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Abstract
The Difference of Convex functions Algorithm (DCA) is widely used for minimizing the
difference of two convex functions. A recently proposed accelerated version, termed BDCA
for Boosted DC Algorithm, incorporates a line search step to achieve a larger decrease of
the objective value at each iteration. Thanks to this step, BDCA usually converges much
faster than DCA in practice. The solutions found by DCA are guaranteed to be critical points
of the problem, but these may not be local minima. Although BDCA tends to improve the
objective value of the solutions it finds, these are frequently just critical points as well. In
this paper we combine BDCA with a simple Derivative-Free Optimization (DFO) algorithm
to force the d-stationarity (lack of descent direction) at the point obtained. The potential
of this approach is illustrated through some computational experiments on a Minimum-
Sum-of-Squares clustering problem. Our numerical results demonstrate that the new method
provides better solutions while still remains faster than DCA in the majority of test cases.
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1 Introduction

In this paper, we are interested in solving the following unconstrained DC (difference of
convex functions) optimization problem:

where g : Rm → R ∪ {+∞} and h : Rm → R ∪ {+∞} are proper, closed and convex
functions, and g is smooth, with the conventions:

(+∞) − (+∞) = +∞,

(+∞) − λ = +∞ and λ − (+∞) = −∞, ∀λ ∈ ] − ∞,+∞[.
Problem (P) can be tackled by the well-known DC algorithm (DCA) [14, 15]. DC

programming has become an active research field for the last few decades [9] and DCA
has been successfully applied to many real-world problems arising in different fields (see,
e.g., [10]). Although DCA performs well in practice, its convergence can be fairly slow for
some particular problems. In order to speed up the scheme, an accelerated version of the
algorithm, called Boosted DC algorithm (BDCA), has been recently proposed in [2, 3]. The
BDCA performs a line search at the point generated by the classical DCA, which allows to
achieve a larger decrease in the objective value at each iteration. In the numerical experi-
ments reported in [2, 3] it was shown that BDCA was not only faster than DCA, but also
often found solutions with lower objective value. However, although both algorithms are
proved to converge to critical points of (P), there is no guarantee that these points are local
minima. For this reason, a simple trick to achieve better solutions consists in running the
algorithms from different starting points. Another approach has been recently used in [13],
where the authors incorporated an inertial term into the algorithm making it converge to bet-
ter critical points. In the recent work [12], the author proposed a DC scheme which is able
to compute d-stationary points. Although this algorithm permits to address problems where
the function g is nonsmooth, the second component function h needs to be the pointwise
maximum of finitely many differentiable functions.

The aim of this paper is to show that it is possible to combine BDCA with a simple
DFO (Derivative-Free Optimization) routine to guarantee d-stationarity at the limit point
obtained by the algorithm. As a representative application, we perform a set of numerical
experiments on the Minimum Sum-of-Squares Clustering problem studied in [3] to illustrate
this observation. This problem has many critical points, where both DCA and BDCA tend
to easily get trapped in. As a byproduct of the DFO step, we observe that in some problems
a single run of the new algorithm is able to provide better solutions than those obtained by
multiple restarts of DCA.

The rest of this paper is organized as follows. In Section 2 we recall some preliminary
results. We propose a new variant of BDCA, named BDCA+, in Section 3. The results of
some numerical experiments are presented in Section 4, where we compare the performance
of DCA, BDCA and BDCA+ on several test cases. We finish with some conclusions in
Section 5.

2 Preliminaries

Throughout this paper, 〈x, y〉 denotes the inner product of x, y ∈ R
m, and ‖ · ‖ corresponds

to the induced norm given by ‖x‖ = √〈x, x〉. For any extended real-valued function f :
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R
m → R ∪ {+∞}, the set dom f := {x ∈ R

m | f (x) < +∞} denotes the (effective)
domain of f . A function f is proper if its domain is nonempty. The function f is coercive
if f (x) → +∞ whenever ‖x‖ → +∞, and it is said to be convex if

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) for all x, y ∈ R
m and λ ∈ [0, 1].

