Time to enter the era of

Earth-Observation based landslide warning system

- 3 Keren Dai1,2,5, Zhenhong Li3, 4, 5 *, Qiang Xu1, Roland Bürgmann6, 7, David G
- 4 Milledge4, Roberto Tomás8, Xuanmei Fan1, Chaoying Zhao5, Xiaojie Liu5, Jianbing
- Pengs, Qin Zhangs, Zheng Wangs, 4, Tengteng Qu4,9, Chaoyang He1, Deren Li10,
- Jingnan Liu11
- 7 1State Key Laboratory of Geohazard Prevention and Geoenviroment Protection,
- 8 Chengdu University of Technology, Chengdu 610059, China.
- 9 2College of Earth Sciences, Chengdu University of Technology, Chengdu 610059,
- 10 China.

1

2

- 3COMET, School of Engineering, Newcastle University, Newcastle upon Tyne NE1
- 12 7RU, UK.
- 4School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
- 14 5College of Geological Engineering and Geomatics, Chang'an University, Xi'an
- 15 710054, China
- 6Berkeley Seismological Laboratory, University of California, Berkeley, CA 94720,
- 17 USA.

27

- 18 7Department of Earth and Planetary Science, University of California, Berkeley, CA
- 19 94720, USA.
- 20 8Departamento de Ingeniería Civil, Escuela Politécnica Superior, Universidad de
- 21 Alicante, P.O. Box 99, E-03080 Alicante, Spain.
- ⁹College of Engineering, Peking University, Beijing, 100871, China.
- 23 10State Key Laboratory of Information Engineering in Surveying, Mapping and Remote
- Sensing, Wuhan University, Wuhan 430079, China.
- 25 11GNSS Research Center, Wuhan University, Wuhan 430079, China.
- * Corresponding author. Email: zhenhong.li@newcastle.ac.uk

28 **Abstract.** Landslide early warning ³³

29 remains a grand challenge due to the high ³⁴

- 30 human cost of catastrophic landslides 35
- 31 globally and the difficulty of identifying ³⁶
- 32 a diverse range of landslide triggering ³⁷

factors. There have been only a very

limited number of success stories to date. However, recent advances in earth

observation (EO) from ground, aircraft

and space have dramatically improved

8 our ability to detect and monitor active

landslides and a growing body of 37 geotechnical theory suggests that pre- 38 failure behavior can provide clues to the 39 location and timing of impending 40 catastrophic failures. In this paper, we 41 use two recent landslides in China as case 42 studies, to demonstrate that (i) satellite 43 radar observations can be used to detect 44 deformation precursors to catastrophic 45 landslide occurrence, and (ii) early 46 warning can be achieved with real-time 47 in-situ observations. A novel and exciting 48 framework is then proposed to employ 49 EO technologies to build an operational 50 landslide early warning system.

17 INTRODUCTION

16

Landslides (where soil or rock moves 18 down a slope) have been shaping mountainous regions for millennia, but today they pose a destructive hazard to people and infrastructure resulting in hundreds of deaths and billions of dollars 23 The 60 damage every [1]. 24 combination of a rapidly increasing intensifying 62 population and 26 weather extremes associated with recent ⁶³ climate change suggests that landslide risk will dramatically increase over the 65 next decade. Landslide deformation can be extremely slow (few mm per year) or involve sudden extremely rapid failure [2], and thus their hazards include both enduring damage to manmade structures and catastrophic destructive events. While small landslides make up the vast

majority of landslide 'events' in any given year, it is large landslides that tend to be responsible for most of the damage and loss of life [3]. Current landslide risk mitigation strategies tend to reduce exposure - the likelihood that someone or something is impacted by a landslide primarily by moving to, or locating infrastructure less hazardous in. locations; but for many people and assets relocation is not feasible. In these situations, short-term evacuation is often the most attractive or only option. Therefore. landslide improved forecasting and the development of early warning capabilities are expected to play crucial roles in managing landslide risk for many individuals and communities.

53

The major landslide triggering factors (e.g., rainfall and seismic shaking) and the basic physics governing landslide initiation are well known. Yet predicting where and when landslides will occur remains a grand challenge primarily due to the difficulty in forecasting the triggering factors themselves, and the spatial variations in earth materials and slope conditions. Existing forecasting methods generally involve functional relationships between trigger-factor intensity (e.g. precipitation history and peak seismic ground acceleration) and probability. However, landslide the connection and between triggers is landslides complex, with landslides occurring in the absence of an identifiable trigger and others occurring

with significant delay. For example, the 38 2006 Leyte landslide that killed over 39 1100 people in the Philippines, occurred 40 five days after a large rainstorm, so that 41 although the population were initially 42 evacuated they had returned to their 43 homes [4]. Displacements recorded over 44 time could provide critical additional 45 information for predicting the possible 46 timing of impending slope failure [5]. Based on conventional in-situ survey ⁴⁸ 11 methods, the concept of 'landslide early ⁴⁹ 12 warning systems' has been proposed for ⁵⁰ several years, e.g. [6-12]. The outcomes ⁵¹ of these works are often suggested 52 warning criteria for specific locations. ⁵³ Successful early warning cases, where a 54 clear warning was given prior to 55 catastrophic slope failure, have been very ⁵⁶ limited due to the inadequate temporal 57 of and precision spatial ground 58 21 observations [13]. Building trustworthy 59 real-time early warning systems (capable 60 of identifying the 'very high-risk time' to 61 prompt short-term evacuation) with 62 25 suitable spatial and temporal precision is 63 an important but difficult challenge. 27 Aperture 65 Spaceborne Synthetic 28 Radar (SAR) sensors emit radar signals 66 29 amplitude of the 67 and record the backscattered signal as well as the phase ⁶⁸ 31 (from which the changes in range 69 32 between satellite and Earth's surface can 70 be inferred) [14]. Interferometric SAR 71 (InSAR) is a powerful tool for measuring ⁷² 35 the Earth's surface motion over large ⁷³ regions (e.g. [15-17]) in all weather ⁷⁴

conditions, at metre-resolution and offers the capability to remotely monitor unstable slopes, e.g. [18-21]. Recent studies have demonstrated that conventional InSAR and related time series techniques Persistent (e.g. Scatterer InSAR and small baseline InSAR) can identify, map and monitor active landslides [22-26] and even to detect precursory deformation signals prior to their eventual failure, e.g. [27-29]. Note that spaceborne InSAR currently has a minimum repeat cycle of 6 days for Sentinel-1, 1 day for COSMO-SkyMed [30], 11 days for TerraSAR-X and longer for other satellites, which major limitation represents spaceborne InSAR for early warning systems.

In-situ global navigation satellite system (GNSS) monitoring is capable of measuring three-dimensional landslide motion at very high temporal frequency (e.g. 20 Hz) and spatial accuracy (2-4 mm in plan and 4-8 mm in vertical) [31]. Other in-situ monitoring methods include extensometers, inclinometers, and pore water pressure sensors. However, these methods only provide point-based measurements at sensors that are costly to and maintain. in-situ install Thus observations are limited by the number of sensors that can be deployed at the key locations and may not capture the spatial variations in landslide motion prior to failure. There are two obvious hurdles to the deployment of ground-based

monitoring techniques: (i) the sites with 37 potential landslides should be detected 38 prior to their failure; and (ii) the key 39 monitoring locations in the landslide 40 bodies should be identified. in-situ 42 and Spaceborne InSAR sensors are complementary tools to 43 monitor surface displacements given 44 InSAR's high spatial resolution (metres ⁴⁵ to 10s metres) over a wide region (e.g. 46 250 km x 250 km for Sentinel-1) but ⁴⁷ limited temporal resolution (constrained ⁴⁸ by the frequency of satellite overpasses) ⁴⁹ 13 and in-situ sensors' fine temporal 50 resolution at their locations. We suggest 51 that it is now both feasible and timely to 52 combine these EO technologies to build 53 an integrated landslide early warning 54 system. In this paper, the 2017 Xinmo 55 (Sichuan, China) landslide is used to 56 demonstrate the ability of spaceborne InSAR to identify precursory landslide 58 deformation, while the 2017 Dangchuan 59 #4 landslide in Heifangtai (Gansu, China) $_{60}$ is used to demonstrate the successful 61 application of timely early warning for 62 landslides by in-situ measurements [32]. Based on the advantages, limitations and 64 28 complementarity different EO 65 29 methods, a landslide early warning 66 framework is proposed to increase the 67 resilience of local communities to 68 landslide hazards by informing short-69 term evacuations. 34 70 35

observation (EO) is now within our grasp. We believe that this is a message that is both important and timely. It is because landslides kill important thousands of people every year, predominantly in those parts of the world that are poorest and thus least able to protect themselves. It is timely because, though early warning has long been touted as a 'golden bullet' in landslide risk mitigation, it requires accurate predictions that have generally been out of reach until now.

