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Abstract 

 
In this work, a fundamental and systematic study was conducted, leading to a better 

understanding of the phenomena occurring on the catalyst’s surface during the NOx reduction 

process in NSR systems. For this purpose, ceria-based catalysts, with Cu in substitution of noble 

metal, have been synthesized and deeply characterized by means of XRF, XPS, in situ (XRD, 

Raman spectroscopy and DRIFTS), temperature-programmed reduction under H2 (H2-TPR) and 

under NO reaction (NO isothermal reaction + NO-TPR). The whole results show the key role of 

copper to promote the reducibility and the creation of oxygen vacancies, allowing a high NO 

consumption and fast kinetics of N2O and N2 formation, until the oxygen vacancies consumption 

takes place. The study of the surface reactions taking place in the formation of adsorbed NOx 

species and the oxygen vacancies consumption with NO uptake is complex; however, a hydroxyl 

consumption route is found to be involved. The reduction of NO provided higher levels of N2 at 

higher temperatures; also, a very high efficiency of the previously created oxygen vacancies was 

found for this process.  
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1. Introduction 

Efficient light-duty vehicles with very low CO2 emissions are one effective 

measure to help approaching the problem of global warming. For this reason, the 

popularization of fuel-efficient diesel and lean-burn gasoline cars is very extended. In this 

context, limiting NOx emissions from their exhausts is a critical question [1]. From 

September 2019 on all new diesel cars are required to meet a higher level of NOx 

emissions regulations, regulated by the so-called RDE (Real Driving Emissions) and 

WLTP (Worldwide Harmonized Light-Duty Test Procedure). NOx levels are restricted to 

be below the RDE limits of 168 mg·km-1. In January 2020 and 2021, the RDE NOx limits 

decrease to 120 mg·mile-1 [2]. To meet these increasingly stringent emissions regulations 

worldwide, the development of a high performance deNOx system results of paramount 

importance. 

Nowadays, diesel NOx aftertreatment methods such as urea-SCR (Selective 

Catalytic Reduction) and lean NOx traps (or their combinations) are supposed to require 

modifications or improvements in order to fulfil these demanding regulations [3]. In this 

sense, vehicles having SCR as NOx removal strategy, are expected to suffer from a 50% 

increase in urea consumption from present Euro 6 to meet future RDE standards. Lean 

NOx traps (LNTs) are presently the leading deNOx concept for the compact lean-burn 

passenger cars due to requirements of space for the SCR system (urea tank and so on) 

[4,5]. One important drawback of the NSR concept is the decrease in NOx conversions 

under high gas flow conditions and the limited operating temperature window to achieve 

the required levels of high NOx removal [4,5]. As a result, several efforts are made on 

improving this technology as well as reducing the expensive PGM (Platinum Group 

Metal) contents.  

Taking the above into consideration, more efficient, alternative or advanced 

exhaust emissions after-treatment technologies for lean-burn engines will be required. 

The Di-Air strategy [6–8], under development by Toyota, shows certain evidences to 

meet the future NOx emission requirements under real operation conditions. The Di-Air 

system achieves high NOx conversion levels (above 80%) even up to 800°C and high 

GHSV (Gas Hourly Space Velocity). This concept aimed at making the most of the NSR 

function by increasing the frequency of the rich/lean cycles though supplying the 

reductant over short periods, upstream of the NSR catalyst. Fast HC injection pulses 

achieve to maximise the fact that N2 is formed also during a certain number of seconds 
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after switching from the rich to the lean period (and not only during the rich step) [9]. 

However, the deep knowledge on the role of each catalyst ingredient is crucial for 

understanding how the system runs and its further improvement. 

The formulation of a NSR (NOx Storage - Reduction) catalyst is very complex; in 

fact, over the alumina support, with the corresponding stabilizers (La and/or Ba), different 

elements are present with different functions. PGMs like Pt, Pd and Rh are responsible 

for oxidation/reduction reaction and alkaline and alkaline-earth metals like Ba and K are 

necessary to store NOx onto the catalyst surface. Ceria-based oxides are added as Oxygen 

Storage compounds and can operate as “active” supports and/or co-catalysts in several 

important environmental applications (Three-Way Catalysts - TWCs, LNTs, catalysed 

soot filters, and so on.) [10,11]. CeO2 is an essential catalyst component in the Di-Air 

system as well, due to the above-mentioned redox properties, since it can act as an oxygen 

buffer [12–14]. Under rich (fuel injection) conditions, its surface and lattice oxygen can 

react with hydrocarbons, CO and H2 [12,13]. The injection of HCs is a key issue to 

promote a relevant reduction degree of ceria. Besides, Yoshida et al. [7] reported that the 

amount of generated N2 in a NSR catalyst including the ceria component was larger than 

without the ceria presence under lean/rich cycles. However, the specific role of CeO2 (and 

also of other components) in this context is still under debate. 

Wang et al. [15] investigated the role of the ceria component in the NSR process. 

According to these authors, NO can dissociate on oxygen anion defects, thus filling these 

vacancies with oxygen anions and forming N2; and, as pointed out by Wang et al., the 

carbonaceous deposits in case the catalyst was reduced by C3H6, are oxidized by oxygen 

species originated from lattice oxygen [15, 16]. Even though these findings open a new 

perspective on the understanding of ceria as deNOx catalyst, additional advances on this 

topic would be welcome due to the urgent needs of extremely effective exhaust-emission 

after-treatment technologies of NOx reduction.  

Considering that NSR processes are under revision and re-evaluation, due to the 

lean NOx emission control, the more stringent coming regulations make these 

investigations extremely challenging, owing to the catalytic materials of last generations 

involved, which contain more and more ceria in their formulations. The roles and 

influences of these ceria-based materials in the processes’ dynamics should be 

considered. Therefore, our motivation is to conduct a fundamental study selecting model 

ceria/zirconia-based catalysts (without noble metals) to better understand the phenomena 

occurring on the catalyst during NO reduction under simplified and controlled reaction 
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conditions. For this purpose, we have focused our attention on the physicochemical 

surface and bulk transformations of the catalysts during a pre-treatment at high 

temperature in inert atmosphere and under H2. These studies have been performed using 

in situ techniques, like X-ray Diffraction (XRD), Raman spectroscopy and DRIFTS 

(Diffuse Reflectance for Infrared Fourier Transform Spectroscopy). Then, the catalytic 

performances towards reduction of NO over pre-reduced catalysts have been studied, by 

means of micro-reactor experiments and surface characterization by in situ DRIFTS, 

providing the complementary overview of the chemistry governing the process. 

