
symmetryS S

Article

Randomness Analysis for the Generalized
Self-Shrinking Sequences

Sara D. Cardell 1 , Verónica Requena 2 , Amparo Fúster-Sabater 3,* and Amalia B. Orúe 3

1 Instituto de Matemática, Estatística e Computação Científica, UNICAMP, 13083-859 Campinas-SP, Brazil;
scardell@unicamp.br

2 Departamento de Matemáticas, Universidad de Alicante, 03690 Alicante, Spain; vrequena@ua.es
3 Instituto de Tecnologías Físicas y de la Información, CSIC, 28006 Madrid, Spain; amalia.orue@iec.csic.es
* Correspondence: amparo@iec.csic.es

Received: 30 September 2019; Accepted: 23 November 2019; 28 November 2019
����������
�������

Abstract: In cryptography, the property of randomness in pseudo-random generators is very
important to avoid any pattern in output sequences, to provide security against attacks, privacy and
anonymity. In this article, the randomness of the family of sequences obtained from the generalized
self-shrinking generator is analyzed. Moreover, the characteristics, generalities and relationship
between the t-modified self-shrinking generator and the generalized self-shrinking generator are
presented. We find that the t-modified self-shrunken sequences can be generated from a generalized
self-shrinking generator. Then, an in-depth analysis of randomness focused on the generalized
sequences by means of complete and powerful batteries of statistical tests and graphical tools is done,
providing a useful vision of the behaviour of these sequences and proving that they are suitable to be
used in cryptography.

Keywords: generalized self-shrinking generator; t-modified self-shrinking generator; pseudo-random
number generator; statistical randomness tests; cryptography

1. Introduction

In cryptography, randomness plays an important role in multiple and diverse applications.
Random numbers are employed to generate cryptographic keys, challenges, nonces, to encrypt
messages and at different steps of cryptographic algorithms and protocols [1–4].

A pseudo-random number generator is an algorithm for creating a sequence of numbers that
is supposed to be indistinguishable from a uniformly chosen random sequence. The sequence is
not really random, since it is completely determined by a small set of initial values, called the seed.
However, in cryptography, where the security of many cryptographic schemes lies in the quality of
pseudorandom generators, it is necessary that the sequences meet the following requirements—(1) the
generated sequence must not be distinguished from a truly random sequence; (2) the sequence must be
unpredictable; (3) the sequence period must be very large; (4) the key space must be large enough for a
brute or exhaustive force attack to be impossible; (5) the design of the generator should be resistant to
the specialized attacks reported in the literature.

There is no mathematical proof that ensures the randomness of a bit sequence; however,
there exists a huge number of empirical tests to determine if a sequence is random enough and
secure to be used in cryptography [5]. If the sequences of a generator pass the statistical tests, then
this could be accepted as a generator of random sequences. Otherwise, if several tests fail, it means
that the generator is not good and must be rejected. Choosing the correct number of these tests to
determine whether the sequence in question can be considered random is a very difficult task since we
cannot assure how many tests are needed for it. We have chosen some of those that are considered the

Symmetry 2019, 11, 1460; doi:10.3390/sym11121460 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-0225-5106
https://orcid.org/0000-0002-1497-6456
https://orcid.org/0000-0002-8261-3550
https://orcid.org/0000-0002-4422-5004
http://dx.doi.org/10.3390/sym11121460
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/12/1460?type=check_update&version=2

Symmetry 2019, 11, 1460 2 of 26

most complete randomness tests, like the FIPS (Federal Information Processing Standard) test 140-2 [6],
Diehard Battery of Tests [7], the NIST-SP-800-22 battery test [8] and other tests from the chaos theory,
that were presented in References [9,10].

The Generalized Self-Shrinking Generator (GSSG) [11] is fast, easy to be implemented and
generates good cryptographic sequences, so it seems suitable for its use in lightweight cryptography
and, in general, in low-cost applications. However, the randomness of these sequences has never been
analysed with such a complete battery of tests.

In this article, the randomness of the family of sequences obtained from the generalized
self-shrinking generator is analyzed. First, the characteristics and generalities of this family of
pseudorandom generators have been considered in detail. Then, an in-depth analysis of randomness
focused on the generalized sequences by means of complete batteries of statistical tests was done.
Tables, figures and graphical representations illustrate the obtained results.

2. Related Work

One of the most accepted designs of Pseudo-Random Number Generator (PRNG) is based on
Linear Feedback Shift Registers (LFSR) because LFSRs’ sequences can have good statistical properties
and their good efficiency in hardware designs. Linear feedback shift registers have been used as basic
component of such PRNG but they all have been successfully cryptanalyzed by means of different
attacks such as algebraic and correlation attacks, to name a few. Its main weakness is its linearity,
which allows the building of a system of equations that solves the parameters used in its design [12].

To avoid these cryptanalytic attacks, new designs use non-linear operations, such as non-linear
filtering and sequence decimation, for example. The shrinking generator and the self-shrinking
generators are good examples of how to convert a linearly generated sequence into a non-linear
one. To do that, different rules, which decimate the LFSR produced sequence in an irregular way,
are used. The Shrinking Generator (SG) was firstly proposed in 1993 by Coppersmith, Krawczyk and
Mansour [13] and the Self-Shrinking Generator (SSG) in 1994 by Meier and Staffelbach [14].

In Reference [15] a novel generator based on the generalized self-shrinking stream sequence
generator (called F-GSS) was proposed, the sequences generated by the F-GSS were analyzed using
the NIST statistical test suite, showing that it has good pseudo-random properties.

The Modified Self-Shrinking Generator (MSSG) was proposed by Kanso in Reference [16].
The study of the randomness of this generator was carried out by the NIST statistical test suite
and it was demonstrated that sequences of the MSSG have better randomness properties than those of
the SSG. In Reference [17] the authors present a new non-periodic random number generator based
on the shrinking generator. The randomness of the sequences of the new generator was analyzed by
means of Diehard battery of tests, verifying that this new design performs well in this statistical battery
of tests.

Tasheva et al. in Reference [18] proposed a variant of the SSG called the p-ary Generalized
Self-Shrinking Generator (pGSSG). The authors have studied its randomness using the NIST statistical
test suite, later in Reference [19] the balance property of the previously proposed p-ary Generalized
Self-Shrinking Generator was studied and it was shown that the generated sequences could be
considered as balanced. Erkek and Tuncer in Reference [20] have implemented the SG and Alternating
Step Generator on an FPGA Altera Cyclone IV board. Generated numbers in the real time were tested
using the NIST statistical test suite. The results have shown that both generators have good statistical
properties. In Reference [21] the authors have studied the randomness of the Self-Shrinking generator
by means of the d-Monomial test. They have found that there exist some statistical dependencies on
certain randomness properties of the generalized SSG and polynomial used in its design. For this
reason, they recommend to take special care when choosing the polynomial for the SSG in order to
the generator be cryptographically secure. In Reference [22] the author have analyzed a keystream
produced by Generalized Shrinking Multiplexing Generator controlled by Ternary m-sequences
(GSMG-3m). For randomness analysis they use the NIST statistical test suite, the spectral test and,

Symmetry 2019, 11, 1460 3 of 26

approximate entropy test. The authors have presented some cryptanalytic work of the proposed
generator that prove that GSMG-3m is more secure than the Shrinking Generator.

As can be seen, there are few works that have deeply studied the randomness of the sequences
generated by the different families of shrinking generators through several statistical test batteries
such as those presented in this paper.

3. Preliminaries

In order to the work be self-contained, some basic concepts concerning binary sequences as
well as sequence generators based on irregular decimation are introduced. All of them will be used
throughout the paper.

As has been said previously, the security of many cryptographic algorithms is based on a well
designed random and pseudorandom generators. It is worth mentioning that the design of reliable
and secure pseudorandom number generators is an open problem and an intensive field of research
in cryptography nowadays [23–28]. The family of shrinking generators is one of the most analyzed
PRNG in the literature due to its performance and security when it is well designed [4,21,22,29–31].

3.1. PN-Sequences

Let F2 = {0, 1} be the Galois field. Consider {ai}i≥0 = {a0, a1, a2 . . .} a binary sequence
with ai ∈ F2, for i = 0, 1, 2, . . . We say the sequence {ai}i≥0 is periodic if there exists an integer
T, called period, such that ai+T = ai, for all i ≥ 0. In the sequel, all the sequences considered will be
binary sequences and the symbol + will denote the Exclusive-OR (XOR) logic operation.

