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Abstract
Glutamine synthetase is an essential enzyme in ammonium assimilation and glutamine biosynthesis. The Haloferax medi-
terranei genome has two other glnA-type genes (glnA2 and glnA3) in addition to the glutamine synthetase gene glnA. To 
determine whether the glnA2 and glnA3 genes can replace glnA in nitrogen metabolism, we generated deletion mutants of 
glnA. The glnA deletion mutants could not be generated in a medium without glutamine, and thus, glnA is an essential gene 
in H. mediterranei. The glnA deletion mutant was achieved by adding 40 mM glutamine to the selective medium. This con-
ditional HM26-ΔglnA mutant was characterised with different approaches in the presence of distinct nitrogen sources and 
nitrogen starvation. Transcriptomic analysis was performed to compare the expression profiles of the strains HM26-ΔglnA 
and HM26 under different growth conditions. The glnA deletion did not affect the expression of glnA2, glnA3 and nitrogen 
assimilation genes under nitrogen starvation. Moreover, the results showed that glnA, glnA2 and glnA3 were not expressed 
under the same conditions. These results indicated that glnA is an essential gene for H. mediterranei and, therefore, glnA2 
and glnA3 cannot replace glnA in the conditions analysed.
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Introduction

In bacteria, ammonium can be incorporated into carbon 
skeletons by ATP-dependent glutamine synthetase (GS) 
followed by glutamate synthase (GOGAT), allowing the 

interconversion of glutamate and glutamine in the GS-
GOGAT pathway (Fisher 1989; Reitzer 2003; Muro-Pastor 
et al. 2005; Kim et al. 2017) or via glutamate dehydrogenase 
(GDH) (van Heeswijk et al. 2013). Glutamine synthetase 
(EC 6.3.1.2) is a key enzyme whose activity is conserved in 
the Eukarya, Bacteria and Archaea domains. This enzyme 
plays an essential role in both ammonium assimilation and 
glutamine biosynthesis, whose product acts as a nitrogen 
donor for the synthesis of amino acids and nucleotides. GS 
catalyses glutamine biosynthesis by magnesium- or man-
ganese-dependent biosynthetic reactions from glutamate, 
ATP and ammonium (Eisenberg et al. 2000). The glutamine 
synthetase family is divided into three classes, GSI, GSII 
and GSIII, depending on differences in the molecular mass, 
sequence and quaternary structure (Woods and Reid 1993). 
GSI is present in bacteria and archaea (Brown et al. 1994) 
and is encoded by the glnA gene (Domínguez-Martín et al. 
2016).

Haloferax mediterranei is a halophilic microorganism 
that belongs to the Archaea domain and is employed as a 
model organism to study nitrogen metabolism (Bonete et al. 
2008). In H. mediterranei, GS acts in collaboration with 
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glutamate synthase (GOGAT, EC 1.4.7.1) in the ammonium 
assimilative pathway at low ammonium concentrations, 
while the glutamate dehydrogenase enzyme is active at high 
ammonium concentrations (Bonete et al. 2008). Currently, 
it is known that three glnA-type genes are encoded in the H. 
mediterranei genome: glnA, glnA2 and glnA3. In H. mediter-
ranei, glnA2 and glnA3 have sequence identities of 51.9% 
and 49.1% with glnA, respectively. In addition, glnA2 and 
glnA3 are adjacent in the genome, separated by 1563 bp, 
and show 60.9% identity with one another (Pedro-Roig 
et al. 2013). Multiple glnA genes have also been found in 
other bacterial species, such as Mycobacterium tuberculosis, 
Streptomyces coelicolor, the cyanobacterium Synechocystis 
and Rhodobacter sphaeroides (Chavez et al. 1999; Li et al. 
2010).

H. mediterranei is a polyploid microorganism whose 
genome contains more than 10 copies, similar to other halo-
archaea species (Chant et al. 1986; Herrmann and Soppa 
2002). The regulation of the genome copy number depends 
on the growth phase, with fewer copies in the stationary 
phase and at a low external phosphate concentration than 
in other conditions (Soppa 2013; Zerulla et al. 2014). Poly-
ploidy has a series of advantages in haloarchaea, of which 
the following stand out: gene redundancy, lower mutation 
rate, resistance to radiation and desiccation, long-term 
survival, gene conversion and DNA as a phosphate stor-
age polymer (Soppa 2011, 2013). One of the evolutionary 
advantages of polyploidy is gene redundancy. This phenom-
enon confers a lower mutation ratio, as it allows the repair of 
the mutated copies of the chromosome from the wild-type 
copies that are simultaneously present in the cell (Mackwan 
et al. 2007; Zerulla and Soppa 2014). Repairing mutated 
copies of the chromosome using wild-type copy informa-
tion requires intermolecular information to be transferred 
from one donor molecule to a receptor, and this mechanism 
is called "gene conversion". In the absence of selection, the 
genome copy number in polyploid species is equalised by 
this mechanism, whereas with suitable selection, it results 
in genomes being compensated in the direction of the essen-
tial gene, while genomes lose information from other genes 
(Soppa 2011; Zerulla and Soppa 2014). This mechanism 
has already been demonstrated in two archaeal species, 
H. volcanii (Lange et al. 2011) and Methanococcus mari-
paludis (Hildenbrand et al. 2011), in which heterozygous 
cells that simultaneously contain different chromosomes can 
be selected in different directions depending on the culture 
medium. This finding indicates that gene redundancy is a 
possible evolutionary advantage of polyploid microorgan-
isms under unfavourable conditions.