 

2. Experimental 

 

2.1. Catalysts preparation 

Two ceria-based catalysts were prepared, namely Ce0.8Zr0.2O2 (denoted as CZ), 

and Cu(2%)Ce0.8Zr0.2O2 (named as Cu2CZ) containing 2 wt% of copper. The choice of 

the particular formulation Ce0.8Zr0.2O2 for the support has been done according to our 

previous optimisation studies [17,18 and references herein]. A detailed description of the 

synthesis procedure followed for their preparation can be found elsewhere [17]. Briefly, 

ceria-zirconia was prepared by co-precipitation of cerium and zirconium hydroxides. For 

this purpose, the corresponding cerium and zirconium precursor salts (NH4)2Ce(NO3)6 

(Panreac, 99.0% purity), and ZrO(NO3)2·xH2O (Sigma-Aldrich, x ≈ 6) were dissolved 

together in distilled water and co-precipitated by dropwise addition of an ammonia (10%) 

solution. After filtration, these hydroxides were calcined at 500ºC in air for 1 hour in 

order to obtain the CZ catalyst.  

 The incorporation of copper to obtain the Cu2CZ sample was conducted by 

incipient wetness impregnation, by dissolving the corresponding amount of 

Cu(NO3)2·3H2O (Panreac, 99.0% purity) in the proper volume of distilled water. Then 

the catalyst was dried and calcined under air at 500ºC for 1 hour.  

 

 

2.2. Characterization techniques 

A very complete characterization analysis of the surface, textural and structural 

properties of fresh CZ and Cu2CZ samples is described in depth elsewhere [17,18].  
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Nevertheless, some in situ techniques such as XRD, Raman spectroscopy, DRIFTS were 

employed in this work in order to investigate the possible transformations of the catalysts 

during some specific reaction steps.  

In situ XRD device comprised a PANalytical Empyrean diffractometer, coupled 

to a PIXcel3D detector. Additionally, in order to keep a controlled temperature and 

atmosphere, an Anton Para XRK 900 reaction chamber was used. Diffractograms were 

recorded using the CuKα radiation (λ = 0.15418 nm) in a 2θ interval between 10º and 90º, 

using a step size of 0.01º every 0.24 seconds. The diffractogram acquisition was 

performed in 9 consecutive steps, where steps 1-5 correspond to the conditioning of the 

samples in Ar up to 500ºC: step 1 at 25ºC, step 2 at 300ºC after 10 min, step 3 at 400ºC 

after 10 min, step 4 at 500ºC after 10 min and step 5 at 500ºC after 30 min); step 6 

correspond to cooling down to 350ºC under inert atmosphere; and steps 7-9 correspond 

to the reduction step in H2 (2000 ppm in Ar) at 350ºC: step 7 after 30 min, step 8 after 60 

min, and step 9 after cooling down at 25ºC under H2/Ar  (see description of steps in Table 

1).  

In situ Raman spectroscopy was performed in a LabRAM (Jobin Yvon) dispersive 

model, coupled to a microscope, using an infrared laser (632.8 nm, He-Ne) as radiation 

source and a CCD as detector (cooled by Peltier effect). The whole analysis was 

performed in a LinkCam FTIR600 chamber, in order to control temperature and 

atmosphere, with a refrigeration system. In this case, the same flow and gas 

concentrations were employed regarding in situ XRD. Spectra were collected in 4 

consecutive steps, being steps 1-2 the corresponding to the conditioning in Ar: heating up 

to 500°C, where step 1 is at 25ºC and step 2 at 500ºC; and steps 3-4 the corresponding to 

the reduction in H2 (2000ppm in Ar) at 350ºC (step 3) and cooling down to 25ºC (step 4).  

All the Raman spectra presented in this work were normalized to the intensity of 

the main F2g band. Some authors point out that changes in atmosphere and/or temperature 

might slightly affect the Raman bands position and width [19]. For this reason, a careful 

analysis, along with in situ XRD results, will be carried out in order to provide reasonable 

hypothesis to explain the phenomena taking place, considering these intrinsic difficulties. 

Finally, in situ DRIFTS experiments were performed in a Jasco device, FT-IR 

4000 Series model, comprising a Harrick high-temperature reaction chamber, coupled to 

a MCT detector refrigerated with liquid nitrogen. Spectra have been collected between 

4000–500 cm-1 (4 cm-1 resolution and 16 scans per spectrum) during the conditioning and 

the reduction steps already described, and also during the catalytic tests in NO (see 
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below). Since Cu2CZ is a dark sample, it had to be diluted with KBr (as non-absorbent 

component) in order to make more visible the bands features. This characterization 

technique allows the identification of surface species and monitoring of the surface 

transformations that are taking place during the different parts of the experiment for the 

catalysts studied. These surface analyses are of paramount importance for the elucidation 

of the catalytic performance and a proper correlation with the surface and bulk properties 

of the catalysts. It is worth to note that at the highest temperatures (i.e. 500°C), the 

recorded spectra might suffer a certain signal loss. Nevertheless, this does not influence 

substantially on the interpretation of the DRIFTS data. 

 

 

2.3. Catalytic measurements 

Catalytic tests were conducted in a microreactor directly coupled to a mass 

spectrometer (Thermostar 200, Pfeiffer), a UV analyser (LIMAS 11HW, ABB) and a 

micro-gas chromatograph (3000A, Agilent). The inner diameter of the tubular quartz 

microreactor used was 0.6 mm. For each experiment, 60 mg of powder catalyst were 

mixed with 60 mg of powder quartz and placed inside the microreactor; the total flow rate 

was kept in 100 ml/min during the whole experiments  

The catalytic systems, both CZ and Cu2CZ, were pre-reduced at 350°C, under 

identical conditions; then, two consecutive experiments have been performed for each 

sample: isothermal stage and under heating ramp experiment. In the isothermal 

experiment, NO (1000 ppm in He) is fed to the reactor at 50°C and 250°C until the steady 

state was reached. Then, the temperature was increased maintaining the NO supply (NO-

TPR) up to 500°C (10°C/min). 

 

 

3. Results and discussion 

3.1. Structural and textural characterization 

XRD and Raman characterization of both CZ and Cu2CZ show the typical fluorite 

structure of ceria. CuO segregated phase (tenorite) was not detected for this catalyst with 

a 2% of copper loading. Average crystal sizes of 5.5 and 5.9 nm were determined by the 

Scherrer’s equation for CZ and Cu2CZ, respectively. The bulk compositions of both 
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catalysts were measured by XRF which showed values very close to the nominal ones. 

The corresponding BET surface areas yielded results of 96 and 71 m2/g, respectively. 

These data, along with the trend in the decrease of the specific pore volume (0.090 versus 

0.065 cm3/g) [17], reflect a certain pore blocking in Ce0.8Zr0.2O2 upon copper 

incorporation on its surface. Detailed XPS analysis revealed consistent results since a 

very good distribution of copper inside the accessible porosity was confirmed with copper 

enrichment value of 1.85 (reproducible value in several batches as reported [17]). The 

good copper distribution onto the support’s surface was evidenced indirectly because this 

phenomenon is supposed to promote copper/ceria-zirconia interfacial interactions that 

created synergisms improving redox properties [18]. More details on the catalysts’ 

characterization are reported elsewhere [17,18]. 

