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Abstract—The potential use of the interferometric coherence
measured with Sentinel-1 satellites as input feature for crop classifi-
cation is explored in this study. A one-year time-series of Sentinel-1
images acquired over an agricultural area in Spain, in which 17 crop
species are present, is exploited for this purpose. Different options
regarding temporal baselines, polarization, and combination with
radiometric data (backscattering coefficient) are analyzed. Results
show that both radiometric and interferometric features provide
notable classification accuracy when used individually (overall
accuracy lies between 70% and 80%). It is found that the shortest
temporal baseline coherences (6 days) and the use of all available
intensity images perform best, hence proving the advantage of the
6-day revisit time provided by the Sentinel-1 constellation with
respect to longer revisit times. It is also shown that dual-pol data
always provide better classification results than single-pol ones.
More importantly, when both coherence and backscattering coeffi-
cient are jointly used, a significant increase in accuracy is obtained
(greater than 7% in overall accuracies). Individual accuracies of
all crop types are increased, and an overall accuracy above 86%
is reached. This proves that both features provide complementary
information, and that the combination of interferometric and ra-
diometric radar data constitutes a solid information source for this
application.

Index Terms—Agriculture, crop classification, interferometry,
synthetic aperture radar.

I. INTRODUCTION

THEMATIC maps of agricultural crop types constitute a
valuable product of satellite remote sensing. This kind of

maps provides both updated and reliable information to agencies
and producers, either at local or national level. They also enable
us to monitor farming activities, check crop rotations, help
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future decision-making, and other actions directly related to
socioeconomic aspects of this primary sector.

To date, most crop classification approaches employ optical
or multispectral data as input features, due to their well-known
sensitivity to crop biophysical properties. However, the number
and/or the quality of these images may be insufficient over some
geographical regions and/or at important dates due to the pres-
ence of clouds, haze, etc. Alternatively, approaches using images
acquired by synthetic aperture radar (SAR) sensors, which are
able to gather data independently from weather conditions and
sun illumination, can contribute to overcome these limitations.
The use of SAR images for crop-type mapping has gained
attraction in the last years due to the availability of consistent
time series of SAR data provided by the last generation of radar
satellites. In this context, the free access to Sentinel-1 images
acquired over Europe every 6 days constitutes a key motivation
to exploit this information source for crop classification.

Conventional SAR-based mapping methods employ radio-
metric information, that is, time-series of backscatter coeffi-
cients (intensities) and/or indices derived from them (such as
the ratios) are used as input to classification algorithms. In this
regard, it is worth mentioning that time-series of Sentinel-1
radiometric data have proven effective and valuable in this con-
text, as shown with some previous works concerning crop-type
mapping in different areas [1]–[4].

Another way of exploiting SAR data consists of generating
time-series of interferometric images, which come from the
combination of two SAR images acquired at different dates.
Repeat-pass SAR interferometry (InSAR) [5] is useful to detect
changes in the scene between the two acquisitions since they
cause a decrease in interferometric coherence. This loss of
coherence is usually denoted as temporal decorrelation. In fact,
the primary cause of coherence loss over agricultural crops is
temporal decorrelation, since the rest of decorrelation sources,
including volume decorrelation, are close to 1. In a broader
context, repeat-pass interferometry was tested in the past for
land cover mapping by using time-series of ERS tandem data [6],
[7], with 1-day revisit time, and more recently with Sentinel-1
constellation data [8], [9], with 6-day revisit time. It is important
to clarify that this work is focused on crop classification, which
is an application domain different from the generic land cover
mapping addressed in [8], [9]. Repeat-pass interferometry was
also used in agriculture studies in the past [10] using ERS data.
Very recently, both single-pass and repeat-pass interferometric
coherence measured at X-band by the TanDEM-X mission
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Fig. 1. Map of the reference data over an orthophoto of the test site. Color
coding is defined in Fig. 3.

(i.e., with 11-day revisit time) have been tested for crop-type
mapping [11].

For the specific application of crop-type mapping, temporal
decorrelation is present in areas with vegetation due to wind
(and other weather events) and also due to changes in the scene
induced by the vegetation itself (such as crop growth during
vegetative phases). Contrarily, bare surfaces usually keep a high
coherence over longer periods. Consequently, the absence of
vegetation, especially at the beginning of the season and after
harvest, is expected to be detected by repeat-pass interferometry
over agricultural areas. The presence or absence of vegetation
would provide information related to the crop calendar, which
normally depends on the crop type, hence being useful for crop-
type mapping.

In this work, we analyze the use of Sentinel-1 interferometric
coherence for crop-type mapping. The goal is to prove that
InSAR is also sensitive to the temporal evolution of crops and,
hence, that it can be used as an alternative or a complement
to traditional SAR-based or intensity-based classifications. The
same classification strategy is followed in all tests, and we per-
form a deep analysis of the influence of the temporal separation
between the acquisitions (also known as temporal baseline),
the complementarity with respect to the radiometric data, and
the effect of polarization, since Sentinel-1, by default, provides
images in dual-pol mode (VV and VH polarimetric channels).