To determine the function of GS proteins in nitrogen 
assimilation, we generated conditional glnA deletion mutants 
in H. mediterranei by optimising the pop-in/pop-out method 
(Bitan-Banin et al. 2003) in the presence of glutamine (Gln). 

Due to polyploidy, the optimal conditions for glnA mutant 
characterisation were analysed in different nitrogen sources. 
The expression profile of the deletion mutant was carried out 
by a microarray analysis to examine the adaptation mecha-
nism related to nitrogen metabolism.

Methods

Strains and growth conditions

The H. mediterranei HM26 (R4 ΔpyrE2) strain was obtained 
in a previous work (Pedro-Roig et al. 2013) by the pop-in/
pop-out method (Allers et al. 2004). Cultures (50 ml) were 
grown in 250 ml Erlenmeyer flasks at 42 °C with good aera-
tion (225 rpm) and contained a 25% (w/v) mixture of inor-
ganic salts (SW) (Rodriguez-Valera et al. 1980). The pH 
value was adjusted to 7.3 with NaOH. For characterisation 
of the deletion mutants in frame with the glnA gene (HM26-
∆glnA), the growth and stability of the mutant compared to 
that of the parental strain HM26 in the presence of six dif-
ferent nitrogen sources. The detailed culture medium com-
position and the performed assays are shown in Table 1. All 
cultures were inoculated from cells with or without preadap-
tation into the culture medium with an initial optical density 
(OD600 nm) of 0.02. Three biological replicates were made 
for each strain and culture medium. The stability of glnA 
during growth on different culture media was determined 
by PCR screening, Southern blots and Western blots at the 
start of the exponential phase, the mid-exponential phase 
and the stationary phase.

For the microarray experiment, three independent biolog-
ical replicates were used for each culture medium. Cultures 
(150 ml) were grown in 1-L Erlenmeyer flasks at 42 ºC with 
good aeration (220 rpm).

Construction of the glnA deletion mutant 
and screening

HM26-ΔglnA was constructed by the pop-in/pop-out 
method, as described previously for H. mediterranei (Pedro-
Roig et al. 2013). The genomic organisations of the pop-
out clones and wild type (Supplementary Figure S1) were 
analysed by PCR screening and Southern blot analysis. 
PCR was performed with 800 ng of genomic DNA, 1X 
PCR buffer, 1.5 mM  MgCl2, 0.16 mM dNTPs, 100 pmol/
primer and 1 U BioThermStar DNA polymerase (Genecraft, 
Germany). The PCR products were confirmed by Sanger 
sequencing (Stabvida, Caparica, Portugal). For the South-
ern blot analysis, genomic DNA (3 µg) was digested with 
PdmI (Thermo Scientific, Waltham, Massachusetts, United 
States). Prehybridisation, hybridisation (65 °C), and chemi-
luminescent detection were performed as described in the 
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DIG Application Manual for Filter Hybridization (Roche, 
Basel, Switzerland).

Western blot

Western blotting was performed as described in the Western 
Blotting Principles and Methods manual (GE Healthcare) 
using 20 μg of protein extracts, anti-GlnA polyclonal rab-
bit antibodies (GenScript, New Jersey, United States) as 
the primary antibody at a concentration of 0.2 μg/mL and a 
peroxidase-labelled 1:50,000 secondary antibody (Thermo 
Scientific, Waltham, Massachusetts, United States), which 
employs luminol as a chemiluminescent substrate (GE 
Healthcare, Chicago, Illinois, United States).

RNA isolation

RNA was isolated from the complex medium with 40 mM 
Gln cultures in the mid-exponential phase of the HM26-
∆glnA and HM26 strains. RNA was isolated after nitrogen 
starvation for 72 h from the HM26-∆glnA and HM26 strains 
(Table 1). Total RNA was isolated with the RNeasy Mini 
Kit (Qiagen, Hilden, Germany) following product specifi-
cations. Quality and quantity were determined by a Bio-
analyzer (Agilent, Santa Clara, California, United States) 
and NanoDrop (Thermo Scientific, Waltham, Massachusetts, 
United States), respectively. All the samples showed an RNA 
integrity number (RIN) above 7.

