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Abstract. Cognitive architectures allow robots to perform their operations by drawing on a process that aims to simulate human
reasoning. This paper presents an integrated semantic artificial memory system in cognitive architecture based on symbolic
reasoning and a connective representation of the knowledge. This memory system attempts to simulate how humans learn to
distinguish instances of particular objects within their class using a convolutional network to detect the relevant elements of
an image. We use a vector with the extracted features to learn to discriminate an instance of another element from the same
class. A novel feature of our approach is its autonomous learning process during the operation of the robot, integrating a deep
learning embedding with a statistical classifier. The usefulness and robustness of this method are demonstrated by applying it
to a social robot that learns to differentiate people. Finally, experiments are carried out to validate our approach, comparing the
detection results with several alternative methods.
Keywords: cognitive architectures, people recognition, pose estimation, social robotics

1. Introduction

The learning process of robots is still far from
the learning process of humans. Recent advances
in convolutional neural networks have revolu-
tionized the ability of machines to visually rec-
ognize classes of elements in images. Despite
its high effectiveness, the learning process is of-
fline, slow, and requires much computation. Hu-
mans, in contrast, learn by accumulating knowl-
edge from experience.

Distinguishing a person is a desirable capacity
of a social robot. Robots meet different people
during their operation. In many tasks, they are
required to distinguish them from others. Tasks
such as serving drinks in a bar, following a per-

son in a crowd, greeting the people around them
by name, among others, are commons.

This paper presents the results of an investi-
gation that mixes deep learning (DL) techniques
and statistical classifiers to achieve a robust sys-
tem of online learning and recognition of peo-
ple. The proposed approach has different operat-
ing modes. In the learning mode, the robot learns
to distinguish the person with whom it is interact-
ing. The robot extracts the person’s name from its
interaction with the person. The aim is that, after
several seconds of communication, the robot will
be able to distinguish it from the rest of the peo-
ple. In normal mode, the robot can identify all
the people from whom it has learned to carry out
tasks entrusted to it. This approach is not only
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valid for people, but can also be used to identify
any visual elements.

In addition, the integration of this system into a
cognitive architecture designed for social robots
has been performed. This architecture provides
mechanisms to control the changes in the oper-
ation mode. It is also essential to see how the
recognition system’s results are made available
to the rest of the robotic system. This description
will be useful to understand how the learning and
recognition system is used.

The proposed approach has several advantages
over current methods. The most obvious is that
it does not detect classes of elements, but distin-
guishes particular instances within the same cat-
egory. While works like [26] identify instances
of a given object, we, however, are able to
track those instances over time. The second ad-
vantage is its operation mode. Current DL ap-
proaches would require an offline process of la-
beling, training, and deployment on the robot.
The proposed approach can alternate training
phases with operation phases without turning off
the robot. Moreover, this learned knowledge be-
tween robot operations is preserved. This tech-
nique is similar to online learning methods such
as [8] and [5], as the model can be adapted to new
knowledge received in execution time. Last but
not least, learning a person requires less than 15
seconds of interaction (this is the maximum time
that some competitions establish, as explained
in the next paragraph). Such training times are
unimaginable in current methods that use only
DL.

Robotic competitions also provide a useful sit-
uation in which to test the system. Competitions,
such as RoboCup, present a problem and a com-
mon scenario where research groups from around
the world apply and contrast their research. The
authors of the present work participated in the
RoboCup SSPL@Home, in which a social robot
is required to carry out a series of missions in
a domestic environment to help a dependent per-
son in their daily life. In one of the tests, the robot
must follow a person out of the house to help her

unload the car. The robot must learn to follow a
person (the referee of the test) in less than 15 sec-
onds without confusing them with any person it
might detect during the follow-up. The proposed
system will be able to address this situation with-
out trouble, since the system is not based on rec-
ognizing a face, but an entire appearance, since
the face is not visible when it is on the side dur-
ing tracking.

Specifically, the main contributions of this
work are:

• A person identification memory system
(PIMS).

• An exhaustive experimentation of different
classifiers focused on processing time and
accuracy for the PIMS.

• An approach to integrate PIMS in an exist-
ing cognitive architecture for driving social
robots.

The proposed approach combines DL archi-
tectures trained with a new dataset with feature
extraction techniques. Some previous works also
created a framework to combine different visual
features [29] with a similar approach to the pro-
posed one, but this approach uses DL embed-
dings instead of handcrafted features.

This work follows up our previous work [36]
by, on the one hand, integrating the person iden-
tification system into a cognitive architecture for
social robotics and, on the other, improving the
person identification system and allowing it to
detect when the appearance of the subject is not
already learned.

