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Abstract: The aim of the study is to assess choroidal thickness (CT) and choroidal volume (CV) in 
90 type 1 diabetes mellitus (DM1) patients with no diabetic retinopathy (DR) and 60 control eyes 
using spectral domain optical coherence tomography (SD-OCT) and swept source (SS)-OCT in the 
areas of the Early Treatment Diabetic Retinopathy Study (ETDRS). Mean ages were 42.93 ± 13.62 
and 41.52 ± 13.05 years in the diabetic and control groups, respectively. Significant differences were 
obtained between both groups with Spectralis SD-OCT in all ETDRS areas and in the total CV, 
excluding the temporal perifoveal one. With Triton SS-OCT, statistically significant differences were 
obtained in the subfoveal CT and in the vertical areas. CT showed the same tendency with both 
OCTs, with greater CT and CV in the DM1 group than the mean values of the control group. To 
assess the influence of DM1 evolution in the CT modifications, DM1 patients were divided into 
Group 1, with less than 24 years of diagnosis, and Group 2, with ≥24 years of DM1 evolution. Using 
both OCTs, seven of the nine ETDRS areas and the CV had lower values in Group 2. CT and CV 
measured by OCT were higher in DM1 without DR. There is a choroidal thinning related to disease 
evolution in DM1. In patients with DM evolution greater than 24 years, the CT is statistically lower 
than in patients with less evolution of the disease. 

Keywords: diabetic retinopathy; choroidal thickness; choroidal volume; spectral domain optical 
coherence tomography (SD-OCT); swept source optical coherence tomography (SS-OCT); type 1 
diabetes mellitus; long evolution 

 

1. Introduction 

One of the main causes of vision loss worldwide is diabetic retinopathy (DR) [1]. Retinal function 
requires a healthy choroid to nourish the different retinal layers, providing oxygen and nutrients and 
thermoregulating [2]. Traditionally, the choroid could only be evaluated by ultrasonography, 
indocyanine green angiography and laser flowmetry, showing the blood flow and abnormalities in 
the choroidal vessels. No device managed to cross the retinal pigment epithelium (RPE) and show 
the three-dimensional anatomy of the different choroid layers. Recently, a non-invasive imaging 
technique, optical coherence tomography (OCT), can acquire multiple consecutive high-resolution 
images of retina sections, showing the different retinal layers and the optic nerve. To improve the 
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choroidal visualization, enhanced depth imaging (EDI) with spectral-domain (SD)-OCT diminishes 
the vitreous details, achieving a better choroidal view by inverting the retinal image and reaching the 
sensitivity to distinguish the limit of the choroid with the sclera [3,4]. Other devices using a longer 
wavelength (1050 nm), such as the swept-source (SS)-OCT, manage to overcome the high reflectivity 
of the RPE and choroidal vascularization, optimizing tissue penetration and obtaining an even 
greater resolution and exploration speed [5]. 

The choroid, in addition to being essential for maintaining normal eye physiology, has been 
found to be involved in the etiopathogenesis of several ocular diseases, including age-related macular 
degeneration (AMD) and choroidal thickness (CT) diseases, polypoidal choroidal vasculopathy, 
central serous choroidopathy, myopia magna, and infiltrative or inflammatory diseases such as 
Harada’s disease [6–8]. The CT can be increased or decreased depending on the pathology. Several 
papers have described a decrease in CT in glaucomatous patients and patients with other retinal 
diseases, and this diminution progresses with time or with treatment [9]. 

There are clinical, histopathological and experimental studies that suggest a relationship 
between DR and choroidal involvement. Choroidal abnormalities have been described in diabetic 
patients, including the presence of microaneurysms, dilatations, closures or capillary modification at 
the choriocapillaris level with increased vascular tortuosity, capillary loss, areas of non-perfusion and 
even choroidal neovascularization [10–13]. In diabetic patients suffering from DR, studies have 
shown a decrease in CT in subjects with proliferative DR or diabetic macular edema (DME) and few 
changes in patients with non-proliferative DR or without DR. Breakage of the blood-retinal barrier, 
alteration in the vascular integrity of the retina or hemodynamic anomalies cause changes in CT in 
murine diabetes mellitus (DM) models [14,15]. We wanted to assess the existence of choroidal 
changes in type 1 DM (DM1) prior to the development of DR. 

The aim of this study was to assess CT with two different OCT devices in the areas of the Early 
Treatment Diabetic Retinopathy Study (ETDRS) in DM1 patients without retinopathy compared with 
healthy subjects. 

2. Methods 

We undertook a prospective study during 2017 including 90 eyes from 90 DM1 patients without 
DR. The experimental protocol was approved by the local Ethics Committee for Clinical Research of 
Aragon (CEICA) and the evaluation was conducted in accordance with the principles of the Helsinki 
Declaration. Detailed consent forms were obtained from each patient. 