METHODOLOGY

The InSAR dataset for the time series displacement extraction of Xinmo landslides includes 29 descending SAR images acquired by Sentinel-1A/1B satellites from 09 November 2015 to 19 June 2017 SAR on every 6-24 days. ESA's Sentinel-1A/1B satellites operate day and night performing C-band microwave SAR imaging, providing radar imagery with a wide coverage (e.g. 250×250 km) and a short repeat cycle (6-24 days). The SAR data in this study were interferometrically processed with **GAMMA** software. Shuttle Radar Topography Mission (SRTM) with 30 m horizontal resolution was used simulate and eliminate the topographic phase. Interferograms were filtered by the adaptive filtering method to reduce Our paper makes the case that 71 the noise. Coherent pixels were detected landslide early warning from earth 72 using the full-rank matrix approach

demonstrated in [33] and their time series 37 analysis was performed following the 38 **InSAR** time 3 series integrated 39 atmospheric estimation model (InSAR 40 TS+AEM) described in [34]. Both the 41 coherent pixel detection approach and the 42 InSAR TS+AEM method have been 43 successfully used in previous InSAR 44 studies. The mean velocity map and time 45 series displacements results were finally 46 geocoded into WGS84 coordinate 47 system. 12 The Heifangtai area has been monitored ⁴⁹ 13 with a range of in-situ sensors including 50 7 GNSS receivers, 34 crackmeters, 251 range gauges and 13 piezometers since 52 2017 by researchers from the State Key 53 Laboratory of Geohazard Prevention and 54 Geoenviroment Protection (SKLGP) at 55 19 Chengdu University of Technology. The 56 data collected by all the sensors was 57 transmitted to SKLGP in real time with 58 22 GPRS (General Packet Radio Service). 59 Note that the crackmeter was a real-time 60 adaptive one developed by SKLGP [35], 61 25 which acquired one sampling per hour in 62 normal conditions but automatically 63 increased samples when its a 64 28 displacement acceleration was detected. 65 30 67 **RESULTS** 31 Pre-failure movement signals revealed

33 with spaceborne InSAR

- 34 On 24 June 2017, a landslide of 13 ₇₁
- 35 million cubed meters suddenly buried $_{72}$
- 36 Xinmo village, Sichuan province, China, 73

causing 10 deaths, with 73 persons still missing. Xinmo village is located on the left bank of the Songping River, a first-order tributary of the upper reaches of Minjiang River [36]. The surrounding steep slopes are prone to rock falls, landslides, and debris flows [37]. The region is tectonically active with several active faults nearby that have generated three Mw >=6.7 earthquakes since the 1930s (Fig. 1A). Xinmo village itself was built on the deposits of an old landslide triggered by the 1933 Mw 7.3 Diexi earthquake [36, 38] (Fig. 1A).

To explore the pre-failure displacement history of the Xinmo landslide, InSAR analysis was performed on Sentinel-1 data to determine a mean velocity map and a time series of landslide motion for a ~1.5-year period prior to failure (Fig. 2). The accumulative displacement map during the period from November 2015 to June 2017 (Fig. 2A) shows that the area near the head scarp of the landslide exhibited clearly detectable displacements with a maximum of 3 cm preceding failure. Figs 2C, 2D and 2E, show the displacement times series results for three selected points P1, P2 and P3 whose locations are shown in Fig. 2B. The last three acquisition dates are 26 May 2017, 07 June 2017 and 19 June 2017 (5 days before the failure), respectively. A dramatic acceleration can be observed during the period from 07 June 2017 to 19 June 2017 (from 17 days before the failure). It should also be noted

that all the interferograms were carefully 12 checked to avoid phase unwrapping 13 errors and the InSAR time series was 14 performed pixel by pixel. We did NOT 15 apply strong spatial filtering, and hence 16 our InSAR mean velocity map is not as 17 smooth as those in previous studies. 18 However, the overall pattern of our 19 InSAR mean velocity map is consistent 20 with those in previous results (e.g. [28], 21 [29]).

This clearly demonstrates that quantitative time series analysis from satellite radar observations can detect accelerated movements prior to catastrophic failure, occurring 5-17 days before the landslide. It should be noted that the source area of the Xinmo landslide is located on a steep slope at an altitude of ~3400 m a.s.l. where in-situ sensors would be difficult to install. This highlights one notable advantage of InSAR over in-situ monitoring sensors.

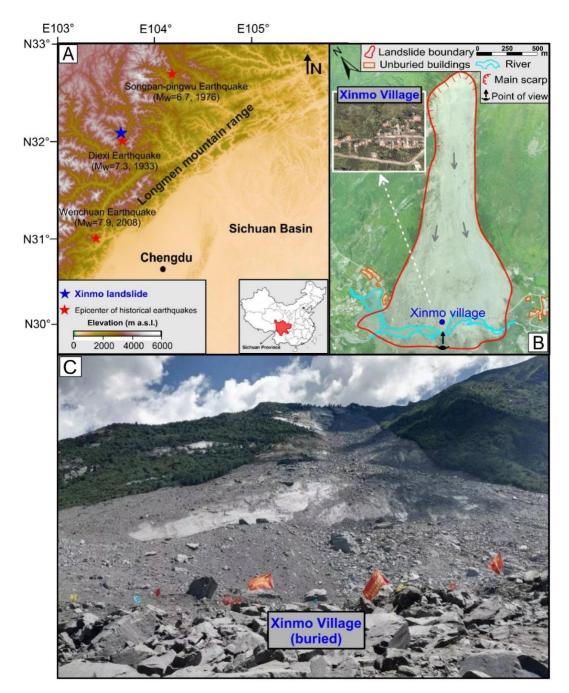


Fig. 1. The location, pre-event and post-event photos of the 24 June 2017 Xinmo landslide. (A) Location of the Xinmo landslide and the epicenters of three large historical earthquakes. (B) Unmanned aerial vehicle (UAV) aerial photo of the Xinmo landslide with an inset photo of Xinmo village taken before the event. (C) Post-failure photo of the Xinmo landslide (the whole village was buried under the accumulated debris).

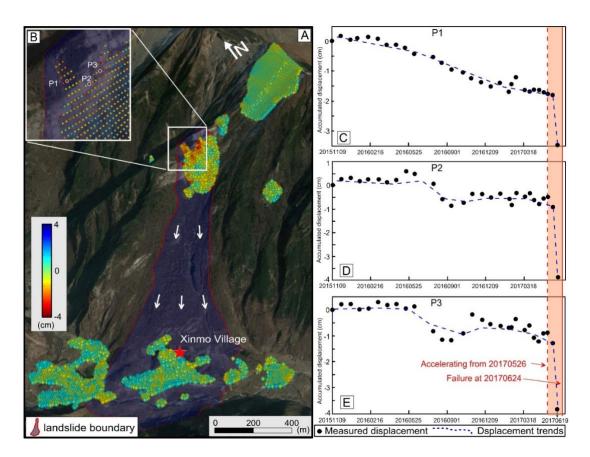


Fig. 2. Pre-failure movement signals and source area revealed by InSAR. (A) Cumulative displacements for coherent pixels from time series InSAR analysis. (B) Enlarged active displacement area and the location of points P1, P2 and P3; (C)(D)(E) Displacement time series for points P1, P2 and P3, respectively.