The rest of the paper is organized as follows.
Firstly, Section 2 analyzes the state of the art of
person identification. Next, Section 3 presents a
description of the cognitive architecture. Section
4 provides an in-depth description of the pro-
posal. Subsequently, Section 5 is devoted to the
experimentation carried out with the proposed
PIMS module (only people recognition has been
tested) with some available DL pre-trained net-
works and to the corresponding discussion. The
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limitations of the system are addressed in Sec-
tion 5.4. Finally, Section 6 draws conclusions and
present possible future research directions.

2. Related Works

Most technical approaches to memory imple-
mentations are centered representations of the
world where knowledge about the elements of
the environment is maintained, together with val-
ues that indicate its reliability or accuracy. In [11]
an anchoring system is presented, where each el-
ement has a reliability value associated with it,
which depends on when an element has been per-
ceived. In [51], reliability of the knowledge of an
object is also associated with the time when this
perception is obtained, but adding semantic rela-
tions between the elements of memory. A similar
approach is presented in [38], although focused
on the learning of elements in memory.

To maintain a memory, biologically inspired
approaches attempt to emulate totally or partially
the mental processes that are attributed to human
beings. The separation between long-term, short-
term, or episodic memories [13] is common in
these approaches. In [22] the short-term memory
focuses on the stimuli relevant to the current task,
while the long-term memory contains episodic
events that are derived from the interaction be-
tween a robot and a human. These types of long-
term memories that remember episodes are dis-
cussed in depth in [50] and [14]. The concept of
Working Memory [39, 49] is applied to robots in
an attempt to provide a robot with biologically in-
spired cognitive abilities. The proposed approach
is among the short-term memories, being its bio-
logical approach inspired by the process of infor-
mation acquisition, based on neural networks.

The rest of this section presents a brief analy-
sis of the state-of-the-art methods on person re-
identification based on its activity.

People re-identification in videos is a challeng-
ing problem but it also promises a huge potential
for a wide range of applications mainly related

with security and surveillance and health care or
human-machine interaction [17].

An automated re-identification mechanism
takes as input either tracks or bounding boxes
containing segmented images of an individual
person, as generated by a localized tracking or
detection process of a visual surveillance sys-
tem. To automatically match people at different
locations over time, a re-identification process
typically takes the following steps: 1. Extract-
ing imagery features; 2. Constructing a descriptor
or representation capable of both describing and
discriminating individuals; 3. Matching specified
probe images or tracks against a gallery of people
in another camera view by measuring the similar-
ity between the images.

A classic taxonomy classifies recognition
methods as either single-shot when only one im-
age pair is used, or multi-shot when two sets of
images are employed. With regard to the learn-
ing approach, it is categorized as a supervised
method if, prior to application, it exploits labeled
samples for tuning model parameters. Otherwise
a method is considered as an unsupervised ap-
proach and no training data is used to train the
system.

In recent years, deep learning (DL) techniques
have surpassed the classic methods in most com-
puter vision challenges [28, 52, 56]. Further-
more, in [40] a multiscale re-identification sys-
tem is proposed.

However, these models suffer from a lack of
training data samples. This is because most of
the available datasets provide only two images
per individual [18], which makes the model fail
at test time due to overfitting. In this line, a num-
ber of new datasets have been proposed to solve
this problem. Some of these are based on images:
Market1501 [57], CUHK03 [31], DukeMTMC-
reID [59], while other are based on video: MARS
[58], iLIDS-VID [54] or PRID2011 [21].

Some recent works using DL models include
[4], which proposes a deep convolutional ar-
chitecture with layers specially designed to ad-
dress the problem of re-identification. In [10],
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the authors learn multi-scale person appearance
features using Convolutional Neural Networks
(CNN) by aiming to jointly learn discrimina-
tive scale-specific features and maximize multi-
scale feature fusion selections in image pyra-
mid input. In [30], a Tracklet Association Un-
supervised deep learning (TAUDL) framework
is proposed. It is characterized by jointly learn-
ing per-camera (within-camera) tracklet associ-
ation (labeling) and cross-camera tracklet cor-
relation by maximizing the discovery of most
likely tracklet relationships across camera views.
Some approaches employ graph deep neural net-
works like [47], which proposes a novel DL
framework called Similarity-Guided Graph Neu-
ral Network (SGGNN). Given a probe image and
several gallery images, SGGNN creates a graph
to represent the pairwise relationships between
probe gallery pairs (nodes) and utilizes such rela-
tionships to update the probe gallery relation fea-
tures in an end-to-end manner.

A comprehensive and exhaustive survey on
person re-identification can be found in [53]. In
this analysis, it is concluded that the main draw-
back of deep learning-based approaches is that
they cannot assure high accuracy and low compu-
tation cost because they need constant retraining.
Nonetheless, our proposal mixes the accuracy of
the deep learning models with the low compu-
tation cost of traditional machine learning meth-
ods.