DM1 patients were controlled by the endocrinology unit. Blood samples were analyzed every 
six months. Glycosylated hemoglobin (HbA1c), lipid values and arterial blood pressure were 
maintained under extreme control. The DM1 group was equally divided depending on the duration 
of the disease: from 9 to 24 years (Group 1, n = 46) and from 24 to 40 years (Group 2, n = 44). Control 
group was divided in two to evaluate if differences in the diabetic group were related to age. 

The inclusion criteria for the DM1 group was a DM1 diagnosis and no retinal changes identified 
by biomicroscopy and OCT by at least two retinal specialists. The control group included age-
matched healthy subjects. All subjects had a best corrected visual acuity (BCVA) over 20/25 on the 
Snellen chart, with refractive errors between +5.00 to −5.00 diopters, normal anterior pole examination 
with slit-lamp and no fundoscopy findings. Exclusion criteria was the presence of any sign of DR or 
any kind of retinopathy, glaucoma or intraocular pressure (IOP) over 21 mm Hg assessed by 
Goldman tonometry, optic nerve pathology, ocular inflammation or any ocular surgery or procedure 
including laser therapy, ocular trauma, anterior segment pathology or media opacification. 

On each patient’s visit, a detailed familiar, systemic and ophthalmological medical history was 
performed. The axial length (AL) was measured with the optical biometry IOLMaster®500 from Carl 
Zeiss Meditec (Carl Zeiss Meditec, Oberkochen, Germany). 

Each individual was imaged using a Spectralis SD-OCT (Heidelberg Engineering, Inc., 
Heidelberg, Germany) device and Deep Range Imaging (DRI) DRI-Triton SS-OCT (Topcon 
Corporation, Tokyo, Japan). With Spectralis SD-OCT, the volume fast macula with enhanced depth 
imaging (EDI) scanning protocol was performed. The subject was asked to look into the internal 
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fixation target and Tru-Track eye tracking technology was used. Spectralis SD-OCT provides a 
circular macular map analysis divided in nine sectorial thickness measurements in three concentric 
circles with diameters of 1, 3 (inner), and 6 (outer) mm forming the 9 areas corresponding to the 
ETDRS [16]. The regional choroidal thicknesses (CTs) and volumes (CVs) including the fovea (1 mm, 
R1), the parafoveal ring with four quadrants, temporal inner (T1), superior inner (S1), nasal inner 
(N1), inferior inner (I1), and four perifoveal quadrants: temporal outer (T2), superior outer (S2), nasal 
outer thickness (N2), and inferior outer (I2) choroidal submacular thicknesses were analysed (Figure 
1). The Spectralis software version was 6.8.1.0. Once the macular maps were obtained with EDI, the 
reference lines given by the device were manually modified, placing the line of the Internal Limiting 
Membrane (ILM) at the outer limit of the RPE layer, and the line marking Bruch’s Membrane (BM) 
was moved to the choroidscleral limit. After manual modification, the CT was shown in every ETDRS 
area. The quality of the scans was checked, and poor-quality scans were rejected. Images should 
achieve at least 25 over 40 dB. With DRI-Triton SS-OCT, a macular 6.0 × 6.0 mm three-dimensional 
scan was obtained, and automatic segmentation of CT was made by the device from BM to the limit 
between the choroid and the sclera. DRI-Triton SS-OCT includes the new SMARTTrackTM tool that 
enhances tracking, corrects for motion, and guides the operator to reduce potential errors while 
acquiring the images. Only eyes with good-quality scans were included in the analysis. Good-quality 
DRI-Triton SS-OCT images were defined as those with a signal strength ≥70/100, and without motion 
artefacts, involuntary saccades, or overt misalignment of decentration. DRI-Triton SS-OCT provides 
the same circular macular map analysis as the Spectralis SD-OCT, which is composed of the 9 areas 
corresponding to the ETDRS (Figure 1). 

 

Figure 1. (A) The nine macular Early Treatment Diabetic Retinopathy Study (ETDRS) circular areas, 
including the fovea (1 mm, R1), temporal inner (T1), superior inner (S1), nasal inner (N1), inferior 
inner (I1), temporal outer (T2), superior outer (S2), nasal outer thickness (N2), and inferior outer (I2) 
areas, where the measurements were done. (B) Foveal optical coherence tomography (OCT) profile 
limiting the choroidal thickness with the superior line at the outer limit of the retinal pigment 
epithelium (RPE) layer and the inferior line at the choroid-scleral limit. Scale bar: 200 microns. 