 

3.2. In situ characterization 

 The first objective of this characterization was conducting a detailed in situ 

analysis to understand the modifications of the catalysts during the pre-reduction step of 

the catalyst (under H2), thus approaching in a following step the reactivity of NO over 

these pre-reduced solids. In this sense, catalysts were heated up to 500ºC under inert 

atmosphere and then were reduced in H2 (see Experimental section). 

Figure 1A depicts the different X-ray diffractograms obtained for ceria-zirconia 

in inert atmosphere at 500°C, and in H2 at 350ºC. In all cases, diffraction peaks 

attributable to cubic fluorite structure are observed, corresponding to (111), (200), (220) 

and (300) reflections, characteristic of ceria [20,21]. On the other hand, these 

diffractograms do not show either an increase in crystal size or the appearance of new 

peaks (associated with the segregation/formation of new phases in the solid during these 

treatments). Similarly, Cu2CZ also shows a fluorite cubic-type structure. As observed in 

Figure 1B for Cu2CZ sample, new peaks attributable to a possible new CuO (tenorite) 

segregated phase are not appreciated, since they would appear at 35.5º and 38.8º [22]. 

Therefore, the analysis of the diffractograms shows that copper is well dispersed onto the 

ceria-zirconia, along the conditioning and reduction steps.  

Table 1 collects the lattice parameters and average crystal sizes of the model 

catalysts during the different steps of the experimental procedure. If the lattice parameters 

and average crystal sizes are compared, considering the “fresh” sample as the first 

diffractogram (under Ar at 25ºC), it can be observed that during the steps of the procedure, 

no significant changes are detected either in CZ or in Cu2CZ, despite the thermal 
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treatment. It can be inferred that no remarkable distortion of the ceria-zirconia lattice is 

taking place and that particle sintering is not evidenced.  

Nevertheless, it can be observed that during the steps of the procedure, a trend of 

very slight increase in the lattice parameter values is seen when increasing the 

temperature. According to the literature [19 and references herein], the fact that this 

increase is reversible once the temperature is cooled back to room temperature, for CZ, 

suggests that it does not relate to any major chemical change taking place within the 

material and rather the changes are due to the reversible thermal expansion of the fluorite 

lattice. Conversely, Cu2CZ shows a slightly higher value after cooling down to room 

temperature, which might be an evidence of chemical lattice expansion related to the 

formation of oxygen vacancies (0.539 versus 0.535 nm). This hypothesis is supported by 

additional techniques, as will be discussed below. 

Figure 2A plots the in situ Raman spectra performed with the CZ sample for the 

different stages of the experiment. In the range of 550-350 cm-1, a sharp and intense band 

appears which is attributed to the vibrational F2g mode, characteristic of the fluorite-type 

structure of ceria, which can be considered as a symmetrical Ce-O-Ce stretch [19,23]. 

Additionally, a minor band at about 610 cm-1 also appears, which is ascribed to the oxygen 

vacancies in the ceria-zirconia lattice [24–26]. It should be noted that the intensity of this 

band barely increases after in situ treatment, which suggests that this sample is not easily 

reducible at a bulk level. 

With respect to Cu2CZ, Figure 2B depicts its normalized Raman spectra in 

different stages. These spectra keep the main peak position in the range of 550-350 cm-1, 

which belongs to the F2g Raman mode of a fluorite-type structure. In addition, a very 

pronounced band adjacent to the main peak appears at around 610 cm-1, attributed to the 

oxygen vacancies. According to the different spectra shown, important changes occur in 

the band intensity, associated with oxygen vacancies when thermal treatments are carried 

out (see Supplementary Material for additional explanations). Mainly, this band arises 

after finishing the pre-reduction in H2, which is an important evidence of a considerable 

amount of oxygen vacancies generation in this sample, compared to its initial state. 

Therefore, the presence of vacancies within the sample is abundant after the reduction 

step, as it is clearly evidenced by Raman spectroscopy. 

Since the intensity and the position of the Raman bands can be dependent on the 

temperature and reaction atmosphere [19], Figure 3 presents a proper comparison of the 

samples under the same in situ treatment conditions: the pre-reduction step. After pre-
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reduction in H2, it can be observed that the oxygen vacancies concentration is much higher 

in Cu2CZ than in CZ. In fact, the ratio between the intensity of the vacancy band and that 

of the F2g mode can be compared, yielding the values of 0.04 for CZ and 0.26 for Cu2CZ.  

It is worth taking this fact into consideration, because as will be explained later, they will 

have a very active role in the reaction with NO [27]. The results obtained by in situ XRD 

and in situ Raman are perfectly in line. Indeed, Raman spectroscopy is sensitive to the 

formation of defects in ceria-based materials, which allows monitoring the anionic 

vacancies’ population during the in situ analysis [24–26].  

In situ DRIFTS provides a surface characterization of the catalysts, allowing us to 

obtain a better understanding of the catalysts’ features. It is worth noting that in the case 

of ceria-based materials, the study of their surface is complex, because they present a 

large amount of surface species; such as several types of hydroxyl groups and carbonates 

of various configurations and geometry. This makes the identification and assignment of 

the surface groups with the corresponding DRIFTS bands a difficult task. 

In Figures 4A and B the spectra recorded over CZ and Cu2CZ, during the 

conditioning stage under inert atmosphere, are reported. The complexity of the different 

surface species adsorbed on the catalysts can be verified by the presence of several bands. 

One of the most important characteristics of ceria-based materials (such as ceria-

zirconia), is the possibility that CO2 in the gas phase can be adsorbed in the most external 

porosity and it can also act as Lewis acid towards O2- surface ions and OH surface groups, 

thus forming various carbonate species [28]. In this sense, the bands appeared at 

approximately 1550, 1320, 1100 and 1050 cm-1 are attributable to surface polydentate 

carbonate-type species (tridentate and bidentate), with characteristic vibration modes of 

the C-O bond stretch [28,29]. Therefore, the existence of superficial carbonate-like 

species in our ceria-based catalysts is confirmed (Figure 4). 

If the characteristic zone of the carbonates species is carefully analyzed, a relevant 

evolution can be observed upon temperature increase in the range of 200-300ºC. In these 

range of temperatures, the spectra change from a clear double broad band (at 

approximately 1550 and 1320 cm-1) to different narrower and more defined peaks. This 

can be attributed to transformations among different types of carbonate species during the 

heating process. There are also two important bands at 1050 and 1100 cm-1 that disappear 

at higher temperatures (500ºC), most likely related to polydentate/tridentate carbonate 

species and to bridged carbonate species, respectively [29,30]. Additionally, there are 

bands assigned to formate species also starting at 200ºC (as will be confirmed below, after 
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analyzing another region of the spectra), whose vibrational modes are ascribed to the C-

O bond stretch at 1550 and 1350 cm-1 (asymmetric ν(CO) and symmetric ν(CO), 

respectively); and O-C-H bending at 1371 cm-1 (δ(OCH)) [29,31,32]. In general, the pre-

treatment at 500ºC transforms and/or removes a part of the carbonate population present 

in the samples, with the exception of the most thermostable ones. For this reason, a 

wavelength interval without enough resolution between 1550 and 1300 cm-1 can be found, 

assignable to various types of carbonates, after this pre-conditioning. 