II. MATERIAL AND METHODS

A. Reference Data

The test site is located in Sevilla (Andalucía, Spain), centered
at 37N, 6.1W. It consists of an agricultural area, named BXII
Sector, with a wide variety of crop species cultivated during
2017. As shown in Fig. 1, the dominant crops are cotton, tomato,
and sugar beet, followed by corn, sunflower, and carrot. The
reference data come from the official land-parcel identification
system.

B. Sentinel-1 Data

All available single-look complex (SLC) images of year 2017
(60 images in total) acquired in orbit 154 (incidence angle
around 38.7◦) by the two-satellite constellation Sentinel-1 A/B
in interferometric wide swath mode over the test area have been
considered.

C. Interferometric Coherence and Multitemporal
Coherence Matrix

The interferometric coherence constitutes an essential product
in InSAR [5], since it yields the normalized complex correlation
between two SAR images and provides a measurement of the
quality of the interferometric phase. Its expression is

γ̂ =
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∗
2}√
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1} · E{S2S∗

2}
(1)

where E{·} is the expectation operator, and S1 and S2 are two
complex and coregistered SAR images. For practical purposes,
and under the assumption that signals S1 and S2 have an ergodic
behavior, the expectation operator is substituted by a spatial
average of an ensemble of pixels inside a window [12]. (1)
therefore becomes
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where L is the number of samples in the window. The process
of averaging a certain number of pixels is commonly referred as
multilook. The magnitude of γ in (2) ranges between 0 and 1,
i.e., |γ| ∈ [0, 1]. Low values of |γ| are found wherever imagesS1

and S2 are decorrelated, whereas high coherences correspond to
areas of the scene in which there exists correlation between the
images.

This concept can be extended to time-series, namely, series
of images spanning a certain period of time. In this regard, if
a given dataset is composed by N SAR images, S1 . . . SN , we
can build an N ×N Hermitian, positive semi-definite temporal
covariance matrix Ĉ as
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(3)
where the mathematical expectation is substituted in practice by
a spatial average (multilook). Note that the covariance matrix
Ĉ contains the evolution of the radiometric information (that
is, the series of backscattering coefficient) in its main diagonal,
and all possible interferometric combinations of the dataset in
its off-diagonal entries.

From (2) and (3), we can easily derive the expression of the
temporal coherence matrix Γ̂, which is a normalized version of
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the previous covariance matrix Ĉ
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Therefore, Γ̂ contains the normalized complex correlation
(coherence) between all possible combinations of images of the
dataset. The absolute value of any element of Γ̂ directly yields the
coherence of that element in the dataset. The coherence matrix
is symmetric (i.e., |γij | = |γji|), so that the upper (or lower)
triangular matrix provides the useful coherence data to be used
as input features to a classification algorithm. It is therefore
easily verified that if a given dataset containsN SAR images, the
number of image pairs (and coherence values) isN · (N − 1)/2.

If the input set of images is ordered chronologically, it is
deduced that elements which are closer to the main diagonal
of Γ̂ matrix show shorter temporal baselines. In this regard,
the superdiagonal entries of Γ̂ (elements located immediately
above the main diagonal) correspond to the shortest baseline
interferometric combinations.

D. Preprocessing of Sentinel-1 Data

The preprocessing steps carried out with the input data are as
follows.

1) Coregistration of all SLC images to a common master,
using precise orbital information and an external DEM.

2) Radiometric calibration to σ0, in order to enable the use
of the backscatter coefficient as a classification feature.

3) Interferometric stack generation, providing all the possible
combinations, both at VV and VH channels, between the
SLC acquisitions in 2017.

4) Speckle filtering and coherence estimation. A boxcar filter
with 19 samples in range and 4 samples in azimuth was
employed for this purpose. This kernel size yields an
output pixel resolution around 60 m × 80 m (taking
into account that the original image resolution was 3 ×
22 m in range and azimuth, respectively). The resulting
equivalent number of looks is 37 approximately. This
number provides a good compromise between the loss
of spatial resolution due to spatial averaging and the re-
quired accuracy in coherence estimation, since we expect
to measure very low values of coherence at some dates,
which would be severely overestimated if a small kernel
size were employed [12].

5) Geocoding: all coherence and calibrated intensity data
were finally geocoded into a common cartographic grid
in UTM coordinates of size 1000 × 1000 pixels, so that
the same geometry and pixel spacing of 20 m are used in
both reference and satellite data.

For illustration purposes, Fig. 2 partially shows the temporal
coherence matrix of the processed area (only the first 10 image
pairs are shown). It is clearly observed that coherence progres-
sively decreases as the temporal baseline (in days) between

Fig. 2. Temporal coherence matrix of the processed area between 2017-01-03
and 2017-03-04. The polarimetric channel is VV.

master and slave pairs increases. In this work, we will only con-
sider a short-baseline subset of the whole set of interferometric
combinations. Specifically, coherence values coming from 6, 12,
and 18 days of temporal baseline will be used as input features
to the classification algorithm.

E. Classification Method and Evaluation

All the classification tests were carried out with the Random
Forests (RF) classifier [13] using the implementation provided
by the scikit-learn package in Python language. The classifier
was run with the default parameters (e.g., number of trees
equal to 100), and they were fixed for all the classification tests
described in next section.