Regarding the approaches used by RoboCup
teams (in this link1) to solve the problem of
re-identification, few teams use an elaborated
method. In 2018, the team AUPAIR participating
in the Social Standard Platform League (SSPL)
used an improved Siamese [24] convolutional
neural network architecture [3]. Using the score
generated by these networks, they tag images of
people for future re-identifications. A similar ap-
proach was used in 2019 by the CATIE team in
the Open Platform League (OPL), but applied
only to distinguish person already identified. The

Team Lions (2019, OPL) used a specially trained
Single Shot MultiBox Detector [34], a Kalman
Filter, and a global nearest neighbor data assign-
ment for following people.

3. A Cognitive Architecture for Social Robots

In this section, the cognitive architecture is
described. The main contribution of this work,
PIMS, is described in the next section. The de-
scription presented in this section is important to
understand how it is integrated and applied in a
real use case. The discussion and experimenta-
tion of this architecture can be found in dedicated
works such as [44][35].

The cognitive architecture is designed in the
form of layers. Each layer is called Tier N, where
N is a number that indicates the level of abstrac-
tion of each one. Symbolic concepts are handled
in Tier 1, while Tier 4 implements the skills that a
robot must have (object detection, navigation, di-
alogue, etc.). These capabilities directly use the
information from the sensors or send commands
to actuators found in Tier 5. Figure 1 shows this
concentric layer scheme. At the bottom of the fig-
ure is the knowledge graph, whereby the internal
and external knowledge of the robot spreads be-
tween layers.

For the implementation of the proposed archi-
tecture, Behavior-based Iterative Component Ar-
chitecture (BICA) [1] has been chosen, which
is a toolbox to create software architectures for
robots. Virtually all the elements of the design are
BICA components that perform different func-
tions. A BICA component is an independent pro-
cess that can declare that it depends on other
BICA components. When a BICA component is
activated, it automatically activates all its depen-
dencies. When all components that enable a de-
pendency are deactivated, the dependence is de-
activated. This mechanism is a simple way to
save computation time when the results of cer-
tain computations are not being used.

1https://github.com/RoboCupAtHome/AtHomeCommunityWiki/wiki/Team-Description-Papers
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(robot)
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)

Fig. 1. Layered cognitive architecture (right) and an example of a Knowledge Graph (left). The cognitive architecture is com-
posed of tiers, and generates the robot behavior from inner to outer tiers. The Knowledge Graph represents the internal and
external knowledge of the robot. Ellipses represent nodes with an ID and a type. Lines are text and geometric arcs.

Tier 1 is the Mission Layer. It implements the
operating modes or phases into which the robot’s
operation is divided. Its relationship with Tier
2, the planning layer, is very close. Both layers
know the domain that defines the symbolic ele-
ments of the problem on which the robot estab-
lishes its action plans. Tier 1 can add instances
in the problem and consult predicates, while its
primary function is to set goals for the plans gen-
erated by Tier 2. In Figure 1, the red circles repre-
sent each of the states of a state machine, with its
transitions. Each state machine is implemented
within a BICA component, facilitating the work
of the behavior developer.

Tier 2 implements a symbolic planner based
on Planning Domain Definition Language
(PDDL) [37]. This planner receives the goal es-
tablished in any state of Tier 1 (orange arrow in
Figure 1) and calculates a plan to achieve it. This
sequence of actions is called a plan.

The planner is responsible for activating the
implementation of the actions of which the plan
is composed. These actions are implemented in
Tier 3 and separate the symbolic world (Tier 1
and 2) from the sub-symbolic (Tier 4 and 4).
Each action is executed one after the other in Tier
3. Each time an action is successful, the planner
inserts the effects of the action into the knowl-

edge base. When an action fails, the plan execu-
tion stops and the planner informs Tier 1, which
can trigger a replanning.

In Tier 3, each of the actions defined sym-
bolically in the PDDL domain maps to the im-
plementation that carries it out. Actions receive
their parameters as symbols (instances of a type).
The action must typically translate symbols into
specific data. For example, a move action could
receive kitchen as a parameter. Then, the action
must obtain the metric coordinate corresponding
to the kitchen symbol and send it to the naviga-
tion module.

The actions are implemented as BICA compo-
nents, declaring as execution dependencies skills
in Tier 4, also implemented as BICA compo-
nents. The actions may not require another BICA
component but communicate directly with other
modules (navigation, Human-Robot Interaction
(HRI), etc.) or with the robot’s sensors and actua-
tors, which are in Tier 5. Actions can take a long
time to finish their work, informing the planner
when they end and if everything went correctly.