Another relevant aspect in the catalysts under study is the huge and wide 

asymmetric band that covers the range of 3700-2500 cm-1 (Figure 5), devoted to the 

hydrogen bonds interactions of the water molecules adsorbed on the solid [23]. 

Additionally, the small band at about 3688 cm-1 (only visible for CZ) can be assigned to 

the O-H stretch mode of the OH groups coordinated with a Ce cation on the catalyst’s 

surface (type I; terminal), according to the assignments carried out by several authors 

[23,30,33]. 

Upon temperature increase, a considerable intensity loss of the wide band 

associated with the adsorbed water is observed (3700-2500 cm-1), which indicates the 

desorption of water molecules from the surface. In turn, a series of bands associated with 

hydroxyl groups (3750-3600 cm-1) starts to become visible, especially from 200-300ºC. 

In the CZ, the appearance along time of the double band located at about 3630 and 3660 

cm-1 in the hydroxyl zone is attributed to O-H bond stretch vibrations of hydroxyls (type 

II-B and II-A, respectively) [30,34], which are characterized of being simultaneously 

bonded to two cerium centers of the sample. However, in the case of II-B type hydroxyls, 

they have an anionic vacancy adjacent to this adsorbed group, as illustrated in Figure 6 

(right). Therefore, the appearance and/or growth of the band attributed to type II-B 

hydroxyl groups is an indirect evidence of the generation of oxide vacancies on the 

catalyst’s surface. The weak band observed in CZ at around 3688 cm-1 disappears upon 

temperature increase, because OH groups (type I) have a higher basic character than other 

hydroxyl groups, and therefore, they can be more easily eliminated [35]. The double 

peaks related to type II-B and II-A hydroxyls in Cu2CZ give a very broad band where it 

is impossible to distinguish the two contributions; therefore, an enhanced absorption of 

infrared radiation is taking place, which consequently decreases the detection sensitivity 

of these bands (even diluting the samples with KBr). 

In addition, in the region between 3000-2800 cm-1 and at 200-300ºC (Figure 5), 

another set of bands intimately related to the formate species previously indicated can be 
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detected, since the C-H bond stretch vibration appears over 2850 cm-1 (ν(CH)). Moreover, 

another band at approximately 2930 cm-1 based on a combination of different vibrational 

modes of this species can be identified [29].  

Figure 7 presents the narrow DRIFTS region between 2300-1900 cm-1, where at 

300-500ºC, a low intensity flat band appears at approximately 2130 cm-1, which 

according to previous studies by Daturi et al. [27], Binet et al. [36] and other authors [23] 

is attributed to the forbidden electronic transition 2F5/2 → 2F7/2 of Ce3+ (4f1). Although 

this transition is strictly prohibited for Ce3+ ions, it might be slightly allowed due to 

crystalline field effects [37]. Thus, a DRIFTS region of great interest could be defined 

around this band, which allows to identify the presence of anionic defects associated with 

Ce3+ at a surface level in CZ [31,36]. In the case of Cu2CZ, this band is very broad and 

has low intensity; however, combining this feature with the information obtained by 

Raman spectroscopy, i.e. that this catalyst reaches a high population of oxygen vacancies, 

this band can be ascribed to these vacancies formed at a moderate temperature (300ºC). 

During the following stage under H2 carried out at 350ºC (pre-reduction stage), 

no significant changes were observed in the spectra of the catalysts (see Supplementary 

Material, Figures S1-S3). 

 

 

3.3. Catalytic activity 

 

3.3.1. NO reactivity under isothermal conditions 

The reactivity of NO under isothermal conditions (i.e. 50°C and 250°C) has been 

studied over pre-reduced catalysts. 

The results of the pre-reduction in H2 at 350°C in the case of CZ and Cu2CZ are 

reported in Figures 8A and B, respectively. In both cases, the consumption of H2 and 

release of H2O is observed after H2 admission to the reactor. Note that at 350°C the 

reduction of CZ is very low and it is difficult to describe its behaviour; for this reason a 

higher reduction temperature is chosen for this system, i.e. 450°C. Indeed, in these 

conditions (see Figure 8C) the reduction of CZ is higher and comparable to that of 

Cu2CZ. 
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Upon H2 admission, it is consumed with production of water; then, its 

concentration increases reaching the inlet value. The interaction of H2 with ceria-based 

materials gives the formation of H2O according to reaction (1): 

2 CeO2 + H2 → Ce2O3 + H2O  (1) 

It should be remarked that, for each water molecule formed, an oxide vacancy is created, 

while two Ce4+ centres must be reduced to Ce3+. 

Therefore, a higher water emission during the pre-reduction step necessarily 

implies a larger population of vacancies created in the catalyst. The copper-containing 

sample exhibits an enhanced reducibility at 350ºC, since it consumes a higher quantity of 

hydrogen (859 μmol/gcat) along with a larger water generation (523 μmol/gcat) than CZ at 

any of both reduction temperatures: CZ reduced at 350ºC presents a H2 consumption of 

212 μmol/gcat and a H2O release of 143 μmol/gcat; while CZ reduced at 450ºC has 

consumed 344 μmol/gcat of H2 and has released 286 μmol/gcat of H2O. These 

quantifications are very useful to compare the reducibility of the catalysts and will be 

furtherly employed to estimate the amount of oxygen vacancies generated during this 

step, in order to be correlated with the re-oxidation of the solids and with the reduced N-

products emissions when NO molecules interact with them.  

The reactivity of NO over pre-reduced catalysts has been investigated at first at 

50°C and results are reported in Figures 9A and B for CZ and Cu2CZ, respectively. In 

the case of CZ (Figure 9A), upon NO admission a small consumption of this species is 

observed together with the formation of small amounts of N2O and negligible amounts of 

N2. After a short time, the NO concentration reaches the steady state value, corresponding 

to the inlet one. Over Cu2CZ (Figure 9B), as soon as NO is admitted in the reactor 

(represented by the dotted line) a high NO consumption is observed along with a fast 

production of N2O and N2. When the temperature is increased at 250°C (Figures 9C and 

D), the qualitative behavior is reproduced for both CZ and Cu2CZ, even the amounts of 

N2O and N2 produced after interaction with NO are higher. 

The quantitative analysis is compiled in Table 2, where the amounts of NO 

consumption along with N2 and N2O production are reported. It is worth highlighting that 

by increasing the temperature, the amount of N2O decreases, becoming N2 the main 

product. By comparing the amounts of consumed NO with the N-reduction products, it is 

possible to conclude that small amounts of ad-NOx species are formed on the surface, 

particularly at 250ºC. 
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To obtain a much more complete vision of the surface transformations occurring 

on the catalyst during NO interaction, and thus providing consistent evidences of possible 

reaction routes that are taking place, in situ DRIFTS analysis has been performed over 

pre-reduced CZ and Cu2CZ catalysts. Note that being the results obtained for interaction 

of NO at 50°C and 250°C very similar, only the former are here reported (see 

corresponding Figures S4-S6 in Supplementary Materials that show the CZ spectra for 

NO reaction at 250ºC, as an example). 