Further, f is strongly convex with strong convexity parameter ρ > 0 if f − ρ
2 ‖·‖2 is convex,

i.e., when

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) − ρ

2
λ(1 − λ)‖x − y‖2

for all x, y ∈ R
m and λ ∈ [0, 1]. For any convex function f , the subdifferential of f at

x ∈ R
m is the set

∂f (x) := {w ∈ R
m | f (y) ≥ f (x) + 〈w, y − x〉 ∀y ∈ R

m}.

If f is differentiable at x, then ∂f (x) = {∇f (x)}, where ∇f (x) denotes the gradient of
f at x. The one-sided directional derivative of f at x with respect to the direction d ∈ R

m

is defined by

f ′(x; d) := lim
t↘0

f (x + td) − f (x)

t
.

Before going to the main contribution of this paper in Section 3, we state our assumptions
imposed on (P). We also recall some preliminary notions and basic results which will be
used in the sequel.

2.1 Basic Assumptions

Assumption 1 Both functions g and h in (P) are strongly convex on their domain for the
same strong convexity parameter ρ > 0.

Assumption 2 The function h is subdifferentiable at every point in dom h; that is, ∂h(x) �=
∅ for all x ∈ dom h.

Assumption 3 The function g is continuously differentiable on an open set containing
dom h and

φ� := inf
x∈Rm

φ(x) > −∞.

Assumption 1 is not restrictive, as one can always rewrite the objective function as φ =
(g + q) − (h + q) for any strongly convex function q (e.g., q = ρ

2 ‖ · ‖2). Observe that
Assumption 2 holds for all x ∈ ri dom h (by [17, Theorem 23.4]). A key property for our
method is the smoothness of g in Assumption 3, which cannot be in general omitted (see [3,
Example 3.2]).
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2.2 Optimality Conditions

Under Assumptions 2 and 3 the following well-known necessary condition for local
optimality holds.

Fact 1 (First-order necessary optimality condition) If x� ∈ dom φ is a local minimizer of
problem (P), then

∂h(x�) = {∇g(x�)}. (1)

Proof See [16, Theorem 3].

Any point satisfying condition (1) is called a d(irectional)-stationary point of (P). We
say that x� is a critical point of (P) if

∇g(x�) ∈ ∂h(x�).

Clearly, d-stationary points are critical points, but the converse is not true in general (see,
e.g., [4, Example 1]). In our setting, the notion of critical point coincides with that of Clarke
stationarity, which requires that zero belongs to the Clarke subdifferential at x� (see, e.g., [5,
Proposition 2]). The next result establishes that the d-stationary points of (P) are precisely
those points for which the directional derivative is zero for every direction.

Proposition 1 A point x� ∈ dom φ is a d-stationary point of (P) if and only if

φ′(x�; d) = 0 for all d ∈ R
m. (2)

Proof If x� is a d-stationary point of (P), then by [17, Theorem 25.1] we know that h is
differentiable at x�. Therefore, for any d ∈ R

m, we have

φ′(x�; d) = 〈∇g(x�), d〉 − 〈∇h(x�), d〉 = 0.

For the converse implication, pick any v ∈ ∂h(x�) �= ∅ (by Assumption 2) and observe
that, for any d ∈ R

m, we have that

φ′(x�; d) = g′(x�; d) − h′(x�; d)

= 〈∇g(x�), d〉 − lim
t↘0

h(x� + td) − h(x�)

t

≤ 〈∇g(x�) − v, d〉.

Hence, if x� satisfies (2), one must have

〈∇g(x�) − v, d〉 ≥ 0 for all d ∈ R
m,

which is equivalent to ∇g(x�)− v = 0. As v was arbitrarily chosen in ∂h(x�), we conclude
that ∂h(x�) = {∇g(x�)}.
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2.3 DCA and Boosted DCA

In this section, we recall the iterative procedure DCA and its accelerated extension, BDCA,
for solving problem (P). The DCA iterates by solving a sequence of approximating convex
subproblems, as described next in Algorithm 1.