Transcriptome analysis

Transcriptomic analysis was carried out by following the 
microarray technique. The probes for microarray analysis 
were designed based on the H. mediterranei genome and 
through the use of the software eArray of Agilent Tech-
nologies (Esclapez et al. 2015). For each gene, three probes 
with a length of 60 nucleotides each were designed. RNA 
labelling, microarray analysis and data processing were per-
formed by the Bioarray, S.L. Company (Alicante, Spain). 
Gene expression was considered up- or downregulated if 
the  log2 of the fold change was ≥ 2.0-fold (upregulated) 
or ≤  − 2.0-fold (downregulated) and statistically significant 
(p-value < 0.05). The data were analysed using the Limma 
package from Bioconductor. For the HM26 and HM26-
∆glnA transcriptome analysis, Cx was taken as the reference. 
The microarray data can be accessed in the Gene Expression 
Omnibus (GEO) database (accession number: GSE135303).

The functional analysis was performed using the follow-
ing databases: KEGG (www.genom e.jp/kegg), NCBI (www.
ncbi.nlm.nih.gov), and BRENDA (www.brend a-enzym 
es.org). Genes were classified according to the metabolic 
pathway with which they were related in several categories 
(Supplementary Table S1).

Microarray data validation

The microarray results were validated by quantitative RT-
PCR (RT-qPCR). The RNA samples were treated with 
TURBO DNase (Applied Biosystems, Foster City, Califor-
nia, United States). Subsequently, for cDNA synthesis, RNA 
(0.5–0.6 μg) and M-MuLV Reverse Transcriptase (Thermo 
Scientific, Waltham, Massachusetts, United States) were 
used. Negative controls were performed without enzyme and 
RNA. Oligonucleotides were designed using Primer Express 
2.0 software (Applied Biosystems, Foster City, California, 
United States) (Table 2), and 16S RNA (NC 017941) was 
used as an endogenous control. RT-qPCR was carried out 
in a StepOnePlus Real-Time PCR System (Applied Bio-
systems). Amplification reactions were performed using 
12.5 μL of  SYBR® Green 2 × PCR Master Mix (Applied 
Biosystems) and 2.5 pmol/μL of each primer. All RT-qPCR 
reactions were performed in triplicate.

The RT-qPCR programme consisted of a fusion cycle of 
10 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, 
1 min at 55 °C and 30 s at 72 °C. Subsequently, the melting 
curve was recorded between 60 and 95 °C.

Results and discussion

Construction of the glnA deletion mutant in H. 
mediterranei

HM26-∆glnA was constructed by the pop-in/pop-out method 
(Bitan-Banin et al. 2003). Genomic organisation (Figure S1) 
was confirmed by PCR screening and Southern blot analy-
sis of the pop-out clones. More than one hundred pop-out 
clones analysed by PCR screening and Southern blot analy-
sis revealed that all the clones presented the parental HM26 
genotype (Fig. 1), indicating that the glnA gene is essential 

Table 2  Summary of the primers used in RT-qPCR

Primer name Sequence 5ʹ→ 3ʹ Ampli-
con size 
(bp)

rRNA 16S Forward CAC AAG AGT GCG GTG ATA CGT 66
rRNA 16S Reverse CCT CAC TCG GTT GCT TTG AC
glnA2 Forward GGT CGA CCC GTG TGA CCT C 51
glnA2 Reverse TTG ATT CCC TTT GCG GTC C
gdh Forward AAG CAG TCC ACG AGG TGA CC 60
gdh Reverse TGT AGA CCG AAA CAG ACC  CGT 
nasA Forward GAC GAG TGT ATG CCTG 56
nasA Reverse TTC AAC TGG TGG ACG TCG TC
nasD Forward TCG CTG GCT CAG AGA CAA TG 50
nasD Reverse GAC CCA AGG TGA ACG TGA CC
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for H. mediterranei, despite genetic redundancy. Other stud-
ies in species such as M. tuberculosis and M. maripaludis 
have corroborated this conclusion (Cohen-Kupiec et al. 
1999; Harth et al. 2005). This enzyme plays a fundamen-
tal role in ammonium assimilation and glutamine synthesis 
(Bonete et al. 2008). Therefore, the product of the glutamine 
synthetase reaction could be essential as a nitrogen donor for 
nitrogen metabolism through glutamine and/or for protein 
synthesis (Cohen-Kupiec et al. 1999).