In order to properly analyze the DRIFTS spectra of the samples during the NO 

reaction stage, three regions of the spectra were considered: i) the region of the vacancies 

band, between 2300-1900 cm-1; ii) the region of the hydroxyls band, between 3900-2400 

cm-1; and iii) the region of the carbonates species band, between 2000-800 cm-1. 

Figure 10 shows the DRIFTS spectra in the region of 2300-1900 cm-1, where the 

main feature observed in these catalysts is related to the band corresponding to the oxygen 

vacancies. In the specific case of CZ, it is perfectly noted how the band disappears in less 

than 20 seconds after permutation to the NO atmosphere (Figure 10A). Meanwhile, in 

Cu2CZ (Figure 10B), this same transformation is more difficult to be observed (due to its 

intrinsic detection problems).  

At higher wavenumbers, other changes related to the hydroxyl groups occur 

simultaneously (Figure 11). In CZ, the two bands ascribed to two types of surface 

hydroxyl groups disappear to form a broad rounded band from 3700 cm-1 to 3300 cm-1. It 

can be correlated with the consumption of type II-A and II-B hydroxyl groups and the 

concomitant generation of water. On the other hand, for Cu2CZ, these transformations 

are hardly noticeable, probably due to the limitations already mentioned; but also, because 

this reaction stage probably takes place in a minor extent. It should be kept in mind that, 

although the conditions in the catalytic reactor and in situ DRIFTS reaction chamber are 

not comparable, the nitrogen balance, quantified in the catalytic reactor experiments, is 

closed. 

With regard to the carbonates’ region in the DRIFTS spectra (Figure 12), other 

transformations are also observed, specifically the appearance of a new and important 

band located between 1207-1176 cm-1, whose intensity increases during the NO reaction, 

which can be assigned to N-species. It can be specifically attributed to an asymmetric 

vibration mode of the N-O bond by chelate or bidentate nitrites [23,33,38], as schemed 

in Figure 13. The evolution of a new band assigned to bridged nitrate species can be also 

detected for Cu2CZ. This band is detectable above 1590 cm-1 after several minutes in the 
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isothermal NO reaction stage. However, this band is partially visualized as a consequence 

of its overlap with bands originated by carbonate species. In any case, bands associated 

with nitrate species for both samples could be observed. The formation of nitrates can be 

explained considering the ceria lattice oxygens, which are able to oxidize the already 

present nitrites to nitrates, without the presence of O2 in the reaction atmosphere [23]. 

This route can be represented in a very simplified way as follows (2) [38]: 

NO2
-
(sup) + O(sup) → NO3

-
(sup)    (2) 

Additionally, other minimum changes are visualized. In the case of CZ sample 

(Figure 12A), there is a slight intensity decrease of the band at 1432 cm-1 during the 

reaction with NO, which is possibly ascribed to the shift of some surface carbonate 

species. And in the case of Cu2CZ (Figure 12B), at long reaction times (30 minutes) the 

appearance of a new band at 1876 cm-1 is observed, which is assigned to adsorbed nitrosyl 

species on copper [39]. 

The features already described and derived from in situ DRIFTS spectra during 

the isothermal NO reaction stage suggest that adsorbed nitrite species could be formed by 

interaction between NO and hydroxyl species (Reaction 3), in particular type II-A 

hydroxyl groups. These NO molecules are transformed into nitrites (NO2
-) and, in turn, 

water is generated as a reaction product [40]. This phenomenon could be justified in a 

simplified way as: 

NO + 2Ce4+−OH- → Ce4+−NO2
- + Ce3+−□ + H2O  (3) 

As explained, an important generation of N2 and N2O is observed in the first 

moments of the reaction with NO for the copper-containing sample, due to the high 

population of anionic vacancies that are characteristic of this type of materials. These 

oxygen vacancies are already present at the beginning of the reaction because they were 

previously generated in the pre-reduction step. However, during the reaction course, the 

number of anionic vacancies decreases, and therefore, the amount of N-species emitted 

decreases progressively (becoming zero at longer times). 

Regarding the reaction routes involved, the N-reduced species formation (N2 and 

N2O) could be justified by the reaction of NO with the anionic vacancies of the catalyst. 

Researchers such as Hadjiivanov [33] have proposed the process of converting NO to 

N2O and N2 as the following sequence of reaction stages (4-7): i) electronic transfer from 

the ceria surface to the NO molecule, where it interacts with the oxygen vacancy 

(represented in Reaction 4 as □), thus creating the anionic species postulated in (4); ii) 

this transient and highly reactive species can dimerize with another NO molecule in the 
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gas phase, generating very reactive hyponitrite species (5); iii) decomposition of the 

hyponitrite species could generate the oxidation of the vacancy and N2O emission (6); 

and iv) N2O could react with other oxygen vacancy to form N2 and reoxidize the ceria 

(7). 

−Ce3+−□−Ce3+− + NO → −Ce4+− [NO]2-−Ce4+−    (4) 

−Ce4+−[NO]2−−Ce4+− + NO → −Ce4+−[N2O2]
2−−Ce4+−   (5) 

−Ce4+−[N2O2]
2−−Ce4+− → −Ce4+−O2−−Ce4+− + N2O   (6) 

−Ce3+−□−Ce3+− + N2O → −Ce4+−O2−−Ce4+− + N2    (7) 

After these observations, it can be inferred that higher number of anionic 

vacancies in the catalyst yields to higher amounts of reduction products. In this sense, 

Cu2CZ presents more anionic vacancies than CZ (as confirmed by the H2 consumption 

in the pre-reduction step and by the band of vacancies of the in-situ Raman spectra). This 

is in accordance with the Cu2CZ profiles (Figures 9B and D), where the release of N-

reduced species takes place (closing the N-balance). 

After NO interaction under isothermal condition, the NO-TPR has been performed 

with the purpose to study the dynamics of the reaction in a wide temperature range. In the 

case of CZ (Figures 9A and C), increasing the temperature the concentration of NO 

increases and becomes higher than the NO inlet concentration (in dotted lines). It shows 

that most of the NO molecules consumed at the beginning of the NO isothermal stage 

were adsorbed onto the ceria-zirconia surface, and were subsequently released upon 

heating, without being reduced. There is more NO consumption than the expected N-

products released during the isothermal step. These estimations indicate, therefore, the 

generation of superficial nitrogen species on CZ that can be released/decomposed upon 

temperature increase to 500ºC. Considering both steps of the experiment, the N-balance 

is almost closed. 