The process of splitting the whole input dataset into the
training and testings sets represents a critical aspect of any
supervised machine learning technique, since undesired effects
such as overfitting (or overlearning) or biased classifications
must be avoided. Due to the spatial filtering employed in the
data preprocessing (boxcar of size 4 × 19), the values of the
features at every pixel are correlated with those of adjacent
pixels. Therefore, to avoid its influence on the classifier, an
initial split was performed at field level: for each test, 50% of
the fields of each crop type were selected for training and the
remaining 50% of the fields were left for testing. This division
of the original reference data is represented in Fig. 3.

The resulting number of fields and, hence, the number of
pixels of each crop type, clearly varies among classes, showing
that the training set [Fig. 3(a) and Table I] is imbalanced. This
might be a problem concerning the accuracy of each individual
class, since an overfitting toward majority classes (in this case,
cotton, tomato, and sugar beet) is more likely to happen. To solve
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Fig. 3. Initial split of the reference data: for each crop type, half of the fields are used for training and the other half for testing. (a) Fields composing the training
set. (b) Fields composing the testing set.

TABLE I
CHARACTERISTICS OF THE REFERENCE DATA SHOWING THE ORIGINAL NUMBER OF TRAINING AND TESTING SAMPLES OF EACH CROP

TYPE AND THE TOTAL NUMBERS

this problem, the initial training set in Fig. 3(a) is subsampled
so that all crop types have exactly the same number of training
pixels. This number of pixels is provided by the minority class
(i.e., the class presenting the smallest number of pixels) which is
chickpea, as shown in Table I. The resulting subsampled training
set is depicted in Fig. 4. Note that, with this strategy, each of the
17 classes gathers 388 pixels for training, so the total number of
training samples represents around 2.5% of the total number of
pixels of the reference data. It is also important to note that the
selection of samples of the 16 classes which are not chickpea is
performed randomly within the initial training fields.

For each classification test, once the model is trained, the
evaluation is performed over the whole set of testing, which
is formed by all pixels of the fields initially selected for testing
(50% of the total fields). From the results obtained over the pixels
in the testing data, the confusion matrix is computed and some

metrics are derived: overall accuracy (OA), Kappa coefficient,
producer’s accuracy (PA), and user’s accuracy (UA) [14].

III. RESULTS

A. Inspection of the Input Features: Coherence and
Backscattering Coefficient

Before running all classification tests, it is worth observing
the temporal evolutions of all SAR observables that will be used
as input features for classification. Fig. 5 shows the time-series
of coherence values associated with every crop type throughout
the whole year for both polarization channels, whereas Fig. 6
corresponds to backscatter coefficient. The locations of the fields
are extracted from the reference set and, then, coherence and
intensity values of each crop type are aggregated to produce a
single mean and standard deviation for each date.
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Fig. 4. Map of the subsampled dataset used for training.

By looking at Fig. 5, it is observed that, even though both
channels exhibit a very similar evolution, channel VV always
offers a larger coherence than channel VH. This is expected
as a result of two aspects. First, the response from vegetated
scenes in the cross-polar channel at C-band is expected to be
more dependent on the vegetation layer than on the ground. As
a consequence, VH polarization is more influenced by temporal
decorrelation than VV. Second, VV channel is characterized by
a higher backscattering level, which entails a higher signal-to-
noise ratio (SNR) and, consequently, less decorrelation due to
thermal noise [15].

The time-series of each crop type is closely related to its
growing cycle. Accordingly, each crop type has its specific
sowing, growing, and harvesting periods. These date intervals
may be identified by means of the evolution of the coherence.
In this regard, in the absence of vegetation (either because it
has not been planted yet or because it has been harvested),
higher coherence values are expected since parcels are bare
fields, hence without temporal decorrelation. Conversely, as the
crop is growing, a decrease in coherence is expected because the
plants in the field are dynamically changing between consecutive
observations, as well as due to weather effects on vegetation.
This is easily verified by looking at Fig. 5(e), in which class
fallow exhibits moderate to high coherence values throughout
the whole year, whereas the rest of classes present periods of
minimum coherence at some dates during the year. Moreover,
it must be pointed out that the coherence is estimated using a
finite spatial filter (4 × 19 boxcar) which is a biased estimator
that overestimates more the lower values of coherence than the
higher ones [12]. As a result, for all crop types, the minimum
estimated coherence is just below 0.2, and coherence values
smaller than that are not found.

Based on the previous reasoning, the calendar or growing
period of every crop type can be identified in Fig. 5. For instance,
sweet potato starts to grow in late May, since from this date, co-
herence progressively decreases until it reaches minimum values
during summer (July–September). Then, coherence increases

after harvest in October. For most crop species, the interval with
minimum coherence is different from the rest, which is a good
sign for classification purposes. Unfortunately, in some cases,
the time-series of coherence are very similar for several crops
(e.g. cotton, sweet potato, pepper, and pumpkin), so confusion
between these classes is expected.

Also, there are some isolated values of very low coherence,
common to all crop types, in October and November. These
drops were certainly caused by strong rain events which occurred
during the fall of 2017 and which produce severe temporal
decorrelation.