We used two different devices because both of them are commonly used in the clinic, and they 
operate at different wavelengths (840 nm for SD-OCT and 1050 nm for SS-OCT) with variable 
penetration depth and resolution. They provide different measurements that can vary in both healthy 
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and disease eyes. Qualitatively, DRI Triton SS-OCT shows choroidal images with higher resolution 
than the Spectralis SD-OCT; this fact could be due to its higher penetration depth, and subsequently, 
the delimitation of the rear part of the choroid seems to be more accurate. In both exams with the two 
different devices, the subjects were seated and properly positioned. A single and well-trained 
technician obtained all OCT images. 

Statistical analysis was performed using the Statistical Package for the Social Sciences (SPSS 22.0, 
SPSS, Chicago, IL, USA). Normal distribution of the values was studied with the Kolmogorov-
Smirnov test. The variables of CT and total CV were compared between two independent groups, 
such as the control group and the DM1 group, with the Kolmogorov-Smirnov test for two 
independent nonparametric samples. A p value <0.05 was considered statistically significant. 

3. Results 

The mean age of the 90 DM1 patients was 41.52 ± 13.05 years (22–65) and 42.41 ± 13.56 years (26–
68) for the 60 healthy controls. There were no age differences (p = 0.361). DM1 patients were well-
controlled with a mean glycosylated hemoglobin (HbA1c) of 7.76 ± 1.06%. The distribution by sex 
was as follows: 65% of the subjects in the control group and 46.7% in the group of DM1 patients were 
women. The male population was 35% in the control group and 53.3% in the diabetic group. The 
differences reached statistical significance (p = 0.019) by the greater number of women. Calculations 
were made to rule out that sex was a confounding variable, since no statistically significant 
differences were found in the CT measured by SD and SS-OCT between men and women. 

Both groups had no differences in their AL (p = 0.908), anterior chamber depth (ACD) (p = 0.999) 
or refractive defects (p = 0.394). These values are shown in Table 1. 

Table 1. Mean, standard deviation (SD) and range (minimum-maximum) of demographics and ocular 
characteristics of the type 1 diabetes Mellitus (DM1) and control groups. No significant differences (p 
< 0.05) were found between groups in any of the parameters analysed. 

 DM1 Group (n = 90) Control Group (n = 60) p 
Age (years) 41.52 ± 13.05 (22–65) 42.41 ± 13.56 (26–68) 0.361 

Refractive error (D) −1.03 ± 2.23 (−5.00/+ 3.25) −0.76 ± 2.68 (−5.00/+ 5.00) 0.394 
ACD (mm) 3.19 ± 0.51 (2.38–4.10) 3.29 ± 0.33 (2.59–4.00) 0.999 
AL (mm) 23.71 ± 2.73 (21.84–26.51) 23.51 ± 1.15 (21.78–26.00) 0.908 

ACD, anterior chamber depth; AL, axial length; CT was evaluated in all ETDRS areas and in the total 
CV in both groups with both OCT systems; Differences were studied in each group using both 
devices. 

A linear correlation was observed in terms of subfoveal choroidal thickness (R1) between the 
two devices, both for the DM1 and for the control group, as shown in Figure 2. 

 

Figure 2. Agreement between subfoveal choroidal thickness (SFCT) measured with both devices in 
both groups. Control group (blue) showed a distribution following the equation for optical coherence 
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tomography (SS-OCT) (μm) = 0.7752 × SS-OCT(μm) + 40.511, being R2 = 0.6595 and DM1 group (red) 
SS-OCT (μm) = 0.6497 × SS-OCT(μm) + 75.542, being R2 = 0.6462. 

In both groups and with both types of OCT equipment, the choroid was thickest in the central 
area (R1) and in the parafoveal areas (N1, S1, T1 and I1). CT decreased from R1 to the parafoveal and 
perifoveal areas, with the nasal perifoveal area (N2) being the thinnest with both devices and in both 
groups (Table 2 and Figure 3). The vertical areas were thicker than the horizontal areas, the upper 
areas were the thickest of the vertical areas and the nasal areas were the thinnest of the horizontal 
areas. 

Table 2. Choroidal thicknesses in the ETDRS quadrants expressed in μm (from the Bruch’s Membrane 
(BM) to the choroid-scleral limit) measured with the Spectralis spectral domain optical coherence 
tomography (SD-OCT) and the deep range imaging (DRI)-Triton swept source optical coherence 
tomography (SS-OCT) in the type 1 diabetes Mellitus (DM1) group and the control group. Values are 
presented as the mean ± standard deviation and range (minimum-maximum). Significant differences 
were considered as p < 0.05, calculated by Kolmogorov–Smirnov test for two independent 
nonparametric samples, are shown with *. The volume is represented in mm3. 