Essential genes cannot be deleted, but the functions of 
their gene products can be studied in vivo when conditional 
deletion is possible. Therefore, conditional deletion mutants 
of the glnA gene were successfully generated using an excess 
of Gln (40 mM) in complex medium with 5-FOA. A similar 
modification of the pop-in/pop-out method has already been 
made to generate auxotrophic amino acid mutants (Allers 
et al. 2004; Jantzer et al. 2011). The pop-out clones (HM26-
ΔglnA) grown under these conditions were successfully con-
firmed by PCR screening and Southern blots (Fig. 2). These 
results confirmed that the pop-out mutants (HM26-ΔglnA) 
were unable to grow in the absence of glutamine and that 
GS is an essential enzyme in H. mediterranei. These results 
indicated that the glnA2 and glnA3 genes do not encode 
functional GS or are not expressed under the same condi-
tions as glnA, in contrast to the results of Reyes and Floren-
cio (1994), where putative GS compensates for the activity 
of GS, allowing the generation of glnA deletion mutants. 
Another hypothesis is that GlnA2 and GlnA3 are regulatory 
subunits of GlnA and form heterooligomeric structures, as 

is the case for glutamate dehydrogenases (GdhA and GdhB) 
from Thermus thermophilus (Tomita et al. 2010), where 
GdhA and GdhB act as regulatory and catalytic subunits, 
respectively, and GdhA stimulates the allosteric activation 
of GdhB by hydrophobic amino acids. Enzymes involved 
in other pathways, such as isocitrate dehydrogenase (IDH) 
from Saccharomyces cerevisiae (Cupp and McAlister-Henn 
1993), where IDH1 acts as a catalytic subunit and IDH2 as 
a regulatory subunit, were shown to form a heterooctameric 
α4β4-like structure, in which IDH2 is an allosteric activa-
tor of IDH1. Multiple glnA-type genes have been found in 
bacteria (Chavez et al. 1999; Li et al. 2010), and for the five 
glnA-type genes from R. sphaeroides, only glnA1 appears 
to be functional in vivo, as it was the only gene capable of 
restoring the ammonium assimilation function in the glnA 
Escherichia coli null strain YMC11 (Li et al. 2010). Inter-
action studies have been performed of the three recombi-
nant proteins (GlnA, GlnA2 and GlnA3), and the results 
showed that the presence of GlnA2 and GlnA3 in the GlnA 
reaction medium increased the catalytic activity of GlnA 
(Vegara, 2017). However, these data are not conclusive, 
and it remains unknown whether H. mediterranei glnA2 and 
glnA3 are involved in GS regulation.

Moreover, these results suggested that H. mediterranei 
can transport glutamine directly into the cytoplasm. Unlike 
that in M. maripaludis, GS is also an essential enzyme, 
and even supplementation of the culture medium with glu-
tamine did not result in growth. Therefore, M. maripaludis 
is unable to transport Gln from the medium (Cohen-Kupiec 

Fig. 1  Generation of the glnA gene deletion mutant in complex 
medium with 5-FOA. a PCR screening of pop-out clones (1000 bp) 
and HM26 (2300 bp) b Southern blot analysis using the PdmI restric-
tion enzyme of pop-out clones and HM26. The glnA deletion mutant 
should have one band of 4.58  kb, and the parental HM26 strain 
should have two bands of 5.94 and 2.34 kb

Fig. 2  Generation of the glnA gene deletion mutant in complex 
medium with 5-FOA and 40 mM Gln. a PCR screening of pop-out 
clones (1000 bp) and HM26 (2300 bp) b Southern blot analysis using 
the PdmI restriction enzyme of pop-out clones and HM26. The glnA 
deletion mutant presented one band of 4.58  kb, and the parental 
HM26 genotype presented two bands of 5.94 and 2.34 kb
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et al. 1999). Glutamine transport could be carried out by 
unspecified amino acid transporters or by specific glutamine 
transporters in H. mediterranei. The presence of an ABC-
type glutamine/glutamate/polar amino acid transport system 
(HFX_2439, HFX_2440, HFX_2441) in the genome of H. 
mediterranei and HM26 growth in the presence of glutamine 
as a unique nitrogen source (data not shown) support this 
hypothesis.

Characterisation of HM26‑ΔglnA at different 
glutamine concentrations

Strains HM26-ΔglnA and HM26 were grown in triplicate 
in different culture media in the presence or absence of glu-
tamine (Table 1). PCR screening, Southern blots and West-
ern blots were performed to verify whether glnA deletion 
remained stable throughout growth in all the culture media. 
These analyses were carried out in three stages of growth: 
the start of the exponential phase, the mid-exponential phase 
and the stationary phase.

HM26-ΔglnA and HM26 grown in defined medium 
containing 10 mM  NH4Cl did not present any significant 
growth differences in the presence or absence of 5 mM Gln 
(Fig. 3a).

If HM26-ΔglnA are Gln auxotrophic mutants, they would 
not be expected to grow in liquid medium in the absence 
of Gln, as in other species (Reyes and Florencio 1994; Li 
et al.2010) and other auxotrophic mutants of H. volcanii 
(Jantzer et al. 2011). However, HM26-ΔglnA could grow 
in liquid (Figs. 3a, 4a and 5a) and solid medium without 
Gln (data not shown). Thus, H. mediterranei is a polyploid 
organism (Soppa 2013), and these results suggested that the 
obtained HM26-ΔglnA was not a complete deletion mutant, 
probably because some glnA copies remained in certain 
chromosomes of this microorganism that were not detectable 
by PCR screening and Southern blots (Fig. 2). One of the 
evolutionary advantages of polyploidy is gene redundancy, 
which has already been demonstrated in archaeal species 
(Hildenbrand et al. 2011; Lange et al. 2011). In the absence 
of selection, the number of copies of the genome in poly-
ploid species is balanced by a gene conversion mechanism, 