A similar analysis can be conducted on the time-series of
backscattering coefficient represented in Fig. 6. As with coher-
ence, intensity variations are due to the crop growing cycle.
Even though intensities at both polarimetric channels exhibit
globally similar trends along time, they are not as similar as the
ones shown in Fig. 5 corresponding to VV and VH coherence,
and some very clear differences between channels are locally
observed. For instance, the response of VH channel differs
from the one of VV channel for classes tomato (from May to
September), carrot (from June to October), or soft wheat (from
June to October), among others. These different responses were
expected and are due to differences in the interaction of the
waves involved at each polarimetric channel with vegetation
(i.e. the scattering mechanisms present in the scene). Some of
the crop types have been studied elsewhere with time-series
of Sentinel-1 radiometric data, like wheat, maize, sugar beet,
etc. [16]–[18], especially for monitoring purposes. Therefore,
the physical causes of the radar responses for these crop species
can be consulted in these references.

It is important to note that there are similarities between
the temporal evolutions of both types of features: coherence
and backscattering coefficient. More precisely, it is shown that
coherence and intensity follow an inverse evolution in time.
For instance, coherence of class cotton progressively starts to
decrease in June and remains very low (around 0.2) until Septem-
ber, as shown in Fig. 5(a). Conversely, intensity data of this class
increase from June to July and remain high until September,
as shown in Fig. 6(a). The main reason of this behavior is the
increase of backscattered signal when plants are present, which
in turn decreases the coherence due to temporal decorrelation.
In contrast, in absence of vegetation, the echoes from the bare
ground show lower values but are more stable in time. Other
classes, like sunflower, pepper, quinoa, and pumpkin, are clear
examples of this opposite variation of coherence and intensity.

As a final comment, all the plots in Fig. 6 show clear peaks of
intensity (at both channels) for some dates in February–April and
October–December, which are clearly due to rain events which
increased the soil moisture and, if plants were present, the water
content in the vegetation volume. This is especially evident for
fallow, for which a stable response would be expected along the
whole year.

B. Classification Based on Coherence

The first test consists in training the RF model using all
coherence values coming from the shortest temporal baseline
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Fig. 5. Temporal evolution of the interferometric coherence at VV and VH channels. (a) Cotton. (b) Tomato. (c) Sugar beet. (d) Maize. (e) Fallow. (f) Sunflower.
(g) Carrot. (h) Onion. (i) Soft wheat. (j) Sweet potato. (k) Alfalfa. (l) Hard wheat. (m) Pepper. (n) Quinoa. (o) Pumpkin. (p) Chickpea. (q) Potato.
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Fig. 6. Temporal evolution of the backscattering coefficient at VV and VH channels. (a) Cotton. (b) Tomato. (c) Sugar beet. (d) Maize. (e) Fallow. (f) Sunflower.
(g) Carrot. (h) Onion. (i) Soft wheat. (j) Sweet potato. (k) Alfalfa. (l) Hard wheat. (m) Pepper. (n) Quinoa. (o) Pumpkin. (q) Chickpea. (r) Potato.



MESTRE-QUEREDA et al.: TIME-SERIES OF SENTINEL-1 INTERFEROMETRIC COHERENCE AND BACKSCATTER FOR CROP-TYPE MAPPING 4077

Fig. 7. Normalized confusion matrix obtained with the 6-day coherence at
VV channel as input feature set.

TABLE II
ACCURACY ASSESSMENT OF THE RESULTS OBTAINED WITH THE 6-DAY

COHERENCE AT VV CHANNEL

(6 days) at VV polarization. Note that these results will be used
as reference to evaluate the rest of options and combinations
of input features. The resulting normalized confusion matrix is
shown in Fig. 7, and the assessment metrics are presented in
Table II.

It is observed that the overall accuracy is moderately high
(77.5%). Crop types with the best classification scores are sugar
beet, cotton, and tomato, with values of PA and UA from 80% to
90%, followed by a second large group of crop species with PA
and UA which lie between 45% and 65%. Classes with the worst
results are pepper and pumpkin (both worse than 25%), and
sweet potato (below 40%). From the inspection of the confusion
matrix and the time-series of coherence for these crop types
(see Fig. 5), it is obvious that their responses are very similar

TABLE III
ACCURACY ASSESSMENT OF THE RESULTS OBTAINED SEPARATELY WITH THE

12-DAY AND 18-DAY COHERENCE AT VV CHANNEL

and are also similar to cotton. so that the classifier is unable
to properly distinguish them. Consequently, since the training
set was appropriately prepared to avoid overfitting and class
imbalance, we conclude that classification inaccuracies are only
due to the input features.

1) Influence of the Temporal Baseline: Besides using 6-days
coherence, the two second shortest temporal baselines (12 and
18 days) will be also evaluated, both individually and combined,
so as to check if a further gain is obtained when including more
data.

First, we apply the classifier using 12- and 18-day coherence
individually as input features, and only at VV channel as in
the previous example. Table III shows the results of these two
cases. It is easily appreciated that the classification accuracy (in
terms of PA and UA) of most classes decreases progressively as
the temporal baseline increases. For instance, the UA of alfalfa
goes down from 76% (6 days) to 71% (12 days) and to 67% (18
days). In some cases, this decrease is even more pronounced,
as for chickpea, whose UA goes from 53% (6 days) to 28% (12
days) and to 16% (18 days). For a few crop types, like maize,
their PA or UA is maintained from 6 to 12 days, but then they
decrease clearly at 18 days; and in the case of carrot, its PA and
UA are mostly independent of the temporal baseline. Finally,
user accuracies of soft wheat and sweet potato are higher at 12
days than at 6 days, but then they notably decrease at 18 days.