Actions do not usually implement all the func-
tionality to carry out a task. These functionalities
are implemented separately in skills, in Tier 4.
An advantage is that one action could use sev-
eral skills. In this layer, the robot may implement
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perceptual abilities (detect people, read a text) or
act (pay attention to an element or position, grab
an object). Each one is implemented as a BICA
component, which allows them to be activated
from Tier 3, as dependencies of actions. In addi-
tion, some skills may be composed of the cascade
execution of more than one BICA component, fa-
voring the reuse of processes.

The knowledge graph stores the information
relevant to the operation of the robot. This shared
representation of data has been designed to disen-
gage certain components from each other, espe-
cially between different layers. An action in Tier
3 uses the result of computing a skill in Tier 4 by
reading it from the knowledge graph.

The elements of the graph are nodes and arcs.
The nodes represent instances of a specific type.
The arcs can contain a text, or can provide a geo-
metric transformation.

The architecture described in this section is
modular. For each application, the user defines
which modules will be activated. Evidently, Tier
1 must be fully aware of the existing modules,
as it must orchestrate them. Some modules may
depend on other modules, so all components of
both modules must be executed.

A module can contain:

• A PDDL domain, which provides new ac-
tions, types, and predicates to consider.

• The implementation (in Tier 2) for all the ac-
tions that this module provides in its PDDL
model.

• All the skills needed by actions in Tier 3.

4. Description of Person Identification
Memory System

The goal of the PIMS module is to iden-
tify people rapidly and accurately and learn and
memorize new subjects on the fly. The techniques
used to perform this task are a combination of
deep learning architectures with traditional clas-
sifiers.

The deep learning architectures are used in
order to generate the embeddings and features
to recognize people, which perform much bet-
ter than traditional approaches. However, they re-
quire a lot of time in the training stage, so they
are trained offline and their weights will remain
frozen on the live learning stage. In the case
of traditional classifiers, their accuracy is poorer
compared with the previous ones, but they re-
quire little time to be trained. Consequently, they
can be retrained live and adjust their parameters
to the new recognition requirements. The combi-
nation of both methods leverages their strengths
and offsets their weaknesses.

The architecture of the proposal is shown in
Figure 2. In the training stage the system receives
images of the subject to be learnt, which moves
in front of the camera with different postures.
For every frame, the Detector locates the person
with a bounding box inside the image. The De-
tector consists of a region-based Convolutional
Neural Network capable of predicting the loca-
tion of subjects in an image and returns the Area
Of Interest (AOI) of every person. In this case,
the architecture used is YOLO v3 [42]. Subse-
quently, the AOI is served as input to a modified
Resnet50 [19]. This architecture is a state-of-the-
art Convolutional Neural Network for classifica-
tion tasks. In order to take advantage of the gen-
erated features, the fully connected layer at the
end of the network, which is used for classifica-
tion tasks, has been removed, so this network acts
as a feature extractor. Therefore, the output of the
network is a feature vector of 2048 values which
is labeled with the person ID and sent to the clas-
sifier’s model to be learnt. The label is known
as this is performed at training time. Although
YOLO extracted features could be processed di-
rectly, instead of applying another network’s out-
put, previous experiments show that using Resnet
as feature extractor outperforms YOLO.

In the prediction stage, for every frame the De-
tector calculates the location of the people in the
scene and generates the AOI. These AOI are then
sent to the Feature Extractor, which calculates
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Fig. 2. Diagram of the proposal. At the training stage, the detector calculates the bounding box around the person, a deep learn-
ing network extracts their features and the vector representation is sent to the classifier’s model, which is created by gathering
labeled data. At the prediction stage, the detector and the feature extractor work as on the training stage, the C1 classifier rejects
the subjects that are unknown and the C2 classifier distinguishes people’s identities.

a vector representation for every subject. These
features are forwarded to the C1 classifier, which
distinguishes between known and unknown peo-
ple. Finally, if the person has been classified as
known, their features are sent to the C2 classifier,
which recognizes their identity.

The need for a separate classifier that performs
the differentiation between known and unknown
people is a result of the difficulties in setting a
proper distance threshold inside a class-instance
classifier for this purpose. In the literature, there
exists a family of methods, known as anomaly
detectors [7], that carry out the differentiation
between "normal" and "abnormal" data (in this
case, normal data is known persons and abnormal
data is unknown persons). In the semi-supervised
case, they are capable of building their mod-
els with only "normal" data, which is perfectly
suitable for this problem, as there is only data
of known people. The hyperparameters of these
classifiers can be optimized via automatic hyper-
parameter optimization such as random or grid
search, both used in the machine learning suite
Scikit-learn [25].