Early warning for the Dangchuan 4#11 terrace margins. The Dangchuan 4# landslide using in-situ sensors landslide lies in southwest-central 2 The Heifangtai loess terrace, located ¹³ Heifangtai near Guoxia town, Yongjing 3 County. Among all the in-situ sensors, a in Yongjing County, Gansu Province, ¹⁴ crackmeter installed across the trailing China (Fig. 3B) with an area of 13.7 15 head scarp edge of Dangchuan 4# (Fig. squared km, is formed from a terrace of ¹⁶ 3A) provided critical displacement Quaternary aeolian loess deposits [39]. 17 measurements in real time which were Since the Yellow River pumping 18 used in a successful 8-hour early warning irrigation project was kicked-off in 1966, ¹⁹ in 2017. frequent landslides have occurred on the ²⁰

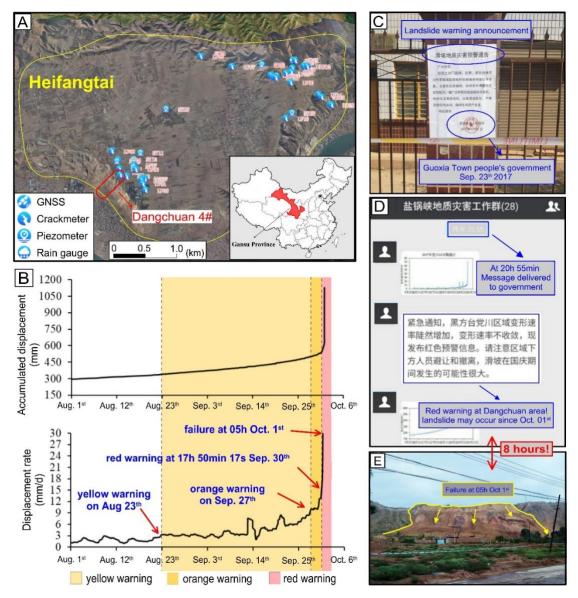


Fig. 3. landslide warning at Dangchuan 4# landslide in Heifangtai. (**A**) The location of Dangchuan 4# landslide with various in-situ sensors; (**B**) cumulative displacement and displacement rates from a crackmeter installed across the trailing head scarp edge during the period from 1 August 2017 to 1 October 2017; (**C**) On 23 September 2017 a photo of Heifangtai landslide warning announcement which was posted on a pillar in Guoxia town by the local government; (**D**) At 20:55 on 30 September 2017, a red warning message was delivered to the local government through WeChat app; (**E**) The post-failure photo of the Heifangtai landslide (Dangchuan 4# slope) which failed at 05:00 on 1 October 2017.

The crackmeter observations showed 5 was issued to the village head and local a clear acceleration in the displacement 6 government by text message, informing rate at Dangchuan 4# on 23 August 2017 7 them to: 'pay close attention to this slope (Fig. 3B), and hence a yellow warning 8 and prepare for disaster prevention'.

announcement to local communities on 23 September 2017 with several alert boards posted around the landslide area (Fig. 3C). On 27 September 2017 the yellow warning was upgraded to an orange warning due to the accelerating 17 displacement rate measured at the crackmeter. At 17:50 on 30 September 2017, a red warning was released 20 automatically by the system (Geohazard Real-time Monitoring and Early Warning System [40]) developed by SKLGP, which was confirmed by a panel of experts. Three hours later (at 20:55 on 30 ⁵⁴ September 2017), an official red warning 26 was issued to the local government (Fig. 27 3D), prompting a government led 28 emergency response and evacuation. The 29 local government immediately started ⁵⁹ their emergency response, and more than 60 20 villagers in the landslide hazard zone 61 32 were evacuated. At 05:00 on 1 October 62 2017, a landslide occurred (Fig. 3E), 63 damaging several buildings but with no 64 casualties thanks to the early warning 65 [32]. 37 This successful clearly 67 38 case demonstrates the potential importance of 68 39 real-time displacement measurements 69 40 and the role that in-situ sensors could 70 play in early warning systems. A 71 42 preliminary retrospective InSAR study 72 period or can be even absent in some showed that InSAR with L-band ALOS-73 2 images was able to capture the 74 characterised by slow movement at near

After a detailed field investigation, the 46

local government confirmed the warning 47 and released an official landslide warning 48 accelerated movements prior to failure, occurring 15 days before the landslide (Fig. 4).

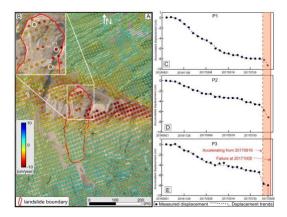


Fig. 4. Pre-event displacements of the Dangchuan 4# landslide revealed by Lband observations. (A) The mean velocity map from time series InSAR analysis. **(B)** Enlarged displacement area and the location of points P1, P2 and P3; (C)(D)(E)Displacement time series for points P1, P2 and P3, respectively.

DISCUSSION

The feasibility and complementarity of EO for landslide early warning

A range of laboratory, field theoretical studies have identified prefailure creep acceleration of landslides and suggest that it can be divided into three phases [41-44]: (i) Primary creep, (ii) Secondary creep, and (iii) Tertiary creep (Fig.A). Primary characterised by a decreasing strain rate over time, which often lasts for a short [42]. Secondary

constant rate (but with fluctuations in real 04 slopes due to the influence of external 05 factors, such as rainfall). The duration of 106 77 the secondary creep is difficult to 107 78 estimate and can last for months, years on 08 even decades [42, 45], despite continuous 09 80 displacement during this phase. Tertiary 10 creep is characterized by a rapid 11 acceleration of displacement until final 12 83 failure [46]. Although such speed-ups13 may be common prior to catastrophic 14 failure events [45], the number of actual 15 86 observations of such speed-up behavior 16 87 remains limited due to the absence of the 17 right EO technologies in the right 18 89 locations at the right times. Therefore,119 there are two primary challenges for 20 landslide early warning: (i) monitoring 21 surface displacements over a wide region 22 with sufficient resolution and accuracy to 23 identify areas undergoing secondary 124 creep; and (ii) identifying when or under 25 what circumstances a slow-moving 26 landslide (i.e. in secondary creep phase)127 the accelerated displacement 28 tertiary creep phase leading to rapid 29 100 failure. 101 130

Advances in EO offer the potential to¹³¹

133

address these two challenges. In the 32

102

primary and secondary phases, weekly to monthly observations would be sufficient to distinguish areas undergoing more rapid creep. In the tertiary creep phase, sub-daily sampling intervals are needed to capture the acceleration in creep (Fig. 5B). InSAR currently has a shortest repeat cycle of 1-11 days while GNSS and some other in-situ sensors can provide high-rate (e.g. 1-20 Hz) measurements. Only slow tertiary creep displacements (e.g. <0.012 m/day over a distance of 100 m for Sentinel-1 [47]) could potentially be captured by InSAR because its measuring capability is limited by the spatial displacement gradients. This limitation overcome by SAR pixel offset tracking (e.g. [19]) and/or Range Split Spectrum Interferometry assisted Phase Unwrapping (R-SSIaPU) method [47]; in-situ sensors generally do not have such limitations (Fig. 5C). On the other hand, InSAR offers extensive spatial coverage enabling detection of potential landslides in the primary and secondary creep phases. To monitor a single slope in its tertiary phase InSAR and in-situ sensors can provide complementary coverage in space and time.

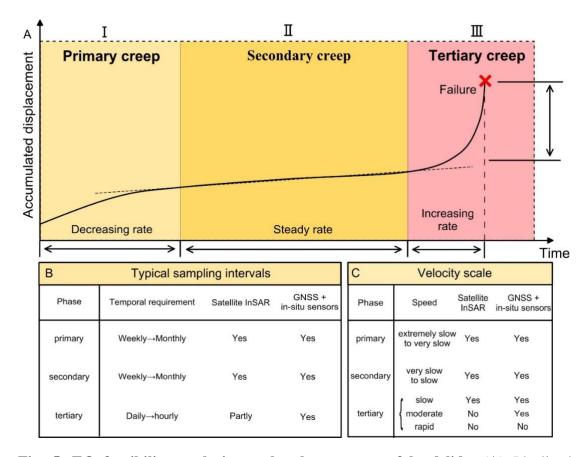


Fig. 5. EO feasibility analysis on the three stages of landslide. (A) Idealized displacement-time curves for the three stages of creep [6, 41, 42]. (B)-(C) Typical sampling intervals and velocity scale analysis for satellite InSAR and in-situ sensors in three creep phases. The landslide speeds in (c) are defined according to [48, 49], i.e. extremely slow (<16 mm/year), very slow (1.6 m/year), slow (13 m/month) and moderate (1.8 m/h).

1 EO based landslide early warning 11
3 system 12
4 Fig. 5 illustrates that EO can provide us 13
5 with unprecedented and encouraging 14
6 opportunities for pre-failure creep 15
7 monitoring. However, the different 16
8 technologies have their own advantages 17
9 and limitations as illustrated by the 18

Xinmo and Dangchuan case studies. A single EO method is insufficient to capture all the signals in the different creep stages, and hence multiple EO technologies should be combined to develop landslide EWS. Fig. 6 shows the framework of an operational landslide early warning system relying on an optimal combination of these EO technologies.