In summary, a generalized loss of accuracy is obtained when
coherence coming from longer temporal baselines is used. This
is certainly caused by the higher level of decorrelation which is
present in coherence images (clearly visible in Fig. 2) generated
with image pairs with longer baselines, which degrade the qual-
ity of interferometric data. In the overall metrics, OA decreases
from 77.5% at 6 days (see Table II), to 73.8% at 12 days and to
69.7% at 18 days, i.e., around 4% at each step.
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TABLE IV
ACCURACY ASSESSMENT OF THE RESULTS OBTAINED JOINTLY WITH THE

COHERENCE FROM THE FIRST TWO AND FIRST THREE SHORTEST TEMPORAL

BASELINES AT VV CHANNEL

Another relevant test consists in incorporating sets of different
temporal baselines to the classification process, that is, to simul-
taneously use coherence data coming from both 6 and 12 days,
and also 6, 12, and 18 days. The resulting accuracy metrics are
shown in Table IV, in which we observe that the overall variation
between these two cases and the one with only 6-day coherence
is very small.

At class level, the most extreme changes at UA and PA are
below 5%, but in most cases, they are below 2%. In fact, the
inclusion of the second temporal baseline (and also the third)
does not improve the global accuracy with respect to the shortest
temporal baseline. This lack of improvement is a consequence
of the lower quality of the coherence measured with longer
temporal baselines, due to increased temporal decorrelation, as
it was verified in their individual results (Table III).

2) Influence of Polarization: Sentinel-1 provides dual-pol
images routinely over land from channels VV and VH, so it
is worth testing the performance of both polarimetric channels
as input features to the classifier.

Table V presents the accuracy scores obtained by individually
employing 6-day coherence of VH polarization. A decrease of
accuracy is found for all classes with respect to the results of
the VV channel (Table VIII), with losses of 5%–15% in PA
and UA for most crop types, and important drops (more than
20%) for chickpea and potato. Only for quinoa (PA and UA)
and maize (PA) their scores are just 1%–3% below the results
at VV channel. Moreover, the global accuracy decreases from
77.5% to 69.1% and the Kappa score from 0.70 to 0.60, showing
that VH coherence performs clearly worse than VV one with
the same baseline configuration (6 days). This was expected as a
consequence of the lower SNR present in VH data, as previously
stated.

TABLE V
ACCURACY ASSESSMENT OF THE RESULTS OBTAINED WITH THE 6-DAY

COHERENCE AT VH CHANNEL

Fig. 8. Normalized confusion matrix obtained with the 6-day coherence at
both VV and VH channels as joint input feature set.

However, a more complete evaluation of the contribution of
the dual-pol acquisition mode of Sentinel-1 consists in checking
whether the combination of both polarizations (VV and VH) as
input features yields an additional gain in the crop-type clas-
sification performance. Additionally, all temporal baselines are
considered and compared to check if increasing the amount of
inputs (three baselines and two polarimetric channels) improves
the accuracy. The normalized confusion matrix obtained with the
6-day coherence is shown in Fig. 8, and Table VI presents all
class-level and overall accuracy metrics for three combinations
of baselines: 6-day alone, 6- and 12-day, and 6-, 12-, and 18-day
coherence.

Compared to the confusion matrix provided by the 6-day
coherence at VV alone (see Fig. 7), Fig. 8 evidences a better
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TABLE VI
ACCURACY ASSESSMENT OF THE RESULTS OBTAINED WITH THE COHERENCE

FROM THE FIRST TWO AND FIRST THREE SHORTEST TEMPORAL BASELINES AT

BOTH VV AND VH CHANNELS SIMULTANEOUSLY

result for almost all crop types when dual-pol data are used.
While the accuracy of predominant classes remains high (for
instance, it barely varies for cotton, tomato, and sugar beet),
other classes are better identified. For instance, the UA values
for classes carrot, onion, and soft wheat increase, respectively,
from 54%, 52%, and 66% (when single polarization VV is used)
to 57%, 63%, and 72% when both channels are processed jointly.
It is found that the best global accuracy obtained so far, which
was 77.5% when using channel VV and the shortest temporal
baseline, has improved to 79.2% when both polarizations are
exploited and the same 6-day baseline is used. Analogously,
Kappa score has increased from 0.70 to 0.73.

Unfortunately, the inclusion of the coherence from the other
two baselines (12 and 18 days) along with the additional polar-
ization does not have a significant impact on the accuracy. This
is in line with the results shown in Section III-B1, where data
from additional baselines were added to the single-pol (VV)
and shortest-baseline coherence. In fact, the best final results
are obtained when the shortest temporal baseline (6 days) is
exploited individually. The addition of extra baselines produces
a progressive decrease of the performance of the classifier, espe-
cially in the PA and UA of some classes, despite the difference
in the global scores is very small: 79.2%, 78.7%, and 78.5% in
terms of OA, and 0.73, 0.72, and 0.71 in terms of Kappa score.