 SPECTRALIS SD-OCT DRI-TRITON SS-OCT 
 DM1 (n = 90) CONTROL (n = 60) p DM1 (n = 90) CONTROL (n = 60) p 

Foveal Center (Central ETDRS Region: R1, 1 mm) 

Central R1 
352.55 ± 88.20  

(126–525) 
317.42 ± 80.05  

(170–549) 
0.004 * 

301.30 ± 64.55  
(107.17–443.40) 

282.32 ± 74.26  
(143.01–492.05) 

0.025 * 

Inner Circle (Parafoveal ETDRS Region: 3 mm) 

Superior S1 351.23 ± 85.20  
(160–562) 

317.32 ± 71.92  
(192–567) 

0.003 * 283.18 ± 68.26  
(81.35–415.32) 

255.81 ± 76.83  
(115.78–468.45) 

0.014 * 

Temporal T1 
337.60 ± 80.46  

(145–484) 
315.59 ± 71.85  

(171–536) 
0.046 * 

272.87 ± 60.20  
(106.91–463.28) 

263.23 ± 59.71  
(141.78–406.01) 

0.310 

Inferior I1 
340.09 ± 88.13  

(133–487) 
311.12 ± 82.85  

(149–557) 
0.028 * 

225.23 ± 63.27  
(71.77–344.04) 

202.09 ± 72.93  
(84.56–409.92) 

0.016 * 

Nasal N1 
329.70 ± 86.61  

(109–501) 
292.93 ± 83.58  

(145–562) 
0.001 * 

292.06 ± 61.95  
(116.55–463.760) 

280.80 ± 66.03  
(147.06–466.31) 

0.097 

Outer Circle (Perifoveal ETDRS Region: 6 mm) 

Superior S2 
329.64 ± 81.53  

(132–490) 
308.72 ± 68.00  

(186–552) 
0.018 * 

297.05 ± 69.55  
(105.17–424.30) 

278.77 ± 79.90  
(129.04–477.19) 

0.040 * 

Temporal T2 
302.07 ± 71.46  

(139–469) 
287.75 ± 60.22  

(182–497) 
0.107 

288.40 ± 66.21  
(110.66–414.31) 

273.15 ± 62.76  
(155.06–454.61) 

0.133 

Inferior I2 
311.53 ± 87.62  

(106–466) 
288.95 ± 79.35  

(137–561) 
0.016 * 

272.65 ± 73.86  
(91.53–403.04) 

263.54 ± 75.29  
(109.90–486.64) 

0.036 * 

Nasal N2 
262.60 ± 75.21  

(92–410) 
232.91 ± 78.20  

(115–502) 
0.007 * 

295.42 ± 64.15  
(129.61–433.49) 

274.11 ± 62.93  
(152.67–457.2) 

0.076 

Volume 
8.82 ± 2.09  

(3.62–12.60) 
8.12 ± 1.92  
(4.48–15) 

0.003 * 
7.69 ± 1.65  

(2.96–11.09) 
7.25 ± 1.78  

(3.58–12.62) 
0.135 

SD-OCT, spectral domain optical coherence tomography; DRI, deep range image; SS-OCT, swept 
source optical coherence tomography; DM, diabetes mellitus; ETDRS, Early Treatment Diabetic 
Retinopathy Study; R1, central; S, superior; T, temporal; I, inferior; N, nasal. The number 1 
corresponds to the 3 mm parafoveal inner circle and 2 to the 6 mm perifoveal outer circle. Significant 
differences are shown with *. 
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Figure 3. Mean of choroidal thicknesses in each ETDRS area expressed in μm measured with the 
Spectralis spectral domain optical coherence tomography (SD-OCT) and the deep range imaging 
(DRI)-Triton swept source optical coherence tomography (SS-OCT) in the type 1 diabetes Mellitus 
(DM1) group and the control group. Significant differences were considered as p < 0.05, calculated by 
Kolmogorov–Smirnov test for two independent nonparametric samples, are shown with *. SD-OCT, 
spectral domain optical coherence tomography; DRI, deep range image; SS-OCT, swept source optical 
coherence tomography; DM, diabetes mellitus; ETDRS, Early Treatment Diabetic Retinopathy Study; 
R1, central; S, superior; T, temporal; I, inferior; N, nasal. The number 1 corresponds to the 3 mm 
parafoveal inner circle and 2 to the 6 mm perifoveal outer circle. 

Significant differences were obtained between the DM1 group and the control group with 
Spectralis SD-OCT in all ETDRS quadrants and in the total CV (8.82 ± 2.09 mm3 in the DM1 group vs. 
8.12 ± 1.92 mm3 in control group, p = 0.003), excluding the temporal perifoveal area (T2: 302.07 ± 71.46 
μm in the DM1 group vs. 287.75 ± 60.22 μm in the control group; p = 0.107). CT and total CV were 
higher in all quadrants in the DM1 group (Table 2 and Figure 3). 