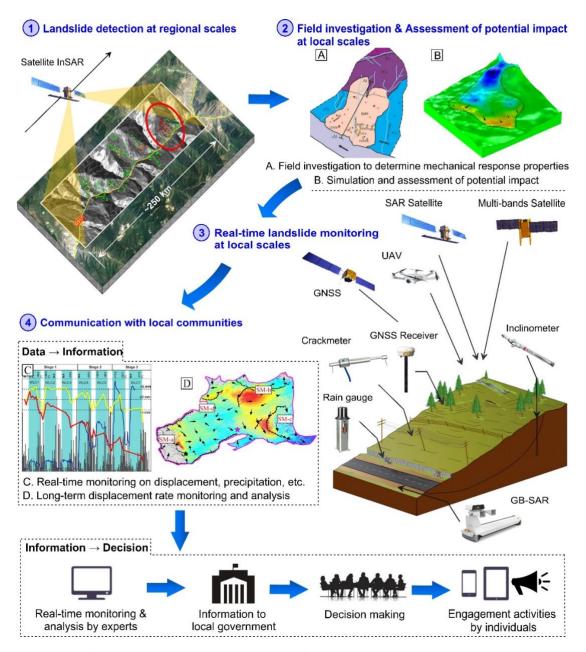


Fig. 6. EO based landslide early warning system. (**A**) Field investigation to determine geomechanical response properties. (**B**) Simulation and assessment of potential impact. (**C**) Real-time monitoring on displacement, precipitation etc. (**D**) Long-term displacement rate monitoring and analysis.

Step 1. Spaceborne InSAR is 8 Sentinel-1) are interferometrically employed to comprehensively detect 9 processed and then analysed in time active slopes (i.e. clusters of points that 10 series. An automatic feature detection exhibit certain deformational activity 11 algorithm (possibly relying on machine [50]) to find potential landslides at a 12 learning approaches, e.g. [51, 52]) should regional scale. The archived and newly 13 be developed to detect potential acquired SAR images (e.g. ESA's 14 landslides based on the regional

deformation rate maps and displacement 38 time series. Time series analysis can be 39 used to determine the sensitivity of 40 landslide motion to external factors such 41 5 as seasonal precipitation and seismic 42 shaking (e.g. [23, 53]). First-order 43 geomechanical modeling of landslide 44 behavior based on critical-state soil 45 mechanics or rate-and-state friction can 46 provide important insights on the $_{47}$ stability conditions of landslides (e.g. 48 [54-56]). Eventually, such 49 12 geomechanical analysis may allow us to 50 13 anticipate failure conditions prior to the 51 pronounced accelerations of the tertiary 52 phase (e.g. [57]). Step 2. Assessment of potential 54 17 impacts of the active landslides at a local 55 18 scale. After the potential landslide 56 19 initiation hazard is identified for specific 57 locations, field investigations help assess 58 the geological setting of the landslide. A 59 22 landslide dynamics model (e.g. [58, 59]) 60 can be applied to predict the speed and 61 run-out extent of potential landslide 62 25 events. Potential landslide sites identified 63 in Step 1 can be simulated to determine 64 the likely impact on human settlements 65 28 for each landslide. Topographic and 66 socio-spatial data can be collated for 67 landslide modelling and impact 68 31 detailed assessment. Α local land 69 32 including property map, key 70 infrastructures such as buildings, roads, 71 34 power lines, and population- 72 35 distribution map could be generated 73 based on existing open source data and 74 not only useful for identifying the onset

community participation. These will support the impact assessment as well as early warning communication with the local community. This step also identifies the sites for which real-time landslide monitoring (RTLM) is required.

Step 3. A multi-sensor integrated system is installed combining remote sensing methods and in-situ sensors for the specific sites where the RTLM is needed. In-situ sensors can be carefully located according to the landslide motion information provided by InSAR so that an accurate continuous monitoring in time and space for all hazardous landslides in a region can be achieved by integrating these two systems whilst minimizing the associated costs by limiting the number of in-situ sensors. High-rate (e.g. 1 Hz) raw **GNSS** observations (e.g. and crackmeters) can be transmitted to a data centre via wireless communication infrastructure, and real-time processed with short baselines in a kinematic mode. Recent experiments with GNSS suggest ~2-4 mm horizontal and 4-8 mm vertical accuracy are possible at 1 Hz [60, 61]. Real-time monitoring is particularly important since existing observations on tertiary creep suggest that the timescale for this phase ranges from minutes to months [44, 62, 63]. Thus the data should be transmitted back to the data centre in real time and processed automatically. However, these in-situ observations are

- 1 of tertiary creep but can be used in the 7 introduced at stage 1 can be refined and
- 2 secondary phase to determine the 8 calibrated through monitoring of
- 3 sensitivity of landslide motion to external 9 environmental factors and geological-
- 4 factors at a higher resolution and 10 geotechnical parameters such as the pore
- 5 precision than was possible in stage 1 11 pressure in soils (Table 1) [13, 64].
- 6 [23, 53]. The mechanical models

Table 1. Commonly used technologies for landslides monitoring. Note that UAV and TDR represent unmanned aerial vehicle and time domain reflectometry, respectively.

Observation	Technology	Precision	Examples
Types			
Displacement	Spaceborne InSAR	mm-cm [65]	[21, 66, 67]
	Airborne InSAR	mm-cm [68]	[68, 69]
	Ground-based InSAR	mm-cm [70]	[63, 70, 71]
	UAV photogrammetry	~ 6cm [72]	[72, 73]
	GNSS	mm-cm [74]	[80, 81]
	Optical image matching	cm-m [75]	[75, 76]
	Crackmeter	mm-cm [77]	[78, 79]
	Extensometer	~3 mm [80]	[81, 82]
	In-place inclinometer	~8 mm [65]	[10, 83, 84]
	Tiltmeter	~0.1°[13]	[13, 79, 87]
	Total station	~±1 ppm [77]	[77, 85]
	Terrestrial Lidar	~0.2-0.5 m [80]	[80, 86]
	Shape acceleration array	±1.5 mm/30 m [87]	[13, 81, 87]
	Active waveguides	Mm [88]	[13, 88]
	Seismometer	\	[89, 90]
Pore pressure	Piezometer	\	[13, 91, 92]
	TDR	\	[93, 94]
	Tensiometer (Soil	\	[54, 94]
	hygrometer)		
Precipitation	Rain gauge	\	[79, 95]

⁴ useful warnings to people exposed to

Step 4. Communication with local 5 landslide hazard is the ultimate objective 3 communities. Providing timely and 6 of an early warning system. Thus

engagement and communication with 37 local communities should be a key 38 feature of an effective landslide EWS. A 39 large body of work already exists on the 40 science of early warning, 41 providing useful insights, explanations 42 for unexpected EWS failure, potential 43 secondary disasters and examples of 44 good practice. Experience from past 45 disasters worldwide suggests that 46 emergency preparedness, planning and 47 response are some of the weakest 48 elements in many existing EWSs [96]. In 49 13 particular, the link between the technical 50 capacity to issue a warning and the 51 15 public's capacity and commitment to 52 respond effectively to the warning is 53 often weak, limiting the capacity of the 54 18 warning to trigger an appropriate and 55 effective response from the community. 56 Warning systems that mainly focus on 57 21 technical aspects and ignore social 58 factors generally do not work effectively 59 because the warnings do not prompt 60 effective action due to lack of community 61 buy-in, which results in poor engagement 62 and operation. There appears to be fairly 63 27 widespread consensus among both ₆₄ 28 academics and practitioners that EWSs 65 are most effective when they are built in 66 30 collaboration with those at risk rather 67 than imposed from outside. 32 33

34 OUTLOOK

5 The remaining three Big Questions for ⁷¹
6 landslide forecasting and early warning ⁷²

are as follows: (Big Question 1) where are potential landslides, (Big Question 2) when will landslides occur, and (Big Question 3) how to best reduce landslide disaster risk.