Let r be a positive integer and let d1, d2, d3, . . . , dr be constant coefficients with dj ∈ F2. A binary
sequence {ai}i≥0 satisfying the relation:

ai+r = drai + dr−1ai+1 + · · ·+ d3ai+r−3 + d2ai+r−2 + d1ai+r−1, i ≥ 0, (1)

is called a (r-th order) linear recurring sequence (LRS) in F2. The terms {a0, a1, . . . , ar−1} are referred
to as the initial terms and define the construction of the sequence uniquely.

The monic polynomial:

p(x) = dr + dr−1x + · · ·+ d3xr−3 + d2xr−2 + d1xr−1 + xr ∈ F2[x]

is called the characteristic polynomial of the linear recurring sequence and {ai}i≥0 is said to be
generated by p(x).

Linear recurring sequences can be generated using Linear Feedback Shift Registers
(LFSRs) [5,12,32]. In fact, an LFSR can be defined as an electronic device with r memory cells (stages)
with binary content. At every clock pulse, the binary element of each stage is shifted to the adjacent
stage as well as a new element is computed through the linear feedback to fill the empty stage
(see Figure 1). The LFSR has maximal-length if the characteristic polynomial of the LFSR is primitive.
Its output sequence is called PN-sequence (Pseudo-Noise sequence) and has period T = 2r − 1,
see Reference [32].

ai+r−1 ai+r−2 ai+r−3 · · · ai+1 ai

d1 d2 d3 · · · dr−1 dr

+ + · · · + +

ai+r

Figure 1. LFSR of length r.

Symmetry 2019, 11, 1460 4 of 26

The linear complexity, LC, of a sequence {ai}i≥0 is defined as the length of the shortest LFSR
that generates such a sequence or, equivalently, as the lowest order linear recurrence relationship that
generates such a sequence.

In cryptographic terms, the linear complexity must be as large as possible as LC defines the
minimum piece of the sequence needed to get the whole sequence.

A simple result that will be useful in the next section is introduced below.

Lemma 1. Let {ai}i≥0 be a PN-sequence with period T. Then, the sequence {ui} such that ui = ∑t−2
k=0 at·i+k is

again a PN-sequence with the same period T iff gcd(T, t) = 1.

Proof. The sequence {at·i} is a PN-sequence iff gcd(T, t) = 1, see Reference [32] (pag. 78).
The sequences {at·i+k} for k = 0, . . . , t− 2 are shifted versions of {at·i} with different starting points.
If we XOR a PN-sequence with a shifted sequence of itself, then we have the same PN-sequence but
starting at a different bit [32] (Theorem 4.3–4.5). Thus, {ui} is the same sequence as {at·i} except for
the starting point, that is, {ui} =

{
∑t−2

k=0 at·i+k

}
= {at·i+D} where D < T is a positive integer.

3.2. Modified Self-Shrinking Generator (MSSG)

Decimation is a very habitual technique to produce pseudo-random sequences with cryptographic
applications [33,34]. In practice, the underlying idea in this kind of generators is the irregular
decimation of a PN-sequence according to the bits of another.

The Modified Self-Shrinking Generator (MSSG) introduced by Kanso in Reference [16] is a
modification of the well-known Self-Shrinking Generator (SSG) [14]. Indeed, in the MSSG the
PN-sequence {ai}i≥0 generated by a maximal-length LFSR is self-decimated. The decimation rule
is very simple and can be described as follows: given three consecutive bits {a3i, a3i+1, a3i+2},
i = 0, 1, 2, . . ., the output sequence {sj}j≥0 is computed as{

If a3i + a3i+1 = 1 then sj = a3i+2,

If a3i + a3i+1 = 0 then a3i+2 is discarded.

The output sequence {sj}j≥0 is known as the Modified Self-Shrunken sequence (MSS-sequence).
If L is the length of the maximal-length LFSR that generates {ai}i≥0, then the linear complexity LC of
the corresponding MSS-sequence satisfies:

2b
L
3 c−1 ≤ LC ≤ 2L−1 − (L− 2),

and the period T of the sequence, when L is odd, satisfies:

2b
L
3 c ≤ T ≤ 2L−1,

as proved in Reference [16]. As usual, the key of this generator is the initial state of the LFSR that
generates {ai}i≥0. The characteristic polynomial of such a register is also recommended to be part of
the key.

Example 1. Consider the LFSR of length L = 4 with characteristic polynomial q(x) = x4 + x + 1 and
the initial state {1 1 1 1}. The corresponding PN-sequence is given by {111100010011010 . . .} with period
T = 24 − 1.

The MSS-sequence is obtained as follows:

R
+ :

: 1 1︸︷︷︸
0

�A1 1 0︸︷︷︸
1

000 0 1︸︷︷︸
1

000 0 1︸︷︷︸
1

111 0 1︸︷︷︸
1

0 1 1︸︷︷︸
0

�A1 1 0︸︷︷︸
1

000 . . .

Symmetry 2019, 11, 1460 5 of 26

The obtained sequence {sj} = {0 0 1 0 . . .} (encircled bits) has period T = 4 and it can be checked that its
characteristic polynomial is p4(x) = 1 + x4. Thus, the linear complexity of this MSS-sequence is LC = 4.

In Reference [30], the authors showed that the sequences produced by this generator are contained
in the family of sequences generated by the generalized self-shrinking generator.

3.3. The Generalized Self-Shrinking Generator (GSSG)

In this subsection, we introduce the most representative generator in this family of
decimation-based sequence generators, that is, the Generalized Self-Shrinking Generator (GSSG) [11].
In fact, the sequences produced by this generator include the sequences produced by the generators
previously described.

Let {ai}i≥0 be an PN-sequence produced by a maximal-length LFSR with L stages.
Let G = [g0, g1, g2, ..., gL−1] ∈ FL

2 be an L-dimensional binary vector and {vi}i≥0 a sequence defined as:
vi = g0ai + g1ai−1 + g2ai−2 + · · ·+ gL−1ai−L+1. For i ≥ 0, the decimation rule is defined as follows:{

If ai = 1 then sj = vi,

If ai = 0 then vi is discarded.

The output sequence generated {sj}j≥0 associated with G, denoted by s(G), is called the
Generalized Self-Shrunken sequence (GSS-sequence).

When G ranges over FL
2 , then {vi} corresponds to the 2L − 1 possible shifts of {ai}, that is,

the sequence {vi} is a shifted version of the PN-sequence {ai}. Moreover, we obtain the family of
generalized self-shrunken sequences based on the PN-sequence {ai}i≥0 given by the set of sequences
denoted by S(a) = {s(G)|G ∈ FL

2}. In Table 1, the algorithm to compute these sequences is shown
(Algorithm 1).

Table 1. Algorithm to compute the GSS-sequences.

Algorithm 1: Constructing the family of GSS-sequences

Input: Primitive polynomial p(x) and initial state aaa
01: Compute the PN-sequence {ai}.
02: Set T = 2L − 1 the period of the PN-sequence
03: for p = 1 to T do
04: Set {vi} the shifted version of {ai} by p positions
06: for k = 0 to T − 1 do
06 Initialize sequence {sp

j }
07: if ak = 1 do
08: Add vk as new bit of the sequence {sp

j }
09: endif
10: end for
11: end for
Output: {sp

j } GSS-sequences, p = 1, . . . , T.

Example 2. Consider the primitive polynomial p(x) = 1 + x3 + x4 and the corresponding PN-sequence
{ai}i≥0 = {111101011001000}. We can construct the GSS-sequences shown in Table 2. The underlined bits in
the different sequences {vi}i≥0 are the digits of the corresponding {s(G)} sequences. The PN-sequence {ai}i≥0
is written at the bottom of the table.

Symmetry 2019, 11, 1460 6 of 26

Table 2. Family of Generalized Self-Shrunken sequences generated by p(x) = 1 + x3 + x4.

G G {vi} Sequence Generalized Sequence

0 0000 0000000000000000000000000000000 00000000
1 0001 0001000100011111101010101111001 00011011
2 0010 0011001100111111010101011000010 00111100
3 0011 0010001000100000111111110111011 00100111
4 0100 0111011101111000101010110000100 01110010
5 0101 0110011001100111000000011111101 01101001
6 0110 0100010001000111111111101000110 01001110
7 0111 0101010101011000010101000111111 01010101
8 1000 1111111111110111011111100111000 11111111
9 1001 1110111011101000110101001000001 11100100
10 1010 1100110011001000001010111111010 11000011
11 1011 1101110111010111100000010000011 11011000
12 1100 1000100010001111110101010111100 10001101
13 1101 1001100110010000011111111000101 10010110
14 1110 1011101110110000100000001111110 10110001
15 1111 1010101010101111001010100000111 10101010

1111111111110111011111100111000

4. The t-Modified Self-Shrinking Generator

A generalization of GSSG, the t-Modified Self-Shrinking Generator (t-MSSG) was introduced
by Cardell et al. in Reference [31] and can be described as follows. Consider a maximal-length
LFSR with L stages that generates the PN-sequence {ai}i≥0. The t-modified self-shrinking generator,
with (t = 2, 3, . . . , 2L − 2), can be constructed making use of a very simple decimation rule.