With this previous step, the final class-instance
classifier will always receive a known subject and
can perform the classification without applying
any kind of filtering threshold. If the received
person is unknown, they will be rejected in the
first step.

As a result of the combination of deep learn-
ing and traditional classifiers, the PIMS approach
trains rapidly as the training samples are inserted
in traditional classifier models and there is no
need to retrain the deep learning models which
calculate the features. Moreover, its accuracy is
high as it takes advantage of deep learning archi-
tectures for detection and feature extraction. Fi-
nally, the system can also learn new classes (un-
foreseen person IDs) without any architectural
modifications. In contrast, a pure deep learning
approach would require modifications on the last
layer and a retraining process.

4.1. Integration in the Cognitive Architecture

In the proposed cognitive architecture, PIMS
is a skill in Tier 4. However, integrating PIMS is
not only determining what layer it is in but also,
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from the rest of the elements of the architecture,
how to use it.

Figure 3 shows how a robot learns and follows
a person using PIMS integrated into the proposed
architecture. It also shows a real example of one
of the tests that a robot performs in the RoboCup
competition. The robot begins in front of a per-
son who acts as a guide. It has 10-20 seconds to
learn the appearance of the guide. Once the learn-
ing phase is over, the robot must follow the guide
in an environment where there are more people.

First, PIMS must be a BICA component, so
it is active if there is any action in Tier 3 that
activates it. The PIMS component must use the
knowledge graph to interact with the other lev-
els, especially with Tier 3.

If there is a self arc in the robot node that
begins with the text "learn_person:" the
module enters in learning mode. The module
learns the features of the person in the center of
the image. PIMS labels the person with the iden-
tifier of the rest of the arc text.

Once the "learn_person" arc disappears,
it is in detection mode. If it detects the learned
person again, it adds a person node with the iden-
tifier specified in the learning mode. It adds one
arc, indicating that it sees the person. It also adds
another arc with the position of the person with
respect to the robot. If it detects another person,
it adds a node with a generic identifier, and the
corresponding arcs.

Two actions are defined in Tier 3:
learn_person and follow_person. Both
actions indicate that they require PIMS to be car-
ried out.

The learn_person action receives a
parameter, which is the identifier of the person
to learn. Its only effect is to create the self arc
"learn_person:" with the ID it receives as
a parameter. Then PIMS enters in learning mode,
as explained above.

The follow_person action receives a pa-
rameter, which is the identification of the per-
son to follow. A successful detection creates a
"sees" arc from the robot to a node with the

specified identifier. Then, the action sends the
commands to the motors to follow the person. If
the "sees" arc does not exist, it can wait or turn to
search for it.

In Tier 1, a state of the one finite state machine
can be set as a goal "person_learned ?p"
or "person_followed ?p", which triggers
the execution of a plan that includes the actions
described above.

The complete PIMS module would include: 1)
the PIMS component in Tier 4, 2) the two actions
described above, and 3) the portion of PDDL that
provides for both actions, the predicates that it re-
quires and the person type.

5. Experimentation

In this section, the experimentation carried out
to evaluate and validate the proposed approach is
described. In addition, the details of the dataset
used in the experiments are also reported.

The experiments were carried out using the fol-
lowing setup: Intel Core i5-3570 with 16 GiB of
Kingston HyperX 1600 MHz and CL10 DDR3
RAM on an Asus P8H77-M PRO motherboard
(Intel H77 chipset). The system also included
an Nvidia GTX1080Ti, which was used for DL
model inference. The framework of choice was
Keras 1.2.0 with Tensor Flow 1.8 as the back-
end, running on Ubuntu 16.04. CUDA 9.0 and
cuDNN v7.1 were also used to accelerate the
computations. All the reported time measure-
ments were made on this hardware.

5.1. Dataset

A custom dataset was recorded in order to test
the proposed approach. This dataset was divided
into two sets: training and test videos. The train-
ing set involved individuals standing in front of
the camera and turning 360 degrees for 10 sec-
onds. The test set consisted of different videos
where the previous individuals moved around the
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Fig. 3. Integration of PIMS in the cognitive architecture.

scene freely for 20 seconds. Finally, an addi-
tional video was recorded with three of the sub-
jects walking around the room and interacting
with one another. The last video was used for
qualitative evaluation and the rest for quantitative
benchmarking. The total size of the dataset was
9 videos, recorded by a 12 MPx color camera at
1080p resolution and 30 fps.

In the experiments described in the following
sections, all four training videos were used to
build the recognition models. Then, these models
were used to perform inference on the test videos.
As the test videos only showed one person, the
system performance could be evaluated directly.