The key feature that makes the DCA work, stated next in Fact 2(a), is that the solution
of (Pk) provides a decrease in the objective value of (P) along the iterations. Actually, an
analogous result holds for the dual problem, see [14, Theorem 3]. In [2], the authors showed
that the direction generated by the iterates of DCA, namely dk := yk−xk , provides a descent
direction of the objective function at yk when the functions g and h in (P) are assumed to be
smooth. This result was later generalized in [3] to the case where h satisfies Assumption 2.
The following result collects these properties.

Fact 2 Let xk and yk be the sequences generated by Algorithm 1 and set dk := yk − xk for
all k ∈ N. Then the following statements hold:

(a) φ(yk) ≤ φ(xk) − ρ‖dk‖2;
(b) φ′(yk; dk) ≤ −ρ‖dk‖2;
(c) there exists some δk > 0 such that

φ(yk + λdk) ≤ φ(yk) − αλ2‖dk‖2 for all λ ∈ [0, δk[.

Proof See [3, Proposition 3.1].

Thanks to Fact 2, once yk has been found by DCA, one can achieve a larger decrease in
the objective value of (P) by moving along the descent direction dk . Indeed, observe that

φ(yk + λdk) ≤ φ(yk) − αλ2‖dk‖2 ≤ φ(xk) − (ρ + αλ2)‖dk‖2 for all λ ∈ [0, δk[.

This fact is the main idea of the BDCA [2, 3], whose iteration is described next in
Algorithm 2.
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Algorithmically, the BDCA is nothing more than the classical DCA with a line search
procedure using an Armijo type rule. Note that the backtracking step in Algorithm 2
(lines 6–9) terminates finitely thanks to Fact 2(c).

We state next the basic convergence results for the sequences generated by BDCA (for
more, see [2, 3]). Observe that DCA can be seen as a particular case of BDCA if one sets
λk = 0, so the following result applies to both Algorithms 1 and 2.

Fact 3 For any x0 ∈ R
m, either Algorithm 2 (BDCA) with ε = 0 returns a critical point

of (P), or it generates an infinite sequence such that the following properties hold.

(a) {φ(xk)} is monotonically decreasing and convergent to some φ�.
(b) Any limit point of {xk} is a critical point of (P). In addition, if φ is coercive then there

exists a subsequence of {xk} which converges to a critical point of (P).
(c) It holds that

∑+∞
k=0 ‖dk‖2 < +∞. Furthermore, if there is some λ such that λk ≤ λ

for all k ≥ 0, then
∑+∞

k=0 ‖xk+1 − xk‖2 < +∞.

Proof See [3, Theorem 3.6].

2.4 Positive Spanning Sets

Most directional direct search methods are based on the use of positive spanning sets (see,
e.g., [1, Section 5.6.3] and [7, Chapter 7]). Let us recall this concept here.

Definition 1 We call positive span of a set of vectors {v1, v2, . . . , vr } ⊂ R
m the convex

cone generated by this set, i.e.,

{v ∈ R
m : v = α1v1 + · · · + αrvr , αi ≥ 0, i = 1, 2, . . . , r}.
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A set of vectors in R
m is said to be a positive spanning set if its positive span is the whole

space Rm. A set {v1, v2, . . . , vr } is said to be positively dependent if one of the vectors is in
the positive span generated by the remaining vectors; otherwise, the set is called positively
independent. A positive basis in R

m is a positively independent set whose positive span is
R

m.

Three well-known examples of positive spanning sets are given next.

Example 1 (Positive basis) Let e1, e2, . . . , em be the unit vectors of the standard basis in
R

m. Then the following sets are positive basis in R
m:

D1 := {±e1,±e2, . . . ,±em}, (3a)

D2 :=
{

e1, e2, . . . , em,−
m∑

i=1

ei

}
, (3b)

D3 :=
{
v1, v2, . . . , vm, vm+1 ∈ R

m, with
vT
i vj = −1

m
, if i �= j,

‖vi‖ = 1, i = 1, 2, . . . , m + 1.

}
. (3c)

A possible construction for D3 is given in [7, Corollary 2.6].