Using the DRI-Triton SS-OCT, statistically significant differences were obtained in the central 
area (R1: 301.30 ± 64.55 μm vs. 282.32 ± 74.26 μm in diabetics vs. controls respectively; p = 0.025) and 
in the vertical areas, both perifoveal (S2: 297.05 ± 69.55 μm vs. 278.77 ± 79.90 μm, p = 0.040 and I2: 
272.65 ± 73.86 μm vs. 263.54 ± 75.29 μm, p = 0.036 in diabetics vs. controls, respectively) and parafoveal 
(S1: 283.18 ± 68.26 μm vs. 255.81 ± 76.83 μm, p = 0.014 and I1: 225.23 ± 63.27 μm vs. 202.09 ± 72.93 μm, 
p = 0.016, in diabetics vs. controls, respectively). No differences were found in either the horizontal 
areas, or in the total CV (p > 0.05). CT showed the same tendency with Spectralis SD-OCT, with greater 
CT and CV in the DM1 group than the mean values of the control group (Table 2 and Figure 3). 

Finally, to assess the influence of DM1 duration on the CT modifications, DM1 patients were 
divided into two groups. The mean DM1 evolution time was 24.88 ± 8.42 years. Group 1 was formed 
by 46 patients less than 24 years after diagnosis and Group 2 by 44 patients with ≥24 years of DM1 
evolution. Control group was also divided into two, Group 1 was formed by subjects ≤38 years, and 
Group 2 by subjects older than 38 years. 

There were significant differences in age between both groups, with older patients having the 
longer evolution time (mean age Group 1, 35.65 ± 12.87 years vs. Group 2, 45.59 ± 9,96 years, p < 0.001). 
There were no differences regarding refractive status, ACD, or AL in either control or DM group 
(Table 3). Analyzing the results of the DM1 group according to the years of evolution of the disease 
with both OCT methods separately, we found significant differences in three of the vertical ETDRS 
quadrants, the two inferior ones and the superior perifoveal area (I1, p = 0.031; I2, p = 0.036 and S2, p 
= 0.044), using Spectralis SD-OCT. With DRI-Triton SS-OCT, differences were found only in the two 
vertical perifoveal areas (S2, p = 0.016 and I2, p = 0.045). Using Spectralis SD-OCT, seven out of the 
nine ETDRS areas and the CV had lower values in the group with longer disease evolution; similar 
results were shown with the DRI-Triton SS-OCT (Table 4 and Figure 4); in the control group, by using 
Spectralis we only found differences in T1. 
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Table 3. Demographics and ocular characteristics of the type 1 diabetes Mellitus (DM1) Group 
divided depending on the time DM1 evolution: Group 1, less than 24 years and Group 2, more than 
or equal to 24 years. Values are presented as the mean ± standard deviation and range (minimum–
maximum). Significant differences were considered as p < 0.05, calculated by Kolmogorov–Smirnov 
test for two independent nonparametric samples, are shown with *. 

 DM1 Group <24 Years (n = 46) DM1 Group ≥24 Years (n = 44) p 
Age (years) 35.65 ± 12.87 (22–63) 45.59 ± 9.96 (32–65) <0.001 * 

Refractive error (D) −1.27 ± 2.38 (−5.00/+ 3.25) −0.78 ± 2.08 (−5.00/+ 3.25) 0.387 
ACD (mm) 3.20 ± 0.31 (2.59–3.72) 3.18 ± 0.44 (2.38–4.10) 0.225 
AL (mm) 23.63 ± 1.25 (21.84–26.51) 23.78 ± 1.00 (22.24–26.71) 0.070 

ACD, anterior chamber depth; AL, axial length. 

Table 4. Choroidal thicknesses by ETDRS quadrants in μm (from the BM to the choroid-scleral limit) 
assessed with Spectralis spectral domain optical coherence tomography (SD-OCT) and the deep range 
imaging (DRI)-Triton swept source optical coherence tomography (SS-OCT) in the type 1 diabetes 
Mellitus (DM1) group subdivided into two groups: less than 24 years and over or equal to 24 years of 
evolution of DM1. Values are presented as the mean ± standard deviation and range (minimum–
maximum). Significant differences were considered as p < 0.05, calculated by Kolmogorov–Smirnov 
test for two independent nonparametric samples, are shown with *. The volume is represented in 
mm3. 