Given t consecutive bits {at·i, at·i+1, at·i+2, . . . , at·i+(t−1)} of the PN-sequence, the output sequence
of this generator {sj}j≥0 is known as the t-Modified Self-Shrunken sequence (t-MSS-sequence) and
computed as follows: If ∑t−2

j=0 at·i+j = 1 then sj = at·i+(t−1),

If ∑t−2
j=0 at·i+j = 0 then at·i+(t−1) is discarded.

(2)

Notice that the value t = 2 gives rise to the self-shrinking generator [14] while the value t = 3
defines the modified self-shrinking generator. In Table 3 the algorithm to compute this sequence is
presented (Algorithm 2). Characteristics and generalities of the t-MSS-sequences can be found in
Reference [31].

Table 3. Algorithm to compute the t-MSS-sequence.

Algorithm 2: Constructing the t-MSS-sequence

Input: Primitive polynomial p(x), initial state aaa and t
01: Compute the PN-sequence {ai}.
02: Set T = 2L − 1 the period of the PN-sequence
03: for k = 0 to T − 1 do
04 Initialize sequence {sj}
05: if ∑t−2

j=0 at·k+j = 1 do
06: Add at·k+(t−1) as new bit of the sequence {sj}
07: endif
08: end for
Output: {sj} t-MSS-sequence.

Symmetry 2019, 11, 1460 7 of 26

Relationship between t-Modified Self-Shrunken Sequences and Generalized Self-Shrunken Sequences
(GSS-Sequences)

Now, we analyse the close relationship between t-Modified Self-Shrunken sequences
(t-MSS-sequences) and Generalized Self-Shrunken sequences (GSS-sequences).

In Theorem 1 of Reference [30], they analyse the relationship between modified self-shrunken
sequences and generalized self-shrunken sequences with a result similar to the following:

Theorem 1. The t-MSS-sequence as a result of self-decimating a PN-sequence with characteristic polynomial
q(x) of degree L and gcd(T, t) = 1, can be generated from a generalized self-shrinking generator with a primitive
polynomial p(x) of the same degree L.

Proof. Let {ai} be a PN-sequence with characteristic polynomial q(x) of degree L which is
self-decimated. In order to generate the t-MSS-sequence, sets of t bits {at·i, at·i+1, at·i+2, . . . , at·i+(t−1)},
(i ≥ 0) have to be taken. Applying the decimation rule defined in 2, if ∑t−2

k=0 at·i+k = 1, the bit
at·i+(t−1) is kept. Otherwise, it is discarded. According to Lemma 1, the sequence {ui} defined as
ui = ∑t−2

k=0 at·i+k = at·i+D is obtained by decimating the sequence {ai} by distance t.
Since gcd(T, t) = 1, according to Reference [32], we have that {ui} is a PN-sequence generated by

a primitive polynomial p(x) of the same degree, L.
Also, if the sequence {vi} is taken, with vi = at·i+(t−1), this means that the sequence {ai} is being

decimated again by the distance t. As before, we have that {vi} is also a PN-sequence with primitive
polynomial p(x) [32].

In order to obtain the t-MSS-sequence, the t-MSSG decimation rule is applied to the sequences
{ui} and {vi}. As both sequences are shifted versions of the PN-sequence {ai}, we can generate such
a t-MSS-sequence by a GSSG with characteristic polynomial p(x).

As a result of the previous theorem, we have that:

Corollary 1. If t = 2, 4, . . . , 2L−1, then the t-MSS-sequence is generated as a generalized sequence with the
same primitive polynomial q(x).

Proof. It follows from the following idea: the sequence {at·i} is a shifted version of the PN-sequence
{ai} when t = 1, 2, . . . , 2L−1, see Reference [32] (pag. 76).

The next theorem gives us the primitive polynomial p(x) that we need in Theorem 1 in order to
the GSSG generates the t-MSS-sequence obtained with a characteristic polynomial q(x) .

Theorem 2. When gcd(T, t) = 1, the primitive polynomial p(x) in Theorem 1 is:

p(x) =
(

x + αt) (x + α2t
) (

x + α4t
)
· · ·
(

x + αt·2L−1
)

,

where α ∈ F2L is a root of q(x).

Proof. The primitive polynomial q(x) can be expressed as:

q(x) = (x + α)(x + α2)(x + α4) · · · (x + α2L−1
),

where α ∈ F2L is a primitive element in such a field as well as a root of q(x). Furthermore, any element
of the PN-sequence {ai} is obtained as:

ai = A0αi + A2
0α2i + A4

0α4i + · · ·+ A2L−1

0 α2L−1i,

with A0 ∈ F2L [35]. When A0 = 1, it is said that the PN-sequence is in its characteristic phase.

Symmetry 2019, 11, 1460 8 of 26

The following sequence is obtained:

{a0, at, a2t, . . . , at·2L−1 , . . .} ,

decimating the sequence {ai} by distance t. That is a PN-sequence (since gcd(T, t) = 1) and each one
of its bits can be computed as:

at·i = A0αt·i + A2
0α2t·i + A4

0α4t·i + · · ·+ A2L−1

0 αt·2L−1i.

If ui = at·i and β = αt, then any element of the PN-sequence {ui} can be computed as follows:

ui = A0βi + A2
0β2i + A4

0β4i + · · ·+ A2L2−1

0 β2L2−1i.

Therefore, the characteristic polynomial of the PN-sequence {ui} is,

p(x) = (x + β)(x + β2)(x + β4) · · · (x + β2L−1
),

or, equivalently,
p(x) = (x + αt)(x + α2t)(x + α4t) · · · (x + αt·2L−1

).

Lemma 2. Given a PN-sequence {ai} of prime period T = 2L − 1 and characteristic polynomial q(x) of degree
L, then sequence {at·i} is a PN-sequence of period T, for any t.

Proof. According to Reference [32], {at·i} is a PN-sequence of period T if gcd(T, t) = 1. Since T is
prime, then gcd(T, t) = 1 for any t.

Theorem 3. Given a PN-sequence with period prime T = 2L − 1 and q(x) characteristic polynomial of degree
L, then the t-MSS-sequence obtained for any t is a generalized sequence generated with a primitive polynomial
of degree L.

Proof. The proof follows the same reasoning used in Theorem 1 and Lemma 2.

Example 3. Given p(x) = 1+ x2 + x5, the period of the PN-sequence {ai} is T = 31, which is a prime number.
Table 4 shows all the t-MSS-sequences generated with this polynomial. All of them are generalized sequences
obtained from a primitive polynomial q(x) of degree 5. It is important to mention that some generalized
sequences can be generated using different primitive polynomials. For example, the generalized sequence
{101010101010101} can be obtained using any primitive polynomial of degree 5.

Symmetry 2019, 11, 1460 9 of 26

Table 4. t-MSS-sequences obtained with q(x) = 1 + x2 + x5.

t t-MSS-Sequence LC p(x)

2 1101100110100001 13 1 + x2 + x5

3 1100100101110010 12 1 + x2 + x3 + x4 + x5

4 1000111001011100 13 1 + x2 + x5

5 1000111011000101 13 1 + x + x2 + x4 + x5

6 0100111011011000 13 1 + x2 + x3 + x4 + x5

7 0001011111001010 12 1 + x + x2 + x3 + x5

8 0110101111010000 12 1 + x2 + x5

9 1111000001011010 10 1 + x + x2 + x4 + x5

10 0110001001011110 13 1 + x + x2 + x4 + x5

11 0011010010110011 13 1 + x + x3 + x4 + x5

12 1010000101111100 12 1 + x2 + x3 + x4 + x5

13 0010011001001111 13 1 + x + x3 + x4 + x5

14 1001000110111100 13 1 + x + x2 + x3 + x5

15 1110010000110110 13 1 + x3 + x5

16 1101000010100111 12 1 + x2 + x5

17 0100111110100001 12 1 + x2 + x3 + x4 + x5

18 1111010011001000 13 1 + x + x2 + x4 + x5

19 0111101011000001 12 1 + x + x2 + x3 + x5

20 1110011000110100 13 1 + x + x2 + x4 + x5

21 0101111100001010 10 1 + x + x3 + x4 + x5

22 1001100001011011 13 1 + x + x3 + x4 + x5

23 0001011011011010 11 1 + x3 + x5

24 0110011110100100 13 1 + x2 + x3 + x4 + x5

25 0011011011100100 13 1 + x + x2 + x3 + x5

26 1100011001110010 13 1 + x + x3 + x4 + x5

27 0010111100011100 11 1 + x3 + x5

28 0111000100111010 13 1 + x + x2 + x3 + x5

29 1010000111000111 11 1 + x3 + x5

30 1010101010101010 2 1 + x3 + x5

Next, the relationship between t-MSS-sequences and GSS-sequences is analyzed from other point
of view, using the cyclotomic cosets given in Reference [32].