Recall that the BDCA provides critical points of (P) which are not necessarily d-station-
ary points (Fact 3). Theoretically, see [14, Section 3.3], if x� is a critical point which is
not d-stationary, one could restart BDCA by taking x0 := x� and choosing y0 ∈ ∂h(x0) \
{∇g(x0)}. Nonetheless, observe that this is only applicable when the algorithm converges in
a finite number of iterations to x�, which does not happen very often in practice (except for
polyhedral DC problems, where even a global solution can be effectively computed if h is a
piecewise linear function with a reasonable small number of pieces, see [14, §4.2]). Because
of that, our goal is to design a variant of BDCA that generates a sequence converging to a
d-stationary point. The following key result, proved in [6, Theorem 3.1], asserts that using
positive spanning sets one can escape from points which are not d-stationary. We include its
short proof.

Fact 4 Let {v1, v2, . . . , vr } be a positive spanning set of Rm. A point x� ∈ dom φ is a
d-stationary point of (P) if and only if

φ′(x�; vi) ≥ 0 for all i = 1, 2, . . . , r . (4)

Proof The direct implication is an immediate consequence of Proposition 1. For the
reverse implication, pick any x� ∈ dom φ verifying (4) and choose any d ∈ R

m. Since
{v1, v2, . . . , vr } is a positive spanning set, there are α1, α2, . . . , αr ≥ 0 such that

d = α1v1 + α2v2 + · · · + αrvr .
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According to [17, Theorem 23.1], we have that

h′(x�; d) ≤ α1h
′(x�; v1) + · · · + αrh

′(x�; vr).

Hence, we obtain

φ′(x�; d) = g′(x�; d) − h′(x�; d)

= 〈∇g(x�), α1v1 + α2v2 + · · · + αrvr 〉 − h′(x�; d)

≥
r∑

i=1

αi〈∇g(x�); vi〉 −
r∑

i=1

αih
′(x�; vi)

=
r∑

i=1

αiφ
′(x�; vi) ≥ 0.

Since d was arbitrarily chosen, then (2) holds and x� is a d-stationary point of (P).

3 Forcing BDCA to Converge to d-Stationary Points

In this section we propose a new variant of BDCA to solve problem (P), called BDCA+.
The idea is to combine BDCA with a basic DFO routine which uses positive spanning sets.
The first scheme aims at achieving a fast minimization of the objective function φ, while
the second one is used to avoid converging to critical points for which there is at least
a descent direction (i.e., they are not d-stationary points and, thus, they cannot be local
minima). Let us make some comments about the new scheme BDCA+, which is stated in
Algorithm 3.

– Subproblem (Pk) in line 3 corresponds to the classical DCA step for solving (P).
– Lines 5 to 10 encode the boosting line search step used in BDCA. If the current iterate

is (numerically) not a critical point, then the algorithm performs a line search step at yk

along the direction dk to improve the objective values of (P).
– Lines 11 to 19 correspond to a direct search DFO technique. It is run only when BDCA

was stopped, in order to check if the point obtained is d-stationary. To this aim, it
performs a backtracking search along each of the directions belonging to a positive
spanning set D of Rm. If it reaches a point whose objective value is smaller, then we
move to that point and run BDCA again from there. Otherwise, there is not descent
direction in D and, according to Fact 4, the point we have found must be (numerically)
d-stationary.

– The choice λk = 0 for all k is allowed, which corresponds to adding a direct search
step to DCA.
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The following constructive example serves to illustrate the different behavior of DCA,
BDCA and BDCA+.

Example 2 ([3, Example 3.3]) Consider the function φ : R2 → R defined by

φ(x, y) := x2 + y2 + x + y − |x| − |y|.
Consider a corresponding DC decomposition φ = g − h of φ with

g(x, y) := 3

2
(x2 + y2) + x + y and h(x, y) := |x| + |y| + 1

2
(x2 + y2).

Observe that g and h satisfy Assumptions 1, 2, and 3. It can be easily checked that φ has
four critical points, namely (0, 0), (−1, 0), (0,−1) and (−1,−1), of which only the latter
is a d-stationary point (and also the global minimum).

