(ξ) ≥ Hn,c,λ(ϑ(n, c)) ≥ 0.

• If b1 ≥ 0 and ∆ ≥ 0, then we get b2 ≥ 0. This follows from the fact that

inf{b2 : b1 ≥ 0,∆ ≥ 0, n ∈ N, c ≥ 0, λ ∈ [0, 1]} = 0,

obtained by using the software BARON. Hence, in this case, Hn,c,λ has (at most two)
stationary points which are lower or equal than 0, and so it is strictly increasing in
(0,+∞), which shows again that Hn,c,λ(ξ) ≥ Hn,c,λ(ϑ(n, c)) ≥ 0.

Next we show that
∂β∗

0 (n,c,λ)

∂c
≤ ∂β∗

r (n,c,λ)
∂c

. By differentiation,

∂(β∗0 − β∗r )
∂c

=
∂(β∗0 − β∗r )

∂ξ
· ∂ξ
∂c

=
−nc2ξ2 + 2ncξ + 1− n

(1− cξ)2
· ∂ξ
∂c
≤ 0

since ∂ξ
∂c
≤ 0 and −nc2ξ2 + 2ncξ + 1− n > 0 (see the proof of Proposition 2)).

(ii) and (iii) can be derived from Propositions 1 and 3. Since ϑ(n, c) ≤ β∗r (n, c, λ) ≤
β∗0(n, c, λ) < 1

c
, the conclusion follows by taking limits.
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Proof of Proposition 5.
It follows from Propositions 1 and 2, since ∂ξ

∂λ
> 0 and 1− cξ > 0. Thus,

∂p∗

∂λ
=

∂

∂λ

(
(α + ε) · 1− cξ

ξ(2− cξ)

)
= (α + ε) · −c

2ξ2 − 2(1− cξ)
[ξ(2− cξ)]2

· ∂ξ
∂λ

< 0,

∂q∗r
∂λ

=
∂

∂λ

(
(α + ε) · 1− cξ

2− cξ

)
= (α + ε) · −c

[ξ(2− cξ)]2
· ∂ξ
∂λ

< 0, and

∂q∗0
∂λ

=
∂

∂λ

(
(α + ε) · (n− 1)cξ2 + (2 + c− n)ξ − 1

ξ(2− cξ)

)
= (α+ε)·(c

2 + nc)ξ2 + 2(1− cξ)
[ξ(2− cξ)]2

·∂ξ
∂λ

> 0.

Proof of Proposition 6.
Observe that

π∗r − π∗0 = (α + ε)2 · w4ξ
4 + w3ξ

3 + w2ξ
2 + w1ξ + w0

2ξ2(2− cξ)2

where w4 = c3(n2−2n), w3 = 2c3(n−1)−2c2(n2−4n+1), w2 = c3+c2(8−4n)+c(n2−8n+5),
w1 = −2c2 + 2c(n− 4) + 2(n− 1) and w0 = 2 + c. Letting Wn,c(x) = w4x

4 +w3x
3 +w2x

2 +
w1x + w0, we just need to show Wn,c(ξ) ≤ 0 so as to conclude π∗r ≤ π∗0. For that purpose,
we distinguish three cases.

• If n = 1, then w4 = −c3 < 0 and so limx→±∞W1,c(x) = −∞. The degree 4 polynomial

W1,c(x) has four real roots: κ1,2 := −c±
√
c2+4c

2c
and κ3,4 := 4+c±

√
c2+4c+8
2c

. It can be shown
that κ2 < κ1 < κ4 < κ3. Now, we claim κ1 ≤ γ ≤ κ4, which implies W1,c(ξ) ≤ 0. The
inequality κ1 ≤ γ has been stated in Theorem 1, whereas the second inequality follows
from the monotonicity of P1,c,λ and the fact that

P1,c,λ(κ4) =
1

2c
(uλ+ v) ≥ 1

2c
(u+ v) ≥ 0, (12)

where u = (c3 + 6c2 + 16c+ 16)− (c2 + 4c+ 6)
√
w, v = (2c3 + 12c2 + 28c+ 24)− (2c2 +

8c+ 8)
√
w and w = c2 + 4c+ 8. The first inequality in (12) follows because u ≤ 0, and

the second one because u+ v ≥ 0. Thus, the conclusion follows.

• If n = 2, then w4 = 0, w3 = 2c3 + 6c2 > 0 and so limx→±∞W2,c(x) = ±∞, respectively.

The degree 3 polynomial W2,c(x) has three real roots: κ1,2 = 1−c±
√
c2+6c+1
4c

and κ3 =
c+2
c(c+3)

. It can be shown that κ2 < κ1 < κ3. Now, we claim κ1 ≤ γ ≤ κ3, which implies

W2,c(ξ) ≤ 0. We just need to show γ ≤ κ3, which follows as a consequence of the
monotonicity of P2,c,λ and the fact that

P2,c,λ(κ3) =
2c2 + 12c+ 16− λ(c2 + 5c+ 8)

c(c+ 3)2
≥ 0.