Big Question 1 - where are potential landslides: We are entering an exciting new era of Earth Observation data, and recent advances in satellite radar and insitu sensors (e.g. GNSS) have allowed us to collect high-quality measurements to quantify the Earth's surface displacements and then address Big Question 1 over entire mountain ranges at space and time scales that are finer than ever before and at relatively low cost. In the EO based landslide early warning system, the relatively short repeat cycles of current SAR missions still represent a limitation of InSAR to detect potential landslides, but the Geosynchronous -Continental Land-Atmosphere Sensing System (G-CLASS), one of the three Earth Explorer ideas that have been accepted by ESA's Programme Board for Earth Observation to compete as the tenth Earth Explorer mission, might provide a solution. Considerable work has been done to interferometrically process massive SAR data sets in an automatic way (e.g. [97]), but more should be done to investigate how to detect potential landslides from big SAR data in a consistent, reliable and smart manner. Machine learning technologies have been widely implemented in the field of computer science and remote sensing

[98-99], where statistical techniques are 38 to which this signature is unique, defines employed to learn specific and complex 39 tasks from given data. Recent studies 40 report that machine learning has the 41 capability to identify signals associated 42 with geohazards from large data sets (e.g. 43 [100]), suggesting that the integration of 44 machine learning with EO technologies 45 might be one encouraging solution to 46 automatic landslide detection. To address 47 Big Question 1, there is an urgent need to 48 answer the following: (i) at what 49 12 percentage are the detected landslides 50 13 true positives? (ii) what is the percentage 51 of the missing (false 52 15 landslides negatives)? and (iii) in which scenarios 53 are the landslides more likely be 54 17 successfully detected? 18 Big Question 2 - when will landslides 56 19 occur: A range of state-of-the-art 57 landslide initiation and runout models 58 have enabled us not only to estimate the 59 location and geometry of potential 60 landslides, but also to assess their 61 potential impacts. 25 It remains a grand challenge to 63 26 predict when landslides will occur. There 64 have been a limited number of successful 65 28 case studies including 29 the 2017 66 Heifangtai landslide. In these cases, 67 deformation anomalies (acceleration 68 31 and/or change in pattern) observed prior 69 32 to failure have been recongnised as 70 'precursors'. However, accurate EWSs 71 34 require the identification of a diagnostic 72 35 signature that can be somewhat uniquely 73 related to impending failure. The degree

the confidence with which a warning can be issued, which represents a much stricter definition of 'precursor'. Further research is required to constrain the relationship between accelerated displacement and landslide failure and thus to establish these diagnostic signatures with more confidence. We suggest that widespread and long-term deformation monitoring combined with landslide observations will enable considerable progress on this problem.

Big Question 3 - how to best reduce landslide disaster risk: The experience of the cooperation between experts and local communities in Dangchuan 4# improved landslide has our understanding of best practices for Community-Based Disaster Management (CBDRM). How to best coproduce a site specific warning system with both local experts and with members at-risk communities to reduce landslide disaster risk remains an open challenge for the whole community.

Acknowledgments - Funding: This work was supported by National Natural Science Foundation of China (NO. 41801391), the National Science Fund for Outstanding Young Scholars of China (Grant No. 41622206), the Fund for International Cooperation (NSFC-RCUK_NERC), Resilience to Earthquake-induced landslide risk in

- China (Grant No. 41661134010), the 38 crackmeter data for landslide warning in
- open fund of State Key Laboratory of 39
- Geodesy and Earth's Dynamics 40
- (SKLGED2018-5-3-E), the Spanish 41
- 5 Ministry of Economy and 42
- Competitiveness (MINECO), the State 43
- Agency of Research (AEI) and the 44
- European **Funds** for Regional 45
- Development (FEDER) under projects 46
- TEC2017-85244-C2-1-P and TIN2014-47
- 55413-C2-2-P, and the Spanish Ministry 48
- of Education, Culture and Sport under 49
- project PRX17/00439. This work was
- also partially supported by the UK NERC
- through the Centre for the Observation $\frac{1}{52}$
- Modelling of Earthquakes, 53 16 and
- Volcanoes and Tectonics (COMET, ref.: 54
- come30001) and the LICS and 55
- CEDRRIC projects (ref. NE/K010794/1 56
- and NE/N012151/1, respectively), and by ⁵⁷
- European Space Agency through the 58
- ESA-MOST DRAGON-4 project (ref. 60
- 32244). RB acknowledges support by the $_{61}$
- NASA Earth Surface and Interior focus 62
- area (ESI). 25
- Author Contributions: Keren Dai, 64
- Zhenhong Li, Roland Bürgmann, David ⁶⁵
- Milledge and Roberto Tomás contributed 66
- to the writing of the paper. Keren Dai, 68
- Zhenhong Li, Zheng Wang, Tengteng 69
- Qu, Chaoying Zhao and Xiaojie Liu 70 31
- carried out the SAR data processing, 71
- related experiment and analysis. Qiang 72
- Xu, Xuanmei Fan and Roberto Tomás 73
- contributed to the geological analysis and $\frac{77}{75}$
- result interpretation. Chaoyang He and
- Qiang Xu collected and analysed the

Heifangtai loess landslide. Zhenhong Li,

Qiang Xu, Keren Dai, and Jianbing Peng

came up with the concept of the EO-

based landslide EWS proposed in this

paper with contributions from David

Milledge, Roland Bürgmann, Qin Zhang,

Deren Li and Jingnan Liu.

Data and materials availability: All

relevant data are available from the

authors upon reasonable request.

REFERENCE

- [1] CRED. Natural Disasters 2017. Brussels:
- CRED; 2018 EM-DAT file dated 02/07/2018.
- (available at:

https://cred.be/sites/default/files/adsr 2017.pdf)

- [2] D. Cruden, and D. Varnes, "Landslides
- Types and Processes in Turner, AK and Schuster,
- 1996, Landslides Investigation
- Mitigation, Special Report 247," Transportation
- Research Board, National Research Council,
- Washington, DC.
- [3] M. J. Froude, and D. Petley, "Global fatal
- landslide occurrence from 2004 to 2016," Natural
- Hazards and Earth System Sciences, vol. 18, pp.
- 2161-2181, 2018.
- [4] S. Evans, R. Guthrie, N. Roberts, and N.
- Bishop, "The disastrous 17 February 2006
- rockslide-debris avalanche on Leyte Island,
- Philippines: a catastrophic landslide in tropical
- mountain terrain," Natural Hazards and Earth
- System Science, vol. 7, no. 1, pp. 89-101, 2007.
- [5] J. Corominas, and J. Mavrouli, "Living with
- landslide risk in Europe: Assessment, effects of
- global change, and risk management strategies,"
- Documento técnico, SafeLand. 7th Framework
- Programme Cooperation Theme, vol. 6, 2011.
- [6] M. Stähli, M. Sättele, C. Huggel, B.

- 1 McArdell, P. Lehmann, A. Van Herwijnen, A. 43
- 2 Berne, M. Schleiss, A. Ferrari, and A. Kos, 44
- 3 "Monitoring and prediction in early warning 45
- 4 systems for rapid mass movements," Natural 46
- 5 Hazards and Earth System Sciences, vol. 15, no. 47
- 6 4, pp. 905-917, 2015.
- 7 [7] E. Intrieri, G. Gigli, F. Mugnai, R. Fanti, and 49
- 8 N. Casagli, "Design and implementation of a 50
- 9 landslide early warning system," Engineering 51
- 10 Geology, vol. 147, pp. 124-136, 2012.
- 11 [8] M. Barla, and F. Antolini, "An integrated 53
- 12 methodology for landslides' early warning 54
- 13 systems," *Landslides*, vol. 13, no. 2, pp. 215-228, ₅₅
- 14 2016.
- 15 [9] M. Calvello, "Early warning strategies to 57
- 16 cope with landslide risk," Rivista Italiana di 58
- 17 Geotecnica, 2017.
- 18 [10] G. Lollino, M. Arattano, and M. Cuccureddu, 60
- 19 "The use of the automatic inclinometric system 61
- 20 for landslide early warning: the case of Cabella 62
- 21 Ligure (North-Western Italy)," Physics and 63
- 22 Chemistry of the Earth, Parts A/B/C, vol. 27, no. 64
- 23 36, pp. 1545-1550, 2002.
- 24 [11] A. Manconi, and D. Giordan, "Landslide 66
- 25 early warning based on failure forecast models: 67
- 26 the example of the Mt. de La Saxe rockslide, 68
- 27 northern Italy," Nat. Hazards Earth Syst. Sci., vol. 69
- 28 15, no. 7, pp. 1639-1644, 2015.
- 29 [12] R. L. Baum, and J. W. Godt, "Early warning 71

80

- 30 of rainfall-induced shallow landslides and debris 72
- 31 flows in the USA," Landslides, vol. 7, no. 3, pp. 73
- 32 259-272, 2010.
- 33 [13] S. Uhlemann, A. Smith, J. Chambers, N. 75
- 34 Dixon, T. Dijkstra, E. Haslam, P. Meldrum, A. 76
- 35 Merritt, D. Gunn, and J. Mackay, "Assessment of 77
- 36 ground-based monitoring techniques applied to 78
- 30 ground-based monitoring techniques applied to 70
- 37 landslide investigations," Geomorphology, vol. 79
- 38 253, pp. 438-451, 2016.
- 39 [14] A. Moreira, P. Prats-Iraola, M. Younis, G. 81
- 40 Krieger, I. Hajnsek, & K. Papathanassiou, "A 82
- 41 tutorial on synthetic aperture radar," IEEE 83
- 42 Geoscience and remote sensing magazine, 1(1), 84