Next, we introduce the concept of cyclotomic coset mod(2L − 1) [32] and some of its properties:

Definition 1 (Cyclotomic cosets mod (2L − 1)). : Let Z2L = {0, 1, 2, . . . , 2L− 1}. We define the equivalence
relation R between t1, t2 ∈ Z2L as follows: t1 R t2 if there exists an integer j, 0 ≤ j ≤ L− 1, such that

2j · t1 = t2 mod (2L − 1).

Z∗2L is partitioned into resultant equivalence classes called the cyclotomic cosets mod (2L − 1).

The smallest integer i in any equivalence class is defined as the leader of the coset and is denoted
by Ci. The cardinal of a coset is L or a proper divisor of L. The characteristic polynomial of a cyclotomic
coset Ci is the polynomial PCi (x) = (x + αi)(x + α2i)... (x + α2r−1i), where the degree r (r ≤ L) equals
the cardinal of the coset Ci and α is a root of the LFSR characteristic polynomial.

Following [32] (Chapter 4), Ci is a proper coset if gcd(2L − 1, i) = 1, therefore in this case, PCi(x) is
a primitive polynomial, which is a remarkable property because if PCi(x) is a primitive polynomial the
sequence generated by the basic LFSR is as large as possible.

Symmetry 2019, 11, 1460 10 of 26

Example 4. Consider the set Z∗25 . Notice that 25 − 1 is a primer integer. There are six cyclotomic cosets
given by:

C1 = {1, 2, 4, 8, 16} C5 = {5, 10, 20, 9, 18} C11 = {11, 22, 13, 26, 21}
C3 = {3, 6, 12, 24, 17} C7 = {7, 14, 28, 25, 19} C15 = {15, 30, 29, 27, 23}

In this case, all cosets are proper cosets and have cardinal 5. If q(x) = 1 + x2 + x5 is considered the
characteristic polynomial of the LFSR, then the corresponding characteristic polynomial of the cosets are given in
Table 5. Since all cosets are proper, all the characteristic polynomials are primitive of degree 5.

Table 5. Characteristic polynomial of cyclotomic cosets.

Ci PCi(x)

C1 1 + x2 + x5

C3 1 + x2 + x3 + x4 + x5

C5 1 + x + x2 + x4 + x5

C7 1 + x + x2 + x3 + x5

C11 1 + x + x3 + x4 + x5

C15 1 + x3 + x5

Theorem 4. Consider a PN-sequence of period prime T = 2L − 1 and its characteristic polynomial q(x) of
degree L, then both t-MSS-sequences obtained for any t1 and t2 are generalized sequences produced by the same
polynomial of degree L iff t1 and t2 belong to the same coset.

Proof. According to the proof of Theorem 1, a t-MSS-sequence is obtained decimating the sequence
{at·i}with a shifted version of itself, that is, as a generalized sequence. According to [32] (Theorem 5.5),
{at1·i} and {at2·i} are shifted versions of the same PN-sequence iff t1 and t2 belong to the same coset.
Thus, the decimation rule is applied to two shifted versions of the same PN-sequence and, consequently,
a generalized sequence has been generated.

As already mentioned, Table 4 shows all the t-MSS-sequences generated by q(x) = 1 + x2 + x5

and t = 2, 3, . . . , 30. Notice that when t1 and t2 are in the same coset, then the corresponding
t-MSS-sequences are generalized GSS-sequences produced by the same polynomial (characteristic
polynomial of the LFSR).

Furthermore, reciprocal polynomials generate sometimes the same sequences with different
starting points. For example, the generalized sequence produced with t = 29 can be also generated as
a generalized sequence using q(x) = 1 + x2 + x5.

In the following example (Example 5), notice that when 2L − 1 is not prime, different types of
cyclotomic cosets can be obtained [31].

Example 5. Consider the set Z∗24 . Notice that 24 − 1 is not a prime number. There are 4 cyclotomic cosets
given by:

C1 = {1, 2, 4, 8} C5 = {5, 10}
C3 = {3, 6, 12, 9} C7 = {7, 14, 13, 11}

In this case, C1 and C7 are proper cosets and C5 and C3 are improper cosets. Therefore, we know that the
PC1(x) and PC7(x) are primitive polynomials. Consider q(x) = 1 + x + x4 as the characteristic polynomial of
the LFSR. Then, the characteristic polynomial of the cosets are given in Table 6. We can check that PC1(x) and
PC7(x) are primitive polynomials of degree 4 and PC3(x) is an irreducible polynomial of degree 4. The polynomial
PC5(x) is a primitive polynomial of degree 2.

Symmetry 2019, 11, 1460 11 of 26

Table 6. Characteristic polynomial of cyclotomic cosets.

Ci PCi(x)

C1 1 + x + x4

C3 1 + x + x2 + x3 + x4

C5 1 + x + x2

C7 1 + x3 + x4

Theorem 5. Given a PN-sequence of period T = 2L − 1 and characteristic polynomial q(x) of degree L,
then both t-MSS-sequences obtained for any t1 and t2 are GSS-sequences generated by the same primitive
polynomial of degree L iff t1 and t2 belong to the same proper coset.

Proof. If the coset Ci, such that t1, t2 ∈ Ci is proper, it means that gcd(t1, T) = gcd(t2, T) = 1. The rest
follows from previous results.

Remark 1. When gcd(t, T) 6= 1, the corresponding t-MSS-sequence is a generalized sequence iff PCt(x) is a
primitive polynomial of degree equal to |Ci| (cardinal of Ci).

Since, under not very restrictive conditions, the GSS-sequences include the other sequences
produced by decimation-based generators, our randomness analysis focuses on this class of
binary sequences.

In Table 7, we summarize the three more popular decimation-based sequence generators with the
bounds for their periods and their linear complexities that were discussed in this work.

Table 7. Summary of the main characteristics of the three decimation-based generators discussed in
this work.

Generator Decimation Rule Period LC

Modified
self-shrinking
(MSSG), [16]

Given three consecutive bits, the output sequence {sj}j≥0
is computed as: If a3i + a3i+1 = 1 then, sj = a3i+2.
If a3i + a3i+1 = 0 then, a3i+2 is discarded.

2b
L
3 c ≤ T ≤ 2L−1

When L odd:
2b

L
3 c−1 ≤ LC ≤

2L−1 − (L− 2).

Generalized
self-shrinking
(GSSG), [11]

Let {ai}i≥0 be an PN-sequence generated by a
maximal-length LFSR with L stages. Let G be an
L-dimensional binary vector G = [g0, g1, g2, ..., gL−1] ∈ FL

2
and {vi}i≥0 a sequence defined as:
vi = g0ai + g1ai−1 + g2ai−2 + · · ·+ gL−1ai−L+1. For i ≥ 0,
the decimation rule is: If ai = 1 then sj = vi.
If ai = 0 then vi is discarded.

T = 2r, with r ≤
L− 1 LC ≤ 2L−1 − (L− 2).

t-modified
self-shrinking
(t-MSSG), [31]

Given t consecutive bits, the output sequence {sj}j≥0 is
computed as: If ∑t−2

j=0 at·i+j = 1 then, sj = at·i+(t−1).

If ∑t−2
j=0 at·i+j = 0 then, at·i+(t−1) discarded.

If gcd{2L − 1, t} = 1
or PCt is primitive
with degree
|Ci| : T =
2r, with r ≤ L− 1.
Other cases are not
cryptographic
relevant.

If gcd{2L − 1, t} = 1
or PCt is primitive
with degree |Ci| :
LC ≤ 2L−1 − (L− 2).
Other cases are not
cryptographic
relevant.

5. Statistical Randomness Analysis

In this section, an exhaustive analysis of randomness of the proposed GSS-sequences is presented
by using different batteries of statistical tests to study their behaviour. Some graphical tools from chaos
theory have been used [9,10], for example, return maps, chaos game, Lyapunov exponent, and so forth.
The generator and the battery of tests were implemented with Matlab 9.1 (2017) in a Windows 10
environment in a 64 bits PC with CPU Intel Core i7-870, at 2.93 GHz.

For our study, GSS-sequences s(G) are generated from PN-sequences coming from
maximal-length LFSRs with characteristic polynomials of degree less than or equal to 27. Every one of

Symmetry 2019, 11, 1460 12 of 26

these sequences has passed perfectly the Diehard battery of tests, considered one of the most important
and powerful tool for randomness study.