In Fig. 1 we show the iterations generated by DCA (Algorithm 1) and BDCA+ (Algo-
rithm 3) from the same starting point x0 = (0, 1). The DCA converges to the critical point
(0, 0). The BDCA escapes from this point but still gets stuck at (0,−1), which is also a
critical point which is not d-stationary. After applying once the DFO scheme (dashed line),
we observe that BDCA successfully converges to the d-stationary point (−1,−1), which is
in fact the global minimum of the problem.

To demonstrate the advantage of BDCA+ we compute the number of instances, out of
one million random starting points uniformly distributed in [−1.5, 1.5] × [−1.5, 1.5], that
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-1.5 -1 -0.5 0 0.5 1 1.5
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DCA

BDCA+

Fig. 1 Ilustration of Example 2

each algorithm has converged to each of the four critical points. The results are summarized
in Table 1.

From Table 1, we observe that DCA converged to each of the four critical points with
the same probability, while BDCA converged to the global minimum in 99.6% of the
instances. The best results where obtained by BDCA+, which always converged to the
global minimum (−1,−1).

4 Numerical Experiments

In this section, we provide the results of some numerical tests to compare the performance
of BDCA+ (Algorithm 3) and the classical DCA (Algorithm 1). To this aim we turn to
the same challenging clustering problem tested in [3, Section 5.1], where both algorithms
have troubles for finding good solutions due to an abundance of critical points. A different
algorithm based on the DC programming approach to solve this problem was introduced
in [4]. This algorithm is also proved to converge to d-stationary points.

All the codes were written in Python 2.7 and the tests were run on a desktop of Intel
Core i7-4770 CPU 3.40GHz with 32GB RAM, under Windows 10 (64-bit). The following
strategies have been followed in all the experiments:

– The trial step size λk in the boosting step of BDCA (line 6 in Algorithms 2 and 3) was
chosen to be self-adaptive, as in [3, Section 5], which proceeds as follows:

1. Set λ0 = 0 and fix any γ > 1.
2. Choose any λ1 > 0 and obtain λ1 by backtracking.

Table 1 For one million random
starting points in
[−1.5, 1.5] × [−1.5, 1.5], we
count the sequences generated by
DCA, BDCA and BDCA+
converging to each of the four
d-stationary points

(−1,−1) (−1, 0) (0,−1) (0, 0)

DCA 249,821 250,671 249,944 249,564

BDCA 996,221 1,897 1,882 0

BDCA+ 1,000,000 0 0 0
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3. For k ≥ 2,

if (λk−2 = λk−2 and λk−1 = λk−1) then

set λk := γ λk−1;
else set λk := λk−1;

and obtain λk by backtracking.

– In our numerical tests we observed that the accepted step sizes μ in the DFO step of
Algorithm 3 usually decrease (nearly always). For this reason, we used η := 1

β2
and

τ := ε2 in the choice of the initial value of μ at line 12 in Algorithm 3. By this way,
we allow a slight increase in the value of the step size with respect to the previous one,
while we can avoid wasting too much time in this backtracking.

– We tested the three positive basis presented in Example 1. Surprisingly, the basis with
equally spaced angles D3 in (3c) performs worse than the others in our test problem. In
fact, the best choice was the basis D1 in (3a), and this is the one we have employed in
all the experiments throughout this section.

– We used the parameter setting as α := 0.0001, ε1 := 10−8, ε2 := 10−4, μ := 10,
γ = 2, λ1 := 10, β1 := 0.25 and β2 := 0.5.