- 6-43, 2013.
- [15] J. Elliott, R. Walters, and T. Wright, "The role of space-based observation in understanding and responding to active tectonics and earthquakes," *Nature communications*, vol. 7, pp. 13844, 2016.
- [16] M. Shirzaei, and R. Bürgmann, "Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area," *Science advances*, vol. 4, no. 3, pp. eaap9234, 2018.
- [17] T. J. Wright, B. Parsons, P. C. England, and E. J. Fielding, "InSAR observations of low slip rates on the major faults of western Tibet," *Science*, vol. 305, no. 5681, pp. 236-239, 2004.
- [18] C. Colesanti, and J. Wasowski, "Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry," *Engineering Geology*, vol. 88, no. 3-4, pp. 173-199, 2006.
- [19] A. Singleton, Z. Li, T. Hoey, and J. P. Muller, "Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain," *Remote Sensing of Environment*, vol. 147, pp. 133-144, 2014.
- [20] G. E. Hilley, R. Burgmann, A. Ferretti, F. Novali, and F. Rocca, "Dynamics of slow-moving landslides from permanent scatterer analysis," *Science*, vol. 304, no. 5679, pp. 1952-5, Jun 25, 2004.
- [21] R. Tomas, Z. Li, P. Liu, A. Singleton, T. Hoey, and X. Cheng, "Spatiotemporal characteristics of the Huangtupo landslide in the Three Gorges region (China) constrained by radar interferometry," *Geophysical Journal International*, vol. 197, no. 1, pp. 213-232, 2014.
- [22] J. Wasowski, and F. Bovenga, "Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives," *Engineering Geology*, vol. 174, pp. 103-138, 2014.

- 1 [23] J. Cohen-Waeber, R. Bürgmann, E. 43
- 2 Chaussard, C. Giannico, and A. Ferretti, 44
- 3 "Spatiotemporal Patterns of Precipitation- 45
- 4 Modulated Landslide Deformation From 46
- 5 Independent Component Analysis of InSAR Time 47
- 6 Series," Geophysical Research Letters, vol. 45, 48
- 7 no. 4, pp. 1878-1887, 2018.
- 8 [24] F. Bovenga, J. Wasowski, D. O. Nitti, R. ₅₀
- 9 Nutricato, and M. T. Chiaradia, "Using 51
- 0 COSMO/SkyMed X-band and ENVISAT C-band 52
- 11 SAR interferometry for landslides analysis," ₅₃
- 12 Remote Sensing of Environment, vol. 119, pp. 54
- 13 272-285, 2012.
- 14 [25] K. Dai, Z. Li, R. Tomás, G. Liu, B. Yu, X. 56
- 15 Wang, H. Cheng, J. Chen, and J. Stockamp, 57
- 6 "Monitoring activity at the Daguangbao mega- 58
- 17 landslide (China) using Sentinel-1 TOPS time 59
- 18 series interferometry," Remote Sensing of 60
- 19 Environment, vol. 186, pp. 501-513, 12/1/, 2016.
- 20 [26] V. Tofani, F. Raspini, F. Catani, and N. $_{62}$
- 21 Casagli, "Persistent Scatterer Interferometry (PSI)₆₃
- 22 Technique for Landslide Characterization and 64
- 23 Monitoring," Remote Sensing, vol. 5, no. 3, pp. 65
- 24 1045-1065, 2013.
- 25 [27] UNISDR. "Can satellites be used as an early 67
- 26 warning system for landslides?," 68
- 27 https://www.preventionweb.net/news/view/5420
- 28 9.
- 29 [28] E. Intrieri, F. Raspini, A. Fumagalli, P. Lu, S. 71
- 30 Del Conte, P. Farina, J. Allievi, A. Ferretti, and N. 72
- 31 Casagli, "The Maoxian landslide as seen from 73
- 32 space: detecting precursors of failure with 74
- 33 Sentinel-1 data," Landslides, November 09, 2017.75
- 34 [29] J. Dong, L. Zhang, M. Li, Y. Yu, M. Liao, J. 76
- 35 Gong, and H. Luo, "Measuring precursory 77
- 36 movements of the recent Xinmo landslide in Mao 78
- 37 County, China with Sentinel-1 and ALOS-279
- 38 PALSAR-2 datasets," *Landslides*, pp. 1-10, 2017. 80
- 39 [30] P. Milillo, E. Fielding, W. Shulz, B. 81
- 40 Delbridge, & R. Burgmann, "COSMO-SkyMed 82
- 41 spotlight interferometry over rural areas: The 83
- 42 Slumgullion landslide in Colorado, USA," *IEEE* 84

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7), 2919-2926, 2014.

[31] R. Odolinski, P. J. Teunissen, and D. Odijk, "Combined bds, galileo, qzss and gps single-frequency rtk," *GPS solutions*, vol. 19, no. 1, pp. 151-163, 2015.

[32] SKLGP. " State Key Laboratory of Geohazard Prevention and Geoenvironment Protection successfully early warned Heifangtai loess landslide, Gansu Province again," http://www.sklgp.cdut.edu.cn/info/1018/2345.ht m.

[33] Z. Wang, Z. Li, and J. Mills, "A new approach to selecting coherent pixels for ground-based SAR deformation monitoring," *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 144, pp. 412-422, 2018.

[34] Z. Li, E. Fielding, and P. Cross, "Integration of InSAR time-series analysis and water-vapor correction for mapping postseismic motion after the 2003 Bam (Iran) earthquake," *Geoscience and Remote Sensing, IEEE Transactions on*, vol. 47, no. 9, pp. 3220-3230, 2009.

[35] X. Zhu, Q. Xu, X. Qi, H. Liu, "A self-adaptive data acquisition technique and its application in landslide monitoring," In Workshop on World Landslide Forum (pp. 71-78), 2017.

[36] X. Fan, Q. Xu, G. Scaringi, L. Dai, W. Li, X. Dong, X. Zhu, X. Pei, K. Dai, and H.-B. Havenith, "Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China," *Landslides*, pp. 1-18, 2017.

[37] P. Wang, B. Zhang, W. Qiu, and J. Wang, "Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, east Tibet," *Journal of Asian Earth Sciences*, vol. 40, no. 4, pp. 865-872, 2011.

[38] H. Jiang, X. Mao, H. Xu, H. Yang, X. Ma, N. Zhong, and Y. Li, "Provenance and earthquake signature of the last deglacial Xinmocun

- 1 lacustrine sediments at Diexi, East Tibet," 43
- 2 Geomorphology, vol. 204, pp. 518-531, 2014.
- 3 [39] W. Liu, and T. Li, "Forming Mechanism of 45
- 4 the Loess Landslides Triggered by Irrigation and 46
- 5 Seasonal Freezing," 2015.
- 6 [40] C. He, N. Ju, and J. Huang, "Automatic ⁴⁸
- 7 integration and analysis of multi-source 49
- 8 monitoring data for geo-hazard warning," 50
- 9 Journal of Engineering Geology, vol. 22(3), pp. 51
- 10 405-411, 2014.
- 11 [41] M. Saito, "Evidential study on forecasting ⁵³
- 12 occurrence of slope failure," Trans. of the Dept. 54
- 13 of Geomech.—Armenian Academy of Sciences, 55
- 14 Yerevan, URSS, 1979.
- 15 [42] Q. Xu, Y. Yuan, Y. Zeng, and R. Hack, ⁵⁷
- 16 "Some new pre-warning criteria for creep slope ⁵⁸
- 17 failure," Science China Technological Sciences. ⁵⁹
- 18 vol. 54, pp. 210-220, 2011.
- 19 [43] T. Okamoto, J. O. Larsen, S. Matsuura, S.
- 20 Asano, Y. Takeuchi, and L. Grande, ⁶²
- 21 "Displacement properties of landslide masses at ⁶³
- 22 the initiation of failure in quick clay deposits and ⁶⁴
- 23 the effects of meteorological and hydrological ⁶⁵
- 24 factors," Engineering Geology, vol. 72, no. 3-4, ⁶⁶
- 25 pp. 233-251, 2004.
- 26 [44] D. Petley, T. Higuchi, S. Dunning, N. Rosser, ⁶⁸
- 27 D. Petley, M. Bulmer, J. Carey, O. Hungr, R. Fell, ⁶⁹
- 28 and R. Couture, "A new model for the 70
- 29 development of movement in progressive ⁷¹
- 30 landslides." pp. 350-358.
- 31 [45] J. Palmer, "creeping earth could hold secret
- 32 to deadly landslides," *Nature*, vol. 548, no. 7668,
- 33 pp. 384-386, 2017.
- 34 [46] B. Thiebes, Landslide Analysis and Early 77
- 35 Warning Systems: Local and Regional Case Study 78
- 36 in the Swabian Alb, Germany: Springer Science 79
- 37 & Business Media, 2012.
- 38 [47] H. Luo, Z. Li, J. Chen, C. Pearson, M. Wang, 81
- $\overline{}$ W. Lv, and H. Ding, "Integration of Range Split $_{82}$
- 40 Spectrum Interferometry and conventional 83
- 41 InSAR to monitor large gradient surface
- 42 displacements," International Journal of Applied