5.2. RoboCup challenge

The proposed problem to be solved was
Carry my Luggage [Party host] from the Robu-
cup@Home 2019 competition [43]. In this chal-
lenge, the robot must help the operator to carry
some luggage outdoors.

First, the target person stands in front of the
robot. The robot can give orders to move (turn
round, move closer...) and takes pictures to recog-
nize the person at that moment. Once the learning
stage has concluded (20 seconds as maximum),
the operator turns around and starts walking in
different directions and crossing paths with other
people. The robot must be able to follow its tar-
get even with occlusions and unknown people

around the environment. Figure 4 shows a recre-
ation of the challenge captured from a Pepper
Robot.

5.3. Person Identification System Experiments

In this set of experiments, full body person
identification was benchmarked. The person de-
tector, which was based on YOLO, ran a model
trained on the COCO MS [32] dataset as pro-
vided by the original author. This model was able
to predict AOIs of different objects but as people
were the subject of interest, the other predictions
were ignored. In addition to the detector network,
the ResNet50 trained on ImageNet was used as
the AOIs feature extractor. VGG16[48] and Mo-
bileNet V2[46] were also tested as feature extrac-
tors. The ResNet50, VGG16 and MobileNet were
trained on the ImageNet [12] dataset as provided
by the Keras framework.

For the first experiment, the goal was to iden-
tify the best classifier that distinguishes between
known people instances. The performance of dif-
ferent classifiers was tested using the features
obtained by the previous network, considering
that every sample was known by the system. The
training video consisted of the individuals com-
pletely showing themselves. By sampling them at
a fixed frame skipping value, the model was able
to capture the features for each pose, thus lead-
ing to high accuracy rates and reducing the pro-
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Fig. 4. Different moments of a recreation for the proposed challenge. The first 3 images correspond to the training stage and the
last 3 correspond to the test stage.

cessing time. The proposed approach was tested
ranging the frame skipping parameter from 0 (all
frames are used) to 20 (around 65 frames re-
mained from each training video). The classifiers
trained are K-Nearest Neighbors (KNN), whose
backbone yields 10 trees. At inference time, only
the nearest neighbor is used; Support Vector Ma-
chine (SVM) with radial basis function and linear
functions; and Random Forest (RF). As setting
the correct parameters directly impacts the accu-
racy, C and gamma for the SVM were automati-
cally computed by using Grid Search. The values
we used were C = [0.1, 1, 10, 100] , gamma =
[1, 0.1, 0.01, 0.001, 0.00001, 10]. The number of
trees for the RF classifier were also automati-
cally computed by Grid Search. In this case, n =
[20, 50, 100, 200, 500, 1000]. The depth of each
tree is computed by expanding all nodes until all
leaves are pure or until all leaves contain less than
2 samples. Finally, Naive Bayes (NB) and Deci-
sion Trees (DT) were also involved as classifiers.
These algorithms have no configurable parame-
ters. We applied Grid Search when necessary be-
cause the parameters are dependent of the data,
and different datasets could require different pa-

rameters to perform properly. Manually setting
these parameters is not feasible because the robot
should be able to set them in an unattended fash-
ion. All the methods were set to multiclass classi-
fication. The accuracy rates are as shown in Fig-
ures 5a, 6a, 7a, 8a, 9a and 10a. In addition, F1-
score for each experiment are also shown in Fig-
ures 5b, 6b, 7b, 8b, 9b and 10b.

Regarding our dataset, as depicted in Figure
11a, the SVM classifier outperformed the rest
and the accuracy was maintained around 93% re-
gardless of the frame skipping parameter. How-
ever, KNN and RF performed well, with an av-
erage precision of 90%. Despite the model con-
taining fewer samples as the frame skipping in-
creased, the accuracy was sufficiently high. This
is because the model has enough semantic infor-
mation in every case. It is worth noting that the
model generated for frame skipping equal to 20
only contained 65 samples, around 16 for each
individual. Random samples with the predictions
superimposed are shown in Figure 12 for quali-
tative evaluation.

In addition, the proposal was tested with
the Kinect Action Recognition Dataset (KARD)
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Fig. 5. Accuracy and F1-score results for OUR’s testing videos using ResNet50 with frame skip from 0 to 20.

[15]. This dataset comprised 18 activities. Each
activity was performed 3 times by 10 different
subjects. In total, there were 540 videos. De-
spite this dataset being intended for action recog-
nition tasks, it could be used to test the pro-
posed approach as it had each person labeled
independently. As there were a vast number of
videos, only 5% of them were taken for training.
The number of training frames was thus approx-
imately the same as in the last experiment for
each frameskip parameter, and so the results can
be compared. The remaining 95% of the videos
were used for testing purposes. It is worth noting
that the range of different poses in the training set
was limited as each video depicts just one action.