Fig. 3  Characterisation of HM26-ΔglnA versus HM26 grown in 
defined medium containing 10 mM  NH4Cl with/without 5 mM Gln. 
Growth phases: start of the exponential phase (1), the mid-exponen-
tial phase (2) and the stationary phase (3). ΔglnA: inoculated from 
a preadapted inoculum. ΔglnA*: inoculated directly with the stored 
mutant at − 80  °C. a Growth curves. b PCR screening. The paren-

tal HM26 strain has a band of 2300  bp. The mutant has a band of 
1000 bp. The red arrows indicate the band corresponding to 1000 bp. 
c Southern blot. The parental HM26 strain has two bands of 5.94 and 
2.34 kb. The mutant has a band of 4.58 kb. d Western blot. The red 
arrows indicate the band corresponding to the GS protein
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whereas in the presence of suitable selection, compensation 
of the genomes in the direction of the appropriate essential 
gene occurs (Soppa 2011; Zerulla and Soppa 2014). Het-
erozygous cells simultaneously containing different genomes 
can be selected in different directions depending on the cul-
ture medium, which indicates that gene redundancy is a pos-
sible evolutionary advantage of polyploid microorganisms 
in unfavourable conditions (Lange et al. 2011; Hildenbrand 
et al. 2011). As the used medium lacked Gln, this condition 
would favour an increase in the number of initially unde-
tectable glnA-presenting chromosomes; therefore, in the 
absence of Gln, the wild-type genotype returned. When Gln 
was absent, HM26-ΔglnA presented a heterozygous geno-
type from the starting point of growth. However, in the pres-
ence of 5 mM glutamine, HM26-ΔglnA with no adaptation 
(pop-out mutants were inoculated directly into the culture 
medium) presented a heterozygous genotype only in the sta-
tionary phase (Fig. 3b, c). Western blotting (Fig. 3d) showed 
GS expression in both the presence and absence of 5 mM 
glutamine (HM26-ΔglnA and HM26), which confirmed that 
the Gln concentration used was inadequate for maintaining 

the glnA deletion and that gene conversion would occur at 
the beginning of the exponential phase if glutamine was 
absent.

Glutamine effect on the gene conversion process 
of the conditional deletion mutant

HM26-ΔglnA was grown in defined medium containing 
10 mM  NH4Cl with/without 40 mM glutamine. The cul-
ture with HM26-ΔglnA in the presence of Gln reached the 
stationary phase at a higher OD600 nm than the other cul-
tures (Fig. 4a). This finding could be because HM26-ΔglnA 
in the absence of Gln presents the wild-type genotype and 
reaches the stationary phase at OD600 nm, similar to HM26, 
whereas for HM26-ΔglnA in the presence of Gln 40 mM, the 
gene conversion occurs in the opposite direction, presenting 
predominantly chromosomes with the glnA deletion (Fig. 4b, 
c), behaving in a different way than the parental strain. How-
ever, in the absence of Gln, HM26-ΔglnA presented a longer 
lag phase than HM26 (the time in which gene conversion 
would occur). PCR screening and Southern blots (Fig. 4b, 

Fig. 4  Characterisation of HM26-ΔglnA versus HM26 grown in 
defined medium containing 10 mM  NH4Cl with/without 40 mM Gln. 
Growth phases: start of the exponential phase (1), the mid-expo-
nential phase (2) and the stationary phase (3). a Growth curves. b 
PCR screening. The parental HM26 strain has band of 2300 bp. The 

mutant has a band of 1000 bp. c Southern blot. The parental HM26 
strain has two bands of 5.94 and 2.34  kb. The mutant has a band 
of 4.58 kb. d Western blot. The red arrows indicate the band corre-
sponding to the GS protein
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c) revealed the heterozygous genotype in HM26-ΔglnA, 
regardless of the growth stage in the absence of Gln (as in 
Fig. 3b). In contrast to the observed results of HM26-ΔglnA 
in the presence of 5 mM Gln (Fig. 3b), where the heterozy-
gous genotype appeared in the middle of the exponential 
phase and in the stationary phase, after the concentration 
of Gln was increased to 40 mM, the heterozygous genotype 
was not observed in any growth phase, and only the deleted 
version was observed in all phases (Fig. 4b, c).