- Earth Observation and Geoinformation, vol. 74,
- pp. 130-137, 2019/02/01/, 2019.
- [48] IUGS/WGL, "A suggested method for
- describing the rate of movement of a landslide,"
- Bulletin of the International Association of
- Engineering Geology, vol. 52, pp. 75-78, 1995.
- [49] G. Metternicht, L. Hurni, and R. Gogu,
- "Remote sensing of landslides: An analysis of the
- potential contribution to geo-spatial systems for
- hazard assessment in mountainous environments,"
- Remote sensing of Environment, vol. 98, no. 2, pp.
- 284-303, 2005.
- [50] A. Barra, L. Solari, M. Béjar-Pizarro, O.
- Monserrat, S. Bianchini, G. Herrera, M. Crosetto,
- R. Sarro, E. González-Alonso, and R. M. Mateos,
- "A Methodology to Detect and Update Active
- Deformation Areas Based on Sentinel-1 SAR
- 60 Images," Remote Sensing, vol. 9, no. 10, pp. 1002,
 - 2017.
 - [51] B. Pradhan, and S. Lee, "Delineation of
 - landslide hazard areas on Penang Island,
 - Malaysia, by using frequency ratio, logistic
 - regression, and artificial neural network models,"
 - Environmental Earth Sciences, vol. 60, no. 5, pp.
 - 1037-1054, 2010.
 - [52] B. Pradhan, "A comparative study on the
 - predictive ability of the decision tree, support
 - vector machine and neuro-fuzzy models in
 - 1 landslide susceptibility mapping using GIS,"
- 72 Computers & Geosciences, vol. 51, pp. 350-365,
- 73 2013.

- [53] X. Hu, Z. Lu, T. C. Pierson, R. Kramer, and
- 75 D. L. George, "Combining InSAR and GPS to
 - Determine Transient Movement and Thickness of
 - a Seasonally Active Low-Gradient Translational
 - Landslide," Geophysical Research Letters, vol.
 - 45, no. 3, pp. 1453-1462, 2018.
- 80 [54] W. H. Schulz, J. P. McKenna, J. D. Kibler,
 - and G. Biavati, "Relations between hydrology
 - and velocity of a continuously moving
 - landslide—Evidence of pore-pressure feedback
 - regulating landslide motion?," Landslides, vol. 6,

1 no. 3, pp. 181-190, 2009.

- 43 vol. 47, no. 7, pp. 1079-1090, 2010.
- 2 [55] R. M. Iverson, "Regulation of landslide 44
- 3 motion by dilatancy and pore pressure feedback," 45
- 4 Journal of Geophysical Research: Earth Surface, 46
- 5 vol. 110, no. F2, 2005.
- $6\ \ [56]$ A. L. Handwerger, A. W. Rempel, R. M. 48
- 7 Skarbek, J. J. Roering, and G. E. Hilley, "Rate-
- 8 weakening friction characterizes both slow 50
- 9 sliding and catastrophic failure of landslides," 51
- 10 Proceedings of the National Academy of Sciences, 52
- 11 vol. 113, no. 37, pp. 10281-10286, 2016.
- 12 [57] A. L. Handwerger, M.-H. Huang, E. J. ⁵⁴
- 13 Fielding, A. M. Booth, and R. Bürgmann, "A shift 55
- 14 from drought to extreme rainfall drives a stable 56
- 15 landslide to catastrophic failure," Scientific 57
- 16 Reports, vol. 9, no. 1, pp. 1569, 2019/02/07, 2019. 58
- 17 [58] R. M. Iverson, D. L. George, K. Allstadt, M. 59
- 18 E. Reid, B. D. Collins, J. W. Vallance, S. P. 60
- 19 Schilling, J. W. Godt, C. Cannon, and C. S. Magirl,61
- 20 "Landslide mobility and hazards: implications of 62
- 21 the 2014 Oso disaster," Earth and Planetary 63
- 22 Science Letters, vol. 412, pp. 197-208, 2015. 64
- 23 [59] X. Xia, and Q. Liang, "A new depth- 65
- 24 averaged model for flow-like landslides over 66
- 25 complex terrains with curvatures and steep 67
- 26 slopes," Engineering Geology, vol. 234, pp. 174-68
- 27 191, 2018.
- 28 [60] X. Li, M. Ge, X. Dai, X. Ren, M. Fritsche, J. 70
- 29 Wickert, and H. Schuh, "Accuracy and reliability 71
- 30 of multi-GNSS real-time precise positioning: 72
- 31 GPS, GLONASS, BeiDou, and Galileo," Journal 73
- 32 of Geodesy, vol. 89, no. 6, pp. 607-635, 2015.
- 33 [61] P. Xu, C. Shi, R. Fang, J. Liu, X. Niu, Q. 75
- 34 Zhang, and T. Yanagidani, "High-rate precise 76
- 35 point positioning (PPP) to measure seismic wave 77
- 36 motions: an experimental comparison of GPS 78
- 37 PPP with inertial measurement units," Journal of 79
- 38 *geodesy*, vol. 87, no. 4, pp. 361-372, 2013.
- 39 [62] A. Mufundirwa, Y. Fujii, and J. Kodama, "A 81
- 40 new practical method for prediction of 82
- 41 geomechanical failure-time," International 83
- 42 Journal of Rock Mechanics and Mining Sciences, 84

- [63] T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini,
- G. Gigli, and N. Casagli, "Guidelines on the use
- of inverse velocity method as a tool for setting
- alarm thresholds and forecasting landslides and
- structure collapses," *Landslides*, vol. 14, no. 2, pp.
- 517-534, April 01, 2017.
- [64] B.-G. Chae, H.-J. Park, F. Catani, A. Simoni,
- and M. Berti, "Landslide prediction, monitoring
- and early warning: a concise review of state-of-
- the-art," Geosciences Journal, vol. 21, no. 6, pp.
- 1033-1070, 2017.
- [65] J. Dunnicliff, Geotechnical instrumentation
- for monitoring field performance: John Wiley &
- Sons, 1993.
- [66] L. L. Marco Scaioni, Valentina Melillo,
- Monica Papini, "Remote Sensing for Landslide
- Investigations: An Overview of Recent
- Achievements and Perspectives," Remote
- Sensing, 2014.
- [67] L. Benoit, P. Briole, O. Martin, C. Thom, J.-
- P. Malet, and P. Ulrich, "Monitoring landslide
- displacements with the Geocube wireless
- network of low-cost GPS," Engineering Geology,
- vol. 195, pp. 111-121, 2015.
- [68] B. Delbridge, R. Bürgmann, E. Fielding, S.
- Hensley, and W. H. Schulz, "Three-dimensional
- surface deformation derived from airborne
- interferometric UAVSAR: Application to the
- Slumgullion Landslide," Journal of Geophysical
- Research: Solid Earth, vol. 121, no. 5, pp. 3951-
- 3977, 2016.
- [69] V. Singhroy, K. Mattar, and A. Gray,
- "Landslide characterisation in Canada using
- interferometric SAR and combined SAR and TM
- images," Advances in Space Research, vol. 21, no.
- 3, pp. 465-476, 1998.
- [70] N. Casagli, F. Catani, C. Del Ventisette, and
- G. Luzi, "Monitoring, prediction, and early
- warning using ground-based radar interferometry,"
- Landslides, vol. 7, no. 3, pp. 291-301, 2010.
- [71] L. Noferini, M. Pieraccini, D. Mecatti, G.