 SPECTRALIS SD-OCT DRI-TRITON SS-OCT 
 DM <24 (n = 46) DM ≥24 (n = 44) p DM <24 (n = 46) DM ≥24 (n = 44) p 

Foveal Center (Central ETDRS Region: R1, 1 mm) 

Central R1 
359,87 ± 83.43  

(126–525) 
344.91 ± 77.59  

(158–485) 
0.304 

308.67 ± 71.58  
(107.17–443.40) 

293.59 ± 56.07  
(139.10–397.35) 

0.152 

Inner Circle (Parafoveal ETDRS Region: 3 mm) 

Superior S1 
346.39 ± 77.73  

(160–522) 
356.30 ± 77.34  

(168–500) 
0.783 

285.93 ± 75.76  
(81.35–415.32) 

280.31 ± 60.17  
(123.97–374.02) 

0.692 

Temporal T1 
347.47 ± 73.55  

(145–484) 
327.27 ± 71.09  

(156–481) 
0.238 

280.07 ± 61.93  
(115.20–463.28) 

265.34 ± 58.08  
(106.91–342.31) 

0.434 

Inferior I1 
354.93 ± 82.00  

(136–487) 
324.57 ± 77.96  

(133–485) 
0.031 * 

224.40 ± 66.39  
(73.44–344.04) 

226.10 ± 60.59  
(71.77–326.64) 

0.881 

Nasal N1 333.54 ± 85.37  
(109–507) 

325.68 ± 74.44  
(137–452) 

0.557 299.75 ± 68.46  
(116.55–463.76) 

284.04 ± 53.95  
(125.83–367.94) 

0.178 

Outer Circle (Perifoveal ETDRS Region: 6 mm) 

Superior S2 
323.52 ± 77.85  

(158–490) 
336.05 ± 70.62  

(132–465) 
0.044 * 

310.51 ± 71.24  
(105.17–424.30) 

282.98 ± 65.60  
(121.24–398.88) 

0.016 * 

Temporal T2 
313.13 ± 64.14  

(139–469) 
290.52 ± 63.38  

(140–433) 0.166 
279.68 ± 68.15  

(132.03–414.31) 
297.51 ± 63.62  

(110.66–412.02) 0.063 

Inferior I2 
330.56 ± 82.35  

(126–466) 
291.64 ± 77.12  

(106–436) 
0.036 * 

285.04 ± 72.33  
(91.53–371.42) 

259.70 ± 74.04  
(93.75–403.40) 

0.045 * 

Nasal N2 
263.61 ± 72.50  

(100–378) 
261.55 ± 68.92  

(92–410) 
0.981 

296.36 ± 70.69  
(129.61–433.49) 

294.43 ± 57.31  
(145.27–389.12) 

0.977 

Volume 
9.03 ± 81.95  
(3.89–12.58) 

8.64 ± 1.78  
(3.62–12.60) 

0.708 
7.78 ± 1.74  

(3.02–11.09) 
7.58 ± 1.56  
(2.96–9.94) 

0.523 

SD-OCT, spectral domain optical coherence tomography; DRI, deep range image; SS-OCT, swept 
source optical coherence tomography; DM, diabetes mellitus; ETDRS, Early Treatment Diabetic 
Retinopathy Study; R1, central; S, superior; T, temporal; I, inferior; N, nasal. The number 1 
corresponds to the 3 mm parafoveal inner circle and 2 to the 6 mm perifoveal outer circle. Significant 
differences are shown with *. 
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Figure 4. Mean of choroidal thicknesses in each ETDRS area in μm (from the BM to the choroid-scleral 
limit) assessed with Spectralis spectral domain optical coherence tomography (SD-OCT) and the deep 
range imaging (DRI)-Triton swept source optical coherence tomography (SS-OCT) in the type 1 
diabetes Mellitus (DM1) group subdivided into two groups: less than 24 years and over or equal to 
24 years of evolution of DM1. Significant differences were considered as p < 0.05, calculated by 
Kolmogorov–Smirnov test for two independent nonparametric samples, are shown with *. SD-OCT, 
spectral domain optical coherence tomography; DRI, deep range image; SS-OCT, swept source optical 
coherence tomography; DM, diabetes mellitus; ETDRS, Early Treatment Diabetic Retinopathy Study; 
R1, central; S, superior; T, temporal; I, inferior; N, nasal. The number 1 corresponds to the 3 mm 
parafoveal inner circle and 2 to the 6 mm perifoveal outer circle. 

4. Discussion 

There are numerous physiological variables such as AL, refractive error, IOP, diurnal variation, 
other systemic vascular diseases and various drugs that could affect the CT in addition to the different 
age ranges of the population groups of each study. In this study, we included patients of similar age 
to avoid the diminution of the CT with age shown in previous works, and AL was a fundamental 
factor to be taken into account in the measurement of CT [17–22]. We tried to exclude confounding 
factors by looking for young people with good control, and considerable refractive errors were 
discarded to avoid bias. 