The Minimum Sum-of-Squares Clustering Problem Given a collection of n points,{
a1, a2, . . . , an ∈ R

m
}
, the goal of clustering is to group them in k disjoint sets (called clus-

ters),
{
A1, A2, . . . , Ak

}
, under an optimal criterion. For each cluster Aj , j = 1, 2, . . . , k,

consider its centroid xj as a representative. The Minimum Sum-of-Squares Clustering crite-
rion asks for the configuration that minimizes the sum of squared distances of each point to
its closest centroid, i.e. the solution to the optimization problem

min
x1,...,xk∈Rm

{
ϕ

(
x1, . . . , xk

)
:= 1

n

n∑
i=1

min
j=1,...,k

‖xj − ai‖2

}
. (5)

We can rewrite the objective in (5) as a DC function (see [4, 8, 11]) with

g
(
x1, . . . , xk

)
:= 1

n

n∑
i=1

k∑
j=1

‖xj − ai‖2 + ρ

2

k∑
j=1

‖xj‖2,

h
(
x1, . . . , xk

)
:= 1

n

n∑
i=1

max
j=1,...,k

k∑
t=1,t �=j

‖xt − ai‖2 + ρ

2

k∑
j=1

‖xj‖2;

where g and h satisfy Assumptions 1, 2, and 3 for all ρ > 0 (in our tests, we took ρ = 1
nk

).

Data Set and Experiments Our data set is the same one considered in [3], which consists
of the location of 4001 Spanish cities in the peninsula with more than 500 inhabitants.1 In
Fig. 2 we compare the iterations generated by DCA and BDCA+ for finding a partition into
20 clusters from the same random starting point x0 ∈ R

2×20 (marked with a black cross).
We observe that DCA converges to a critical point which is far from being optimal, as there
are three clusters without any cities assigned. On the other hand, although BDCA apparently

1The data can be retrieved from the Spanish National Center of Geographic Information at http://
centrodedescargas.cnig.es.
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Fig. 2 Iterations and limit points generated by DCA and BDCA+ for grouping the Spanish cities in the
peninsula into 20 clusters from the same random starting point. The DFO step in line 14 of Algorithm 3 was
run 10 times (these steps are marked with a dashed line)

converges to the same critical point, the DFO step allows BDCA+ to escape from points
which are not d-stationary and reach a better solution.

To corroborate these results, we repeated the experiment for different number of clus-
ters k ∈ {20, 40, 60, 80}. For each of these values, we run DCA and BDCA+ from 50
random starting points. The results are shown in Fig. 3, where we can clearly observe that
BDCA+ outperforms DCA, not only in terms of the objective value attained, but even in
running time. Observe that it is not really fair to compare the running time of DCA and
BDCA+, because DCA simply stops at a critical point without incorporating the time-
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Fig. 3 Comparison between the DCA and the BDCA+ for classifying the Spanish cities in the peninsula
into k clusters for k ∈ {20, 40, 60, 80}. For each of these values, both algorithms were run from 50 random
starting points. We represent the objective value achieved in the limit point by each algorithm (left axis, in
blue), as well as the ratio between the CPU time required by DCA with respect to the one needed by BDCA+
(right axis, orange crosses). Instances were sorted on the x-axis in descending order according to the gap
between the objective values at the limit points found by the algorithms

consuming DFO step that guarantees d-stationarity. Nonetheless, the speedup obtained by
the line search of BDCA allows BDCA+ to still converge faster than DCA in most of the
instances. As expected, BDCA+ becomes slower as the size of the problem increases, due
to the DFO step. Despite that, notice that for 80 clusters the best solution provided by DCA
among the 50 instances is still worse than the worst solution obtained by BDCA+. That is,
any of the runs of BDCA+ was able to obtain a better solution than 50 restarts of DCA.

5 Concluding remarks

We have proposed a combination between the Boosted DC Algorithm (BDCA) and a simple
direct search Derivative-Free Optimization (DFO) technique for minimizing the difference
of two convex functions, the first of which is assumed to be smooth. The BDCA is used
for minimizing the objective function, while the DFO step permits to force the iteration
to converge to d-stationary points (i.e., to points where there exists no descent direction),
rather than just critical points.

The good behavior of the new algorithm, called BDCA+, has been demonstrated by
numerical experiments in a clustering problem. The new scheme generates better solutions
than the classical DCA in nearly all the instances tested. Moreover, this improvement in the
quality of the solutions has not caused an important loss in the time spent by the algorithm.
In fact, BDCA+ was faster than DCA in most of the cases, thanks to the large acceleration
achieved by the line search boosting step of BDCA.
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