C. Classification Based on Intensity

The same analysis has been repeated using only the backscat-
tering coefficient provided by the images as input features. Note
that this corresponds to the traditional approach for crop-type
mapping with time-series of radar data.

1) Influence of the Quantity of Images: The first test consists
in evaluating the influence the quantity of available images
has in the classification process. This can be regarded as a

Fig. 9. Normalized confusion matrix obtained with all 60 backscatter images
at the VV channel as input feature set.

TABLE VII
ACCURACY ASSESSMENT OF THE RESULTS OBTAINED WITH THE

BACKSCATTERING COEFFICIENT AT VV CHANNEL USING DIFFERENT

AMOUNTS OF IMAGES

similar test as the one shown in Section III-B1 concerning the
temporal baseline between a pair of images used to compute the
coherence.

As in Section III-B, results obtained with all available images
(60) at VV polarization are used as reference. Fig. 9 shows
the normalized confusion matrix obtained in this case and the
corresponding accuracy scores are shown in the first column of
Table VII. In general terms, the results are slightly worse than
the ones obtained with coherence in the same configuration,
since now the OA is 74.2%, instead of 77.5% (see Table II).
However, the classification performance for the individual crops
is quite different in most cases with respect to the results based
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TABLE VIII
ACCURACY ASSESSMENT OF THE RESULTS OBTAINED WITH ALL 60

BACKSCATTER IMAGES AT VH CHANNEL

on coherence. For instance, the PA with intensity data for maize
and sunflower is 80% and 73%, instead of 47% and 43%, respec-
tively, obtained with coherence, so these crop types are much
better classified now. The best classified crops are the same ones
(cotton, tomato, and sugar beet) and provide accuracies in the
same order as with the coherence. On the other extreme, carrot,
onion, chickpea, and fallow perform much worse when intensity
is exploited than when coherence is used. This heterogeneous
comparison between the results with coherence and intensity is
a positive sign for their combined used as input features, as it
will be analyzed in Section III-D.

Since the whole dataset consists of 60 images acquired every
6 days (as previously mentioned), using one-half and one-third
of images (namely one every two, and one every three images)
directly yields one image every 12 and 18 days, respectively. The
results provided by employing only these subsets of images are
illustrated in Table VII. It is clearly observed that the accuracy
progressively decreases for all classes when less images are
considered. OA decreases to 69.8% with one-half of the images
and to 67% with one-third of the images. At crop-type level, the
best classified ones are the least affected, but others, like maize,
wheat, quinoa, etc. suffer progressive drops greater than 5% in
PA and/or UA.

2) Influence of Polarization: The contribution of the dual-pol
acquisitions in crop-type mapping, using backscattering coeffi-
cient as input feature, has been studied in the past [19]–[23]. It
is known that the cross-polar channel backscattering is more
sensitive to vegetation than the co-polar one. Consequently,
VH polarization has shown to perform better than HH or VV
channels for crop classifications.

Results obtained using all 60 intensity images of VH po-
larization are illustrated with the confusion matrix shown in
Fig. 10, and accuracy metrics are summarized in Table VIII. In
our test, the OA provided by the VH channel is 75.2%, only 1%
better than the VV channel. However, some crop types that were

Fig. 10. Normalized confusion matrix obtained with all 60 backscatter images
at the VH channel as input feature set.

Fig. 11. Normalized confusion matrix obtained with all 60 backscatter images
at both VV and VH channels as joint input feature set.

poorly identified with the VV backscatter exhibit an increase of
accuracy with VH images. For instance, the UA of carrot, onion,
and hard wheat is improved from 48%, 41%, and 49% (with VV
images) to 61%, 61%, and 64% (with VH images), respectively.
Conversely, other classes suffer notable decreases of accuracy,
like sunflower (PA equal to 40% with VH instead of 73% with
VV).

As with coherence, we have also evaluated the joint exploita-
tion of both channels (VH and VV intensity images) as input set
to the classifier. The resulting confusion matrix is represented
in Fig. 11 and accuracy scores are detailed in Table IX. By
comparing the main diagonals of confusion matrices of Fig. 10
(with VH alone) and 11 (with both VV and VH), it is deduced
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TABLE IX
ACCURACY ASSESSMENT OF THE RESULTS OBTAINED WITH ALL 60

BACKSCATTER IMAGES AT BOTH VV AND VH CHANNELS AS

JOINT INPUT FEATURE SET

that the accuracy of almost all classes is improved and there is
generally less confusion.

This enhancement of the classification performance is clear
in the PA and UA of most crops (see Table IX). For instance, the
final UA of nine crop types is above 70%, and there are only two
classes (fallow and chickpea) below 50%. From the global point
of view, the use of both polarizations provides an increase of
almost 5% of OA (from 75.2% to 80.0%), and a gain of 0.05 in
terms of Kappa score (from 0.68 to 0.73) with regard to using
VH data only, which is quite remarkable.

Finally, is important to note that coherence and intensity data
provide very similar global accuracies when used individually
with dual-pol data (i.e., exploiting both VV and VH). They
provide the same Kappa score (0.73) and almost the same OA
(79.2% with coherence and 80.0% with intensity) as shown in
Tables VI and IX.