Our findings show similar results as previously described in CT; CT was thickest in the 
subfoveal areas, becoming thinner towards the nasal or temporal areas [11,17,18,23,24]. 

With the Spectralis SD-OCT, significant differences were obtained between the DM1 group and 
the control group in all ETDRS areas and in the total CV, except in the temporal perifoveal area (T2: 
p = 0.107). We observed that the average CT and CV was higher in the DM1 group in all areas. 

Statistically significant differences were obtained with the DRI-Triton SS-OCT in the central area 
(R1, p = 0.025) and in the vertical areas, both perifoveal (S2, p = 0.040 and I2, p = 0.036) and parafoveal 
(S1, p = 0.014 and I1, p = 0.016). However, we did not find the same differences in either the horizontal 
areas or in the total CV. As previously mentioned, the horizontal areas are the thinnest in both the 
parafoveal and perifoveal circles. It is likely that with less thickness in these areas, we would need to 
increase the sample size to demonstrate the same trend. We also found that the CT and CV of 
diabetics were higher than the average thickness and CV of the control group. 

The CT obtained with Spectralis SD-OCT was higher in all ETDRS areas compared to those 
measured with DRI-Triton SS-OCT, which have been previously observed in a group of healthy 
subjects with a high correlation [25]; the same was observed in this study in both the control and the 
DM1 group. Factors such as thick choroids, RPE pigmentation or vascular structures can add 
difficulty to the establishment of the choroidal limit using SD-OCT and lead to inconsistencies 
between the results of the OCT systems. For eyes with these characteristics, a high-penetration OCT 
with a longer wavelength would be more accurate. 
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Tavares et al. [26] observed in their one-year follow-up study that the CT of diabetic patients 
without DR increased, while the thickness of the inner retinal layers and the total retina decreased, 
similar to the findings in our research. Several studies have analyzed CT in diabetic patients without 
DR, although the results have been contradictory. Esmaeelpour and Querques found that thinning of 
the choroid was independent of the stage of the disease, even in patients without DR [12,27–29]. 
Esmaeelpour included only 33 DM1 patients with an age similar to our study. On the other side, 
Querques’ patients had a mean age of 65 years. In contrast, Xu et al. found that choroidal subfoveal 
thickening was associated with DM in a study including 246 diabetic subjects, 23 of whom had DR. 
However, this difference was not related to the presence or stage of DR after adjusting for several 
confounding factors [30]. Vujosevic et al. did not find significant differences in CT between 102 
diabetic patients and controls [13] 

In the study by Tavares et al. looking at choroidal thickening at one-year follow-up, they discuss 
that the increase in CT observed in DM patients without DR could correspond to the presence of a 
choroidal vasculopathy, so DME or vascular dilatation with greater rigidity of the blood vessels may 
be responsible for the increased CT. We found similar results [26]. The autoregulation of the choroid 
is controversial [31]. In diabetic patients, Nagaoka et al. [32] showed that the choroidal blood flow 
could be decreased, even before any DR signs. 

After development of DR, there is a tendency towards decreased CT that could correspond to 
vascular modifications and microvascular loss. Esmaeelpour [12] and Abadia [33] found that 
subfoveal CT was thinner in DM2 patients without DR and with non-proliferative DR compared to 
healthy controls. Kim et al. [11] evaluated the subfoveal CT at a distance of 1500 μm superior, inferior, 
nasal and temporal to the fovea. Unlike the previously mentioned studies [11,28,33], they found that 
the subfoveal CT in the presence of proliferative DR was thicker than in eyes without DR, or with 
mild-to-moderate and severe non-proliferative DR. However, in comparison with healthy controls, 
the subfoveal, temporal, nasal, superior and inferior thicknesses of the choroid decreased slightly in 
eyes with DM2 without DR or with non-proliferating DR in more initial stages of the disease 
(mild/moderate), without reaching statistical significance. Kim et al. [11] and Vujosevic et al. [13] 
showed that early DR was associated with a thinner choroid compared to the control group. 