Furthermore, the family of GSS-sequences is analysed with the family of statistical tests FIPS
140-2, provided by the National Institute of Standards and Technology (NIST), as well as with the
Lempel-Ziv Compression Test. In both cases the sequences have passed the tests.

5.1. Graphical Testing

In this section, the main graphical tests used in Reference [9], are applied to the GSS-sequences,
from which their cryptographic properties can be analyzed.

The results obtained for GSS-sequences s(G) of length 223 bits, is presented. These sequences are
generated by the GSSG from a maximal-length LFSR with the 24-degree characteristic polynomial
p(x) = x24 + x20 + x17 + x13 + x10 + x7 + x4 + x2 + 1 and whose initial state is the identically 1 vector
of length 24.

The tests were performed with 223 bit sequences. Most of the tests works associating every eight
bits in an octet, obtaining sequences of 220 samples of 8 bits; with the exception of the Linear complexity
test that works with just one bit and the Chaos game that works associating the bits two by two.

Next, the results of graphical tests to study the randomness of our sequences is shown.

1. Return map

Return map [10] tries to measure visually the entropy of the sequence, that is, allows to detect
the existence of some useful information about the parameters used in the design of pseudo-random
generators [36]. This test, that customarily is used in theory of dynamic systems, is also a powerful
tool in cryptanalysis.

Basically, it consists of a graph of the points of the sequence xt as a function of xt−1 and,
under certain conditions, allows us to obtain the value of the parameters of a pseudo-random sequence,
defeating the security of the cryptosystem under analysis. The result should be a distribution of points
where you cannot guess neither trends, nor figures, nor lines, nor symmetry, nor patterns.

Figure 2 shows the return map of our GSS-sequence as a disordered cloud, which does not provide
any useful information for its cryptanalysis.

Figure 3a,b are the return applications of two imperfect generators where the lack of randomness
can be neatly observed. Indeed, these maps present clear patterns that permit to determine the
generator function and the parameter values.

0 100 200

xt-1

0

50

100

150

200

250

x t

Return map of the sequence

Figure 2. Return map of GSS-sequence of 223 bits. It provides no information about the parameters of
the generator.

Symmetry 2019, 11, 1460 13 of 26

(a) Return map of logistic generator. (b) Return map of quadratic generator.
Figure 3. Return maps of imperfect generators. The parameter values can be deduced by inspection of
the return map.

2. Linear Complexity

The linear complexity (LC) is considered as a measure of the unpredictability of a pseudo-random
sequence and is a widely used metric of the security of a keystream sequence [37]. We have used the
Berlekamp-Massey algorithm [38] to compute this parameter. If the characteristic polynomial of the
LFSR is primitive [32], then it is known as maximal-length LFSR; moreover, its output sequence has
period T = 2L − 1, where L is the degree of the characteristic polynomial.

LC must be as large as possible, that is, its value has to be very close to half the period [39],
LC ' T/2. From Figure 4a, it can be deduced that the value of the linear complexity of the first 20,000
bits of the sequence is just half its length, 10,000 and, from Figure 4b is observed that LC is irregularly
close to the l

2 -line, being l the length of the sequence.

0 0.5 1 1.5 2

Bit number 104

0

2000

4000

6000

8000

10000

C
om

pl
ex

ity

Linear complexity: first 20000 bits

(a) Linear Complexity of s(G).

1.985 1.99 1.995 2

Bit number 104

9900

9920

9940

9960

9980

10000

C
om

pl
ex

ity

Linear complexity: first 20000 bits

(b) Zoom of the graphic of LC for s(G).
Figure 4. Linear Complexity of s(G) for the first 20,000 most significant bits.

3. Shannon Entropy and Min-Entropy

Symmetry 2019, 11, 1460 14 of 26

The entropy of a sequence is defined as a measure of the amount of information of a process
measured in bits or as a measure of the uncertainty of a random variable. From these two possible
interpretation, the quality of the output sequence or the input of a random number generator can be
described, respectively.

Shannon’s entropy is measured based on the average probability of all the values that the variable
can take. A formal definition can be presented as follows,

Definition 2. Let X be a random variable that takes on the values x1, x2, . . . , xn. Then the Shannon’s entropy
is defined as

H(X) = −
n

∑
i=1

Pr(xi) · log2(Pr(xi)),

where Pr(·) represents probability.

If the process is a sequence of integers modulo m perfectly random, then its entropy is equal to n.
As in the case at hand m = 2n, the entropy of a random sequence must be close to n = 8 bit per octet.

The min-Entropy is only measured based on the probability of the more frequent occurrence
value of the variable. It is recommended by the NIST SP 800− 90B standard for True Random Number
Generators (TRNG).

In order to determine if the proposed generator is considered perfect from these entropies values,
according to Reference [40] for a sequence of 220 octets, it must obtain a Shannon entropy value greater
or equal than 7.976 bits per octet and a min-entropy greater or equal to 7.91 bits per octet. In this case
the following values are obtained:

Shannon entropy (measured) = 7.9999 bits per octet.
Min-entropy (measured) = 7.9457 bits per octet,

then, it can be considered that this generator is correct using entropies. Note that the Shannon’s
entropy value of 7.9999 bits per octet fits close to the theoretical perfection of 8 bits per octet.

4. Lyapunov exponent

Lyapunov exponent measures the rate of divergence of nearby trajectories, which is a key
component of chaotic dynamics. It is used as a quantitative measure for the sensitive dependence
on initial conditions. It is desirable that two very close initial conditions (for instance, seeds or
keys) provide very different trajectories (sequences). If Lyapunov exponent is greater than zero, the
distance between two close initial conditions rapidly increases in the time, which means there exists an
exponential divergence of the trajectories of a chaotic system. This value gives an idea of how different
are the sequences generated by similar seeds, a very important feature to avoid attacks on the key of
the generator. So, Lyapunov exponent is, in this case, a useful tool to evaluate the key space.

Next, a formal definition of Lyapunov exponent [41] is given.

Definition 3. Consider d0 the measure of the initial distance between two sequences and dt the measure of the
distance between the same sequences but after t iterations. We define Lyapunov exponent as:

LE =
1
t

ln
(∣∣∣∣ dt

d0

∣∣∣∣) .

If LE = 0, the sequences decrease their distance, tend to join and confused in one. The system converges
and it is not at all random. If LE > 0, the distance increases, there is dependence sensitive to initial conditions,
there is an exponential divergence of the orbit and randomness grows as higher is the value of LE.

Note that the Lyapunov exponent uses the natural logarithm of the Euclidean distance.
Nevertheless, in information theory, other type of distances for measuring the distance between

Symmetry 2019, 11, 1460 15 of 26

two sequences are used, for example Hamming distance, which indicates the number of bit positions
in which both sequences differ.

If the Lyapunov exponent is modified simply by using the Hamming distance instead of the
logarithm of the Euclidean distance, then it is called the Lyapunov Hamming exponent (LHE). If two
numbers are identical, then its LHE value will be 0. Nevertheless, if all the bits of both numbers are
different, then its LHE will be LHE = log2 m = log2 2n = n, where n is the number of bits with which
the numbers are encoded.

Obtaining the Lyapunov Hamming exponent for the chosen sequence is done by calculating the
average of the LHE between every two consecutive numbers of the sequence. The best value will
be n/2.

For this case, the best value is 4; we show the value obtained for our particular sequence analyzed:
Lyapunov Hamming exponent, ideal = 4.
Lyapunov Hamming exponent, real = 4.
Absolute deviation from the ideal = −1.0014× 10−5.

hence, the proposed generator passes perfectly this test.

5. Samples in increasing order

The samples of 8 bits are ordered by increasing value and are represented by a graph. They should
give a continuous straight line (red), with an inclination of 45 degrees, which must cover the blue
reference line.

This representation means that all the numbers are generated (if it is continuous) and that the
density is uniform (if its inclination is 45 degrees). In Figure 5a, we observe that the samples are
perfectly represented by a continuous straight line with the perfect inclination of 45 degrees.

From Figure 5b, the deviation between the increasing samples is analysed and the values −1, 0 or
1 are obtained.

0 2 4 6 8 10

Sample quantity L(x
t
) 105

0

50

100

150

200

250

S
am

pl
e

va
lu

e
x

t

Samples in increasing order

(a) Samples in increasing order. (b) Deviation from increasing order.
Figure 5. Samples ordered by increasing value.