Concerning class-level accuracies, some classes which are
poorly identified with coherence data are better classified when
intensity data are used, and vice versa. For instance, the UA
of pepper and pumpkin is around 25% with coherence data, but
58% and 74%, respectively, when intensity data are used instead.
Conversely, fallow, which is poorly classified with intensity (PA
10%, UA 32%), presents much better results with the coherence
(PA 33%, UA 62%). Therefore, both types of products could be
used in a complementary way to improve classification accuracy.

D. Classification Based on Coherence and Intensity

The final evaluation of Sentinel-1 data performance for crop-
type mapping consists in using as input both the time-series
of coherence and intensity data. The analysis carried out in
Sections III-B and III-C proves that coherence values coming
from the shortest temporal baseline (6 days) and all intensity
images (1 image every 6 days) provide the best classification

TABLE X
ACCURACY ASSESSMENT OF THE RESULTS OBTAINED WITH ALL 60

BACKSCATTER IMAGES AND 6-DAY COHERENCE

Fig. 12. Normalized confusion matrix obtained with all 60 backscatter images
and 6-day coherence at both VV and VH channels.

results, respectively. Therefore, here we use directly all intensity
images, and coherence values coming from temporal baselines
longer than 6 days are not considered. For completeness, the
influence of polarization is also studied by analyzing the results
of the individual channels and their combination.

The resulting accuracy scores are detailed in Table X, and the
confusion matrix for the dual-pol case is also shown in Fig. 12.
The first obvious comment is that, regardless of polarization,
the use of both types of features clearly outperforms the results
obtained with only one type of data (either coherence or inten-
sity). The increase in OA with respect to any of the equivalent
cases with only coherence or intensity ranges from 6% to 8%,
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reaching 86.7% when both polarimetric channels are considered
(the highest OA was 79.2% using dual-pol coherence and 80.0%
using the intensity of both channels). Moreover, Kappa score
reached 0.83, which showed a remarkable increase with respect
to the previous best cases (0.73).

The improved overall metrics are in line with significant
improvements in accuracy at class level. For instance, the UA
of cotton, tomato, sugar beet, and maize increases, respectively
from 86%, 72%, 90%, and 62% using only VV coherence, or
from 75%, 75%, 91%, and 66% using VV intensity, to 88%,
85%, 94%, and 82% when both products are employed. In fact,
and also regardless of polarization, all classes present now UA
higher than 50%, except chickpea with VH data only, whose UA
is 33%.

Furthermore, VV data clearly provide better classification
results than VH data, as shown in Table X. However, the best
classification results are again obtained when both polarizations
are used (i.e., coherence and intensity of VV and VH channels).
As shown in Fig. 12, confusion among classes is lower. With
VV and VH, 13 of the 17 classes exhibit UA higher than 70%,
and the minimum UA is 54%.

Finally, these results prove that coherence and intensity data
are undoubtedly complementary for this application. Classes
which were poorly classified with any of the two features,
such as pepper and pumpkin (UA around 25%) with dual-pol
coherence, and fallow and chickpea (UA equal to 32% and 44%,
respectively) with dual-pol intensity images, present increased
accuracies with both features: UA equal to 65% for pepper, 74%
for pumpkin, 61% for fallow, and 54% for chickpea.

IV. DISCUSSION

The results obtained in this work can be compared with
those obtained in previous experiments with time-series of SAR
data, and more specifically with Sentinel-1 data, e.g. [3], [4],
but always taking into account that each study about crop-type
mapping has unique characteristics, including the number and
specificity of crop species present in the study site, the cultivation
practices, the agro-climatic conditions, which usually depend
on the geographical location, and the dates and time span of
the acquisitions. This complicates comparison in absolute terms
and has to be considered to draw right conclusions. For instance,
the time span covered by the satellite images in this work is a
whole year, with data from a single orbit, whereas only 4 months
were used in [3], and more than one year and three orbits were
exploited in [4].

Provided that the objective of this work is to assess the con-
tribution of Sentinel-1 interferometric coherence to crop-type
mapping, it is important to quantify the added value of the sets
of input features that include interferometric coherence with
respect to those that do not consider it. In this sense, it has been
demonstrated for the first time that the addition of time-series
of Sentinel-1 coherence improves the OA (more than 6% in our
site) with respect to the best case based only on time-series of the
backscattering coefficient, reaching 86.7% when the two polari-
metric channels are exploited. By observing the time-series of

TABLE XI
ACCURACY ASSESSMENT OF THE RESULTS OBTAINED WITH SINGLE

INTERFEROMETRIC PAIRS AS A FUNCTION OF THE MONTH

Coherence and backscatter images at both VV and VH channels are
used as input feature set for each pair.

interferometric coherence measured for all crop types in this site,
we conclude that the growing season of most species coincides
with a period of very low coherence. Before the early vegetative
stages and after harvest, the coherence values are significantly
higher, so the crop calendar is well identified by the coherence
magnitude. The detection of harvest date by means of Sentinel-1
coherence was first demonstrated in [18] for some crops. Despite
the growing season is also clearly identified in the time-series of
backscatter, this study has demonstrated that coherence provides
additional information to better capture the features of the crops,
hence improving the classification performance. A similar con-
clusion has been obtained recently in [11] by using TanDEM-X
repeat-pass coherence values, despite the increased temporal
baseline (11 days instead of 6 days) and a much shorter time span
(3 months instead of a whole year). Clearly, the quite different
response of coherence in the presence and absence of vegetation,
as well as the influence of crop structure on it, provides the extra
information required to enhance the classification performance.