To obtain optimal conditions for the characterisation 
of the glnA mutant, we analysed growth in the complex 
medium both with/without 40 mM Gln. Under these con-
ditions, the obtained growth curves (Fig. 5a) showed that 
HM26-ΔglnA in the absence of Gln presented a longer lag 
phase than that in the other cultures, as previously observed. 
Therefore, it is likely that gene conversion occurs during this 
time. This fact would explain the longer time taken to reach 
the exponential phase and the larger number of glnA cop-
ies observed at the beginning of the exponential phase than 

those in the other conditions. HM26-ΔglnA in 40 mM Gln 
presented similar growth to HM26 in the absence of Gln, as 
no gene conversion occurred in this condition. Moreover, 
the glnA deleted version was confirmed in all the growth 
phases in HM26-ΔglnA and in the presence of 40 mM Gln 
(Fig. 5b, c) by Western blots (Fig. 5d), where signals of 
glutamine synthetase expression were detected only in the 
absence of glutamine.

HM26-ΔglnA presented a heterozygous genotype in all 
growth phases when grown in defined medium with 10 mM 
 NH4Cl in the absence of Gln, whereas HM26-ΔglnA pre-
sented a parental genotype in all growth phases in com-
plex medium in the absence of Gln. These results indicate 
that the lack of Gln acts as a selective factor in the initial 
growth stages by exerting selective pressure in the complex 
medium. Moreover, it was confirmed that 5 mM Gln could 
not maintain the mutation, which favoured the increase in 
the number of copies of the chromosomes with the glnA 
original version during growth. In the presence of 40 mM 

Fig. 5  Characterisation of HM26-ΔglnA versus HM26 grown in com-
plex medium (Cx) with/without 40  mM Gln. Growth phases: start 
of the exponential phase (1), the mid-exponential phase (2) and the 
stationary phase (3). a Growth curves. b PCR screening. The paren-
tal HM26 strain has a band of 2300  bp. The mutant has a band of 
1000 bp. c Southern blot. The parental HM26 strain has two bands of 

5.94 and 2.34 kb. The mutant has a band of 4.58 kb. d Western blot. 
The red arrows indicate the band corresponding to the GS protein in 
the absence of glutamine. The red box indicates the size at which the 
band corresponding to the GS protein should appear in the absence of 
glutamine
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Gln, gene conversion occurred in the opposite direction 
and predominantly presented chromosomes with the glnA 
deleted version. According to Soppa (2013), this process 
occurred in the exponential phase, in contrast to our results, 
which revealed that it occurred at the beginning of the expo-
nential phase. This evidence confirmed that adding 40 mM 
Gln to the culture media could be adequate for HM26-ΔglnA 
selection, as a larger number of copies of the glnA deleted 
version was presented. However, in the defined medium with 
40 mM Gln, HM26-ΔglnA showed GS expression, and the 
intensity was lower than that in the absence of Gln. Notably, 
in the complex medium with 40 mM Gln, no GS expression 
was observed in any growth phase. These findings indicated 
that conditional HM26-ΔglnA mutants behave similarly to 
homozygous glnA deletion mutants as they do not express 
GS in all the growth stages for this condition. Therefore, the 
complex medium supplemented with 40 mM Gln would be 
the appropriate condition for HM26-ΔglnA selection, where 
no copies of the glnA version were detected by the different 
approaches performed.

Microarray analysis

The effect of GS deletion on global gene expression was 
studied by microarray analysis. The genotype was validated 
by PCR (Figure S2) (Fig. 6).

The Cx(∆glnA)-Cx contrast showed only 52 genes with 
differential expression, including 49 downregulated genes 
(Table 3). Most of these genes were related to genetic infor-
mation processing (Table S2), whereas some were related to 
nitrogen metabolism (Table S3). Many of the genes related 
to nitrogen metabolism are involved in the 2-oxocarboxilic 
acid pathway (HFX_2689, HFX_6032, HFX_6040, and 
HFX_6359). The change in the expression of these genes 
could lead to pyruvate and oxocarboxylic acid accumula-
tion. Cells may use these acids as precursors for butanoate 
and propanoate intermediate biosynthetic pathways and may 
lead to the synthesis of polyhydroxyalkanoate for energy 
storage. Polyhydroxyalkanoate accumulation is one of the 
most common mechanisms by which haloarchaea adapt 
to hypersaline environments. Changeable carbon sources 
also serve as carbon storage resources and energy in many 
archaea under excess carbon conditions (Fernandez et al. 
1986). Poly 3-hydroxybutyrate-co-3-hydroxyvalerate is 
synthesised from carbohydrates as a carbon source in 
several halophilic strains (Van-Thuoc et al. 2012). In H. 
mediterranei, several pathways leading to propionyl-CoA, 
an important precursor of 3-hydroxyvalerate for poly3-
hydroxybutyrate-co-3-hydroxyvalerate synthesis, have been 
described (Han et al. 2013). As expected, the genes related 
to nitrogen assimilation metabolism did not show any dif-
ferences in their expression levels because these genes are 
not expressed under excess nitrogen and carbon conditions 

Fig. 6  Glutamine acts as a 
selective pressure in the gene 
conversion process of HM26-
ΔglnA 

Table 3  Number of genes 
upregulated and downregulated 
in each comparison analysed

Gene expression conditions Comparison Total genes Upregu-
lated 
genes

Down-
regulated 
genes

HM26-∆glnA in complex medium with 40 mM 
Gln (Cx(∆glnA))