• If n > 2, then w4 > 0 and so limx→±∞Wn,c(x) = +∞. The degree 4 polynomial Wn,c(x)

has four real roots: κ1,2 :=
(n−c−1)±

√
(n−c−1)2+4nc

2nc
and κ3,4 :=

(n−c−5)±
√

(n−c−1)2+4nc+8

2(n−2)c
.
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It can be shown that κ4 < κ2 < κ1 < κ3. Now, we claim κ1 ≤ γ ≤ κ3, which implies
Wn,c(ξ) ≤ 0. The inequality κ1 ≤ γ has been stated in Theorem 1, whereas the second
inequality follows from the monotonicity of Pn,c,λ and the fact that

Pn,c,λ(κ3) =
1

2c(n− 2)3
(uλ+ v) ≥ 1

2c(n− 2)3
(u+ v) ≥ 0, (13)

where u = (−6nc2 + 4n2 − 2c2n2 − nc3 − cn3 − 4n3 + 6 − 22n − 7cn − 8cn2 + 2c2) +
(5cn+nc2 + 2 + cn2− 2c+ 4n2)

√
w, v = (−6− 10c− 12n− 6nc2− 4cn2− 14cn− 6c2−

2c3 − 6n2) + (10n+ 4c+ 2c2 − 2 + 4nc)
√
w and w = 9− 2n+ 2c+ n2 + 2cn+ c2. The

two inequalities in (13) follow from the fact that λ ∈ [0, 1], u ≤ 0 and u+ v ≥ 0 since

sup{u : n ∈ N, n ≥ 3, c ≥ 0} = 0,

inf{u+ v : n ∈ N, n ≥ 3, c ≥ 0} = 0,

again by using the software BARON. Thus, the conclusion follows.

Next, we prove
∂π∗

0

∂λ
< 0. Since π∗0 = p∗q∗0 − c

2
(q∗0)2 = (α + ε)2 · β∗

0−
c
2

(β∗
0 )2

(1+β∗
0+nβ∗

r )2
, then

∂π∗0
∂λ

=
∂π∗0
∂β∗r
· ∂β

∗
r

∂λ
+
∂π∗0
∂β∗0
· ∂β

∗
0

∂λ
.

By Proposition 2 we know that
∂β∗

0

∂λ
> 0 and ∂β∗

r

∂λ
> 0. Now, we observe that

∂π∗0
∂β∗r

= (α + ε)2 · −nβ
∗
0(2− cβ∗0)

(1 + β∗0 + nβ∗r )
3
< 0,

∂π∗0
∂β∗0

= (α + ε)2 · (1 + nβ∗r )(1− cβ∗0)− β∗0
(1 + β∗0 + nβ∗r )

3
≤ 0,

which ensures that
∂π∗

0

∂λ
< 0, since 1− cβ∗0 > 0 (see the proof of Proposition 3) and

(1 + nβ∗r )(1− cβ∗0) ≤ (1 + nβ∗r )(1− cβ∗r ) ≤ β∗r ≤ β∗0 ,

which follow from the fact that ϑ(n, c) ≤ β∗r ≤ β∗0 (see Propositions 1 and 3).

Now we show

∂π∗r
∂λ

=
∂

∂λ

(
(α + ε)2 · (1− cξ)2

2ξ(2− cξ)

)
= (α + ε)2 · −(1− cξ)

[ξ(2− cξ)]2
· ∂ξ
∂λ

< 0.

We next prove ∂CS∗

∂λ
> 0. Since CS∗ = (α + ε)2 · (β∗

0+nβ∗
r )2

2(1+β∗
0+nβ∗

r )2
, then

∂CS∗

∂λ
=
∂CS∗

∂β∗r
· ∂β

∗
r

∂λ
+
∂CS∗

∂β∗0
· ∂β

∗
0

∂λ
.

By Proposition 2 we know that
∂β∗

0

∂λ
> 0 and ∂β∗

r

∂λ
> 0. Now, we observe that

∂CS∗

∂β∗r
= (α + ε)2 · n(β∗0 + nβ∗r )

(1 + β∗0 + nβ∗r )
3
> 0 and

∂CS∗

∂β∗0
= (α + ε)2 · β∗0 + nβ∗r

(1 + β∗0 + nβ∗r )
3
> 0,
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which ensures ∂CS∗

∂λ
> 0.