The previous comment opens also the discussion about the
advantage of using time-series of coherence data instead of
single coherence data for crop-type mapping. With other types of
input features (e.g. backscatter and polarimetry), the advantage
of time-series is evident in crop classification [23]. However, it
is worth testing the performance of single interferometric pairs
for the same purpose. Table XI shows the overall scores obtained
by using a single interferometric pair, which was selected as the
first of each month in order to study also the influence of the crop
calendar on it. For each case, the input data is composed of six
features: coherence of the pair and backscatter coefficient of the
two images of the pair, and for the two polarimetric channels.
Obviously, the results are really poor from the practical point
of view, with OA values always below 40%. The best months
in this approach are from May to August, which are the only
ones providing an OA above 30%. In this test site, most of the
crops are sown in spring and summer, so these months coincide
with the early growing stages of most crops, which are captured
by the coherence data, thanks to temporal decorrelation, and
by backscatter due to the increased response in the presence of
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vegetation. In summary, as expected, the availability of one-year
long time-series of Sentinel-1 data, with short revisit time and
without missing acquisitions, provides the amount information
required to distinguish among the crop types present in this
region.

Finally, it is also worth comparing the results found in this
work on crop-type mapping with those obtained in [9] on
land-cover classification. With the shortest temporal baseline
available in that work (12 days) and using the same classifier
(RF), the OA values obtained in three different sites ranged from
65% to 74% using only coherence at the two channels. The
OA increased from 74% with coherence alone to 80% when
both coherence and intensity were used (and employing both
polarimetric channels), but it was only tested in one test site. The
equivalent case in the present work, but with a 6-day baseline,
yields 79% of OA with coherence alone and 86.7% by employing
coherence and intensity. Despite the limited comparability be-
tween cases, in both results, the contribution of the time-series
of Sentinel-1 coherence is clear and in a similar amount. The
consistency of this contribution in land cover classification was
demonstrated in [9] by testing many different classifiers and
evaluation strategies, including at pixel and object level, with
and without segmentation. Consequently, it can be stated that its
equivalent contribution in crop-type mapping is also consistent
and independent from the specific classification algorithm.

V. CONCLUSION

This work investigates the potential of Sentinel-1 interfero-
metric and radiometric data for generating thematic maps of
crop types. First, it is shown that both types of features exhibit
very remarkable and similar results when used individually.
Overall classification accuracies lie between 70% and 80%,
depending on the input dataset used by the classifier. In this
regard, concerning coherence data, it is proved that the shortest
temporal baseline coherence (6 days) clearly provides the best
classification results, showing the enhanced performance the
two-satellite constellation offers for this application. In fact, the
inclusion of coherence data coming from longer temporal base-
lines has a negative impact on the results. Regarding intensities,
we have shown that using more images (1 every 6 days) provides
higher classification accuracies, proving again the advantage of
the revisit time of 6 days of Sentinel-1.

Second, we have analyzed the impact of polarization. Con-
cerning coherence, using the data of the VV channel as input
yields better results than using the one of the VH counterpart.
This was expected because of the higher SNR and smaller tem-
poral decorrelation of VV with respect to VH, which makes them
less noisy. Conversely, VH intensity performs slightly better than
the VV one, due to the higher sensitivity to vegetation of VH, as
it was previously studied in literature. However, the important
aspect of polarization is that the behavior of both channels is
somehow complementary, since jointly using the data of both
polarizations as input to the classifier improves the quality of
the classification.

Third, an important conclusion of this work is that coherence
and intensity data are indeed complementary for this application.

It is shown that when both features are jointly used as input to the
classifier, there is a very significant increase in accuracy, which
becomes even higher if both polarimetric channels are exploited,
reaching an overall classification accuracy equal to 86.7%. Ob-
viously, the use of both channels for intensity and interferometry
entails a high computational burden. In this regard, if some
degradation of performance is acceptable, the exploitation of
the VV channel alone provides results only slightly worse (OA
equal to 85.4%) than in the dual-pol case.

Finally, some directions for future research are also proposed.
The selection of the multilook filter employed in this work
(boxcar) was done on the basis of the simplest processing, at the
expenses of degraded resolution and, hence, potential problems
in edges between fields and/or when parcels are very small. In
this regard, recent works exploiting Sentinel-1 backscatter data
have observed worse performances for small parcels than for
large ones [3], [4]. Therefore, the use of more sophisticated
filtering techniques, like nonlocal approaches [24], should be
tested for the computation of both coherence and intensity. In
addition, more experiments over different geographical areas
and/or where other crop types are present should be carried
out to further confirm the results obtained in this work. The
use of interferometric coherence as input feature for crop-type
mapping by unsupervised classification approaches is also an
interesting study to be carried out for measuring its specific
performance in this application with such a type of classifiers. In
the same vein, the potential as input to supervised deep learning
classifiers constitutes also a future line of research, since there
are variants of this technique in specially adapted to the analysis
and exploitation of multitemporal data.
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