6. Chaos game

Chaos game is a method that allows converting a one-dimensional sequence into a two dimensions
sequence providing a very provocative visual representation, which reveals some of the statistical
properties of the sequence under study. From this graphical technique is easy to look for, visually,
patterns in the sequences generated by a random number generator. Furthermore, it allows us to find
non-randomness within pseudo-random sequences.

Symmetry 2019, 11, 1460 16 of 26

Chaos game can be described mathematically by an Iterated Functions System (IFS) [10,42,43]
and through which the transition to chaos associated with fractals can be studied. The result of chaos
game is called attractor and not always is a fractal, it may be any compact set. If the output is a graph
with fractals or patterns, then it means that the sequence cannot be considered random.

In Figure 6, it cannot be observe any pattern or fractal, it is a messy (or unordered) cloud of points,
which does not provide any useful information for analysis, which implies good randomness.

-1 -0.5 0 0.5 1

.

-1

-0.5

0

0.5

1
Chaos game with all bits/sample.

Figure 6. GSS generator Chaos game.

In order to better understand this graphical test, we present in Figure 7a,b two Chaos
Game representations, which appeared in Reference [10], which are not cryptographically secure.
Their graphics are fractal which indicates that the design depends on a pattern (denoting the lack
of randomness) and it is also worth mentioning that this pattern could be used to obtain important
information for cryptanalysis.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) Logistic generator. (b) Recursive generator.
Figure 7. Chaos game representations of imperfect generators. The observed patterns indicate a lack of
randomness in the sequence.

7. Autocorrelation

The analysis of autocorrelation is a mathematical tool for finding repeating patterns analysing
different sections of a message and compares them to find similarities. The autocorrelation function is
defined as the crosscorrelation of the sequence with itself and allows measuring the linear relationship
between random variables of processes separated a certain distance. It is very useful for finding
periodic patterns within a signal.

Symmetry 2019, 11, 1460 17 of 26

Figure 8 represents the autocorrelation index of our GSS-sequence, for all samples available. It can
be seen that the sequence has a very long period, larger than the size of the sequence analyzed since
the repetition frequency is not reached in the graph.

0 2 4 6 8 10

Lag t 105

0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n

in
de

x

Autocorrelation

Figure 8. Autocorrelation function of a GSS-sequence.

The first autocorrelation coefficient is always equal to 1, while the other coefficients must have the
smallest possible amplitude so that the sequence can be considered random before finding the period
in which it begins to repeat itself. In the case at hand, values close to 0 are obtained, which means that
the proposed sequence can be considered random for this study.

8. Fast Fourier Transform

The goal of Fast Fourier Transform test is the peak heights in the discrete Fast Fourier Transform.
It consists of detecting repetitive patterns in the sequence analysed which would indicate a deviation
from the assumption of randomness [8].

If the sequence is random, then all the maximum harmonics of Fast Fourier Transform have
approximately the same horizontal level without an up or down trend.

Figure 9 shows that all amplitude values are included in the same range, which means that the
test is passed.

0 1 2 3 4 5 6

Frequency Hz 105

-85

-80

-75

-70

-65

-60

-55

-50

R
el

at
iv

e
po

w
er

 (
db

)

Fourier transform

Figure 9. Fast Fourier Transform of s(G).

9. Distribution of identical samples

Symmetry 2019, 11, 1460 18 of 26

In this subsection, the distance of occurrence between samples of equal value is studied,
because this measure is an important property of random sequences. The most probable distance
between two identical samples of a perfect sequence is zero. If this distance increases, then the probability
of coincidence between the two identical samples decreases following a Poisson distribution.

Figure 10 shows that the distribution of samples of the proposed sequence is close to the ideal.

0 200 400 600 800 1000 1200 1400

Distance between identical samples

0

1000

2000

3000

4000
N

um
be

r
of

 c
oi

nc
id

en
ce

s
Distribution of identical samples

Figure 10. Distribution of samples with equal values a function of their distance: GSS-sequence (red)
and a perfect random sequence (green).

10. Collisions of the sequence

Collisions are an intrinsic property of random sequences. If one has a sequence of integers module
m, the amount of different integer numbers will be m. When a number appears repeated, we say that a
collision has occurred. In Reference [44] an analysis of the collisions problem is presented based on the
birthday paradox which states that in a group of k people chosen at random, at least a pair of them will
have the same birthday with probability:

pk = 1−
(

1− 1
m

)(
1− 2

m

)
. . .
(

1− k− 1
m

)
, (3)

where m is the number of days of the year and k is the number of people in the living room.
This paradox can be applied to hash functions. One of the desirable properties of cryptographic

hash functions is that it is computationally impossible for a collision to occur; that is, given two
different inputs, hash function does not produce the same output.

Suppose that we have a hash function of n bits, so we have m = 2n output possible values.
From this idea, it can be deduced the inequality:

k ≥ 1
2
+

√
2 m ln(2) +

1
4

,

which provides an estimated value of the quantity k of rolls of a random sequence that must be
extracted to have a probability of a first collision greater than or equal to 0.5.

From Equation (3) it can be deduced the collision probability density distribution Dpk as a function
of k,

Dpk =
k− 1

m

(
1− 1

m

)(
1− 2

m

)(
1− 3

m

)
· · ·
(

1− k− 2
m

)
. (4)

In Figure 11 is represented the first collision probability density distribution function for a
sequence of octets, that is, n = 8, m = 256 as a red line. It can be seen that the mode of the distribution
is k = 17 = 1 +

√
m and for a quantity of rolls k = 4

√
m = 64 the collision probability density is

practically zero.

Symmetry 2019, 11, 1460 19 of 26

Any sequence with a perfect randomness must fit the first collision probability density distribution
function corresponding to Equation (4).

The Figure 11 represents also a bar graph, with one bar for each value of k, of a GSS-sequence of
220 octets. It can be seen the perfect fitting with the expected theoretical distribution.

First collision probability density distribtion.

0 10 20 30 40 50 60 70 80

Amount of rolls for the first collision

0

0.01

0.02

0.03

0.04

D
en

si
ty

Figure 11. Distribution of the first collisions (blue bars) and collision probability density distribution
function (red line).

As a curiosity, the first collision probability density distribution function coincides with a Weibull
distribution function for the variable k, that is, the distribution which is most used to model data
from reliability against catastrophes; in the present case, it models the amount of random number
generation rolls needed for a first collision to appear, which is also a catastrophe for a hash function.

5.2. Diehard Battery of Tests

Diehard battery of tests [7] is a reliable standard and a powerful instrument for practical evaluation
of the randomness of sequences of pseudo-random number generators. This tool is the first step in the
evaluation process of cryptographic primitives. It cannot guarantee if your generator can be considered
perfectly random, but if it does not pass the test suite, then it is not suitable for cryptographic
applications.

Diehard battery consists of 15 different independent statistical tests, some of them repeated but
with different parameters. The Diehard tests employ chi-squared goodness-to-fit technique to calculate
a p-value, which should be uniform on [0, 1) if the input file contains truly independent random bits.
It is considered that a bit stream really fails when it is gotten p-values of 0 or 1 to six or more places.

The GSS-sequences with characteristic polynomial of degree ≤ 27 have passed all tests in the
Diehard battery. In Table 8 we show the results obtained with the Diehard battery from a s(G) sequence
with characteristic polynomial p(x) = x27 + x23 + x22 + x17 + 1.

Symmetry 2019, 11, 1460 20 of 26

Table 8. Diehard battery of tests results for a GSS sequence with characteristic polynomial of degree 27.

Test Name p-Value Result Test Name p-Value Result

0.854161 0.6612

0.128374 0.1300

0.350541 0.7321

0.843946 0.7540

Birthday spacing 0.820384 Pass 0.7276

0.751627 0.0776

0.669644 0.2807

0.263248 0.2276

0.274206 0.5481

Overlapping 0.973492 Pass 0.0144

permutations 0.998474 0.7242

0.460374 0.7410

Binary ranks 0.607801 Pass 0.6259

0.470376 0.5815

0.59389 OQSO 0.3380 Pass

0.95088 0.8546

0.84285 0.5279

0.99576 0.3305

0.91144 0.1022

0.06885 0.3367

0.69611 0.8353

0.28168 0.6487

0.60022 0.5748

Bit stream 0.93126 Pass 0.8688

(Monkey tests) 0.77314 0.2946

0.91404 0.4309

0.81248 0.8943

0.60022 0.1388

Symmetry 2019, 11, 1460 21 of 26

Table 8. Cont.