HM26 in complex medium with 40 mM (Cx)

Cx(∆glnA)-Cx 52 3 49

HM26 in nitrogen starvation (Nsta)
HM26 in complex medium with 40 mM (Cx)

Nsta-Cx 432 220 212

HM26-∆glnA in nitrogen starvation (Nsta(∆glnA))
HM26 in complex medium with 40 mM (Cx)

Nsta(∆glnA)-Cx 446 207 239
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(Fig. 7). Surprisingly, two of the three genes upregulated in 
this comparison (HFX_2207 shows a  log2FC 2.03 ± 0.11 and 
HFX_2209 shows a  log2FC 2.90 ± 0.08) encoded dimethyl-
sulfoxide reductase, which accepts electrons under anaerobic 
conditions, where malate is used as a carbon source (Kap-
pler et al. 2002). Likewise, when pyruvate replaces malate 
as a carbon source, dimethylsulfoxide reductase activity is 
induced in aerobically grown cells (Kappler et al. 2002). 
Furthermore, the 3-hydroxypropionate pathway allows halo-
archaea to use  HCO3

− and acetyl-CoA for carbon storage 
and may assimilate the 3-hydroxypropionate generated from 
marine environments (Berg et al. 2010; Todd et al. 2010). 
Hence, the activation of the dms gene could contribute to 
the generation of dimethylsulfoniopropionate, which could 
be used as a precursor of 3-hydroxypropionate.

Nitrogen starvation induces differences in the transcrip-
tional profiles of many genes, as described in Esclapez 
et al. (2015). This finding was also observed in the Nsta-
Cx comparison, where 72-h nitrogen starvation resulted in 
the transcriptional changes in 432 genes (Table 3). Most of 
these genes were related to both the nitrogen metabolism and 
transport systems (Tables S3 and S4).

Most transporters showing increased expression are 
related to ABC transporters. Two high-affinity ammo-
nium transporters, amt (HFX_0093 and HFX_0095), are 
overexpressed. Regarding nitrogen metabolism, 30 exclu-
sively upregulated genes related to phenylalanine, tyros-
ine and tryptophan biosynthesis (HFX_2463, HFX_2464, 
HFX_2465, HFX_0746, HFX_0747, HFX_0748, 
HFX_0749, HFX_2462), arginine biosynthesis (HFX_0041, 

Fig. 7  Heat map. Analysis of genes with differential expres-
sion in the three comparison groups: Cx(ΔglnA)-Cx, Nsta-Cx and 
Nsta(ΔglnA)-Cx. The most relevant genes, such as genes involved 
in the nitrogen assimilative pathway, CRISPR system, vesicle gas 

metabolism, and transcriptional regulation, are represented in this 
heat map. Red colour indicates high expression levels, and blue indi-
cates low expression levels
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HFX_0042, HFX_0043, HFX_0044, HFX_0047, 
HFX_0049, HFX-0050) and glutamine biosynthesis 
(HFX_0245) were detected. In this comparison, 10 exclu-
sively downregulated genes were found to be involved 
in cysteine and methionine degradation (HFX_0167, 
HFX_3026), lysine degradation (HFX_0211), glutamate 
metabolism (HFX_6041), and branched amino acid degrada-
tion (HFX_0800, HFX_0804, HFX_6358). The expression 
of some of the genes involved in amino acid biosynthesis 
increases in the absence of a nitrogen source, which could 
be due to the degradation of other amino acids acting as 
donors of amino groups. The genes involved in the nitrate 
assimilation pathway, nasABCD (HFX_2002, HFX_2003, 
HFX_2004, and HFX_2005), were overexpressed under 
nitrogen starvation. Under this condition, glnA (HFX_0245) 
and gltS (HFX_0844) expression was also overexpressed in 
the parental strain. These results agree with previous studies, 
which showed that the GS/GOGAT pathway (encoded by 
the glnA and gltS genes) was active under limiting-nitrogen 
conditions (Pire et al. 2014; Esclapez et al. 2015). Under this 
condition, glnA2 gene expression (HFX_1688) was down-
regulated. It was expected that this gene, similar to glnA, 
would be upregulated because it also encodes a GS protein.

Other genes related to nitrogen metabolism, such as genes 
that encode nitrogen regulatory PII proteins (HFX_0092 and 
HFX_0094), were upregulated. PII proteins were previously 
described as activating GS by direct protein–protein interac-
tions in H. mediterranei (Pedro-Roig et al. 2011).