Cu2CZ presents a complex NO consumption profile after isothermal NO at 50ºC 

(Figure 9B), along with the emission of new N2O (concomitant with maximum NO 

consumption) and N2. It might be linked to the creation of new active sites, since 

simultaneous emission of water is monitored. Conversely, active sites seem to be 

exhausted at the end of the isothermal reaction at 250ºC (Figure 9D) and negligible N-

reduction products are detected during NO-TPR. It is worth noting that the nitrogen 

balance is practically closed (during the isothermal phase), thus indicating the high 

catalytic efficiency of the process for Cu2CZ at both temperatures. In other words, 

practically all the NO consumed in the reaction is converted into N-reduced products (N2 



16 
 

and N2O) at 50ºC or at 250ºC. Another important aspect is that neither NH3 nor NO2 were 

detected at any moment, which contrasts with the emission of certain amounts of 

ammonia in the NO elimination with noble metals (Pt, Pd or Rh) by NSR process [41]. 

In situ DRIFTS was also performed during NO-TPR to analyze the surface 

modifications of the catalysts during this last stage, as shown in Figures 14 and 15. One 

of the main changes observed in CZ spectra is the water emission, which is due to 

desorption of the water formed during the isothermal NO reaction. As detected, upon 

temperature increase (300ºC) the wide initial band between 3700-2600 cm-1 disappears 

in favor of new bands assigned to hydroxyls. It can be assumed that the appearance of a 

doublet corresponding to type-II hydroxyl groups is not an evidence of hydroxyl 

formation during the NO-TPR stage; it could rather be devoted to an unmasking process 

of the signals that were hidden by the wide band of adsorbed water. For Cu2CZ (Figures 

14 and 15), the decrease in the adsorbed water band and the appearance of bands assigned 

to hydroxyl groups are also observed, although with much less intensity. However, the 

maintenance of the band assigned to the adsorbed water up to 200ºC is detectable, which 

may suggest that water continues to be generated from the hydroxyls route. 

The temperature increase is a factor that promotes the decomposition of 

chemisorbed N-species on catalysts’ surfaces. A gradual decrease of the nitrite band 

(1175 cm-1) was observed until disappearance above 400ºC for CZ and Cu2CZ. In 

addition, for Cu2CZ catalyst, other bands related to N-species could be monitored: i) the 

disappearance of the band at 1875 cm-1 related to nitrosyls adsorbed on copper sites at 

about 200ºC; and ii) the presence of a new band between 100-300ºC at 1259 cm-1, which 

is probably explained as a vibrational mode assigned to the adsorption of chelated nitro 

species on copper cations [41-43]. Another aspect to be considered, in the case of CZ, is 

the evolution of very narrow bands that can be assigned to formate species (2932, 2846, 

1543 and 1358 cm-1), at about 300ºC; however, heating up to 500ºC causes their 

subsequent disappearance. 

The disappearance of all the bands associated with surface N-products upon 

temperature increase suggests a possible decomposition/reduction of these species, giving 

rise to NO as emission product. This transformation could be ascribed to a possible 

reaction route based on the reduction of nitrates/nitrites through the presence of anionic 

vacancies, which would generate new NO molecules that could be reduced. According to 

the catalytic tests, the only N-product emitted during the NO-TPR in CZ (without copper) 

was NO, which is somehow in accordance. 
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The experimental sequence of isothermal NO reaction + NO-TPR provides a 

suitable combination to investigate the catalytic reactions’ dynamics and the pathways 

governing the chemical processes. On the one hand, if some retained N-species had been 

created, they would have been released by decomposing/interacting upon temperature 

increase in a reactive atmosphere. On the other hand, the most reactive catalyst that was 

seen to consume or diminish their active sites at the end of the isothermal stage might 

create new active sites (of identical or varied nature). The main purpose of this analysis 

is to study the catalysts’ performances and their suitability for an efficient NO 

elimination, where the temperature range of catalytic regeneration should be maintained. 

Consumption of NO is not observed in CZ, however the emission of a certain 

amount of NO above the inlet level was detected, as explained above. This NO excess 

emission is congruent with the amount of NO adsorbed during the previous isothermal 

NO reaction stage. Therefore, the emission of water during the NO-TPR, which starts at 

about 175ºC, is consistent with the fact that during the isothermal reaction stage under 

NO, Reaction (3) has occurred. Accordingly, during the NO-TPR, the emission of 

previously adsorbed water at 50ºC is taking place. In contrast, the NO-TPR profile of 

Cu2CZ reveals a very important catalytic activity towards NO reduction. In this case, 

there is a first NO consumption, with a maximum at around 150ºC, which is coincident 

with the maximum emission of N2O. It verifies a significant reduction process from NO 

to N2O in the first part of the NO-TPR step. The emission of N2 starts approximately at 

the maximum evolution temperature of N2O, whose emission begins to decrease. The 

global quantification during the NO-TPR process determines that the N2 emission 

(desired reduction product for this application) is higher than that of N2O (Table 3). In 

addition, it should be remarked that water emission occurs just at the beginning of the 

NO-TPR stage, which tentatively could be related to water generated through the 

hydroxyl route (3). During the first moments of the NO-TPR stage, and starting from 

175ºC, H2O emission is increased as an additional consequence of the desorption of some 

previously generated water during the isothermal NO reaction stage. The fact that the so-

called hydroxyl route occurs during the NO-TPR, would imply the in-situ generation of 

fresh and reactive oxygen vacancies, which interact with NO and give rise to N-reduction 

products. It is also worth noting that CO2 emission is detected starting from 300ºC, along 

with a very similar level of N2 emission in the final stage of the NO-TPR, together with 

an increase in NO consumption. These results highlight that the active sites generated 

during this stage can have different nature. They vary from the direct NO interaction with 
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the oxide vacancies to the interaction with some surface carbonates, whose shift and/or 

decomposition in these conditions can generate new active sites, and thus, inducing the 

NO interaction and the direct N2 generation. 

During the discussion reported so far, the explanation of the catalytic results was 

given on the basis of NO consumption, catalysts’ surface modifications by chemical 

interaction with reactive molecules and corresponding N-reduction products evolution. 

However, in order to further investigate on the dynamics of the oxygen incorporation (re-

oxidation of the catalysts), an accurate analysis of the experiments can be performed from 

a different point of view. In this sense, the catalytic performances can be discussed, as 

well, in terms of the oxidation degree achieved by the catalyst during the course of the 

experimental reaction steps. For this purpose, several calculations were made and 

compiled in Table 3 as well.  

Since the nitrogen balance is closed, after finishing the consecutive reaction steps, 

by applying the following equation (8), the final amount of oxygen incorporated in the 

catalyst (Oin) can be estimated, according to the reaction mechanisms possibly taking 

place, see Reactions (4-7). It could be checked that whatever the sequence of steps 

performed for every catalyst, a similar oxidation degree is achieved by the catalyst. 

(Oin) = 1·∑N2O + 2·∑N2   (8) 

By accomplishing the same calculations with ceria-zirconia, pre-reduced at 

450°C, similar final amounts of oxygen are incorporated as well (after both sequences of 

reaction), but in a lower extent than those achieved by Cu2/CZ (Table 3). 