Test Name p-Value Result Test Name p-Value Result

0.84285 0.6424

0.94645 0.1627

0.96610 0.5008

0.83486 0.6695

0.52578 0.2392

0.99599 0.7181

0.9170 0.5722

0.9852 0.9521

0.6537 0.9762

0.3155 0.3309

0.2258 0.9433

0.9600 0.2852

0.6056 0.7472

0.9116 0.3780

0.7067 0.4109

0.8025 0.8180

0.9201 0.3395

OPSO 0.9671 Pass 0.2346

0.2808 DNA 0.5149 Pass

0.5257 0.9901

0.8779 0.0708

0.9751 0.0209

0.9980 0.9450

0.3569 0.9835

0.1756 0.2135

0.8006 0.0099

0.9974 0.9157

0.4474 0.0761

0.9458 0.9593

Count-the-1’s 0.923369 Pass 0.1119

(stream of bytes) 0.375390 0.5837

0.069242 Parking lot 0.357527 Pass

0.453489 Minimum distance 0.752286 Pass

0.531694 3D Spheres 0.947691 Pass

0.476337 Squeeze 0.990622 Pass

0.115181 Overlapping sums 0.276467 Pass

0.238283 0.276783

0.248038 Runs 0.893007 Pass

0.170200 0.908305

0.595302 0.913183

Symmetry 2019, 11, 1460 22 of 26

Table 8. Cont.

Test Name p-Value Result Test Name p-Value Result

0.167417 Craps 0.995956 Pass

0.574701 105661

Count-the-1’s 0.384873 Pass

(specific bytes) 0.944743

0.955924

0.210026

0.142320

0.717744

0.191102

0.728247

0.297792

0.971290

0.323464

0.408101

0.013264

0.859849

5.3. FIPS Test 140-2. Security Requirements for Cryptographic Modules

FIPS (Federal Information Processing Standard) Publication 140-2, is a U.S. government computer
security standard [6] used to approve cryptographic modules. The National Institute of Standards
and Technology (NIST) issued the FIPS 140-2 publication series to coordinate the requirements
and standards for cryptography modules that include both hardware and software components
(last updated 2002).

In FIPS 140-2 there are 4 statistical random number generator tests—The Monobit Test, The Poker
Test, The Runs Test and The Long Runs Test. The proposed GSS-sequences with characteristic
polynomials of degree ≤ 27 pass all these tests. Below we detail the results:

1. LONG RUNS TEST(PRS): Passed. There are no runs of more than 25 equal bits.
2. MONOBIT TEST(PRS): Passed. The test is passed if (9725 < number of ones < 10275). Our result

was: 9954.
3. X= POKER TEST(PRS): Passed. The test is passed if 2.16 < X < 46.17;. Our result was:

X = 10.0736.
4. RUNS TEST(PRS): Passed. The test is passed if the runs (for both the runs of zeros, red line, and

the runs of ones, blue line) that occur (of lengths 1 through 6) are each within the corresponding
interval specified in the Figure 12 by the green line.

Symmetry 2019, 11, 1460 23 of 26

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Runs length

102

103
R

un
s

fr
eq

ue
nc

y

Figure 12. Run test for a GSS-sequence with characteristic polynomials of degree ≤ 27. Observe that
the test is passed both for the runs of zeros (red line) and for the runs of ones (blue line) since they all
fall within the corresponding range specified by the green line.

5.4. Lempel-Ziv Compression Test

The goal of this test is the number of cumulatively distinct patterns in the sequence. This test
consists of determining how much is possible to compress the analysed sequence. If the sequence can
be significantly compressed, it is considered to be non-random. The proposed GSS-sequences with
characteristic polynomials of degree ≤ 27, pass this test with perfect results.

As can be seen throughout this section, the analyzed generator meets all the requirements needed
to be used in the field of cryptography, according to points 1–4 mentioned in Section 1. Further work
would be to study the resistance of this generator against the cryptographic attacks reported in the
literature (Section 1, point 5).

6. Conclusions

In this article, we have found a relationship between two families of binary sequences belong to
the class of decimation-based sequence generators, that is, the t-modified self-shrunken sequences
can be generated from a generalized self-shrinking generator. We have analysed this relationship
from two different points of view—one of them as binary sequences and other using the cyclotomic
cosets. Furthermore, we have considered one of the most complete statistical test batteries for the
study of randomness of sequences generated by the GSSG. In addition, we have reviewed some
important graphical tests and basic and recent individual randomness tests found in the cryptographic
literature. From the study of the last section, we can conclude that our random number generator
(GSSG) produces good pseudo-random sequences since all the family of the sequences generated with
characteristic polynomials of degree less than or equal to 27 pass satisfactorily the most important
batteries of tests. The obtained results confirm the potential use of the generalized self-shrunken
sequences for cryptographic purposes.

With regard to future work on this subject, the concatenation of GSS sequences from different
primitive polynomials of different degrees could be analysed and studied, as well as the resistance
of this generator against cryptographic attacks reported in the literature. Another important future
work would be to do a comparative study of our generator with other well-known generators used in
cryptographic applications nowadays.

Author Contributions: All the authors have equally contributed to the reported research in conceptualization,
methodology, software and manuscript revision.

Symmetry 2019, 11, 1460 24 of 26

Funding: This research received no external funding.

Acknowledgments: This research has been partially supported by Ministerio de Economía, Industria y
Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional
(FEDER, UE) under project COPCIS, reference TIN2017-84844-C2-1-R, and by Comunidad de Madrid (Spain) under
project CYNAMON (P2018/TCS-4566), also co-funded by FSE and European Union FEDER funds. The first author
was supported by CAPES (Brazil). The second author was partially supported by Spanish grant VIGROB-287 of
the Universitat d’Alacant. We would like to thank Fausto Montoya for his help with the analysis of the sequences.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bhowmick, A.; Sinha, N.; Arjunan, R.V.; Kishore, B. Permutation-substitution architecture based image
encryption algorithm using middle square and RC4 PRNG. In Proceedings of the 2017 International
Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017; pp. 1–6.

2. Wortman, P.; Yan, W.; Chandy, J.; Tehranipoor, F. P2M-based security model: Security enhancement using
combined puf and PRNG models for authenticating consumer electronic devices. IET Comput. Digit. Tech.
2018, 12, 289–296. [CrossRef]

3. Bikram, P.; Trivedi, G.; Jan, P.; Nemec, Z. Efficient PRNG design and implementation for various high
throughput cryptographic and low power security applications. In Proceedings of the 2019 29th International
Conference Radioelektronika (RADIOELEKTRONIKA), Pardubice, Czech Republic, 16–18 April 2019;
pp. 1–6.

4. Moufek, H.; Guenda, K.; Gulliver, T.A. A new variant of the McEliece cryptosystem based on QC-LDPC and
QC-MDPC codes. IEEE Commun. Lett. 2017, 21, 714–717. [CrossRef]

5. Gong, G.; Helleseth, T.; Kumar, P.V. Solomon W. Golomb–Mathematician, Engineer, and Pioneer. IEEE Trans.
Inf. Theory 2018, 64, 2844–2857. [CrossRef]

6. FIPS PUB 140-2. Security Requirements for Cryptographic Modules. In Federal Information Processing
Standards Publication 140-2; U.S. Department of Commerce, NIST, National Technical Information Service:
Springfield, VA, USA, 2001.

7. Marsaglia, G. The Marsaglia Random Number CDROM including the DIehard Battery of Tests of Randomness;
Florida State University: Tallahassee, FL, USA, 1995. Available online: http://www.stat.fsu.edu/pub/
diehard (accessed on 3 November 2019).

8. National Institute of Standards and Technology. A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications; NIST800-22, SP 800-22Rev 1a; 2010, U.S. Department of Commerce:
Gaithersburg, MD, USA.

9. Orúe López, A.B. Contribución al Estudio del Criptoanálisis y Diseño de los Criptosistemas
Caóticos. Ph.D. Thesis, Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros
de Telecomunicación, Madrid, Spain, 2013.

10. Orúe, A.B.; Fúster-Sabater, A.; Fernández, V.; Montoya, F.; Hernández, L.; Martín, A. Herramientas gráficas
de la criptografía caótica para el análisis de la calidad de secuencias pseudoaleatorias. In Proceedings of the
Actas de la XIV Reunión Española sobre Criptología y Seguridad de la Información, RECSI XIV; Menorca,
Illes Balears, Spain, 26–28 October 2016; pp. 180–185.

11. Hu, Y.; Xiao, G. Generalized self-shrinking generator. IEEE Trans. Inf. Theory 2004, 50, 714–719. [CrossRef]
12. Klein, A. Linear Feedback Shift Registers. In Stream Ciphers; Springer: London, UK, 2013; Chapter 2, pp. 1–13.
13. Coppersmith, D.; Krawczyk, H.; Mansour, Y. The shrinking generator. In Proceedings of the 13th Annual

International Cryptology Conference on Advances in Cryptology (CRYPTO ’93), Santa Barbara, CA, USA,
22–26 August 1993; Springer: Berlin/Heidelberg, Germany, 1994; pp. 22–39.