The gdh genes (HFX_1516, HFX_1518, HFX_2178) 
were downregulated under nitrogen starvation condi-
tions (Fig. 7). Glutamate dehydrogenase (GDH) is active 
at high ammonium concentrations (Pire et al. 2014). Fur-
thermore, the genes related to denitrification (HFX_2183, 
HFX_2188, HFX_5091) were downregulated. In this com-
parison, and exclusively upregulated genes related to gas 
vesicle metabolism (HFX_1693, HFX_1694, HFX_1695, 
HFX_1696, HFX_1697, HFX_1698, HFX_1699, 
HFX_1700, HFX_1701 HFX_1702, HFX_1703, 
HFX_1704, HFX_1705, HFX_1706) and signalling and 
cellular processes were found (Tables S5 and S6). As 
expected, these results agree with previous studies showing 
the overexpression of these genes under nitrogen starvation 
in H. mediterranei (Esclapez et al. 2015). Gas vesicle for-
mation significantly reduces the volume of the cytoplasm 
in cells by maintaining a large surface area of the cell for 
nutrient acquisition purposes (Hechler and Pfeifer 2013). 
Not surprisingly, the genes related to different CRISPR/Cas 
proteins (HFX_6314, HFX_6315, HFX_6316, HFX_6317, 
HFX_6318, HFX_6319, and HFX_6320) were overex-
pressed in response to the stress caused by the nitrogen 
starvation condition. Several studies have reported that the 
CRISPR/Cas system is activated under stress conditions 
as a prokaryotic defence system. Although details of the 

immune system activation remain unclear, alterations to 
the cell surface may prove to be an important mechanism 
(Sorek et al. 2013). Other genes related to stress processes, 
such as usp genes, displayed differences in their expression 
(Table S7). Usp is produced in response to deprivation of 
a wide range of nutrients (carbon, nitrogen, phosphate, sul-
phate and amino acids) (Nystrdm and Neidhardt 1992). In 
energy efficiency terms, metabolism generally slowed down 
under nitrogen starvation conditions (Table S8), as described 
in a previous study (Esclapez et al. 2015).

The Nsta(∆glnA)-Cx comparison showed 446 genes with 
differences in their expression patterns (Table 3). Some were 
involved mainly with nitrogen metabolism, transport systems 
and regulation processes (Tables S3, S4 and S9). Notably, 
nitrate assimilation genes (HFX_2002–2005, HFX_0844, 
HFX_0092 and HFX_0094) were overexpressed, while 
ammonium assimilation genes (HFX_1516, HFX_1518, 
HFX_2178) and denitrification genes (HFX_2183, 
HFX_2188, HFX_5091) were downregulated.

glnA2 expression was also downregulated, and glnA3 
showed no differences in its expression, confirming that 
glnA2 and glnA3 did not replace glnA, which was proposed 
according to the above-cited results. The up- and downregu-
lated genes related to the transport system were classified as 
transporters of ions, amino acids and sugars capable of acting 
as cellular signals. Most transcriptional regulators belong-
ing to the arsR and lrp families (HFX_1274, HFX_2192, 
HFX_2497, HFX_2520, HFX_4054 and HFX_4126) were 
downregulated in this comparison. Although the role of Lrp 
in response to environmental alterations is known in archaea, 
the role of ArsR remains unclear (Kyrpides and Ouzounis 
1999; Napoli et al. 1999; Leonard et al. 2001; Peeters and 
Charlier 2010). Therefore, the transcriptional regulators of 
these families could be directly involved in the regulation of 
nitrogen metabolism in haloarchaea. Unexpectedly, the gas 
vesicle genes in the Nsta(ΔglnA)-Cx comparison showed 
no changes in their expression levels, and only the major 
gas vesicle protein GvpA (HFX_1696) was downregulated. 
Finally, the CRISPR/Cas system genes showed no changes 
in their expression levels (Fig. 7). Under the analysed con-
ditions, HM26 could utilize high levels of energy to pro-
duce gas vesicles, while HM26-ΔglnA could invest energy 
to alter the cell surface or to activate the immune system, 
using energy to maintain an efficient metabolism.

Validation of the microarray results by RT‑qPCR

The representative genes (glnA2, gdh, nasD, nasA) involved 
in nitrogen metabolism, which showed changes in their 
expression profiles, were chosen for microarray data vali-
dation by RT-qPCR. The RT-qPCR results were consistent 
with the microarray expression data (Fig. 8) in the ana-
lysed genes. These analyses confirmed that the nasA and 
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nasD expression levels increased, whereas the glnA2 and 
gdh expression levels decreased in response to nitrogen 
starvation.

This work has demonstrated the essentiality of glnA given 
the inability of the HM26-ΔglnA mutant to maintain the 
deletion under metabolically unfavourable conditions, such 
as the absence of glutamine. Under this condition, the gene 
conversion process occurred in the conditional deletion 
mutant (HM26-ΔglnA), which favoured the increase in the 
number of parental chromosomes upon glnA deletion. The 
glnA gene is expressed under nitrogen starvation conditions, 
while in both the mutant and parental strains in this condi-
tion, glnA2 was downregulated, and glnA3 did not show any 
difference. Therefore, glnA2 and glnA3 are not expressed 
under the same conditions as glnA. For this reason, glnA2 
and glnA3 were unable to compensate for the lack of glnA.
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