- Macaluso, C. Atzeni, M. Mantovani, G. Marcato, 43 1
- A. Pasuto, S. Silvano, and F. Tagliavini, "Using 44
- GB-SAR technique to monitor slow moving 45
- landslide," Engineering Geology, vol. 95, no. 3-4, 46
- pp. 88-98, 2007.
- [72] A. Lucieer, S. M. d. Jong, and D. Turner, 48
- "Mapping landslide displacements 7 using 49
- Structure from Motion (SfM) and image 50
- correlation of multi-temporal UAV photography," 51
- Progress in Physical Geography, vol. 38, no. 1, 52
- pp. 97-116, 2014.
- [73] D. Turner, A. Lucieer, and S. de Jong, "Time ⁵⁴
- Series Analysis of Landslide Dynamics Using an ⁵⁵ 13
- Unmanned Aerial Vehicle (UAV)," Remote 56
- Sensing, vol. 7, no. 2, pp. 1736, 2015. 15
- Malet, ⁵⁸ [74] J. Travelletti, J.-P. 16 and
- "Characterization of the 3D geometry of flow-59 17
- like landslides: A methodology based on the 60
- integration of heterogeneous multi-source data," 61 19
- Engineering Geology, vol. 128, pp. 30-48, 2012. 62
- [75] B. Casson, C. Delacourt, and P. Allemand, ⁶³ 21
- "Contribution of multi-temporal remote sensing 64 22
- images to characterize landslide slip surface 65 23
- ‒ Application to the La Clapière 66
- landslide (France)," Nat. Hazards Earth Syst. Sci.,67 25
- vol. 5, no. 3, pp. 425-437, 2005. 26
- [76] A. Mondini, F. Guzzetti, P. Reichenbach, M. ⁶⁹ 27
- Rossi, M. Cardinali, and F. Ardizzone, "Semi-70 28
- 29 automatic recognition and mapping of rainfall 71
- induced shallow landslides using optical satellite 72 30
- images," Remote Sensing of Environment, vol. 73 31
- 115, no. 7, pp. 1743-1757, 2011.
- [77] S. Artese, and M. Perrelli, "Monitoring a 75
- Landslide with High Accuracy by Total Station: A 76 34
- 35 DTM-Based Model to Correct for the 77
- Atmospheric Effects," Geosciences, vol. 8, no. 2, 78
- pp. 46, 2018. 79 37
- [78] J. Carey, R. Moore, and D. Petley, "Patterns 80
- of movement in the Ventnor landslide complex, 81
- Isle of Wight, southern England," Landslides, vol. 82 40
- 12, no. 6, pp. 1107-1118, 2015. 41
- 42 [79] S. Shukla, S. Chaulya, R. Mandal, B. Kumar, ⁸⁴

- P. Ranjan, P. Mishra, G. Prasad, S. Dutta, V. Priya, and S. Rath, "Real-time monitoring system for landslide prediction using wireless sensor
- networks," International Journal of Modern Communication Technologies and Research, vol.
- 2, no. 12, 2014.
- [80] R. Chen, K. Chang, J. Angelier, Y. Chan, B.
- Deffontaines, C. Lee, and M. Lin, "Topographical
- changes revealed by high-resolution airborne
- LiDAR data: The 1999 Tsaoling landslide
- by Chi-Chi earthquake," induced the
- Engineering geology, vol. 88, no. 3-4, pp. 160-
- 172, 2006.
- [81] R. Macciotta, M. Hendry, and C. D. Martin,
- "Developing an early warning system for a very
- slow landslide based on displacement monitoring,"
- Natural Hazards, vol. 81, no. 2, pp. 887-907,
- 2016.
- [82] J. Corominas, J. Moya, A. Lloret, J. Gili, M.
- Angeli, A. Pasuto, and S. Silvano, "Measurement
 - of landslide displacements using a wire
- extensometer," Engineering Geology, vol. 55, no.
- 3, pp. 149-166, 2000.
- [83] W. Stevens, and B. Zehrbach, "Inclinometer
- analysis for remediated landslides,"
- Geotechnical Measurements: Lab and Field, pp.
- 126-137, 2000.
- [84] H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong,
 - W. Jin, and D.-S. Xu, "Monitoring of lateral
- displacements of a slope using a series of special
- fibre Bragg grating-based in-place inclinometers,"
- Measurement Science and Technology, vol. 23, no.
- 2, pp. 025007, 2012.
- [85] A. Corsini, C. Castagnetti, E. Bertacchini, R.
- Rivola, F. Ronchetti, and A. Capra, "Integrating
- airborne and multi-temporal long-range terrestrial
- laser scanning with total station measurements for
- mapping and monitoring a compound slow
- moving rock slide," Earth surface processes and
- landforms, vol. 38, no. 11, pp. 1330-1338, 2013.
- [86] S. Ghuffar, B. Székely, A. Roncat, and N.
- Pfeifer, "Landslide displacement monitoring

- 1 using 3D range flow on airborne and terrestrial 43
- 2 LiDAR data," Remote Sensing, vol. 5, no. 6, pp. 44
- 3 2720-2745, 2013.
- 4 [87] V. Bennett, T. Abdoun, M. Zeghal, A. 46
- 5 Koelewijn, M. Barendse, and R. Dobry, "Real-47
- 6 time monitoring system and advanced 48
- 7 characterization technique for civil infrastructure 49
- 8 health monitoring," Advances in Civil 50
- 9 Engineering, vol. 2011, 2011.
- 10 [88] N. Dixon, R. Hill, and J. Kavanagh, 52
- 11 "Acoustic emission monitoring of slope 53
- 12 instability: development of an active waveguide 54
- 13 system," 2003.
- 14 [89] M. La Rocca, D. Galluzzo, G. Saccorotti, S. 56
- 15 Tinti, G. B. Cimini, and E. Del Pezzo, "Seismic 57
- 16 signals associated with landslides and with a 58
- 17 tsunami at Stromboli volcano, Italy," Bulletin of 59
- 18 the Seismological Society of America, vol. 94, no. 60
- 10.5. 1050 1067 2004
- 19 5, pp. 1850-1867, 2004.
- 20 [90] E. Suriñach, I. Vilajosana, G. Khazaradze, B. 62
- 21 Biescas, G. Furdada, and J. Vilaplana, "Seismic 63
- 22 detection and characterization of landslides and 64
- 23 other mass movements," Natural Hazards and 65
- 24 Earth System Science, vol. 5, no. 6, pp. 791-798, 66
- 25 2005.
- 26 [91] A. Chelli, G. Mandrone, and G. Truffelli, 68
- 27 "Field investigations and monitoring as tools for 69
- 28 modelling the Rossena castle landslide (Northern 70
- 29 Appennines, Italy)," Landslides, vol. 3, no. 3, pp. 71
- 30 252-259, 2006.
- 31 [92] W. Li, F. Dai, Y. Wei, M. Wang, H. Min, and 73
- 32 L. Lee, "Implication of subsurface flow on 74
- 33 rainfall-induced landslide: a case study," 75
- 34 *Landslides*, vol. 13, no. 5, pp. 1109-1123, 2016.
- 35 [93] Y. Yin, H. Wang, Y. Gao, and X. Li, "Real-
- 36 time monitoring and early warning of landslides
- 37 at relocated Wushan Town, the Three Gorges
- 38 Reservoir, China," Landslides, vol. 7, no. 3, pp.
- 39 339-349, 2010.
- 40 [94] C. BG, "Technology development of
- 41 landslide rapid detection based on a real-time
- 42 monitoring," D. Korea Institute of Geoscience

and Mineral Resources, ed., 2015.

[95] G. Martelloni, S. Segoni, R. Fanti, and F.

Catani, "Rainfall thresholds for the forecasting of

landslide occurrence at regional scale,"

Landslides, vol. 9, no. 4, pp. 485-495, 2012.

[96] United Nations, "Global Survey of Early

Warning Systems," 2006. (avaliable at

https://www.unisdr.org/2006/ppew/info-

resources/ewc3/Global-Survey-of-Early-

Warning-Systems.pdf)

51

55

[97] Z. Li, T. Wright, A. Hooper, P. Crippa, P.

Gonzalez, R. Walters, J. Elliott, S. Ebmeier, E.

Hatton, and B. Parsons, "Towards InSAR

everywhere, all the time, with Sentinel-1,"

International Archives of the Photogrammetry,

Remote Sensing & Spatial Information Sciences,

vol. 41, 2016.

[98] X. Zhu, D. Tuia, L. Mou, G. Xia, L. Zhang,

F. Xu, & F. Fraundorfer, "Deep learning in remote

sensing: A comprehensive review and list of

resources," *IEEE Geoscience and Remote* Sensing Magazine, 5(4), 8-36, 2017.

[99] L. Zhang, L. Zhang, & B. Du, "Deep

learning for remote sensing data: A technical

tutorial on the state of the art," IEEE Geoscience

and Remote Sensing Magazine, 4(2), 22-40, 2016.

[100] N. Anantrasirichai, J. Biggs, F. Albino,

P. Hill, and D. Bull, "Application of Machine

Learning to Classification of Volcanic

Deformation in Routinely Generated InSAR

Data," Journal of Geophysical Research: Solid

Earth, vol. 123, no. 8, pp. 6592-6606, 2018.