Figure 16 represents the progress of the catalysts’ oxidation during the course of 

the catalytic steps as oxygen incorporated onto the catalyst in terms of reaction time. In 

this sense, faster oxidation kinetics due to NO reduction can be observed for copper/ceria-

zirconia at 250°C than those at 50°C. By completing the NO-TPR step, the measurements 

of oxygen incorporated into the catalysts can be considered as convergent. Similar trends 

can be seen for ceria-zirconia. It is worth noting that very similar NO total amounts were 

reduced during the whole experiment (considering both isothermal stage and final heating 

ramp), since the key factor governing this process is the population of oxygen vacancies 

created. When oxygen vacancies are exhausted, the reaction is finished. Very 

interestingly, by tentatively assuming that all the hydrogen consumed during the pre-

reduction step creates an active site (a reduced position on the catalyst), the estimations 

show that the efficiency of these oxygen vacancies as active sites in the generation of 

reduced N-products is very high (around 90%) for Cu2CZ. In the case of CZ, the 
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efficiency of the oxygen vacancies as main active sites is lower, but still satisfactory 

(around 60%). It is assumed that these active sites (oxygen vacancies) in the catalysts are 

being filled during the course of the reaction, when they interact with NO until saturation 

of the catalysts. 

 

 

 

 

4. Conclusions 

The main conclusions derived from this work, devoted to the study at a 

fundamental level of the NO reduction with ceria-based catalysts after conditioning and 

reduction in H2, are the following: 

 

• The results of in situ XRD characterization indicate that neither particle sintering 

nor phase segregation phenomena were detected after the thermal treatments 

(conditioning in inert atmosphere and reduction in H2) prior to the NO reaction. 

 

• The presence of copper in the catalyst formulation promotes the reducibility and 

formation of oxygen vacancies, which are clearly involved in the NO reduction process. 

The combined analysis of the evidences provided but in situ DRIFTS data (previous and 

during the NO reaction), the in situ Raman spectra, (after pre-reduction step), and the 

catalytic data during all the steps of the reaction lead to establish the primary role of the 

oxygen vacancies in this context. 

 

• CZ and Cu2CZ catalysts are reactive in the NO reduction reaction under the 

simplified and controlled experimental conditions selected for this study. However, CZ 

requires a more drastic pre-reduction step (450ºC) to achieve high conversions of NO to 

N2 and N2O. Besides, the N2/N2O emission ratio, during this step, strongly depends on 

the NO reaction temperature. 

 

• There is a complex network of reactions occurring at the catalysts’ surfaces 

involving fast consumption of vacancies by NO reaction and ad-NOx species formation. 
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There are strong evidences pointing out that the route involving hydroxyls consumption 

takes place. 

 

• The in situ DRIFTS technique has been revealed as an extremely interesting 

surface characterization technique to monitor the surface transformations during the 

different reaction steps that allow us to elucidate the main pathways of the NO reduction 

process onto ceria-based catalysts. 

 

• The reduction of NO under the sequence of steps performed (isothermal reaction 

and NO-TPR) can be understood as the progress of the catalyst’s oxidation with time, 

taking place at higher rates, with predominant N2 emission at higher temperatures. Once 

the vacancies have been consumed, independently on the sequences of NO reaction, the 

emission of N-reduced products finishes. The efficiency of the created vacancies/active 

sites, during the pre-reduction step towards this process, is very high. 
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[38] B. Azambre, I. Atribak, A. Bueno-López, A. García-García, J. Phys. Chem. C 

114 (2010) 13300–13312. 

[39] K.I. Hadjiivanov, Catal. Rev. Sci. Eng. 42 (2000) 71–144. 

[40] I. Atribak, B. Azambre, A. Bueno López, A. García-García, Appl. Catal. B 

Environ. 92 (2009) 126–137. 

[41] V.I. Pârvulescu, P. Grange, B. Delmon, Catal. Today 46 (1998) 233–316. 

[42] Y. Chi, S.S.C. Chuang, J. Catal. 190 (2000) 75–91. 

[43] L. Liu, J. Cai, L. Qi, Q. Yu, K. Sun, B. Liu, F. Gao, L. Dong, Y. Chen, J. Mol. 

Catal. A Chem. 327 (2010) 1–11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

LIST OF TABLES 

 

Table 1. Lattice parameters and average crystal sizes obtained from in situ XRD measurements. 

 CZ Cu2CZ 

Steps 

Lattice 

parameter* 

(nm) 

Average crystal 

size* (nm) 

Lattice 

parameter* 

(nm) 

Average crystal 

size* (nm) 

1) 25ºC Ar 0.535 8.2 0.535 8.0 

2) 300oC (10 min) Ar 0.539 7.0 0.533 7.1 

3) 400oC (10 min) Ar 0.539 7.4 0.537 7.8 

4) 500oC (10 min) Ar 0.539 7.3 0.536 7.3 

5) 500oC (30 min) Ar 0.536 7.5 0.539 7.3 

6) 350oC Ar 0.537 7.2 0.539 7.5 

7) 350oC (30 min) H2/Ar 0.540 7.0 0.539 7.7 

8) 350oC (60 min) H2/Ar 0.539 7.3 0.539 7.6 

9) 25oC H2/Ar 0.536 7.5 0.539 7.8 

* Lattice parameters and average crystal sizes were estimated by using the main (111) peak reflection of 

ceria-zirconia.  

 

 

Table 2. Reaction data obtained during isothermal NO reaction. 

NO reaction (isothermal step) 

Catalyst * 
Temperature 

(oC) 

NO 

consumed 

(μmol/gcat) 

N2O 

produced 

(μmol/gcat) 

N2 produced 

(μmol/gcat) 

N2O/N2 

ratio 

Cu2/CZ (350ºC) 50 784 328 55 6.5 

Cu2/CZ (350ºC) 250 852 81 310 0.3 

CZ (450ºC) 50 360 131 24 5.5 

CZ (450ºC) 250 179 23 80 0.3  

CZ (350ºC) 50 62 3 5 0.6 

CZ (350ºC) 250 45 5 7 0.7 

* Pre-reduction temperature of each sample shown in parenthesis. 
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Table 3. Quantifications of the products released during the experiments, hydrogen consumption 

during pre-reduction and oxygen incorporated onto the catalysts. Pre-reduction of CZ was 

conducted at 450ºC and Cu2CZ at 350ºC. 

 NO-TPR step Total quantification ** Pre-reduction   

Catalyst * 

N2O 

produced 

(μmol/gcat) 

N2 

produced 

(μmol/gcat) 

∑N2O 

produced 

(μmol/gcat) 

∑N2 

produced 

(μmol/gcat) 

H2 

consumption 

(μmol/gcat) 

O 

incorporated 

onto the 

catalyst 

(µmol/gcat) 

Efficiency *** 

(%) 

Cu2/CZ 

(50ºC) 
107 114 435 169 

859 

773 90 

Cu2/CZ 

(250ºC) 
1 3 82 313 708 82 

CZ  

(50ºC) 
7 20 138 44 

344 

226 65 

CZ 

(250ºC) 
1 11 24 91 206 60 

* Temperature of the isothermal NO reaction step of each sample shown in parenthesis. 