As the results show, the behavior of the clas-
sifiers is similar to that in the previous experi-
ment. In this case, the overall accuracy increased
slightly in every case despite this experiment
having 10 different categories and the previous
one only 4. The best performer in this case was
also the SVM, which outperformed the KNN and
the RF for every frameskip setting. Overall, it
could be appreciated that the accuracy of RF de-
creased as the number of samples also decreased.

This behaviour was also exhibited by the KNN,
but the drop was not so considerable. The SVM
performs similarly across all the experiments. DT
and NB are far behind in terms of accuracy.

These conclusions can be extrapolated to the
experiments that involved VGG16 as the back-
bone, as shown in Figure 11b. In this case,
the trends remained the same but with a lower
overall accuracy. This is for two main reasons:
on the one hand, the feature vector it provides
has 25088 parameters. Despite some works con-
cluding that the number of parameters may not
impact on the accuracy of the classifiers, in
this case it definitely did. On the other hand,
VGG16 provided lower classification accuracy
than ResNet50 when it comes to the full convolu-
tional network including the last fully connected
layer, so the features were also likely poorer.

The experiments that used MobileNetV2 as the
backbone also show the same trend. The overall
accuracy was better than that of the VGG16 but
poorer than the ResNet50 approach. This is be-
cause MobileNetV2 was purposely designed to
be very fast to predict with, so the classification
accuracy was lower than that of both the other
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Fig. 6. Accuracy and F1-score results for OUR’s testing videos using VGG16 with frame skip from 0 to 20.

mentioned networks. Nonetheless, as the number
of features in its feature map was significantly
smaller that the VGG16, its accuracy was better.

Figures 5b, 6b, 7b, 8b, 9b and 10b show the F1-
score for each experiment. As can be seen, there
is no bias towards a certain category.

To enable the system to perform in real envi-
ronments, it should learn as fast as possible. With
the goal of benchmarking this, the total time con-
sumed to generate each model with the different
number of frames was calculated. The results are
shown in Figures 13a and 13b.

Although SVM and RF had better precision
performances, they consumed a lot of time of
training compared to KNN, which is almost im-
mediate in every case (KNN is considered lazy
learning indeed). 300 seconds for training (or 64
in the case of RF) takes as much time for a real
application problem as for only 1200 frames. As
expected, the approaches that involved VGG16
as the backbone took a vast amount of time
to train because of the number of features. Re-
garding ResNet50 and MobileNetV2, the train-
ing times were similar, but MobileNetV2 was
slightly faster. In addition, the training time grew

as the problem became more complex. For in-
stance, all the experiments that involved the
KARD dataset took longer than the experiments
on the proposed one. This was also expected as
the KARD dataset features 10 different classes
and the proposed one only 4.

In view of these results, it can be stated that
the most suitable setting for online learning pur-
poses involves ResNet50 or MobileNetV2 as the
feature extractor and KNN as the final classifier.
This is the fastest and most accurate setup. As
the ResNet50 is slightly more accurate, it was se-
lected for the following experiment.

For the second experiment, the ability of the
proposed system to distinguish between known
and unknown subjects was tested. To do this, a
set of different classifiers (C1) to separate be-
tween these two classes was tested. If the person
was classified as known, the KNN classifier (C2)
from the previous experiment was used to per-
form the recognition. This was an important fea-
ture because the robot was likely to find new per-
sons that have not as yet been considered by its
model. The system should, thus, recognize when
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Fig. 7. Accuracy and F1-score results for OUR’s testing videos using MobileNetV2 with frame skip from 0 to 20.

a person is new before trying to classify it into
the identities it already knows.

In this experiment, the dataset described in
Section 5.1 was used for training. The frameskip
was set to 10 seconds with a frame skip of 10
(1 frame selected of every 10). The test set was
made up of videos with some people from the
training set and others that were not. The results
are shown in Table 1. The ACK value represents
the accuracy of the second classifier C2 after C1
has classified the person as known. The ACU
value represents the accuracy of the first classi-
fier C1 to classify unknown examples.

According to the results obtained, the best
performance trade-off was achieved by the
Clustering-based Local Outlier Detector because
it shows high accuracy with known and unknown
examples. In this case, the results for ACU show
a very high accuracy for unknown people detec-
tion without losing too much accuracy on known
examples. The training time for this first classi-
fier was 1.21 seconds, so it can be retrained al-
most once per second and is suitable for a fast

application. Another interesting choice would be
the Local Outlier Factor. This method has lower
accuracy classifying unknown examples (ACU)
but the ACK value shows a better precision with
known subjects. However, the notable difference
in ACU value (13% lower compared with the pre-
vious method versus 5% higher in ACK) shows
that the Clustering-based Local Outlier Detector
performance is more balanced. Nevertheless, the
model time of the second method was only 0.05
seconds, so it could be used if the time require-
ment gets tougher. The vast majority of the other
classifiers show a biased classification, with a
large number of the examples classified as known
or unknown only, as can be seen in the ACU ac-
curacy results. In Figure 14 a random sample is
shown for qualitative evaluation of the whole sys-
tem.