We analyzed the CT according to the years of evolution of the disease (Group 1 <24 years and 
Group 2 ≥24 years) with Spectralis SD-OCT and DRI-Triton SS-OCT separately. Significant 
differences were found in age between the groups, with older age associated with longer evolution 
of the disease (p < 0.001) but with similar ocular characteristics. With the Spectralis SD-OCT, we 
observed significant differences in three ETDRS areas, I1 and the two vertical perifoveal areas, S2 and 
I2. With the DRI-Triton SS-OCT, we found differences only in these last two areas (S2 and I2). 
Spectralis SD-OCT showed vertical areas with greater thicknesses in the less evolved group with 
differences of 30.36 μm in I1 and 38.92 μm in I2, but the S2 area was thinner by 12.53 μm in the short 
evolution group which was lower than the differences in the other two areas. The S2 and I2 areas 
were the only ones with differences using DRI-Triton SS-OCT, with similar results to those obtained 
with Spectralis OCT: lower thickness values in the long evolution group with a difference in S2 of 
27.53 μm less and in I2 of 25.34 μm less compared to the short evolution group. With Spectralis SD-
OCT, seven of the nine areas and the CV had lower values in the group with greater evolution. This 
tendency was maintained with the DRI-Triton SS-OCT in which thinner CTs were obtained in seven 
of the nine areas in addition to the CV. In summary, CT diminishes with disease evolution as 
mentioned by other authors [11–13,33]. We divided the control group looking for the age influence 
on our results. We only found differences in the T1 quadrant using Spectralis OCT. We think that 
part of these differences could be explain by the diminution of choroidal thickness with aging, but 
this thickening is much clear in patients with DM1. 

Malerbi et al. [34] found that the CT was higher in patients with DM1 without DR but with poor 
metabolic control and an HbA1c higher than 9% compared to controls, and within the group with 
DM1 the presence of microalbuminuria correlated with increased thickness compared to patients 
with normal renal function. It is important to assess microalbuminuria as a confounding factor in 
these patients in addition to those already discussed such as the age and duration of diabetes [13], 
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since both albuminuria and DR have been related to the inflammatory state, endothelial damage or 
an alteration in the remodelling capacity of extracellular matrix damage [2]. None of our patients had 
a detectable microalbuminuria and their HbA1c levels were lower than in these studies. 

Future longitudinal studies will be required to confirm this result with a larger sample of 
diabetic patients, without and with DR and with both DM1 and DM2, since their behaviour can differ, 
influenced by age and other vascular factors. In our population we did not evaluate the choroidal 
changes with time. 

In this study we have only included DM1 without RD, but there are multiple studies showing 
that the presence of DME can modify CT. Regatieri [23], Abadía [33], Querques [29], Esmaeelpour 
[12] and Adhi [35] found a reduced choroidal thickness in different areas. Ünsal et al. found that the 
CT decreases as the disease progresses from a mild to moderate non-proliferative DR, reaching a 
proliferative DR that correlates to prolonged deficient control of glycaemia and its influence on 
vascularization [24]. DM is a vascular disease that affects the microcirculation, although it has been 
less studied for years due to a lack of the necessary instrumentation, and it has to affect the 
choriocapillaris as well as the layers of medium and large vessels of the choroid. The existence of 
diabetic choroidopathy has been established [11,23], and CT also diminishes after laser treatment, 
although modifications in blood flow in the different areas could be found [11,24,36]. 

Looking for a correlation with the metabolic state, Abadia´s study in DM2 [33] did not detect 
significant differences according to HbA1c levels or duration of diabetes and CT; there was a 
moderate correlation between the choroidal thickness and HbA1c levels in patients with DME (r = 
0.342, p = 0.017). In contrast, Kim et al. [11] found statistically significant differences according to 
HbA1c levels between the DR groups. They also found a significant correlation between subfoveal 
CT and HbA1c (r = 0.252, p < 0.05). In our study, DM1 patients had a good glycemic control measured 
by the HbA1c level. 

Both Spectralis SD-OCT and DRI-Triton SS-OCT have excellent resolution and are non-invasive 
devices to evaluate the choroid, with an increased importance in many diseases [19,37]. In DR, they 
can be very useful to evaluate changes at the choroidal level of blood flow. The relationship between 
DR and diabetic choroidopathy is not clearly defined in the literature [38]. The choroid supplies 
oxygen and nutrients to the outer retina. Any change or damage with thinning of this tissue can affect 
the overlying retina, causing hypoxia and leading to the appearance of retinal lesions or the 
progression of existing DR. However, it is not known if thinning of the choroid occurs prior to the 
appearance of DR lesions or if DR lesions are associated with reduced CT. Therefore, knowing the 
role of the choroid in the retinas of patients with DM and the physiopathological mechanisms 
involved in DR, including those that affect the choroid, can help us to better understand the course 
of DR and to optimize the management of the disease based on adapted interventions. Thus, more 
prospective and longitudinal studies must be carried out. 

5. Conclusions 

In conclusion, the choroid is affected by diabetes. There is a choroidal thinning related to the 
years of evolution of the disease in DM1 patients without DR. In patients with an evolution of DM 
greater than 24 years, the CT is statistically lower than in patients with less evolution of the disease. 
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