14. Meier, W.; Staffelbach, O. The self-shrinking generator. In Advances in Cryptology, Proceedings of EUROCRYPT
1994; Cachin, C., Camenisch, J., Eds.; Lecture Notes in Computer Science; Springer, Berlin/Heidelberg,
Germany, 1984; Volume 950, pp. 205–214.

15. Dong, L.; Zeng, Y.; Hu, Y. F-gss: A novel fcsr-based keystream generator. In Proceedings of the First
International Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009;
pp. 1737–1740.

16. Kanso, A. Modified self-shrinking generator. Comput. Electr. Eng. 2010, 36, 993–1001.
doi:10.1016/j.compeleceng.2010.02.004. [CrossRef]

http://dx.doi.org/10.1049/iet-cdt.2018.5099
http://dx.doi.org/10.1109/LCOMM.2016.2640271
http://dx.doi.org/10.1109/TIT.2018.2809497
http://www.stat.fsu.edu/pub/diehard
http://www.stat.fsu.edu/pub/diehard
http://dx.doi.org/10.1109/TIT.2004.825256
https://doi.org/10.1016/j.compeleceng.2010.02.004
http://dx.doi.org/10.1016/j.compeleceng.2010.02.004

Symmetry 2019, 11, 1460 25 of 26

17. Berzina, I.; Bets, R.; Buls, J.; Cers, E.; Kulesa, L. On a non-periodic shrinking generator. In Proceedings of
the 2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
Timisoara, Romania, 26–29 September 2011; pp. 348–354.

18. Tasheva, A.T.; Tasheva, Z.N.; Milev, A.P. Generalization of the self-shrinking generator in the Galois Field
GF(pn). Adv. Artif. Intell. 2011, 2011, doi:10.1155/2011/464971. [CrossRef]

19. Tasheva, A.; Nakov, O.; Tasheva, Z. About balance property of the p-ary generalized self-shrinking generator
sequence. In Proceedings of the 14th International Conference on Computer Systems and Technologies
(CompSysTech ’13), Ruse, Bulgaria, 28–29 June 2013; ACM: New York, NY, USA, 2013; pp. 299–306.

20. Erkek, E.; Tuncer, T. The implementation of asg and sg random number generators. In Proceedings of the
2013 International Conference on System Science and Engineering (ICSSE), Budapest, Hungary, 4–6 July 2013;
pp. 363–367.

21. Boztas, S.; Alamer, A. Statistical dependencies in the self-shrinking generator. In Proceedings of the
2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA),
Bengaluru, India, 14–18 September 2015; pp. 42–46.

22. Savova-Tasheva, Z.; Tasheva, A. Analysis of keystream produced by generalized shrinking multiplexing
generator controlled by ternary m-sequence. In Proceedings of the 9th Balkan Conference on Informatics
(BCI’19), Sofia, Bulgaria, 26–28 September 2019; ACM: New York, NY, USA, 2019; pp. 1–7.

23. Gergely, A.M.; Crainicu, B. A succinct survey on (pseudo)-random number generators from a cryptographic
perspective. In Proceedings of the 2017 5th International Symposium on Digital Forensic and Security
(ISDFS), Tirgu Mures, Romania, 26–28 April 2017; pp. 1–6.

24. Bikram, P.; Khobragade, A.; Sai, S.; Goswami, S.S.P.; Dutt, S.; Trivedi, G. Design and implementation of
low-power high-throughput PRNGs for security applications. In Proceedings of the 2019 32nd International
Conference on VLSI Design and 2019 18th International Conference on Embedded Systems, Delhi, NCR,
India, 5–9 January 2019; pp. 535–536.

25. Prokofiev, A.O.; Chirkin, A.V.; Bukharov, V.A. Methodology for quality evaluation of PRNG, by investigating
distribution in a multidimensional space. In Proceedings of the 2018 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, Russia, 29 January–1 February
2018; pp. 355–357.

26. Dalai, D.K.; Maitra, S.; Pal, S.; Roy, D. Distinguisher and non-randomness of grain-v1 for 112, 114 and 116
initialisation rounds with multiple-bit difference in ivs. IET Inf. Secur. 2019, 13, 603–613. [CrossRef]

27. Avaroglu, E.; Çavdar, T. Quantum random number generators. In Proceedings of the 2018 International
Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 28–30 September 2018;
pp. 1–4.

28. Zhu, S.; Ma, Y.; Li, X.; Yang, J.; Lin, J.; Jing, J. On the analysis and improvement of min-entropy estimation
on time-varying data. IEEE Trans. Inf. Forensics Secur. 2019, 1, doi:10.1109/TIFS.2019.2947871. [CrossRef]

29. Liu, Y.; Tong, X. Hyperchaotic system-based pseudorandom number generator. IET Inf. Secur. 2016, 10,
433–441. [CrossRef]

30. Cardell, S.D.; Fúster-Sabater, A. Discrete linear models for the self-shrunken sequences. Finite Fields
Their Appl. 2017, 47, 222–241. [CrossRef]

31. Cardell, S.D.; Fúster-Sabater, A. The t-Modified Self-shrinking Generator. In Computational Science—ICCS
2018, Proceedings of the International Conference on Computational Science (ICCS 2018), Wuxi, China,
11–13 June 2018; Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J., Sloot, P.M.A., Eds.;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10860, pp. 653–663.

32. Golomb, S.W. Shift Register-Sequences; Aegean Park Press: Laguna Hill, CA, USA, 1982.
33. Fúster-Sabater, A. Linear Solutions for Irregularly Decimated Generators of Cryptographic Sequences. Int. J.

Nonlinear Sci. Numer. Simul. 2014, 15, 377–385.[CrossRef]
34. Todorova, M.; Stoyanov, B.; Szczypiorski, K.; Kordov, K. SHAH: Hash Function based on Irregularly

Decimated Chaotic Map. Int. J. Electron. Telecommun. 2018, 64, 457–465, doi:10.24425/123546. [CrossRef]
35. Lidl, R.; Niederreiter, H. Introduction to Finite Fields and Their Applications; Cambridge University Press:

New York, NY, USA, 1986.
36. Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G. Cryptanalyzing an improved security modulated chaotic

encryption scheme using ciphertext absolute value. Chaos Soliton. Fract. 2005, 23, 1749–1756. [CrossRef]
37. Paar, C.; Pelzl, J. Understanding Cryptography; Springer: Berlin/Heidelberg, Germany, 2010.

http://dx.doi.org/10.1155/2011/464971
http://dx.doi.org/10.1049/iet-ifs.2018.5276
http://dx.doi.org/10.1109/TIFS.2019.2947871
http://dx.doi.org/10.1049/iet-ifs.2015.0024
http://dx.doi.org/10.1016/j.ffa.2017.06.010
http://dx.doi.org/10.1515/ijnsns-2013-0121
http://dx.doi.org/10.24425/123546
http://dx.doi.org/10.1016/j.chaos.2004.07.006

Symmetry 2019, 11, 1460 26 of 26

38. Massey, J.L. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theor. 1969, 15, 122–127.
doi:10.1109/TIT.1969.1054260. [CrossRef]

39. Rueppel, R.A. Linear Complexity and Random Sequences. In Advances in Cryptology—EUROCRYPT 1985;
Pichler, F., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1986; Volume 219,
pp. 167–188.

40. Killmann, W.; Schindler, W. AIS 20/AIS 31, A Proposal for: Functionality Classes for Random Number Generators;
Bundesamt für Sicherheit in der Informationstechnik (BSI): Frankfurt am Main, Germany, 2011.

41. Romera, M. Técnica de los Sistemas Dinámicos Discretos; 27 CSIC, Madrid II-C; Textos Universitarios:
Madrid, Spain, 1997.

42. Peitgen, H.O.; Jurgens, H.; Saupe, D. Chaos and Fractals: New Frontiers of Science; Springer: New York, NY,
USA, 2004.

43. Barnsley, M. Fractals Everywhere, 2nd ed.; Dover Publications, Inc.: Mineola, NY, USA, 2012.
44. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.; The MIT Press:

Cambridge, MA, USA, 2001.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/TIT.1969.1054260
http://dx.doi.org/10.1109/TIT.1969.1054260
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Preliminaries
	PN-Sequences
	Modified Self-Shrinking Generator (MSSG)
	The Generalized Self-Shrinking Generator (GSSG)

	The t-Modified Self-Shrinking Generator
	Statistical Randomness Analysis
	Graphical Testing
	Diehard Battery of Tests
	FIPS Test 140-2. Security Requirements for Cryptographic Modules
	Lempel-Ziv Compression Test

	Conclusions
	References