A video of this setup can be seen at 2. First, the
target subject was recorded and its features ex-
tracted (frameskip=10) and appended to both C1
(Clustering-based Local Outlier Detector) and
C2 (KNN) models. The backbone was ResNet50.

2https://youtu.be/c1biTDNnLsg

https://youtu.be/c1biTDNnLsg
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Fig. 8. Accuracy and F1-score results for KARD’s testing videos using ResNet50 with frame skip from 0 to 20.

Table 1
Results for the known-unknown classifiers and the whole recognition system

Algorithm ACK (%) ACU (%) Model time (s)
Angle-based Outlier Detection [27] 84.86 37.87 0.95
Clustering-based Local Outlier Detector [20] 78.84 89.89 1.21
Histogram-based Outlier Detection [16] 91.27 0.45 1.96
Isolation Forest [33] 90.31 11.17 0.28
Local Outlier Factor [6] 83.30 76.36 0.05
Minimum Covariance Determinant [45] 40.00 99.99 97.63
One-class SVM [9] 86.37 16.11 0.03
Principal Components Analysis [55] 82.15 23.91 0.04
Stochastic Outlier Selection [23] 92.74 0.00 0.53

This setup was that previously worked best in
terms of accuracy and training time. Then, the
pipeline was used for tracking the target within
a crowded street. The video was not edited at
all, that is, between the training and the testing
videos both models were trained live.

It is important to notice that the results ob-
tained with the classifiers are aimed at showing
how well they perform on the same features (the
same DL networks), and not to state that other
classifiers could not obtain similar results if they

were applied with different configurations prop-
erly set.

5.4. Limitations

Despite the high accuracy in the test scenario,
the proposed approach has some limitations. For
instance, it is highly dependent on the visual fea-
tures present in the training data. This means
that if the person is not properly represented in
the model, the system is likely to fail. This also
makes the system fail under high occlusion sce-
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Fig. 9. Accuracy and F1-score results for KARD’s testing videos using VGG16 with frame skip from 0 to 20.

narios. Even if the AOI of the person is correctly
detected, the visual features would depict the ob-
ject occluding the person, leading to an eventual
error. In addition, our approach is constrained to
work on one camera and with specific conditions.
For instance, our proposal could not be deployed
for reidentification of the same person across dif-
ferent surveillance cameras because they would
depict different points of view, usually show a
large number of persons and feature low resolu-
tion and are very noisy.

6. Conclusion and Future Works

This work presents PIMS, a person identifica-
tion system. Such a is critical in social robots
since a robot can thus learn on the fly to rec-
ognize different people and adapt its behavior to
each of them. Its impact on social applications is
high and can be applied to interaction in highly
populated environments or care applications.

This system performs person identification us-
ing a combination of deep learning and tradi-
tional methods which can learn fast and live. The

crop and the features of every person are ex-
tracted with deep learning methods and are then
classified with traditional techniques.

We have described a cognitive architecture to
show how PIMS is used in a real robotic applica-
tion. This integration was carried out by develop-
ing PIMS as a skill controlled by two actions that
the robot can plan as part of its behavior.

Based on the experiments carried out, the pro-
posed approach is able to correctly state the iden-
tification of a person in more than the 80% of
the cases with only 10 seconds of training data,
which perfectly suits the characteristics of the
RoboCup challenge presented. Additionally, the
results suggest that the accuracy of the model is
independent of the number of samples. In fact, it
is desirable to have a light model with different
postures with a high variability rather than a lot
of samples that are highly similar to one another.

Furthermore, as stated in the limitations sec-
tion, the results suggest that this approach tends
to fail with occluded bodies or with poses that
differ from those used for training. The other pos-
sible problem is the detector not segmenting the
person properly.
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Fig. 10. Accuracy and F1-score results for KARD’s testing videos using MobileNetV2 with frame skip from 0 to 20.

As a future work, it is planned to improve the
PIMS accuracy by integrating a tracking method.
For instance, if an identification in a certain mo-
ment differs from the last n predictions, it is
likely a failure and could be corrected. In addi-
tion, face recognition must be included to com-
plement and enhance the performance of the sys-
tem. We also want to try newer classification al-
gorithms, like [2, 41].

The source code to run some examples can be
downloaded from 3.
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