Finally, we show ∂SW ∗

∂λ
> 0. Since SW ∗ = (α+ε)2 · (β∗

0+nβ∗
r )2+2(β∗

0+nβ∗
r )−c((β∗

0 )2+n(β∗
r )2)

2(1+β∗
0+nβ∗

r )2
, then

∂SW ∗

∂λ
=
∂SW ∗

∂β∗r
· ∂β

∗
r

∂λ
+
∂SW ∗

∂β∗0
· ∂β

∗
0

∂λ
.

By Proposition 2 we know that
∂β∗

0

∂λ
> 0 and ∂β∗

r

∂λ
> 0. Now, we observe that

∂SW ∗

∂β∗r
= (α + ε)2 · n((1− cβ∗r ) + cβ∗0(β∗0 − β∗r ))

(1 + β∗0 + nβ∗r )
3

> 0,

∂SW ∗

∂β∗0
= (α + ε)2 · 1− cβ∗0 − ncβ∗0β∗r + nc(β∗r )

2

(1 + β∗0 + nβ∗r )
3

≥ 0,

which ensures ∂SW ∗

∂λ
> 0. We just need to show that 1− cβ∗0 − ncβ∗0β∗r + nc(β∗r )

2 ≥ 0. This
inequality is equivalent to

β∗0 + nβ∗r (β
∗
0 − β∗r ) ≤

1

c
. (14)

Since β∗0 and β∗r are functions of the privatization parameter λ, we define `(λ) := β∗0 +
nβ∗r (β

∗
0 − β∗r ). Now, we see that ` is an increasing function of λ. For that purpose, we write

`(λ) = β∗0 + nβ∗rβ
∗
t by introducing β∗t := β∗0 − β∗r ≥ 0. Thus,

d`

dλ
=

∂`

∂β∗0
· ∂β

∗
0

∂λ
+

∂`

∂β∗r
· ∂β

∗
r

∂λ
+

∂`

∂β∗t
· ∂β

∗
t

∂λ
=
∂β∗0
∂λ

+ nβ∗t ·
∂β∗r
∂λ

+ nβ∗r ·
∂β∗t
∂λ
≥ 0

in virtue of Proposition 2. Thus, `′(λ) ≥ 0 and so `(λ) ≤ `(1) = β∗0(1)+nβ∗r (1)(β∗0(1)−β∗r (1))

for all λ ∈ [0, 1]. By letting ξ̃ = β∗r (1), then in virtue of (8) we get

β∗0(1) =
1 + ncξ̃2

c(1 + nξ̃)

and so `(λ) ≤ `(1) = 1
c
. Thus, (14) is proved and the proof of the proposition concludes.
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Notes

1. Indeed, there can be two extreme cases: the policy-maker may privatize a monopolistic state-owned firm
without opening-up the market to competitors (privatization without liberalization), or opening-up the
market retaining the full ownership of the public firm (liberalization without privatization).

2. Indeed, in most of the bidding systems, generators submit day-ahead offers on an hourly basis according to
the future demand forecast.

3. Other approaches use Cournot models to describe some features of the electricity generation market. See
for instance Borenstein and Bushnell (1999) for California’s case.

4. Admittedly, our results depend on the competition mode assumed, namely, the supply function competition.
However, they are also in line with the results mentioned above in a homogeneous or differentiated oligopoly
with an exogenous number of firms suggesting that privatization is more likely to be beneficial when the
market is more competitive.

5. For instance, Wolfram (1999) presents an empirical study of market power in the British electricity industry
or Borenstein and Bushnell (1999) analyze how the wave of liberalization and restructuring in the US
electricity market has modified the incentives to exert horizontal market power.

6. A model of supply function competition with a Stackelberg leader can be found in Delbono and Lambertini
(2018).

7. A deep explanation about this point can be found in Klemperer and Meyer (1989).

8. As stated in De Fraja and Delbono (1990), if each firm’s marginal cost is constant the public firm will impose
the rule of pricing at marginal cost. This is true independently of the relative efficiency of private and public
firms. We abstract from this issue by considering increasing marginal costs, as it is the case in electric power
generation.

9. It is possible to specify a more general setting where supply functions are defined as qi = υi +βipi. However,
when the marginal cost has a zero intercept, a supply function equilibrium of the form qi = βipi exists
(see Klemperer and Meyer (1989)). For the sake of simplicity and without loss of generality, and following
Ciarreta and Gutiérrez-Hita (2006, 2012) and Delbono and Lambertini (2015), we take υi = 0.

10. In a very recent paper, Futagami et al. (2019) also show that an increase in the degree of privatization
increases the market price in a wide range of parameter spaces when a Markov-perfect Nash equilibrium is
considered.

11. We thank a referee for suggesting this approach.

12. The optimal value of the above mixed-integer non-linear programming (MINLP) problem has been obtained
by using the MATLAB/BARON interface of the software BARON developed by N. V. Sahinidis’s research
group (see Sahinidis et al. (2018), and Kronqvist et al. (2019) for a review on MINLP solvers).
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