** Sum of the N2O or N2 produced during the isothermal NO reaction step (see Table 2) and the subsequent 

NO-TPR.  

*** Efficiency of the “active sites” in the generation of reduced N-products. 
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Figure 1. X-ray diffractograms of the pre-treatment and pre-reduction stages for the samples: 

A) CZ, and B) Cu2CZ. 

Figure 2. Normalized Raman spectra of the pre-treatment and pre-reduction stages for the 

samples: A) CZ, and B) Cu2CZ. 

Figure 3. Normalized Raman spectra, registered at 25ºC, under H2, after pre-reduction of the 

catalysts, for comparative purposes. 

Figure 4. DRIFTS spectra during the pre-conditioning stage under N2, in the region of 2000-

800 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. 

Figure 5. DRIFTS spectra during the pre-conditioning stage under N2, in the region of 3900-

2400 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. 

Figure 6. Scheme of type II-A hydroxyl group (left) and type II-B group (right) on the ceria 

surface, where □ symbol represents an oxygen vacancy. 

Figure 7. DRIFTS spectra during the pre-conditioning stage under N2, in the region of 2300-

1900 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. The arrows included in the Figures point the 

oxygen vacancies band. 

Figure 8. H2 and H2O concentration profiles during the pre-reduction step along the catalytic 

activity tests, for the catalysts at the corresponding temperature (in parenthesis): A) CZ (350ºC), 

B) Cu2CZ (350ºC), and C) CZ (450ºC). 

Figure 9. Concentration profiles of different species during the isothermal NO reaction and 

NO-TPR steps in the catalytic activity tests, after pre-reduction of the catalysts at 350ºC, at the 

corresponding temperature (in parenthesis): A) CZ (50ºC), B) Cu2CZ (50ºC) and C) CZ (250ºC), 

and D) Cu2CZ (250ºC). 

Figure 10. DRIFTS spectra during the isothermal NO reaction stage (at 50ºC), in the region 

of 2300-1900 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. 

Figure 11. DRIFTS spectra during the isothermal NO reaction stage (at 50ºC), in the region 

of 3900-2400 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. 

Figure 12. DRIFTS spectra during the isothermal NO reaction stage (at 50ºC), in the region 

of 2000-800 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. 

Figure 13. Scheme of chelated nitrite species (left) and bidentate nitrite species (right), 

detected by DRIFTS. 

Figure 14. DRIFTS spectra at different temperatures during the final NO-TPR stage (after 

isothermal NO reaction at 50ºC), in the region of 3900-2400 cm-1. A) CZ; B) Cu2CZ. 

Figure 15. DRIFTS spectra at different temperatures during the final NO-TPR stage (after 

isothermal NO reaction at 50ºC), in the region of 2000-800 cm-1. A) CZ; B) Cu2CZ. 

Figure 16. Cumulative oxygen curves of the catalysts (as a consequence of re-oxidation of 

the catalysts) during the different experimental stages. (Cu2CZ was pre-reduced at 350ºC and 

CZ* at 450ºC). 
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Figure 1. X-ray diffractograms of the pre-treatment and pre-reduction stages for the samples: 

A) CZ, and B) Cu2CZ. 
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Figure 2. Normalized Raman spectra of the pre-treatment and pre-reduction stages for the 

samples: A) CZ, and B) Cu2CZ. 
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Figure 3. Normalized Raman spectra, registered at 25ºC, under H2, after pre-reduction of the 

catalysts, for comparative purposes. 
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Figure 4. DRIFTS spectra during the pre-conditioning stage under N2, in the region of 2000-

800 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. 
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Figure 5. DRIFTS spectra during the pre-conditioning stage under N2, in the region of 3900-

2400 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. 
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Figure 6. Scheme of type II-A hydroxyl group (left) and type II-B group (right) on the ceria 

surface, where □ symbol represents an oxygen vacancy. 

 

 

 

 

 

 

 

 

 

 

Ce Ce

OO2- O2-

H

Ce Ce

O O2-

H



33 
 

 

Figure 7. DRIFTS spectra during the pre-conditioning stage under N2, in the region of 2300-

1900 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. The arrows included in the Figures point the 

oxygen vacancies band. 
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Figure 8. H2 and H2O concentration profiles during the pre-reduction step along the catalytic 

activity tests, for the catalysts at the corresponding temperature (in parenthesis): A) CZ (350ºC), 

B) Cu2CZ (350ºC) and C) CZ (450ºC). 
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Figure 9. Concentration profiles of different species during the isothermal NO reaction and 

NO-TPR steps in the catalytic activity tests, after pre-reduction of the catalysts at 350ºC, at the 

corresponding temperature (in parenthesis): A) CZ (50ºC), B) Cu2CZ (50ºC) C) CZ (250ºC) and 

D) Cu2CZ (250ºC). 
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Figure 10. DRIFTS spectra during the isothermal NO reaction stage (at 50ºC), in the region 

of 2300-1900 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. 
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Figure 11. DRIFTS spectra during the isothermal NO reaction stage (at 50ºC), in the region 

of 3900-2400 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. 

 

 

3800 3600 3400 3200 3000 2800 2600 2400

A
b

s
o

rb
a

n
c
e

 (
a
.u

.)

Wavenumber (cm
-1
)

0.1 3637

3656

A)

 

previous (in N
2
)

1 min

8 min

0 min

2 min

10 min

4 min

30 min
15 min

3800 3600 3400 3200 3000 2800 2600 2400

B)

A
b

s
o

rb
a

n
c
e

 (
a
.u

.)

Wavenumber (cm
-1
)

0.1
3658

30 min
15 min
8 min

previous (N
2
)

0 min

20 s

40 s

60 s

80 s

100 s

4 min

 



40 
 

 

 

 

Figure 12. DRIFTS spectra during the isothermal NO reaction stage (at 50ºC), in the region 

of 2000-800 cm-1 for the catalysts: A) CZ, and B) Cu2CZ. 
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Figure 13. Scheme of chelated nitrite species (left) and bidentate nitrite species (right), 

detected by DRIFTS. 
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Figure 14. DRIFTS spectra at different temperatures during the final NO-TPR stage (after 

isothermal NO reaction at 50ºC), in the region of 3900-2400 cm-1. A) CZ and B) Cu2CZ. 
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Figure 15. DRIFTS spectra at different temperatures during the final NO-TPR stage (after 

isothermal NO reaction at 50ºC), in the region of 2000-800 cm-1. A) CZ and B) Cu2CZ. 
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Figure 16. Cumulative oxygen curves of the catalysts (as a consequence of re-oxidation of 

the catalysts) during the different experimental stages –Oin-. (Cu2CZ was pre-reduced at 350ºC 

and CZ* at 450ºC). 
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